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A linear principal minor polynomial or [pm polynomial is a linear combination of prin-
cipal minors of a symmetric matrix. By restricting to the diagonal, lpm polynomials are
in bijection with multiaffine polynomials. We show that this establishes a one-to-one
correspondence between homogeneous multiaffine stable polynomials and PSD-stable
lpm polynomials. This yields new construction techniques for hyperbolic polynomials
and allows us to find an explicit degree 3 hyperbolic polynomial in six variables some
of whose Rayleigh differences are not sums of squares. We further generalize the well-
known Fisher-Hadamard and Koteljanskii inequalities from determinants to PSD-stable
Ipm polynomials. We investigate the relationship between the associated hyperbolicity
cones and conjecture a relationship between the eigenvalues of a symmetric matrix
and the values of certain lpm polynomials evaluated at that matrix. We refer to this

relationship as spectral containment.

1 Introduction

A homogeneous polynomial p € R[x] := Rlx,, ..., x,] is called hyperbolic with respect to
a € R"if p(a) # 0 and p,(t) := p(v — ta) € Rl¢] has only real roots for all v € R"™. The
hyperbolicity cone H,(p) of a polynomial p hyperbolic with respect to a € R" is the set
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of all v € R" such that p(v — ta) has only nonnegative roots. Originally conceived in the
context of partial differential equations [10], hyperbolic polynomials were discovered
to yield deep results in (non-)linear algebra, combinatorics, and optimization; see, for
example, [1, 3, 4, 23, 26, 30].

A fundamental family of hyperbolic polynomials is given by the elementary

symmetric polynomials

e = > [ [

J ieJ

where J ranges over all k-element subsets of [n] := {1, ..., n}. The elementary symmetric
polynomials are stable: a multivariate polynomial p € R[x] is stable if for all complex
numbers z;, ..., z, lying in the open upper half-plane, we have p(z,,...,z,) # 0. If p is
homogeneous, then it is stable if and only if it is hyperbolic with respect to all a € R",,
and we denote by H(p) = H;(p) its hyperbolicity cone with respect to the vector
1=(1,..., 1.

Let X denote an n x n symmetric matrix of indeterminants, and for any J C
[n], we let X; denote the principal submatrix of X indexed by J. We can then define a

polynomial

E (X) = Z det(X,),
J

where again J ranges over all k-element subsets of [n]. It turns out that these
polynomials do not vanish on the Siegel upper half-plane, that is, the set of all complex
symmetric matrices with positive definite imaginary part. Such polynomials are called
Dirichlet-Garding [12] or PSD-stable [15]. For a homogeneous polynomial P this property
is equivalent to being hyperbolic with respect to any positive definite matrix, and we
denote by H(P) its hyperbolicity cone (taken with respect to the identity matrix). When
the context is clear, we will simply refer to PSD-stable polynomials P(X) as stable
polynomials.

The starting point of our paper is the observation that E; (X) is closely related to

e, (x). For instance, if X = Diag(x,,...,x,) is the diagonal matrix with diagonal entries
X;; = x;, then Ep(X) = ep(xy,...,x,). To generalize this observation, let Rg; be the

vector space of real symmetric n x n-matrices and let R[X] be the ring of polynomials
on it, where we regard X as being an n x n matrix of indeterminants. A polynomial

P(X) € R[X] is called a linear principal minor polynomial or [pm-polynomial if P(X) is
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Linear Principal Minor Polynomials 3

of the form
P(X) = > cydet(X)),
J

where J ranges over all subsets of [n]. The first natural question we pursue is what
interesting properties are shared by a homogeneous lpm polynomial P(X) and its
diagonal restriction p(x). We show that P(X) is PSD-stable if and only if p(x) is stable.
We prove this fact using the theory of stability preservers [5].

Having established these basic facts we generalize classical determinantal
inequalities from linear algebra, such as the Hadamard-Fischer and Koteljanskii
inequality to the setting of stable lpm polynomials. This generalizes the Hadamard-type
inequalities for k-positive matrices obtained in [20]. Another interesting consequence of
the above results is that they give construction of a new class of hyperbolic polynomials.
Using lpm polynomials we construct a hyperbolic cubic in six variables, which has
a Rayleigh difference that is not a sum of squares. The previously smallest known
example with 43 variables was constructed by Saunderson in [28]. Finally, we study
whether the eigenvalue vector A of a matrix X lying in the hyperbolicity cone of a
stable lpm polynomial P(X) lies in the hyperbolicity cone of p(x) and show how this
is related to a potential generalization of the classical Schur-Horn theorem [13, 29]. We

now discuss our results in detail.

2 Our Results in Detail

Our discussion of lpm polynomials can also be viewed from a different perspective.
A polynomial p € RIx] := Rlx;,...,x,] is multi-affine if it is a linear combination of
square-free monomials x/ = [ljesx; for J < [n]. We define a linear map @ from the
vector subspace of multi-affine polynomials in x;,...,x, to the vector space of lpm

polynomials, which we call the minor lift map, as follows. The minor lift of

px) = Z aJHXi/

JCln] ieJ

is the polynomial P = ®(p) given by

P(X)= > a;det(X;).

JC[n]
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4 G. Blekherman et al.

We note that deg(®(p)) = deg(p) and that ®(p) is homogeneous if and only if p is
homogeneous. When it is unambiguous, we will use lower case letters such as p to
denote homogeneous, multiaffine p € Rlx;,...,x,], and use the corresponding upper

case letters for the minor lift, so that P is equal to ®(p).

