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A linear principal minor polynomial or lpm polynomial is a linear combination of prin-

cipal minors of a symmetric matrix. By restricting to the diagonal, lpm polynomials are

in bijection with multiaffine polynomials. We show that this establishes a one-to-one

correspondence between homogeneous multiaffine stable polynomials and PSD-stable

lpm polynomials. This yields new construction techniques for hyperbolic polynomials

and allows us to find an explicit degree 3 hyperbolic polynomial in six variables some

of whose Rayleigh differences are not sums of squares. We further generalize the well-

known Fisher–Hadamard and Koteljanskii inequalities from determinants to PSD-stable

lpm polynomials. We investigate the relationship between the associated hyperbolicity

cones and conjecture a relationship between the eigenvalues of a symmetric matrix

and the values of certain lpm polynomials evaluated at that matrix. We refer to this

relationship as spectral containment.

1 Introduction

A homogeneous polynomial p ∈ R[x] := R[x1, . . . , xn] is called hyperbolic with respect to

a ∈ Rn if p(a) �= 0 and pv(t) := p(v − ta) ∈ R[t] has only real roots for all v ∈ Rn. The

hyperbolicity cone Ha(p) of a polynomial p hyperbolic with respect to a ∈ Rn is the set
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2 G. Blekherman et al.

of all v ∈ Rn such that p(v − ta) has only nonnegative roots. Originally conceived in the

context of partial differential equations [10], hyperbolic polynomials were discovered

to yield deep results in (non-)linear algebra, combinatorics, and optimization; see, for

example, [1, 3, 4, 23, 26, 30].

A fundamental family of hyperbolic polynomials is given by the elementary

symmetric polynomials

ek(x) =
∑
J

∏
i∈J

xi ,

where J ranges over all k-element subsets of [n] := {1, . . . ,n}. The elementary symmetric

polynomials are stable: a multivariate polynomial p ∈ R[x] is stable if for all complex

numbers z1, . . . , zn lying in the open upper half-plane, we have p(z1, . . . , zn) �= 0. If p is

homogeneous, then it is stable if and only if it is hyperbolic with respect to all a ∈ Rn
>0,

and we denote by H(p) = H1(p) its hyperbolicity cone with respect to the vector

1 = (1, . . . , 1).

Let X denote an n × n symmetric matrix of indeterminants, and for any J ⊆
[n], we let XJ denote the principal submatrix of X indexed by J. We can then define a

polynomial

Ek(X) =
∑
J

det(XJ) ,

where again J ranges over all k-element subsets of [n]. It turns out that these

polynomials do not vanish on the Siegel upper half-plane, that is, the set of all complex

symmetric matrices with positive definite imaginary part. Such polynomials are called

Dirichlet–Gårding [12] or PSD-stable [15]. For a homogeneous polynomial P this property

is equivalent to being hyperbolic with respect to any positive definite matrix, and we

denote by H(P) its hyperbolicity cone (taken with respect to the identity matrix). When

the context is clear, we will simply refer to PSD-stable polynomials P(X) as stable

polynomials.

The starting point of our paper is the observation that Ek(X) is closely related to

ek(x). For instance, if X = Diag(x1, . . . , xn) is the diagonal matrix with diagonal entries

Xii = xi, then Ek(X) = ek(x1, . . . , xn). To generalize this observation, let Rn×n
sym be the

vector space of real symmetric n × n-matrices and let R[X] be the ring of polynomials

on it, where we regard X as being an n × n matrix of indeterminants. A polynomial

P(X) ∈ R[X] is called a linear principal minor polynomial or lpm-polynomial if P(X) is
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Linear Principal Minor Polynomials 3

of the form

P(X) =
∑
J

cJ det(XJ) ,

where J ranges over all subsets of [n]. The first natural question we pursue is what

interesting properties are shared by a homogeneous lpm polynomial P(X) and its

diagonal restriction p(x). We show that P(X) is PSD-stable if and only if p(x) is stable.

We prove this fact using the theory of stability preservers [5].

Having established these basic facts we generalize classical determinantal

inequalities from linear algebra, such as the Hadamard–Fischer and Koteljanskii

inequality to the setting of stable lpm polynomials. This generalizes the Hadamard-type

inequalities for k-positive matrices obtained in [20]. Another interesting consequence of

the above results is that they give construction of a new class of hyperbolic polynomials.

Using lpm polynomials we construct a hyperbolic cubic in six variables, which has

a Rayleigh difference that is not a sum of squares. The previously smallest known

example with 43 variables was constructed by Saunderson in [28]. Finally, we study

whether the eigenvalue vector λ of a matrix X lying in the hyperbolicity cone of a

stable lpm polynomial P(X) lies in the hyperbolicity cone of p(x) and show how this

is related to a potential generalization of the classical Schur–Horn theorem [13, 29]. We

now discuss our results in detail.

2 Our Results in Detail

Our discussion of lpm polynomials can also be viewed from a different perspective.

A polynomial p ∈ R[x] := R[x1, . . . , xn] is multi-affine if it is a linear combination of

square-free monomials xJ = ∏
j∈J xj for J ⊆ [n]. We define a linear map � from the

vector subspace of multi-affine polynomials in x1, . . . , xn to the vector space of lpm

polynomials, which we call the minor lift map, as follows. The minor lift of

p(x) =
∑
J⊆[n]

aJ

∏
i∈J

xi,

is the polynomial P = �(p) given by

P(X) =
∑
J⊆[n]

aJ det(XJ).
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4 G. Blekherman et al.

We note that deg(�(p)) = deg(p) and that �(p) is homogeneous if and only if p is

homogeneous. When it is unambiguous, we will use lower case letters such as p to

denote homogeneous, multiaffine p ∈ R[x1, . . . , xn], and use the corresponding upper

case letters for the minor lift, so that P is equal to �(p).

2.1 Properties of the minor lift map and constructions

Our first result is that the minor lift map sends stable polynomials to PSD-stable

polynomials. Stronger even, let us call a matrix A k-locally positive semidefinite (PSD)

if every principal k × k-submatrix AJ of A is positive semidefinite. The collection PSDk

of k-locally PSD matrices is a closed convex cone and PSDd ⊂ PSDd−1 ⊂ · · · ⊂ PSD1.

Theorem 2.1. Let p be a homogeneous multiaffine polynomial of degree k. If p is stable,

then P = �(p) is hyperbolic with PSDk ⊆ H(P). In particular, P is PSD-stable.

The proof of this is given in Section 3.

For A ∈ Rn×n
sym , let π(A) = (A11,A22, . . . ,Ann) be the projection to the diagonal. A

first implication for the associated hyperbolicity cones is as follows.

Corollary 2.2. Let p be a homogeneous multiaffine stable polynomial and P = �(p). If

A ∈ H(P), then p(π(A)) ≥ P(A) and π(A) ∈ H(p).

The proof of this is given in Section 6.

Using Theorem 2.1, we are able to construct new interesting hyperbolic polyno-

mials. Given a hyperbolic polynomial p and points a,v in the hyperbolicity cone of p,

the Rayleigh difference D ltav,a(p) = Dvp ·Dap−p ·DvDap is a polynomial nonnegative on

Rn [18]. If the polynomial D ltav,a(p) = Dvp ·Dap−p ·DvDap is not a sum of squares, this

has interesting implications for determinantal representations as well as a hyperbolic

certificate of nonnegativity of D ltav,a(p), which cannot be recovered by sums of squares.

Saunderson [28] characterized all pairs (d,n) for which there exists such a hyperbolic

polynomial p ∈ R[x1, . . . , xn] of degree d, except when d = 3, where the smallest known

example with a Rayleigh difference that is not a sum of squares depends on 43 variables.

We are able to reduce the number of variables to 6. See Section 8 for more details.

Theorem 2.3. There exists an (explicit) degree-3 hyperbolic polynomial p in six

variables and vectors v,a ∈ H(p) such that the Rayleigh difference D ltav,a(p) is not

a sum-of-squares.
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Linear Principal Minor Polynomials 5

2.2 Hyperbolic determinantal inequalities

We generalize some well-known theorems from linear algebra to the setting of lpm

polynomials. Note that the cone of positive semidefinite matrices is precisely the

hyperbolicity cone of det(X), which is the minor lift of en(x) = x1 · · ·xn. For our

generalizations, we replace the determinant by the minor lift of a homogeneous

multiaffine stable polynomial, and the cone of positive semidefinite matrices by the

hyperbolicity cone of the minor lift.

Hadamard’s inequality is a classical result comparing the determinant of any

positive semidefinite matrix with the product of its diagonal entries.

Theorem (Hadamard’s inequality). If A is an n × n positive semidefinite matrix, then

det(A) ≤ ∏n
i=1 Aii.

An equivalent statement of this inequality is as follows: if V is any, not neces-

sarily symmetric, real n × n-matrix with columns v1, . . . , vn, then det(V) ≤ ∏n
i=1 ‖vi‖2.

This yields a geometric interpretation, since the absolute value of determinant is the

volume of an n-dimensional parallelepiped with edges v1, . . . , vn.

Fischer’s inequality generalizes Hadamard’s inequality, and relates the determi-

nant of a positive semidefinite matrix to its principal minors. Let � = {S1, . . . , Sm} be a

partition of the set [n] into m disjoint subsets. Given such a partition, we write i ∼ j if

i, j ∈ Sk for some k = 1, . . . ,m. Let D� be the vector space of symmetric matrices that are

block diagonal with respect to �

D� = {A ∈ Rn×n
sym : Aij = 0 if i �∼ j}.

Let π� be the orthogonal projection from Rn×n
sym onto the subspace D�.

Theorem (Fischer’s inequality) Let A be a positive semidefinite matrix. Then,

det(π�(A)) ≥ det(A) .

Observe that Hadamard inequality is simply Fischer’s inequality with partition

� = {{1}, . . . , {n}}. We now give a hyperbolic generalization of Fischer–Hadamard

inequality. For P = �(ek), our hyperbolic Hadamard inequality was obtained in [20].
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6 G. Blekherman et al.

Theorem 2.4 (Hyperbolic Fischer–Hadamard inequality). Let P be a homogeneous PSD-

stable lpm-polynomial and � a partition. Then,

P(π�(A)) ≥ P(A)

holds for all A ∈ H(P).

The classical Fischer–Hadamard inequality is a consequence of a more general

inequality known as Koteljanskii’s inequality, which handles the case of overlapping

blocks [16].

Theorem (Koteljanski’s inequality). Let S and T be two subsets of [n] and A be a

positive semidefinite n × n matrix. Then,

det(AS)det(AT) ≥ det(AS∪T)det(AS∩T) .

While we were not able to generalize Koteljanskii’s inequality in a way that

implies the hyperbolic Fischer–Hadamard inequality, we found a hyperbolic generaliza-

tion of Koteljanskii’s inequality, which uses a different interpretation of what it means

to take a minor of a matrix.

Definition 2.5. Given a degree k homogeneous lpm polynomial P and T ⊆ [n] with

|T| ≥ n − k, we define the restriction

P|T =
( ∏
i∈[n]\T

∂

∂Xii

)
P ,

where we take partial derivative with respect to diagonal variables not in T.

With this definition we can state the hyperbolic Koteljanskii inequality, which

is in fact a straightforward application of the results about negative lattice condition

in [6].

Proposition 2.6 (Hyperbolic Koteljanskii inequality). Let P be a homogeneous PSD-

stable lpm-polynomial and S,T ⊆ [n]. Then,

P|S(A)P|T(A) ≥ P|S∪T(A)P|S∩T(A)

holds for all A ∈ H(P).
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Linear Principal Minor Polynomials 7

2.3 Spectral containment property

If A is an n × n symmetric matrix, we say that λ ∈ Rn is an eigenvalue vector of A if the

entries of λ are precisely the eigenvalues of A with appropriate multiplicities. Note that

the set of eigenvalue vectors of a symmetric matrix A are invariant under permutations.

We recall the example of the k-th elementary symmetric polynomial ek(x) and its

minor lift Ek(X) from the introduction. It is well known that Ek(A) = ek(λ) where λ is an

eigenvalue vector of A. In particular, it follows that A ∈ H(P) implies that λ ∈ H(p), for

p = ek. Notice that since ek is invariant under permutations of coordinates, the order in

which we list the eigenvalues of A in λ(A) does not matter. This motivates the following

definition.

Definition 2.7. A homogeneous multiaffine stable polynomial p ∈ R[x1, . . . , xn] has the

spectral containment property if for any A ∈ H(P) ⊂ Rn×n
sym , there is an eigenvalue vector

λ ∈ Rn of A such that λ ∈ H(p).

Remark 2.8. We could make a stronger requirement in Definition 2.7 that for all A ∈
H(P), all eigenvalue vectors of A lie in H(p), seems to be too restrictive; we do not have

any examples of polynomials besides the elementary symmetric polynomials with this

stronger property.

We now give a number of polynomials that have the spectral containment

property:

Theorem 2.9. The following classes of polynomials have the spectral containment

property:

1. The elementary symmetric polynomials e1, . . . , en.

2. For any n ≥ k ≥ d, and any |ε| sufficiently small, ed(x1, . . . , xn) +
εed(x1, . . . , xk).

3. Stable linear polynomials.

4. Any degree n − 1 stable polynomial that interlaces en−2.

Moreover, if p has the spectral containment property, and x0 is a variable not used in p,

then x0p has the spectral containment property.

While this property may seem mysterious, we conjecture that it is in fact

ubiquitous:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac291/6819958 by G

eorgia Institute of Technology user on 23 O
ctober 2023



8 G. Blekherman et al.

Conjecture 2.10. Every homogeneous multaffine stable polynomial has the spectral

containment property.

If Conjecture 2.10 is true, then Theorem 2.1 implies that for every k-locally PSD

matrix A and homogeneous multiaffine stable polynomial p, some eigenvalue vector of

A is contained in H(p). This may seem like a very strong condition on the eigenvalues

of A, but as we show below it is equivalent to the fact that every eigenvalue vector of A

is contained in H(ek), which we already observed above. Let Sn denote the symmetric

group on n letters and let it act on Rn by permuting coordinates.

Theorem 2.11. Let ek ∈ R[x] be the elementary symmetric polynomial of degree k , and

let h ∈ R[x] be a nonzero homogeneous multiaffine stable polynomial of degree k. If

v ∈ H(ek), then there exists a permutation τ ∈ Sn such that τ(v) ∈ H(h).

In Section 9.4 we will also show that Conjecture 2.10 would be implied in many

cases by another conjecture generalizing the classical Schur–Horn Theorem.

3 The Minor Lift Map and Stability Preservers

Our goal in this section is to prove Theorem 2.1. We first explain how to construct the

minor lift map via partial derivatives of the determinant. Let p ∈ R[x] be a multiaffine

polynomial. The dual of p is

p∗(x) := p
( 1

x1
,
1

x2
, . . . ,

1

xn

) n∏
i=1

xi. (1)

For any polynomial p ∈ R[x1, . . . , xn], we consider the differential operator

p∗
(

∂
∂X11

, ∂
∂X22

, . . . , ∂
∂Xnn

)
. For instance, if p = xS = ∏

i∈S xi is a monomial, then

the associated differential operator is
∏

i/∈S ∂
∂Xii

. Applying the differential operator

associated to xS to det(X) yields

(∏
i/∈S

∂

∂Xii

)
det(X) = det(XS).

By linearity, we then obtain that

P(X) =
(
p∗

(
∂

∂X11
,

∂

∂X22
, . . . ,

∂

∂Xnn

))
det(X) ,
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Linear Principal Minor Polynomials 9

where P = �(p) is the minor lift of p. This formulation of the minor lift map will allow

us to easily apply the theory of stability preservers.

Remark 3.1. The minor lift operation interacts nicely with dualization. If p is a

multiaffine polynomial, then

�(p∗)(X) = det(X) · �(p)(X−1).

This result follows directly from the Jacobi complementary minors identity,

found in [19], which states that det(X|Sc ) = det(X−1|S)det(X). This is a matrix analogue

of (1).

Before we go on, we need the following facts about hyperbolicity cones that can

be found in [30].

Lemma 3.2. Let p ∈ R[x] be a homogeneous polynomial and K ⊂ Rn a cone. The

following are equivalent:

1. p is hyperbolic with respect to all a ∈ K, and

2. p(v + ia) �= 0 for all v ∈ Rn and a ∈ K.