2.1 Properties of the minor lift map and constructions

Our first result is that the minor lift map sends stable polynomials to PSD-stable
polynomials. Stronger even, let us call a matrix A k-locally positive semidefinite (PSD)
if every principal k x k-submatrix A; of A is positive semidefinite. The collection PSD;

of k-locally PSD matrices is a closed convex cone and PSD; C PSD,;_; C --- C PSD;.

Theorem 2.1. Let p be a homogeneous multiaffine polynomial of degree k. If p is stable,
then P = ®(p) is hyperbolic with PSD, C H(P). In particular, P is PSD-stable.

The proof of this is given in Section 3.
For A € RIXT, let m(A) = (A1, 4,,, ..., A,,) be the projection to the diagonal. A

sym ’

first implication for the associated hyperbolicity cones is as follows.

Corollary 2.2, Let p be a homogeneous multiaffine stable polynomial and P = ®(p). If
A € H(P), then p((A)) > P(A) and 7 (A) € H(p).

The proof of this is given in Section 6.

Using Theorem 2.1, we are able to construct new interesting hyperbolic polyno-
mials. Given a hyperbolic polynomial p and points a, v in the hyperbolicity cone of p,
the Rayleigh difference Dlta, ,(p) = D,p-D,p—p-D,D,p is a polynomial nonnegative on
R™ [18]. If the polynomial Dlta,, ,(p) = D,p-D,p —p-D,D,p is not a sum of squares, this
has interesting implications for determinantal representations as well as a hyperbolic
certificate of nonnegativity of Dlta, ,(p), which cannot be recovered by sums of squares.
Saunderson [28] characterized all pairs (d, n) for which there exists such a hyperbolic
polynomial p € RIx,,...,x,] of degree d, except when d = 3, where the smallest known
example with a Rayleigh difference that is not a sum of squares depends on 43 variables.

We are able to reduce the number of variables to 6. See Section 8 for more details.

Theorem 2.3. There exists an (explicit) degree-3 hyperbolic polynomial p in six
variables and vectors v,a € H(p) such that the Rayleigh difference Dlta, ,(p) is not

a sum-of-squares.
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2.2 Hyperbolic determinantal inequalities

We generalize some well-known theorems from linear algebra to the setting of lpm
polynomials. Note that the cone of positive semidefinite matrices is precisely the
hyperbolicity cone of det(X), which is the minor lift of e,(x) = x,---x,. For our
generalizations, we replace the determinant by the minor lift of a homogeneous
multiaffine stable polynomial, and the cone of positive semidefinite matrices by the
hyperbolicity cone of the minor lift.

Hadamard’'s inequality is a classical result comparing the determinant of any

positive semidefinite matrix with the product of its diagonal entries.

Theorem (Hadamard's inequality). If A is an n x n positive semidefinite matrix, then
det(A) < H?:l Aii'

An equivalent statement of this inequality is as follows: if V is any, not neces-
sarily symmetric, real n x n-matrix with columns v,,...,v,, then det(V) < H?:l lv;ll,.
This yields a geometric interpretation, since the absolute value of determinant is the
volume of an n-dimensional parallelepiped with edges v, ..., v,.

Fischer's inequality generalizes Hadamard's inequality, and relates the determi-
nant of a positive semidefinite matrix to its principal minors. Let IT = {S;,...,S,,} be a
partition of the set [n] into m disjoint subsets. Given such a partition, we write i ~ j if
i,j € S forsomek =1,...,m. Let D be the vector space of symmetric matrices that are

block diagonal with respect to I1

sym

Let 7y be the orthogonal projection from Rg; 1" onto the subspace Dy.

Theorem (Fischer's inequality) Let A be a positive semidefinite matrix. Then,

det(mr(4)) > det(4).

Observe that Hadamard inequality is simply Fischer’'s inequality with partition
n = {{1},...,{n}}. We now give a hyperbolic generalization of Fischer-Hadamard

inequality. For P = ®(e;), our hyperbolic Hadamard inequality was obtained in [20].
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6 G. Blekherman et al.

Theorem 2.4 (Hyperbolic Fischer—-Hadamard inequality). Let P be a homogeneous PSD-

stable lpm-polynomial and IT a partition. Then,
P(r(A)) = P(A)
holds for all A € H(P).

The classical Fischer-Hadamard inequality is a consequence of a more general
inequality known as Koteljanskii’'s inequality, which handles the case of overlapping
blocks [16].

Theorem (Koteljanski's inequality). Let S and T be two subsets of [n] and A be a

positive semidefinite n x n matrix. Then,
det(Ag) det(Ayp) > det(Ag ) det(Agnr) -

While we were not able to generalize Koteljanskii's inequality in a way that
implies the hyperbolic Fischer-Hadamard inequality, we found a hyperbolic generaliza-
tion of Koteljanskii's inequality, which uses a different interpretation of what it means

to take a minor of a matrix.

Definition 2.5. Given a degree k homogeneous lpm polynomial P and T < [n] with

|T| > n — k, we define the restriction

rr= (11 gg)

ieln\T X

where we take partial derivative with respect to diagonal variables not in T.

With this definition we can state the hyperbolic Koteljanskii inequality, which
is in fact a straightforward application of the results about negative lattice condition
in [6].