Lemma 3.3. Let p ∈ R[x] be hyperbolic with respect to a ∈ Rn. Then p is hyperbolic

with respect to every point in the connected component of {v ∈ Rn : p(v) �= 0} that

contains a.

Our first step is the following observation:

Lemma 3.4. Let P ∈ R[X] be a homogeneous polynomial. Then P is PSD-stable if and

only if the following two conditions hold:

1. P(A) �= 0 for all positive definite matrices A;

2. P(Diag(x1, . . . , xn) + M) ∈ R[x] is stable for every real symmetric matrix M.

Proof. First assume that P is PSD-stable and let A be a positive definite matrix. By

definition we have P(iA) �= 0. Since P is homogeneous, this implies that P(A) �= 0.

Further, let zj = aj + ibj in the upper half-plane. Then P(Diag(z1, . . . , zn) + M) is

nonzero for any real symmetric matrix M, since Diag(b1, . . . , bn) is a positive definite

matrix.
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10 G. Blekherman et al.

For the other direction we first observe that condition (2) implies that P is

hyperbolic with respect to the identity matrix. Indeed, the univariate polynomial P(tI +
M) is stable and thus real-rooted for every real symmetric matrix M. Now condition (1)

together with Lemmas 3.2 and 3.3 imply that P is PSD-stable. �

Proof of Theorem 2.1. Let p ∈ R[x] be multiaffine, homogeneous and stable. Then

by [8, Thm. 6.1] all nonzero coefficients of p have the same sign. Without loss of

generality assume that all are positive. Then P = �(p) is clearly positive on positive

definite matrices since the minors of a positive definite matrix are positive. Thus, by

Lemma 3.4, it remains to show that

P(Diag(x1, . . . , xn) + M) =
(
p∗

(
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

))
det(Diag(x1, . . . , xn) + M)

is stable for every real symmetric matrix M. The polynomial det(Diag(x1, . . . , xn)+M) is

stable as well as p∗ by [8, Prop. 4.2]. Thus, the polynomial P(Diag(x1, . . . , xn)+M) is also

stable by [5, Thm. 1.3].

Let A ∈ PSDk ⊆ Rn×n
sym be k-locally PSD. Then for every k-subset S ⊆ [n], we have

det((A + tI)|S) > 0 for all t > 0. Hence, if p has degree k with all coefficients positive,

then P(A − tI) > 0 for all t < 0 and hence all roots are non-negative. This implies that

A ∈ H(P). �

Remark 3.5. Given a multiaffine homogeneous stable polynomial p ∈ R[x1, . . . , xn], the

minor lift map gives a hyperbolic polynomial P in the entries of a symmetric n × n

matrix whose restriction to the diagonal equals to p. Such polynomials can also be

constructed for stable polynomials that are not necessarily multiaffine. Since we are

mainly interested in multiaffine polynomials, we only briefly sketch one possible such

construction. To a stable homogeneous polynomial p ∈ R[x1, . . . , xn] one can find a

multiaffine stable polynomial q ∈ R[z11, . . . , z1d1
, . . . , zndn

] such that we can recover p

from q by substituting each variable zij by xi, see [8, §2.5]. This polynomial q is called

a polarization of p. If we set certain variables in suitable diagonal blocks of the minor

lift of q to be equal, we obtain a hyperbolic polynomial with the desired properties

for p.

4 Hyperbolic Hadamard–Fischer Inequality

Our goal in this section is to prove Theorem 2.4. We start by making some general

observations about supporting hyperplanes of the hyperbolicity cone:
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Linear Principal Minor Polynomials 11

Lemma 4.1. Let p ∈ R[x] be hyperbolic with respect to a ∈ Rn and Ha(p) the

corresponding hyperbolicity cone. Assume that p(a) > 0 and that p is reduced in the

sense that all its irreducible factors are coprime. Then we have the following:

1. For all v ∈ Ha(p) the linear form Lv(x) = 〈∇p(v), x〉 is nonnegative on Ha(p).

2. If v ∈ ∂Ha(p), then Lv(v) = 0.

3. If b �∈ Ha(p), then there exists v ∈ ∂Ha(p) such that Lv(b) < 0.

Proof. Part (2) is just Euler’s identity since p vanishes on ∂Ha(p). For (1) we prove

the statement for all x in interior of Ha(p), which suffices due to continuity. Observe

that Lv(x) = 〈∇p(v), x〉 = Dxp(v), where Dxp denotes the directional derivative of p in

direction x. If x is in interior of Ha(p) we have Ha(p) = Hx(p) ⊆ Hx(Dxp). This shows

Dxp(v) ≥ 0 for all v ∈ Ha(p). In order to prove (3), we first note that by our assumption

on p, the set of points c ∈ ∂Ha(p) where ∇p(c) = 0 is nowhere dense. Thus, if b �∈ Ha(p),

then there is a point e in the interior of Ha(p) such that the line segment [e,b] intersects

∂Ha(p) in a smooth point v. Since Lv(e) > 0 and Lv(v) = 0, we have Lv(b) < 0. �

We now apply the above observations to lpm polynomials. Recall that for a

partition � = {S1, . . . , Sm} of [n], we denote by D� the vector space of block diagonal

symmetric matrices with blocks given by � and π� is the orthogonal projection of Rn×n
sym

onto the subspace D�. Further recall that we write a ∼ b for a,b ∈ [n] if a,b ∈ Sk for

some k = 1, . . . ,m.

Lemma 4.2. Fix a partition � = {S1, . . . , Sm} of [n] and let B ⊆ [n] be any subset. Then

for any σ ∈ SB, we have |{b ∈ B|b �∼ σ(b)}| �= 1.

Proof. For b ∈ B, consider the orbit b, σ(b), σ 2(b), . . . , σ t−1(b), σ t(b) = b. If b ∈ Sk but the

orbit is not fully contained in Sk, then there are 0 ≤ r < s < t such that σ r(b), σ s+1(b) ∈ Sk
but σ r+1(b), σ s(b) �∈ Sk. �

Lemma 4.3. Let P be an lpm polynomial. If A ∈ D�, then ∇P(A) ∈ D�.

Proof. Since P is a sum of terms of the form aB det(XB) with B ⊆ [n], it suffices to prove

the claim for P = det(XB). In that case, this is equivalent to saying that if A ∈ D� and

i �∼ j, then

( ∂

∂Xij
det(XB)

)
(A) = 0.
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12 G. Blekherman et al.

Now detXB = ∑
σ∈SB

sgn(σ )
∏

i∈B Xi,σ(i) and Lemma 6.2 applied to each term yields the

claim. �

The preceding lemma allows us to show that the hyperbolicity cone of a

hyperbolic lpm polynomial is closed under projections onto D�.

Lemma 4.4. Let P be a homogenous PSD-stable lpm polynomial. If A ∈ H(P), then

π�(A) ∈ H(P).

Proof. Let P� be the restriction of the polynomial P to D�, that is, P� = P ◦ ι where

ι : D� → Rn×n
sym is the inclusion map.

We claim H(P) ∩ D� = H(P�). This follows because if A ∈ D�, then A ∈ H(P�) if

and only if P�(A + tI) > 0 for t > 0. On the other hand,

P�(A + tI) = P(ι(A + tI)) = P(A + tI).

This second equality follows from the fact that I ∈ D�. This is positive for t > 0 if and

only if A ∈ H(P), from which we can see the claim.

For A ∈ H(P) we thus have to prove that π�(A) ∈ H(P�). By Lemma 6.1

this is equivalent to 〈∇P�(B),π�(A)〉 ≥ 0 for all B ∈ H(P�). But by the previous

lemma we have 〈∇P�(B),π�(A)〉 = 〈∇P(B),A〉, which is nonnegative by Lemma 6.1 since

A ∈ H(P). �

We are now able to prove the hyperbolic Fischer–Hadamard inequality. Our proof

technique is inspired by the proof of [11, Thm. 5].

Proof of Theorem 2.4. Without loss of generality, we can assume that P(I) > 0. If

A is on the boundary of H(P), then P(A) = 0 and we are done since π�(A) ∈ H(P)

implies P(π�(A)) ≥ 0. Therefore, we may assume that A is in the interior of H(P). In

this case, let ε > 0 be sufficiently small such that A − εI ∈ H(P), then π�(A) − εI =
π�(A − εI) is also in H(P). This shows that π�(A) is in the interior of H(P) and

P(π�(A)) > 0.