Proposition 2.6 (Hyperbolic Koteljanskii inequality). Let P be a homogeneous PSD-
stable lpm-polynomial and S, T C [n]. Then,

P|s(A)P|p(A) = Plsyr(A)P|snr(A)

holds for all A € H(P).
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Linear Principal Minor Polynomials 7
2.3 Spectral containment property

If A is an n x n symmetric matrix, we say that A € R” is an eigenvalue vector of A if the
entries of A are precisely the eigenvalues of A with appropriate multiplicities. Note that
the set of eigenvalue vectors of a symmetric matrix A are invariant under permutations.

We recall the example of the k-th elementary symmetric polynomial e, (x) and its
minor lift E; (X) from the introduction. It is well known that Ej (4) = e, (1) where A is an
eigenvalue vector of A. In particular, it follows that A € H(P) implies that A € H(p), for
p = e;. Notice that since e is invariant under permutations of coordinates, the order in
which we list the eigenvalues of A in A(A) does not matter. This motivates the following

definition.

Definition 2.7. A homogeneous multiaffine stable polynomial p € Rlxy,...,x,] has the
spectral containment property if for any A € H(P) C Rg;, there is an eigenvalue vector
A € R" of A such that A € H(p).

Remark 2.8. We could make a stronger requirement in Definition 2.7 that for all A €
H(P), all eigenvalue vectors of A lie in H(p), seems to be too restrictive; we do not have
any examples of polynomials besides the elementary symmetric polynomials with this

stronger property.

We now give a number of polynomials that have the spectral containment

property:

Theorem 2.9. The following classes of polynomials have the spectral containment

property:

1. The elementary symmetric polynomials e, ..., e,.
2. For any n > k > d, and any |¢| sufficiently small, e (x;,...,x,) +
ceq(xy,..., Xp).

3. Stable linear polynomials.

4. Any degree n — 1 stable polynomial that interlaces e,,_,.

Moreover, if p has the spectral containment property, and x, is a variable not used in p,

then x,p has the spectral containment property.

While this property may seem mysterious, we conjecture that it is in fact

ubiquitous:
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8 G. Blekherman et al.

Conjecture 2.10. Every homogeneous multaffine stable polynomial has the spectral

containment property.

If Conjecture 2.10 is true, then Theorem 2.1 implies that for every k-locally PSD
matrix A and homogeneous multiaffine stable polynomial p, some eigenvalue vector of
A is contained in H(p). This may seem like a very strong condition on the eigenvalues
of A, but as we show below it is equivalent to the fact that every eigenvalue vector of A
is contained in H(ey), which we already observed above. Let &,, denote the symmetric

group on n letters and let it act on R"” by permuting coordinates.

Theorem 2.11. Let e; € R[x] be the elementary symmetric polynomial of degree k , and
let h € R[x] be a nonzero homogeneous multiaffine stable polynomial of degree k. If

v € H(ey), then there exists a permutation t € &,, such that z(v) € H(h).

In Section 9.4 we will also show that Conjecture 2.10 would be implied in many

cases by another conjecture generalizing the classical Schur-Horn Theorem.

3 The Minor Lift Map and Stability Preservers

Our goal in this section is to prove Theorem 2.1. We first explain how to construct the
minor lift map via partial derivatives of the determinant. Let p € R[x] be a multiaffine

polynomial. The dual of p is

1 1 1
p*(X) = p(—, — ey —) HXi. (1)
X Xo Xp/
For any polynomial p € Rlx;,...,x,], we consider the differential operator
p*(%,aﬁq,...,ﬁ). For instance, if p = x5 = [[,g%; is a monomial, then

the associated differential operator is Hi¢s&ii‘ Applying the differential operator

associated to x° to det(X) yields

(H 8}8() det(X) = det(Xy).
i¢S 123

By linearity, we then obtain that

a a a
200 = (0" (53 s ) ) ot
00X, 0X5, X,

€202 1890100 €7 uo Jasn ABojouyoa] Jo aynsu| eibioss) Aq 8566189/ 6ZOBUI/UIWISE0 "0 | /I0p/8|01B-80UBAPER/UIWI/WO02 dNO dIWapeae//:sd)jy Wol) PapEOjUMO(]



Linear Principal Minor Polynomials 9

where P = ®(p) is the minor lift of p. This formulation of the minor lift map will allow

us to easily apply the theory of stability preservers.

Remark 3.1. The minor lift operation interacts nicely with dualization. If p is a

multiaffine polynomial, then
®(pH)(X) = det(X) - 2(P)X ).

This result follows directly from the Jacobi complementary minors identity,
found in [19], which states that det(X|g) = det(x! |s) det(X). This is a matrix analogue
of (1).

Before we go on, we need the following facts about hyperbolicity cones that can
be found in [30].

Lemma 3.2. Let p € R[x] be a homogeneous polynomial and K C R"™ a cone. The

following are equivalent:

1. pis hyperbolic with respect to all @ € K, and
2. p(v+ia) #0forallve R" and a € K.