Because P(A) �= 0, P is hyperbolic with respect toA and q(t) = P(tA+π�(A)) ∈ R[t]

is real rooted with negative roots. Let d be the degree of q(t). Let λ1, . . . , λd < 0 be the

roots of q(t). We consider the coefficients of t in q(t):

• The coefficient of td is P(A).
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• The coefficient of t is dP(π�(A)), since d
dtq(0) = 〈∇P(π�(A)),A〉, and by

Lemma 6.3,

〈∇P(π�(A)),A〉 = 〈∇P(π�(A)),π�(A)〉 = dP(π�(A)).

This last equality is due to Euler’s identity.

• The constant coefficient is P(π�(A)).

Thus, we have ed−1(λ) = dP(π�(A))
P(A)

, and ed(λ) = λ1 · · · λd = P(π�(A))
P(A)

. Since all λi are

positive, from the Arithmetic Mean-Geometric Mean inequality we have

P(π�(A))

P(A)
= ed−1(λ)

d
≥ (λ1 · · · λd)

d−1
d =

(
P(π�(A))

P(A)

)d−1
d

.

This proves the claim. �

When P(X) = detX, then H(P) is the cone of positive semidefinite matrices and

our theorem implies the well-known Fischer’s inequality:

Corollary 4.5 (Fischer’s inequality). If A is positive semidefinite, then detπ�(A) ≥
detA.

Remark 4.6. The usual statement of Fischer’s inequality corresponds to the case of

two blocks. This is equivalent to our multi-block version since principal submatrices of

a positive semidefinite matrix are also positive semidefinite.

In the case, where � = {{1}, ..., {n}}, Theorem 2.4 and Lemma 6.4 imply

Corollary 2.2. We also get the following strengthening of Theorem 2.4.

Corollary 4.7. Let P be a homogeneous and PSD-stable lpm-polynomial. If A ∈ H(P),

then the polynomial P((1 − t)A + tπ�(A)) is monotonically increasing for t ∈ [0, 1].

Proof. The polynomial q(t) = P(tA + (π�(A) − A)) is real rooted, and

P((1 − t)A + tπ�(A)) = q∗(t)

so that q∗(t) is real rooted. Because both A and π�(A) are in H(P), we have q∗(t) ≥ 0 for

t ∈ [0, 1].
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14 G. Blekherman et al.

Suppose that P(π�(A)) = 0. Since (1 − t)A + tπ�(A) ∈ H(P) for t ∈ [0, 1], we have

that 0 ≤ P((1 − t)A + tπ�(A)). Moreover, π�((1 − t)A + tπ�(A)) = π�(A), so by Theorem

2.4, P((1 − t)A + tπ�(A)) ≤ P(π�(A)) = 0. Thus, q∗(t) is uniformly 0 on this interval, and

in particular, it is monotonic increasing.

If P(π�(A)) > 0, then π�(A) is in the interior of H(P). In particular, this implies

that q(t) > 0 for t > 0, and therefore, q∗(t) has no roots in (0, 1].

Moreover, if P(π�(A)) > 0, then there is some ε > 0 so that q∗(t) > 0 for t ∈
(0, 1 + ε]. Hence, by interlacing d

dtq
∗(t) has at most one root in the interval (0, 1 + ε).

We claim that in fact, d
dtq

∗(1) = 0 and, therefore, q∗(t) has no critical points

in (0, 1), and this implies that q∗(t) must be monotonic increasing on (0, 1]. To see that
d
dtq

∗(1) = 0, notice that for any t ∈ [0, 1 + ε), (1 − t)A + tπ�(A) ∈ H(P) since they are in

the connected component of Rn×n
sym \ V(P) that contains π�(A). We also have that π�((1 −

t)A + tπ�(A)) = π�(A), so by Theorem 2.4, we have that for any t ∈ [0, 1 + ε), q∗(t) =
P((1 − t)A + tπ�(A)) ≤ P(π�(A)) = q∗(1). This implies that q∗(t) has a local maximum at

t = 1, and so d
dtq

∗(1) = 0, as desired. �

5 Hyperbolic Koteljanskii Inequality

Koteljanskii’s inequality [16] states that for any n×n positive semidefinite matrix A and

S,T ⊂ [n], detAS detAT ≥ detAS∩T detAS∪T . This is a generalization of the Hadamard–

Fischer inequality. Later this inequality was proven to hold for other classes of (possibly

non-symmetric) matrices [14]. In this section we prove Theorem 2.6, a generalization

of Koteljanskii’s inequality, where the determinant can be replaced by a PSD-stable

lpm polynomial. First we need the hyperbolic counterpart of the fact that principal

submatrices of a positive semidefinite matrix are again positive semidefinite, and hence

have nonnegative determinant. For this we use Renegar derivatives [24].

Theorem 5.1. Let p be a polynomial, hyperbolic with respect to v. Let Dvp denote the

directional derivative of p in direction v. Then Dvp is also hyperbolic with respect to v.

Furthermore, their hyperbolicity cones satisfy Hv(p) ⊆ Hv(Dvp).

Recall from Definition 2.5 that P|T = (
∏

i∈[n]\T ∂
∂Xii

)P. Then we have the following:

Corollary 5.2. Let P be a homogeneous PSD-stable lpm polynomial of degree k and

A ∈ H(P). Let T ⊆ [n] with |T| ≥ n − k. Then P|T is PSD-stable as well and A ∈ H(P|T).

Now we use the result from [6] on negative dependence. For any polynomial

p ∈ R[x] and index set S ⊆ [n] we denote ∂Sp = (
∏

i∈S ∂
∂xi

)p.
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Theorem 5.3 ([6, Sect. 2.1 and Thm. 4.9]). Let p be a multiaffine stable polynomial

with nonnegative coefficients. Then p satisfies the nonnegative lattice condition: for all

S,T ⊆ [n]

∂Sp(0)∂Tp(0) ≥ ∂S∪Tp(0)∂S∩Tp(0) .

This theorem directly implies the generalization of Koteljanskii’s inequality.

Proof of Proposition 2.6. Without loss of generality assume that P(I) > 0. Let PA(x) =
P(A+Diag(x)) ∈ R[x1, ..., xn]. It is clear that PA is multiaffine and ∂SPA(0) = P|S(A) for all

S ⊆ [n]. It follows from Corollary 5.2 that PA is stable and has nonnegative coefficients.

Thus, by Theorem 5.3 it satisfies the nonnegative lattice condition, that is, for all S,T ⊆
[n], ∂SPA(0)∂TPA(0) ≥ ∂S∪TPA(0)∂S∩TPA(0). This completes the proof. �

6 Hyperbolic Polynomials and Sums of Squares

Let p ∈ R[x] be hyperbolic with respect to v ∈ Rn and a,b ∈ Hv(p). Then the mixed

derivative

�a,b(p) = Da p · Db p − p · Da Db p

is globally nonnegative by Theorem 3.1 in [18]. If some power pr has a definite symmetric

determinantal representation, that is, can be written as

pr = det(x1A1 + · · · + xnAn)

for some real symmetric (or complex hermitian) matricesA1, . . . ,An with v1A1+. . .+vnAn

positive definite, then D ltaa,b(p) is even a sum of squares [18, Cor. 4.3]. Therefore, any

instance where D ltaa,b(p) is not a sum of squares gives an example of a hyperbolic

polynomial none of whose powers has a definite symmetric determinantal representa-

tion. Another source of interest in such examples comes from the point of view taken

in [28], as these give rise to families of polynomials that are not sums of squares

but whose nonnegativity can be certified via hyperbolic programming. Saunderson

[28] characterized all pairs (d,n) for which there exists such a hyperbolic polynomial

p ∈ R[x] = R[x1, . . . , xn] of degree d, except when d = 3. In this section we will construct

an explicit hyperbolic cubic p in 6 variables for which there are two points a,b in the

hyperbolicity cone such that D ltaa,b(p) is not a sum of squares.
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16 G. Blekherman et al.

Remark 6.1. If there are two points a,b in the closed hyperbolicity cone of p such that

D ltaa,b(h) is not a sum of squares, then there are also such points in the interior of the

hyperbolicity cone as the cone of sums of squares is closed.

Remark 6.2. In [28] Saunderson constructs a hyperbolic cubic in 43 variables whose

Bézout matrix is not a matrix sum of squares. The polynomial presented in this section

is also an example of a hyperbolic cubic, p, with six variables whose Bézout matrix is

not a matrix sum of squares. This is in fact implied by Theorem 6.3, because the mixed

derivative that we study is the top left diagonal entry of the Bézout matrix of p, and the

diagonal entries of a matrix sum of squares are all sum of squares polynomials.

Consider the complete graph K4 on 4 vertices. We define the spanning tree

polynomial of K4 as the element of R[xe : e ∈ E(K4)] given by

tK4
(x) =

∑
τ

∏
e∈τ

xe ,

where τ ⊂ E(K4) ranges over all edge sets of spanning trees of K4. The polynomial tK4
is

multiaffine, homogeneous and stable [8, Thm. 1.1]. Let T be its minor lift. Finally, let p

be the polynomial obtained from T by evaluating T at the matrix of indeterminants

12 13 14 23 24 34

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0 0 0 0

0 x2 a b c 0

0 a x2 c b 0

0 b c x2 a 0

0 c b a x2 0

0 0 0 0 0 x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, p is hyperbolic with respect to every positive definite matrix that can be

obtained by specializing entries of A to some real numbers. In particular, the polynomial

W = ∂p

∂x1
· ∂p

∂x3
− p · ∂2p

∂x1∂x3

is nonnegative. We will show that it is not a sum of squares.

Theorem 6.3. The polynomial W is not a sum of squares.
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Linear Principal Minor Polynomials 17

Proof. Explicitly,

1

4
W = a2b2 + a2c2 + b2c2 + c4 − 8abcx2 + 2a2x22 + 2b2x22.

We first note that if W were a sum of squares, then it is the sum of squares of quadratic

forms. Indeed, by examining the Newton polytope of W, we see that if W were a sum

of squares, then it would necessarily be a sum of squares of polynomials in the linear

subspace

span{ab,ac,ax2, bc, bx2, c2}.

The idea of considering the Newton polytope in finding such sum-of-squares decompo-

sitions was first discussed in [25].

W can be written as a sum of squares from elements in this subspace if and only

if there is a PSD matrix A so that

W = vᵀAv, (2)

where

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ab

ac

ax2
bc

bx2
c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Suppose that such an A existed. Expanding out Equation (2) in terms of the entries of A,

we obtain that A must be of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Aab,ac Aab,ax2 Aab,bc Aab,bx2 Aab,c2

Aab,ac 1 Aac,ax2 Aac,bc Aac,bx2 Aac,c2

Aab,ax2 Aac,ax2 2 Aax2,bc Aax2,bx2 Aax2,c2

Aab,bc Aac,bc Aax2,bc 1 Abc,bx2 Abc,c2

Aab,bx2 Aac,bx2 Aax2,bx2 Abc,bx2 2 Abx2,c2

Aab,c2 Aac,c2 Aax2,c2 Abc,c2 Abx2,c2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and also satisfy the property that Aax2,bc + Aac,bx2 = −4.
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18 G. Blekherman et al.

Here, we index the entries of A by the pair of monomials corresponding to that

entry of A.

Consider now the matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0

0 12 0 0 9 0

0 0 8 9 0 0

0 0 9 12 0 0

0 9 0 0 8 0

0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This matrix is positive definite, and also satisfies the property that for any A of the

above form, satisfying Aax2,bc + Aac,bx2 = −4,

tr(AB) = −10.

This is negative, contradicting the fact that A was positive semidefinite. This implies

that W is not a sum-of-squares. �

Remark 6.4. The matrix B that certified that W was not a sum-of-squares can be

founding using general semidefinite programming techniques. We used the SumOf-

Squares.jl Julia package [21, 31] for this problem.

Remark 6.5. In the terminology of [28] this shows in particular that h is neither SOS-

hyperbolic nor weakly SOS-hyperbolic.

7 The Spectral Containment Property

We would like to relate the hyperbolicity cone of a homogeneous stable polynomial with

the hyperbolicity cone of its minor lift. Recall from Definition 2.7 that a homogeneous

multiaffine stable polynomial p has the spectral containment property if for any

X ∈ H(P), there is some vector λ consisting of the eigenvalues of X with appropriate

multiplicity so that λ ∈ H(p). Elementary symmetric polynomials have the spectral

containment property, and we will show that several other polynomials have the

spectral containment property in this section. The remainder of this section is devoted

to proving some sufficient conditions for the spectral containment property, as well as

showing some connections between this property and the Schur–Horn theorem.
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Linear Principal Minor Polynomials 19

We summarize the theorems proven in this section with the statement of the

following theorem.

Theorem (Theorem 2.9). The following classes of polynomials have the spectral con-

tainment property:

1. The elementary symmetric polynomials e1, . . . , en.

2. For any n ≥ m ≥ d, and any |ε| sufficiently small, ed(x1, . . . , xn) +
εed(x1, . . . , xm).

3. Stable linear polynomials.

4. Any degree n − 1 stable polynomial that interlaces en−2.

Moreover, if p has the spectral containment property and x0 is a variable not used in p,

then x0p has the spectral containment property.

Proof. Part 1 is clear because H(Ei) is precisely the set of symmetric matrices with the

property that all of their eigenvalue vectors are in H(ei).

Part 2 follows from Proposition 7.15 and Lemma 7.12.

Part 3 is precisely Theorem 7.1.

Part 4 follows from Theorem 7.13 and Theorem 7.10. �

7.1 Schur–Horn theorem and stable linear functions

Recall that a linear homogeneous polynomial p(x) = a1x1 + · · · + anxn is stable if and

only if either ai ≥ 0 for each i ∈ [n], or ai ≤ 0 for each i ∈ [n]. We may take H(p) = {x ∈
Rn : p(x) ≥ 0}. These are the simplest stable polynomials and yet it is not completely

trivial to show that they have the spectral containment property.

Lemma 7.1. Every stable linear homogeneous polynomial has the spectral containment

property.

In order to prove this, we will use Schur’s contribution to the Schur–Horn

theorem.

Theorem 7.2 (Schur). Let p : Rn → R be a homogeneous linear function, and let P be

the associated minor lift. Let A be a symmetric matrix, and let λ be an eigenvalue vector

for A. Let Sn denote the symmetric group that acts on Rn by permuting coordinates. Let

O(n) denote the orthogonal group of n × n matrices. Then,

max
π∈Sn

p(π(λ)) = max
U∈O(n)

P(UAUᵀ).
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20 G. Blekherman et al.

Proof of Theorem 7.1. Suppose that A ∈ H(P), which is equivalent to P(A) ≥ 0. By the

Schur–Horn theorem, there is some eigenvalue vector of A, say λ, so that p(λ) ≥ P(A) ≥ 0.

Thus, there is an eigenvalue vector of A contained in H(p) as desired. �

We will see in Section 7.4 that if an appropriate generalization of the Schur–

Horn theorem holds, then we would be able to show the spectral containment property

for a large class of polynomials.

7.2 Operations preserving the spectral containment property

In this section we prove that the spectral containment property is preserved under some

simple operations involving adjoining a new variable.

Lemma 7.3. Let q ∈ R[x1, . . . , xn] be stable, multiaffine and homogeneous. Let p ∈
R[x0, . . . , xn] be defined by p(x0, . . . , xn) = q(x1, . . . , xn). If q has the spectral containment

property, then p has the spectral containment property.

Proof. First note that x = (x0, . . . , xn) ∈ H(p) if and only if (x1, . . . , xn) ∈ H(q). Let

X ∈ H(P), then we can divide X into blocks as

X =
(
X00 vᵀ

v M

)
.

Here, M is equal to X[n], and v is some element of Rn.

If In is the n × n identity matrix, we can see from the definition of P that P(X +
tIn+1) = Q(M+tIn). Therefore, for t > 0, Q(M+tIn) = P(X+tIn+1) > 0, which impliesM ∈
H(Q). Let λ(M) and λ(X) be eigenvalue vectors ofM and X respectively, with the property

that the entries of λ(M) and λ(X) appear in increasing order. The Cauchy interlacing

inequalities say that

λ0(X) ≤ λ1(M) ≤ λ1(X) ≤ λ2(M) ≤ λ2(X) ≤ · · · ≤ λn(M) ≤ λn(X).