Lemma 3.3. Let p € R[x] be hyperbolic with respect to a € R™. Then p is hyperbolic
with respect to every point in the connected component of {v € R" : p(v) # 0} that

contains a.
Our first step is the following observation:

Lemma 3.4. Let P € R[X] be a homogeneous polynomial. Then P is PSD-stable if and

only if the following two conditions hold:

1. P(A) # 0 for all positive definite matrices A4;

2. P(Diag(xy,...,x,)+ M) € Rlx] is stable for every real symmetric matrix M.

Proof. First assume that P is PSD-stable and let A be a positive definite matrix. By
definition we have P(iA) # 0. Since P is homogeneous, this implies that P(4) # O.
Further, let z; = q; + ib; in the upper half-plane. Then P(Diag(z,,...,z,) + M) is
nonzero for any real symmetric matrix M, since Diag(b,...,b,) is a positive definite

matrix.
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10 G. Blekherman et al.

For the other direction we first observe that condition (2) implies that P is
hyperbolic with respect to the identity matrix. Indeed, the univariate polynomial P(tI +
M) is stable and thus real-rooted for every real symmetric matrix M. Now condition (1)
together with Lemmas 3.2 and 3.3 imply that P is PSD-stable. |

Proof of Theorem 2.1. Let p € R[x] be multiaffine, homogeneous and stable. Then
by [8, Thm. 6.1] all nonzero coefficients of p have the same sign. Without loss of
generality assume that all are positive. Then P = ®(p) is clearly positive on positive
definite matrices since the minors of a positive definite matrix are positive. Thus, by

Lemma 3.4, it remains to show that

. ad d d .
P(Diag(xq,...,X,) + M) = (p* (E @ ey E)) det(Diag(xy,...,x,) + M)
is stable for every real symmetric matrix M. The polynomial det(Diag(x,,...,x,)+ M) is

stable as well as p* by [8, Prop. 4.2]. Thus, the polynomial P(Diag(x,, ..., x,)+M) is also
stable by [5, Thm. 1.3].

Let A € PSD;, C Rg;g be k-locally PSD. Then for every k-subset S C [n], we have
det((A + tI)|g) > O for all t > 0. Hence, if p has degree k with all coefficients positive,
then P(A — tI) > 0 for all ¢ < 0 and hence all roots are non-negative. This implies that

A € H(P). |

Remark 3.5. Given a multiaffine homogeneous stable polynomial p € Rlxy, ..., x,], the
minor lift map gives a hyperbolic polynomial P in the entries of a symmetric n x n
matrix whose restriction to the diagonal equals to p. Such polynomials can also be
constructed for stable polynomials that are not necessarily multiaffine. Since we are
mainly interested in multiaffine polynomials, we only briefly sketch one possible such
construction. To a stable homogeneous polynomial p € RIx,,...,x,] one can find a
multiaffine stable polynomial g € Rlzy,...,214,,...,2,4,] such that we can recover p
from g by substituting each variable z;; by x;, see [8, §2.5]. This polynomial g is called
a polarization of p. If we set certain variables in suitable diagonal blocks of the minor
lift of g to be equal, we obtain a hyperbolic polynomial with the desired properties
for p.

4 Hyperbolic Hadamard-Fischer Inequality

Our goal in this section is to prove Theorem 2.4. We start by making some general

observations about supporting hyperplanes of the hyperbolicity cone:
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Linear Principal Minor Polynomials 11

Lemma 4.1. Let p € R[x] be hyperbolic with respect to a € R"™ and H,(p) the
corresponding hyperbolicity cone. Assume that p(a) > 0 and that p is reduced in the

sense that all its irreducible factors are coprime. Then we have the following:

1. For all v e H,(p) the linear form L,(x) = (Vp(v), x) is nonnegative on H,(p).
2. If v € 0H,(p), then L, (v) = 0.
3. If b ¢ H,(p), then there exists v € dH,(p) such that L,(b) < 0.

Proof. Part (2) is just Euler's identity since p vanishes on dH,(p). For (1) we prove
the statement for all x in interior of H,(p), which suffices due to continuity. Observe
that L,(x) = (Vp(v),x) = D,p(v), where D,p denotes the directional derivative of p in
direction x. If x is in interior of H,(p) we have H,(p) = H,(p) € H,(D,p). This shows
D,p(v) > 0 for all v € H,(p). In order to prove (3), we first note that by our assumption
on p, the set of points ¢ € dH,(p) where Vp(c) = 0 is nowhere dense. Thus, if b ¢ H,(p),
then there is a point e in the interior of H,(p) such that the line segment [e, b] intersects
dH,(p) in a smooth point v. Since L,(e) > 0 and L,(v) = 0, we have L, (b) < 0. |

We now apply the above observations to lpm polynomials. Recall that for a
partition IT = {S;,...,S,,} of [n], we denote by D; the vector space of block diagonal
symmetric matrices with blocks given by IT and ry is the orthogonal projection of Rg/

onto the subspace Dy;. Further recall that we write a ~ b for a,b € [n] if a,b € S;, for

somek=1,...,m.

Lemma 4.2. Fix a partition IT = {S;,...,S,,} of [n] and let B C [n] be any subset. Then
for any o € &g, we have |[{b € B|b # o (b)}| # 1.

Proof. For b ¢ B, consider the orbit b, (b),a2(b),...,c""1(b),ot(b) = b. If b € S; but the
orbit is not fully contained in S;, then there are 0 < r < s < t such that o”(b), oStH(D) € Sy
but 6”1 (b), 05(b) ¢ S [ |

Lemma 4.3. Let P be an Ipm polynomial. If A € Dy, then VP(A) € Dy;.

Proof. Since P is a sum of terms of the form az det(Xy) with B C [n], it suffices to prove
the claim for P = det(Xp). In that case, this is equivalent to saying that if A € D and
i % j, then

( 8}2 det(XB))(A) —o0.
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12 G. Blekherman et al.