Thus, for i ∈ [n] we can write λi(X) = λi(M) + εi for some ε ≥ 0. Since q has the spectral

containment property, there is a permutation σ such that (λσ(i)(M))1≤i≤n ∈ H(q). Since

the hyperbolicity cone of the stable polynomial q is convex and contains the nonnegative

orthant, we also have (λσ(i)(X))1≤i≤n = (λσ(i)(M) + εσ(i))1≤i≤n ∈ H(q). This implies that

(λ0(X), λσ(1)(X), . . . , λσ(n)(X)) ∈ H(p). �
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Linear Principal Minor Polynomials 21

The spectral containment property is also preserved when multiplying by a new

variable.

Proposition 7.4. Let q ∈ R[x1, . . . , xn] be stable, multiaffine and homogeneous. Let p ∈
R[x0, . . . , xn] defined by p(x0, . . . , xn) = x0q(x1, . . . , xn). If q has the spectral containment

property, then p has the spectral containment property.

Before we show this, we need another lemma. Let X be a matrix written in block

form as

X =
(
X00 vᵀ

v M

)

and X00 �= 0. We write X/0 := M − X−1
00 vv

ᵀ for the Schur complement.

Lemma 7.5. Let q ∈ R[x1, . . . , xn] be stable, multiaffine and homogeneous. Let p = x0q ∈
R[x0, . . . , xn], and X ∈ H(P), with X00 > 0, then X/0 ∈ H(Q).

Proof. Note that a vector x = (x0, x1, . . . , xn) ∈ H(p) if and only if x0 ≥ 0 and

(x1, . . . , xn) ∈ H(q). Recall the determinant formula for Schur complements: for any n×n

matrix X,

det(X) = X00 det(X/0).

Also, it is not hard to see from the definition that if S ⊆ {0, 1, . . . ,n}, and 0 ∈ S, then

XS/0 = (X/0)(S\0) ,

that is, Schur complements interact naturally with taking submatrices. Therefore,

P(X) =
∑

S⊆{0,...,n}
aS det(XS) =

∑
S⊆{0,...,n}

aSX00 det((X/0)|S\0) = X00Q(X/0)

Thus, if X ∈ H(P) and X00 > 0, then

Q(X/0) = P(X)

X00
≥ 0.
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22 G. Blekherman et al.

We can strengthen this result by noting that if we let J be the block diagonal matrix

given by

J =
(
0 0

0 In,

)

then J ∈ H(P), since it is in particular positive semidefinite. It is clear from the

definition that X/0 + tIn = (X + tJ)/0. Thus, we have that for all t ≥ 0,

Q(X/0 + tIn) = Q((X + tJ)/0) = P(X + tJ)

X00
≥ 0,

which implies that X/0 ∈ H(Q). �

Proof of Lemma 7.4. Let X ∈ H(P). We first consider the case where X00 > 0. By

Lemma 7.5, and the spectral containment property for q, we have that there is an

ordering of the eigenvalues of X/0 so that λ(X/0) ∈ H(q).

Now, we can write

X =
(
0 0

0 X/0

)
+

(
X00 vᵀ

v X−1
00 vv

ᵀ

)
,

where the second term is a rank 1 positive semidefinite matrix.

Let X ′ =
(
0 0

0 X/0

)
. Note that X ′ is block diagonal, so that if λ(X ′) is an

eigenvalue vector for X/0, then the vector λ(X ′) = 0 ⊕ λ(X/0) is an eigenvalue vector

for X ′. In particular, by ordering the entries appropriately, λ(X ′) ∈ H(p), from our

characterization of H(p) in terms of H(q).

By the Weyl inequalities, there is an ordering of the eigenvalues of X so that

λi(X) ≥ λi(X
′) for each i. This implies that

λ(X) = λ(X ′) + a,

where a is a nonnegative vector, and therefore a is in H(p). Therefore, λ(X) ∈ H(p).

The case of X00 = 0 follows from continuity of eigenvalues. Observe that if X

is in the interior of H(P), then X00 > 0, and also, since the eigenvalues of a symmetric

matrix vary continuously with the matrix, the property of having an eigenvalue vector

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnac291/6819958 by G

eorgia Institute of Technology user on 23 O
ctober 2023



Linear Principal Minor Polynomials 23

in H(p) is closed. Therefore, since H(p) is closed and has nonempty interior, there is an

eigenvalue vector of X in H(p). �

7.3 Polynomials interlacing an elementary symmetric polynomial

The spectral containment property can be proved more easily for polynomials that

interlace some elementary symmetric polynomial.

Before stating the main result, we note that the minor lift map preserves

interlacing.

Lemma 7.6. Let p,q ∈ R[x1, . . . , xn] be stable, multiaffine and homogeneous. Let P,Q be

the associated minor lifts. Then p interlaces q if and only if P interlaces Q.

Proof. Assume that p interlaces q. Then by the multivariate Hermite–Biehler theorem

[7, Thm. 5.3] we have that p+ iq is stable. Let A be a symmetric n×n matrix. We have to

show that P(tI+A) interlaces Q(tI+A). From [5, Thm. 1.3] we see that the linear operator

TA that sends a multiaffine polynomial p to the polynomial P(Diag(x1, . . . , xn) + A) is a

stability preserver. Thus, TA(p + iq) is stable. Substituting t for all variables in TA(p +
iq) shows that P(tI + A) + iQ(tI + A) is stable. Now the claim follows from another

application of the Hermite–Biehler theorem. The other direction is clear, since p and q

are the respective restrictions of P and Q to the diagonal matrices. �

Lemma 7.7. Suppose that p is a stable, multiaffine and homogeneous polynomial of

degree d, and that ed−1 interlaces p. Further, suppose that for any X ∈ H(P), there

is some eigenvalue vector λ of X, such that p(λ) ≥ P(X). Then p has the spectral

containment property.

Proof. We first note the fact that if p is any hyperbolic polynomial, and q interlaces

p, then x is in the interior of H(p) if and only if x is in H(q) and p(x) > 0. This follows

easily from considering the bivariate case.

Let X be in the interior of H(P). We first want to show that there is an eigenvalue

vector of X that is contained in H(p); the case for general X will then follow from the fact

that the eigenvalues of a symmetric matrix are continuous as a function of the entries

of the matrix.

Since ed−1 interlaces p, by Theorem 7.6, we have that Ed−1 interlaces P. From

this, we conclude that since X ∈ H(P), X is contained in H(Ed−1), and so any vector of

eigenvalues of X is contained in H(ed−1).
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Let λ be any eigenvalue vector of X so that 0 < P(X) ≤ p(λ), then we see that this

λ must then be in the interior of H(p), as desired. �

In Lemma 7.9, we show that the set of stable multiaffine forms interlacing ed−1

is an open subset containing ed. This implies that if we have a hyperbolic polynomial

p that is sufficiently close to ed, then p will have the spectral containment property as

long as for any X ∈ H(P), there is some eigenvalue vector λ, so that p(λ) ≥ P(X).

We will apply this lemma in a few cases, together with some variational

characterizations for eigenvalues to show the spectral containment property for some

special kinds of polynomials.

Lemma 7.8. Let p,q be multiaffine polynomials of degree d + 1 and d, and let a ∈ Rn.

There exist multiaffine polynomials m1, . . . ,ms,n1, . . . ,ns of degree d such that

Da p · q − p · Da q = m1n1 + . . . + msns.

Proof. This is straightforward. �

Proposition 7.9. There is an open neighborhood U of ed+1 in the vector space of

multiaffine forms of degree d + 1 such that every stable multiaffine p ∈ U of degree

d + 1 is interlaced by ed.

Proof. Let I be the ideal generated by all multiaffine polynomials of degree d and let V

be the degree 2d part of I2. Let 
 ⊂ V be the set of all polynomials that can be written

as a sum of squares of multiaffine polynomials of degree d. It follows from the proof

of [17, Thm. 6.2] that De ed+1 · ed − ed+1 · De ed is in the interior of 
 (with respect to

the euclidean topology on V). Thus, it follows from Lemma 7.8 that there is an open

neighborhood U of ed+1 such that for every stable multiaffine p ∈ U the polynomial

De p · ed − p · De ed is in 
. Thus, ed interlaces p by [18, Thm. 2.1]. �

7.4 Generalized Schur–Horn property and the spectral containment property

We say that an n-variate multiaffine homogeneous polynomial p has the Schur–Horn

property if for any n × n symmetric matrix X with some eigenvalue vector λ,

max
π∈Sn

p(π(λ)) = max
U∈O(n)

P(UXUᵀ). (3)
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The Schur–Horn property for p is equivalent to the fact that for any n × n symmetric

matrix X with eigenvalue vector λ,

max
π∈Sn

p(π(λ)) ≥ P(X).

Another equivalent formulation states that p has the Schur–Horn property if and only if

the maximum of P(UXUᵀ) as U varies over O(n) is obtained for some U such that UXUᵀ

is diagonal.

The Schur–Horn theorem states that any linear homogeneous polynomial has the

Schur–Horn property. We now relate Schur–Horn property and the spectral containment

property.

Theorem 7.10. Let p be a homogeneous multiaffine form of degree d. If p has the

Schur–Horn property, and ed−1 interlaces p, then p has the spectral containment

property.

Proof. It is clear that if p has the Schur–Horn property, then in particular, for any

X ∈ H(P), there is some eigenvalue vector λ so that p(λ) ≥ P(X). Therefore, p has the

spectral containment property by Lemma 7.7. �

Using the Schur–Horn property and our previous lemmas, we can show that a

family of stable polynomials have the spectral containment property.

Lemma 7.11. If p is a degree d homogeneous multiaffine polynomial with the Schur–

Horn property (which is not necessarily stable), then ed(x) + p also has the Schur–Horn

property.

Proof. It can easily be seen that if X is an n × n symmetric matrix, with an eigenvalue

vector λ, that

max
π∈Sn

(ed(π(λ)) + p(π(λ))) = ed(λ) + max
π∈Sn

p(π(λ))

= Ed(X) + max
U∈O(n)

P(UXUᵀ)

= max
U∈O(n)

Ed(UXUᵀ) + P(UXUᵀ).

This gives the desired result. �
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26 G. Blekherman et al.

Lemma 7.12. If p is a degree d homogeneous multiaffine polynomial with the Schur–

Horn property, then for ε > 0 sufficiently small, ed(x)+ εp has the spectral containment

property.

Proof. By Lemma 7.9, we see that for ε sufficiently small, ed(x) + εp is interlaced by

ed−1. Moreover, by Lemma 7.11, we see that ed(x) + εp has the Schur–Horn property.

Therefore, by Theorem 7.10, we see that ed(x)+εp has the spectral containment property.

�

We now give some examples of polynomials with the Schur–Horn property.

7.5 The Schur–Horn property for degree n − 1 polynomials

Theorem 7.13. If p ∈ R[x1, . . . , xn] is a degree n − 1 multiaffine homogeneous

polynomial, then p has the Schur–Horn property.

Proof. Write p(x) = ∑n
i=1 ai

∏
j∈[n]\i xi. In this case,

P(X) =
n∑

i=1

ai det(X[n]\i)

Recall that the dual of p(x) was defined in Section 3, as

p∗(x) =
n∑

i=1

aixi.

Abusing notation, we define P∗ to be

P∗(X) =
n∑

i=1

aiXii.

Define the adjugate matrix of X by Adj(X) = det(X)X−1. By Cramer’s rule, the

diagonal entries of the adjugate matrix are given by

Adj(X)ii = det(X[n]\i).

Hence, using Remark 3.1, we see that P∗(Adj(X)) = P(X). Also, it is clear that

Adj(UᵀXU) = UAdj(X)Uᵀ.
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The eigenvalues of Adj(X) are of the form μj = ∏
i∈[n]\j λi where λ is an eigenvalue

vector of X. We see then that p∗(μ) = p(λ). Now we apply the Schur–Horn theorem to the

linear form p∗ and the matrix Adj(X) to see that

max
π∈Sn

p∗(π(μ)) = max
U∈O(n)

P∗(UᵀAdj(X)U). (4)

Notice that for any π ∈ Sn,

p∗(π(μ)) =
n∑

i=1

μπ−1(i)

=
n∑

i=1

∏
j∈[n]\π−1(i)

λj

=
n∑

i=1

∏
j∈[n]\i

λπ−1(j)

= p(π(λ)).

Also, for any U ∈ O(n),

P∗(UᵀAdj(X)U) = P∗(Adj(UXUᵀ)) = P(UXUᵀ).

Applying these identities to the maximizer of Equation (4), we obtain

max
π∈Sn

p(π(λ)) = max
U∈O(n)

P(UᵀXU).

�

From this, we immediately obtain a corollary.

Corollary 7.14. There is an open set U in the space of degree n − 1 homogeneous

multiaffine polynomials, such that U contains en−1 and every element of U is stable

and has the spectral containment property.

7.6 Extensions of elementary symmetric polynomials and the Schur–Horn property

Let m < n, and consider R[x1, . . . , xm] ⊆ R[x1, . . . , xn] under the natural inclusion. If we

have a homogeneous multiaffine polynomial p ∈ R[x1, . . . , xm], we may say that it has

the Schur–Horn property with respect to m × m matrices if it satisfies the analogue of
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28 G. Blekherman et al.

Equation (3) for m × m matrices X:

max
π∈Sm

p(π(λ)) = max
U∈O(m)

P(UXUᵀ).

If p has the Schur–Horn property, then p has the Schur–Horn property with respect to

m × m matrices a fortiori. However, if p has the Schur–Horn property with respect to

m × m matrices, it is not clear that it has the full Schur–Horn property.

For example, if we consider the linear polynomial x1 ∈ R[x1, . . . , xn], it clearly

has the Schur–Horn property for n arbitrarily large. We may then say a polynomial p ∈
R[x1, . . . , xm] has the extended Schur–Horn property if for any n ≥ m, the corresponding

polynomial p ∈ R[x1, . . . , xn] has the Schur–Horn property. We now show that if p =
±ed(x1, . . . , xm), then p has the extended Schur–Horn property.

Proposition 7.15. Fix d ≤ m ≤ n. The polynomial ±ed(x1, . . . , xm) ∈ R[x1, . . . , xn] has

the extended Schur–Horn property.

For convenience, in the remainder of this discussion, we will use p to denote

ed(x1, . . . , xm) ∈ R[x1, . . . , xn], and as usual, we will use P to denote its minor lift. To

show Proposition 7.15, we will require Theorem 6.23 from [9]. This theorem describes a

construction known as a generalized compound of a matrix X. We restate the parts of

this theorem needed for our purposes in the following lemma:

Lemma 7.16. Let X be an n×n symmetric matrix with eigenvalue vector λ. There exists

a
(n
m

) × (n
m

)
symmetric matrix Dd,mX with the following properties:

1. The maximum eigenvalue of Dd,mX is maxπ∈Sn
p(π(λ)), and the minimum

eigenvalue of Dd,mX is minπ∈Sn
p(π(λ)).

2. P(X) is a diagonal entry of Dd,mX.

Using this lemma, we show Proposition 7.15.

Proof of Proposition 7.15. Fix an n × n symmetric matrix X, and consider Dd,mX. It is

clear (say, from the Cauchy interlacing theorem) that the maximum eigenvalue of Dd,mX

is larger than any diagonal entry of Dd,mX. Therefore, Lemma 7.16 implies that

max
π∈Sn

p(π(λ)) ≥ P(X).

This in particular implies that p has the Schur–Horn property.
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Similarly, Lemma 7.16 implies that

min
π∈Sn

p(π(λ)) ≤ P(X),

which implies that

max
π∈Sn

−p(π(λ)) ≥ −P(X),

so that −p also has the Schur–Horn property. �

8 The Permutation Property

The goal of this section is to prove Theorem 2.11. It says that given any point v in the

hyperbolicity cone of ek and any other homogeneous stable multiaffine polynomial h of

the same degree, some permuation of the coordinates of v is in the hyperbolicity cone of

h. We call this remarkable propery of ek the permutation property. We first need some

preparation.

Lemma 8.1. Assume that the homogeneous stable polynomials g,h ∈ R[x1, . . . , xn] have

nonnegative coefficients and a common interlacer. Then f = g+h is stable. If v is in the

hyperbolicity cone of f , then v is in the hyperbolicity cone of g or in the hyperbolicity

cone of h.

Proof. Let e be the all-ones vector. The univariate polynomials F = f (te− v),G = g(te−
v) and H = h(te − v) have a common interlacer. Further, all roots of F are nonnegative.