Now detXp = >, s, 880(0) [[;c3 X; »; and Lemma 6.2 applied to each term yields the

claim. [ |

The preceding lemma allows us to show that the hyperbolicity cone of a

hyperbolic lpm polynomial is closed under projections onto Dr;.

Lemma 4.4. Let P be a homogenous PSD-stable lpm polynomial. If A € H(P), then
m(A) € HP).

Proof. Let Py be the restriction of the polynomial P to Dy, that is, P = P o« where
t: Dy — REG is the inclusion map.

We claim H(P) N D = H(Py). This follows because if A € Dy, then A € H(Pp) if
and only if P (A + tI) > 0 for t > 0. On the other hand,

Pp(A + tI) = P(i(A + tI)) = P(A + tI).

This second equality follows from the fact that I € D;. This is positive for ¢t > 0 if and
only if A € H(P), from which we can see the claim.

For A € H(P) we thus have to prove that ny(4A) € H(Py). By Lemma 6.1
this is equivalent to (VPy(B),ny(A)) > 0 for all B € H(Py). But by the previous
lemma we have (VPy(B), n;(4)) = (VP(B), A), which is nonnegative by Lemma 6.1 since
A € H(P). |

We are now able to prove the hyperbolic Fischer-Hadamard inequality. Our proof

technique is inspired by the proof of [11, Thm. 5].

Proof of Theorem 2.4. Without loss of generality, we can assume that P(I) > 0. If
A is on the boundary of H(P), then P(A) = 0 and we are done since w(A) € H(P)
implies P(w;(A)) > 0. Therefore, we may assume that A is in the interior of H(P). In
this case, let ¢ > 0 be sufficiently small such that A — eI € H(P), then ny(4) — el =
mp(A — €I) is also in H(P). This shows that w(A) is in the interior of H(P) and
P(ry(4)) > 0.

Because P(A) # 0, P is hyperbolic with respect to A and q(t) = P(tA+m(4)) € R[t]
is real rooted with negative roots. Let d be the degree of q(¢). Let A;,..., 14 < O be the

roots of g(t). We consider the coefficients of ¢ in q(t):

e The coefficient of t¢ is P(A).
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Linear Principal Minor Polynomials 13

e The coefficient of t is dP(w(A)), since %q(O) = (VP(r(A)),A), and by

Lemma 6.3,
(VP(m(A)),A) = (VP(rp(A)), mp(A)) = dP(m(A)).

This last equality is due to Euler’'s identity.

e The constant coefficient is P(w(4)).

dP(rn(A)
P(4)

positive, from the Arithmetic Mean-Geometric Mean inequality we have

Thus, we have g;_; (1) = ,and eg(A) = Ay - Ag = %. Since all A; are

d-1
P(rp(4) _ eg 1(M) a1 (Pg(A)\T
P@ay  d C ke _( P(A) ) ‘

This proves the claim. |

When P(X) = detX, then H(P) is the cone of positive semidefinite matrices and

our theorem implies the well-known Fischer’'s inequality:

Corollary 4.5 (Fischer's inequality). If A is positive semidefinite, then detw(4) >
det A.

Remark 4.6. The usual statement of Fischer's inequality corresponds to the case of
two blocks. This is equivalent to our multi-block version since principal submatrices of

a positive semidefinite matrix are also positive semidefinite.

In the case, where I1 = {{1},...,{n}}, Theorem 2.4 and Lemma 6.4 imply
Corollary 2.2. We also get the following strengthening of Theorem 2.4.

Corollary 4.7. Let P be a homogeneous and PSD-stable lpm-polynomial. If A € H(P),
then the polynomial P((1 — t)A + tw(A)) is monotonically increasing for ¢ € [0, 1].

Proof. The polynomial g(t) = P(tA + (7 (A) — A)) is real rooted, and

P((1 = DA +trg(A) = q°(0)

so that g*(t) is real rooted. Because both A and n;(A) are in H(P), we have g*(¢t) > 0 for
t e[0,1].
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14 G. Blekherman et al.

Suppose that P(r;(4)) = 0. Since (1 — t)A + tny(A) € H(P) for t € [0, 1], we have
that 0 < P((1 — t)A + tm(A)). Moreover, n((1 — t)A + tny(A)) = my(A), so by Theorem
2.4, P((1 — )A + tng(A)) < P(rp(A)) = 0. Thus, g*(¢) is uniformly O on this interval, and
in particular, it is monotonic increasing.

If P(ry(A)) > 0, then 7;(4) is in the interior of H(P). In particular, this implies
that g(t) > 0 for ¢t > 0, and therefore, g*(t) has no roots in (0, 11.

Moreover, if P(r;(A)) > 0, then there is some € > 0 so that g*(t) > 0 for t ¢
(0,1 + €]. Hence, by interlacing %q*(t) has at most one root in the interval (0,1 + €).