The existence of a common interlacer implies that G and H have at most one negative

root each. Assume for the sake of a contradiction that both G and H have a negative root.

Then G and H have the same (nonzero) sign on the smallest root of F. This contradicts

F = G + H. Thus, either G or H have only nonnegative roots, which implies the claim. �

Lemma 8.2. Let h ∈ R[x1, . . . , xn] be homogeneous, multiaffine and stable. Let τ ∈ Sn

be a transposition. Then h and τ(h) have a common interlacer.

Proof. Without loss of generality assume that τ = (12) and let g = τ(h). We can write

h = A · x1 · x2 + B · x1 + C · x2 + D
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for some multiaffine A,B,C,D ∈ R[x3, . . . , xn]. Then the polynomial

(
∂

∂x1
+ ∂

∂x2

)
h = A · (x1 + x2) + B + C =

(
∂

∂x1
+ ∂

∂x2

)
g

is a common interlacer of h and g. �

Corollary 8.3. Let h ∈ R[x1, . . . , xn] be homogeneous, multiaffine and stable. Let τ ∈ Sn

be a transposition, g = τ(h) and f = λg + μh for some nonnegative λ,μ ∈ R. Then,

H(f ) ⊂ H(g) ∪ H(h).

Proof. This is a direct consequence of the two preceding lemmas. �

Let Q[Sn] be the group algebra of the symmetric group Sn on n elements, that

is, Q[Sn] is the vector space over Q with basis eg for g ∈ Sn whose ring structure is

defined by extending eg · eh := eg·h linearly. In Q[Sn] we have the identity

n∏
j=2

j−1∏
i=1

(
1 + 1

j − i
· e(ij)

)
=

∑
g∈Sn

eg; (5)

see, for example, [22, p. 192]. From this we obtain our desired theorem.

Theorem 8.4. Let ed ∈ R[x1, . . . , xn] be the elementary symmetric polynomial of degree

d and h ∈ R[x1, . . . , xn] any other nonzero homogeneous multiaffine stable polynomial

of degree d. If v is in the hyperbolicity cone of ed, then τ(v) is in the hyperbolicity cone

of h for some permutation τ ∈ Sn.

Proof. We have c · ed = (
∑

g∈Sn
eg)h for some nonzero scalar c ∈ R. Thus, by Equation

(5) we can write

c · ed =
(

r∏
i=1

(1 + λieτi
)

)
h

for some positive λi ∈ R, transpositions τi ∈ Sn and
(r=
n2

)
. We define hk =

( ∏k
i=1(1 +

λieτi
)
)
h for k = 0, . . . , r. Since hk = hk−1 + λkτk(hk−1), Corollary 8.3 implies that if v is in

the hyperbolicity cone of hk, then either v or τk(v) is in the hyperbolicity cone of hk−1.
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Since hr = c · ed and h0 = h, this argument shows that if v is in the hyperbolicity cone

of ed, then (τi1 ◦ · · · ◦ τis)(v) is in the hyperbolicity cone of h for some 1 ≤ i1 < · · · < is ≤ r.

�

9 Open Problems

Our work sparks a wide range of open problems. We mention some of them here. For

several of these problems, we presented proofs for some special cases, whereas the

general case remains open. Some of our questions may be related to the work in [2],

which uses a different construction to lift an n-variate hyperbolic polynomial to a

hyperbolic polynomial in the entries of n × n symmetric matrices.

9.1 Hyperbolic Schur–Horn theorem

In Section 4 we proved the hyperbolic generalization of Hadamard–Fischer inequality

as well as Koteljanskii’s inequality, in Theorem 2.4 and Theorem 2.6. Here we present

another potential generalization of classical linear algebra results in Schur–Horn

theorem.

The Schur–Horn theorem appears in our previous section on the spectral

containment property. Here we will form a different generalization of Schur–Horn

theorem in terms of hyperbolic polynomials.

We will formulate our generalization in the language of majorization. Given

polynomials p and q of the same degree, both hyperbolic with respect to the direction v,

we say that p majorizes q in direction v if for all x ∈ Rn, the roots of p(x − tv) majorize

the roots of q(x − tv). Recall that given α,β ∈ Rk, α majorizes β if
∑k

i=1 αi = ∑k
i=1 βi and

the following holds: let α′,β ′ be obtained from α,β by reordering coordinates such that

α′
1 ≥ ... ≥ α′

k and β ′
1 ≥ ... ≥ β ′

k, then for each 1 ≤ m < k,
∑m

i=1 α′
i ≥ ∑m

i=1 β ′
i. Equivalently, α

majorizes β if and only if β ∈ conv(Sk(α)), where the symmetric group Sk acts on α by

permuting its coordinates.

In this language, we can restate the Schur direction of the Schur–Horn theorem

as follows:

Lemma 9.1. (Schur) det(X) majorizes det(diag(X)) in the identity direction.

We conjectured that a generalization should hold for all homogeneous PSD-

stable lpm-polynomials. After we posted the original version of this paper, James

Saunderson suggested a proof of the following theorem [27].
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Theorem 9.2. Let P be a homogeneous PSD-stable lpm-polynomial. Then P(X)

majorizes P(diag(X)) in the identity direction [27].

9.2 Spectral containment property and the Schur–Horn property

We showed that many polynomials have the spectral containment property. Based on

these examples and additional computational evidence we conjecture the following:

Conjecture 9.3. All homogeneous multiaffine stable polynomials have the spectral

containment property.

There are several special cases of this conjecture which are of particular

interest, which we enumerate separately.

Conjecture 9.4. All quadratic homogeneous multiaffine stable polynomials have the

spectral containment property.

This case is of special interest because quadratic multiaffine polynomials have

especially simple minor lifts. Namely, if

p(x) =
∑
i�=j

aijxixj,

then

P(X) = p(diag(X)) −
∑
i�=j

aijX
2
ij.

It is therefore plausible that this conjecture could be proved (or disproved) by exploiting

this special structure.

Conjecture 9.5. Let D be a positive definite diagonal matrix, and let p(x) = ek(Dx).

Then p(x) has the spectral containment property.

Again, this is of special interest because of its relation to diagonal congruence

as we now explain.

Lemma 9.6. Let p be a homogeneous, multiaffine stable polynomial, let D be a positive

definite diagonal matrix, and let q = p(Dx). Then x ∈ H(q) if and only if Dx ∈ H(p), and

X ∈ H(Q) if and only if DXD ∈ H(P).
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Proof. x ∈ H(q) if and only if q(x + t�1) ≥ 0 for all t ≥ 0. This is equivalent to the

statement that p(D(x + t�1)) = p(Dx + tdiag(D)) ≥ 0 for all t ≥ 0. Notice though that

if D is positive definite, then diag(D) is in the interior of the hyperbolicity cone of p.

Therefore, p(Dx + tdiag(D)) ≥ 0 for all t ≥ 0 if and only if Dx ∈ H(p).

Similarly, if p(x) = ∑
S⊆[n] aS

∏
i∈S xi, we see that q(x) = ∑

S⊆[n](
∏

i∈S DiiaS)
∏

i∈S xi.
Therefore,

Q(X) =
∑
S⊆[n]

(
∏
i∈S

DiiaS)det(X|S) =
∑
S⊆[n]

aS det((D
1/2XD1/2)|S) = P(D1/2XD1/2).

We thus have that

Q(X + tI) = P(D1/2(X + tI)D1/2) = P(D1/2XD1/2 + tD).

Because D is positive definite, it is in the interior of H(P), and therefore, P(D1/2XD1/2 +
tD) ≥ 0 for all t ≥ 0 if and only if D1/2XD1/2 ∈ H(P). This implies the result. �

From, this we see that Conjecture 9.5 is equivalent to the statement that for any

X ∈ H(Ek), and any positive definite diagonal matrix D, we have that there exists an

eigenvalue vector λ of D1/2XD1/2 so that D−1λ ∈ H(ek). This gives us a very quantitative

relationship between the eigenvalues of a symmetric matrix X and those of D1/2XD1/2,

which are of fundamental interest in a number of situations.

The Schur–Horn property is another interesting property of a multiaffine

polynomial. Once again, despite computer search, we are unable to find an example

of a multiaffine homogeneous polynomial that does not have the Schur–Horn property.

From this, we conjecture

Conjecture 9.7. All homogeneous multiaffine polynomials have the Schur–Horn

property.
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