We claim that in fact, gfq*(l) = 0 and, therefore, g*(t) has no critical points
in (0, 1), and this implies that g*(¢) must be monotonic increasing on (0, 1]. To see that
%q*(l) = 0, notice that for any ¢t € [0,1 + €), (1 — t)A + tn(A) € H(P) since they are in
the connected component of RQYXH’} \ V(P) that contains w;(4). We also have that 7 ((1 —
t)A + trg(A)) = my(A), so by Theorem 2.4, we have that for any ¢ € [0,1 + €), g*(t) =
P((1 — t)A + tny(A)) < P(r(A)) = g*(1). This implies that g*(¢) has a local maximum at
t=1, and so gzq*(l) =0, as desired. [ |

5 Hyperbolic Koteljanskii Inequality

Koteljanskii's inequality [16] states that for any n x n positive semidefinite matrix A and
S,T C [n], detAgdetA; > detAgnrdetAg . This is a generalization of the Hadamard-
Fischer inequality. Later this inequality was proven to hold for other classes of (possibly
non-symmetric) matrices [14]. In this section we prove Theorem 2.6, a generalization
of Koteljanskii's inequality, where the determinant can be replaced by a PSD-stable
lpm polynomial. First we need the hyperbolic counterpart of the fact that principal
submatrices of a positive semidefinite matrix are again positive semidefinite, and hence

have nonnegative determinant. For this we use Renegar derivatives [24].

Theorem 5.1. Let p be a polynomial, hyperbolic with respect to v. Let D ,p denote the
directional derivative of p in direction v. Then D, p is also hyperbolic with respect to v.

Furthermore, their hyperbolicity cones satisfy H,(p) < H,(D,p).
Recall from Definition 2.5 that Pl = ([[jcp 1 +2-)P. Then we have the following:

Corollary 5.2. Let P be a homogeneous PSD-stable lpm polynomial of degree k and
A € H(P). Let T C [n] with |T| > n — k. Then P|; is PSD-stable as well and A € H(P|;).

Now we use the result from [6] on negative dependence. For any polynomial

p € Rix] and index set S € [n] we denote 35p = ([];cs aixi)p.
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Linear Principal Minor Polynomials 15

Theorem 5.3 ([6, Sect. 2.1 and Thm. 4.9]). Let p be a multiaffine stable polynomial
with nonnegative coefficients. Then p satisfies the nonnegative lattice condition: for all
S, T < nl

35p(0)8"p(0) = 3°*"p(0)3°""p(0).
This theorem directly implies the generalization of Koteljanskii's inequality.

Proof of Proposition 2.6. Without loss of generality assume that P(I) > 0. Let P, (x) =
P(A+Diag(x)) € Rlxy, ..., x,]. It is clear that P, is multiaffine and Z)SPA (0) = P|4(A) for all
S C [n]. It follows from Corollary 5.2 that P, is stable and has nonnegative coefficients.
Thus, by Theorem 5.3 it satisfies the nonnegative lattice condition, that is, for all S, T C
[n], 35P,(0)aTP,(0) > 35°TP,(0)35"TP,(0). This completes the proof. [ ]

6 Hyperbolic Polynomials and Sums of Squares

Let p € Rix] be hyperbolic with respect to v € R" and a,b € H,(p). Then the mixed

derivative

Aa,b(p) = Dap'Dbp_p'Danp

is globally nonnegative by Theorem 3.1 in [18]. If some power p" has a definite symmetric

determinantal representation, that is, can be written as
p =det(x;A; +--- +x,4,)

for some real symmetric (or complex hermitian) matrices 4,,..., 4, withv,;A,+.. +v,A,
positive definite, then Dlta, ;(p) is even a sum of squares [18, Cor. 4.3]. Therefore, any
instance where Dlta, ,(p) is not a sum of squares gives an example of a hyperbolic
polynomial none of whose powers has a definite symmetric determinantal representa-
tion. Another source of interest in such examples comes from the point of view taken
in [28], as these give rise to families of polynomials that are not sums of squares
but whose nonnegativity can be certified via hyperbolic programming. Saunderson
[28] characterized all pairs (d,n) for which there exists such a hyperbolic polynomial
p € Rlx] = RIxy,...,x,] of degree d, except when d = 3. In this section we will construct
an explicit hyperbolic cubic p in 6 variables for which there are two points a, b in the

hyperbolicity cone such that Dlta, ,(p) is not a sum of squares.
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16 G. Blekherman et al.

Remark 6.1. If there are two points a, b in the closed hyperbolicity cone of p such that
Dlta, ;(h) is not a sum of squares, then there are also such points in the interior of the

hyperbolicity cone as the cone of sums of squares is closed.

Remark 6.2. In [28] Saunderson constructs a hyperbolic cubic in 43 variables whose
Bézout matrix is not a matrix sum of squares. The polynomial presented in this section
is also an example of a hyperbolic cubic, p, with six variables whose Bézout matrix is
not a matrix sum of squares. This is in fact implied by Theorem 6.3, because the mixed
derivative that we study is the top left diagonal entry of the Bézout matrix of p, and the

diagonal entries of a matrix sum of squares are all sum of squares polynomials.

Consider the complete graph K, on 4 vertices. We define the spanning tree

polynomial of K, as the element of R[x, : e € E(K,)] given by

tK4(X) = ZHXB’

T e€t

where T C E(K,) ranges over all edge sets of spanning trees of K,. The polynomial g, is
multiaffine, homogeneous and stable [8, Thm. 1.1]. Let T be its minor lift. Finally, let p

be the polynomial obtained from T by evaluating T at the matrix of indeterminants

12 13 14 23 24 34

x,; 0 0 0 0 O
x, a b ¢ 0
x, ¢ b 0

A= 2
x, a 0

b a x, 0
0 0 0 x4

o ©O O O O
o a o 9

Thus, p is hyperbolic with respect to every positive definite matrix that can be

obtained by specializing entries of A to some real numbers. In particular, the polynomial

_dp p *p
Cx; 0xg 93X, 0x3

is nonnegative. We will show that it is not a sum of squares.

Theorem 6.3. The polynomial W is not a sum of squares.
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Linear Principal Minor Polynomials 17

Proof. Explicitly,
1
ZW = a®b? + a®c® + b?c? + c* — 8abcx, + 2a’x3 + 2b%x2.

We first note that if W were a sum of squares, then it is the sum of squares of quadratic
forms. Indeed, by examining the Newton polytope of W, we see that if W were a sum
of squares, then it would necessarily be a sum of squares of polynomials in the linear

subspace
span{ab, ac,ax,, bc, bx,, Cz}.

The idea of considering the Newton polytope in finding such sum-of-squares decompo-
sitions was first discussed in [25].

W can be written as a sum of squares from elements in this subspace if and only
if there is a PSD matrix A so that

W =vTAv, (2)

where

ab
ac
bc

bx,
2

C

Suppose that such an A existed. Expanding out Equation (2) in terms of the entries of 4,

we obtain that A must be of the following form:

1 A A

ab,ac ab,axs Aab,bc Aab,bxz Aab,c2
Aab,ac 1 Aac,axz Aac,bc Aac,bxz Aac,c2
Aab,axz Aac,axz 2 Aaxz,bc Aaxz,bxz Aaxz,cz ,
Aab,bc Aac,bc AaXz,bC 1 Abc,bX2 Abc,cz
Agbbx, Aachx, Aaxpbx, Abebx, 2 Apxy c2
Aab,02 Aac,c2 Aaxz ,c2 Abc,c2 Abxz,c2 1

and also satisfy the property that A, ,c +Ascpx, = —4
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18 G. Blekherman et al.

Here, we index the entries of A by the pair of monomials corresponding to that
entry of A.

Consider now the matrix

3 0 O 0 O

0 12 0 9 0

0 0 8 0 O
B =

0 0 9 12 0 O

0 9 O 8 0

0O 0 O 0 3

This matrix is positive definite, and also satisfies the property that for any A of the

above form, satisfying Agxybe T Aacpx, = —%
tr(AB) = —10.

This is negative, contradicting the fact that A was positive semidefinite. This implies

that W is not a sum-of-squares. |

Remark 6.4. The matrix B that certified that W was not a sum-of-squares can be
founding using general semidefinite programming techniques. We used the SumOf-

Squares.jl Julia package [21, 31] for this problem.

Remark 6.5. In the terminology of [28] this shows in particular that h is neither SOS-
hyperbolic nor weakly SOS-hyperbolic.

7 The Spectral Containment Property

We would like to relate the hyperbolicity cone of a homogeneous stable polynomial with
the hyperbolicity cone of its minor lift. Recall from Definition 2.7 that a homogeneous
multiaffine stable polynomial p has the spectral containment property if for any
X € H(P), there is some vector A consisting of the eigenvalues of X with appropriate
multiplicity so that . € H(p). Elementary symmetric polynomials have the spectral
containment property, and we will show that several other polynomials have the
spectral containment property in this section. The remainder of this section is devoted
to proving some sufficient conditions for the spectral containment property, as well as

showing some connections between this property and the Schur-Horn theorem.
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Linear Principal Minor Polynomials 19

We summarize the theorems proven in this section with the statement of the

following theorem.

Theorem (Theorem 2.9). The following classes of polynomials have the spectral con-

tainment property:

1. The elementary symmetric polynomials e, ..., e,.
2. For any n > m > d, and any |¢| sufficiently small, e;(x;,...,x,) +
ceg(Xy, ..., Xpy).

3. Stable linear polynomials.

4. Any degree n — 1 stable polynomial that interlaces e,,_,.

Moreover, if p has the spectral containment property and x; is a variable not used in p,

then x,p has the spectral containment property.

Proof. Part 1 is clear because H(E)) is precisely the set of symmetric matrices with the
property that all of their eigenvalue vectors are in H(e;).

Part 2 follows from Proposition 7.15 and Lemma 7.12.

Part 3 is precisely Theorem 7.1.

Part 4 follows from Theorem 7.13 and Theorem 7.10. |

7.1 Schur-Horn theorem and stable linear functions

Recall that a linear homogeneous polynomial p(x) = a,x; + --- + a,x,, is stable if and
only if either a; > 0 for each i € [n], or a; < 0 for each i € [n]. We may take H(p) = {x €
R™ : p(x) > 0}. These are the simplest stable polynomials and yet it is not completely

trivial to show that they have the spectral containment property.

Lemma 7.1. Every stable linear homogeneous polynomial has the spectral containment

property.

In order to prove this, we will use Schur’s contribution to the Schur-Horn

theorem.

Theorem 7.2 (Schur). Let p : R® — R be a homogeneous linear function, and let P be
the associated minor lift. Let A be a symmetric matrix, and let A be an eigenvalue vector
for A. Let &,, denote the symmetric group that acts on R by permuting coordinates. Let

O(n) denote the orthogonal group of n x n matrices. Then,

max p(7 (1)) = max P(UAUT).
7eGy UeO(n)
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20 G. Blekherman et al.

Proof of Theorem 7.1. Suppose that A € H(P), which is equivalent to P(4) > 0. By the
Schur-Horn theorem, there is some eigenvalue vector of 4, say A, so that p(L) > P(4) > 0.

Thus, there is an eigenvalue vector of A contained in H(p) as desired. [ |

We will see in Section 7.4 that if an appropriate generalization of the Schur-
Horn theorem holds, then we would be able to show the spectral containment property

for a large class of polynomials.

7.2 Operations preserving the spectral containment property

In this section we prove that the spectral containment property is preserved under some

simple operations involving adjoining a new variable.

Lemma 7.3. Let g € Rlx;,...,x,] be stable, multiaffine and homogeneous. Let p €
Rlxg, ..., x,] be defined by p(x, ..., x,,) = q(x;,...,x,). If g has the spectral containment

property, then p has the spectral containment property.

Proof. First note that x = (x;,...,%,) € H(p) if and only if (x;,...,x,) € H(q). Let
X € H(P), then we can divide X into blocks as

X = (XOO VT).
v M
Here, M is equal to X,;;, and v is some element of R".
If I, is the n x n identity matrix, we can see from the definition of P that P(X +
tl,, ) = Q(M+tI,). Therefore, for t > 0, Q(M +tI,,) = P(X+1I, ) > 0, which implies M ¢
H(Q). Let A(M) and 1(X) be eigenvalue vectors of M and X respectively, with the property

that the entries of A(M) and A(X) appear in increasing order. The Cauchy interlacing

inequalities say that
Mo(X) = A(M) = M (X) < Ag(M) = 2p(X) < -+ = X, (M) < 1 (X).

Thus, for i € [n] we can write A;(X) = A;(M) + ¢; for some € > 0. Since g has the spectral
containment property, there is a permutation o such that Aoy M) <i<n € H(Q). Since
the hyperbolicity cone of the stable polynomial g is convex and contains the nonnegative
orthant, we also have (A, (X)) <j<p = (ko) (M) + €,())1<i<n € H(@). This implies that
(o), Aoy X, -+ hy () (X)) € H(D). [
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The spectral containment property is also preserved when multiplying by a new

variable.
Proposition 7.4. Let g € Rlxy,...,x,] be stable, multiaffine and homogeneous. Let p €
Rlxg, ..., x,] defined by p(xy, ..., x,) = xq(x,,...,x,). If g has the spectral containment

property, then p has the spectral containment property.

Before we show this, we need another lemma. Let X be a matrix written in block

X, vT
X = 00
v M

and X, # 0. We write X/0 :=M — Xo_ol vvT for the Schur complement.

form as

Lemma 7.5. Letq € Rlxy,...,x,]be stable, multiaffine and homogeneous. Let p = xyq €
Rixy, ..., x,], and X € H(P), with X,, > 0, then X/0 € H(Q).

Proof. Note that a vector x = (x3,%;,...,%,) € H(p) if and only if x, > 0 and
(x1,...,x,) € H(q). Recall the determinant formula for Schur complements: for any n xn
matrix X,

det(X) = Xy, det(X/0).
Also, it is not hard to see from the definition that if S C {0,1,...,n}, and 0 € S, then
Xs/0 = (X/0)(5\0)

that is, Schur complements interact naturally with taking submatrices. Therefore,

PX)= >  agdetXg)= > agXy det((X/0)[g o) = X50Q(X/0)
Sc{o,...,n} Sc{0,...,n}

Thus, if X € H(P) and X, > O, then

P(X)
Q(x/0) ==~ = 0.

00
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22 G. Blekherman et al.

We can strengthen this result by noting that if we let J be the block diagonal matrix

0 O
J =
(O In,)

then J € H(P), since it is in particular positive semidefinite. It is clear from the
definition that X/0 + tI,, = (X + tJ)/0. Thus, we have that for all ¢ > 0O,

given by

PX+t])

Q(X/0+tI,) = QX +1)/0) = ——
00

0,

which implies that X/0 € H(Q). |

Proof of Lemma 7.4. Let X € H(P). We first consider the case where X,, > 0. By
Lemma 7.5, and the spectral containment property for g, we have that there is an
ordering of the eigenvalues of X/0 so that A(X/0) € H(q).

Now, we can write

0O O Xoo vT
X = + 1 ’
0 X/0 v Xy vvT

where the second term is a rank 1 positive semidefinite matrix.

0 X/0
eigenvalue vector for X/0, then the vector A(X’) = 0 & A(X/0) is an eigenvalue vector

0 0
Let X' = ( ) Note that X’ is block diagonal, so that if A(X’) is an

for X'. In particular, by ordering the entries appropriately, A(X’) € H(p), from our
characterization of H(p) in terms of H(q).

By the Weyl inequalities, there is an ordering of the eigenvalues of X so that
1;(X) > 1,(X’) for each i. This implies that

AX) =rX) +a,

where a is a nonnegative vector, and therefore a is in H(p). Therefore, A(X) € H(p).
The case of X, = 0 follows from continuity of eigenvalues. Observe that if X
is in the interior of H(P), then X,, > 0, and also, since the eigenvalues of a symmetric

matrix vary continuously with the matrix, the property of having an eigenvalue vector
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in H(p) is closed. Therefore, since H(p) is closed and has nonempty interior, there is an

eigenvalue vector of X in H(p). |

7.3 Polynomials interlacing an elementary symmetric polynomial

The spectral containment property can be proved more easily for polynomials that
interlace some elementary symmetric polynomial.
Before stating the main result, we note that the minor lift map preserves

interlacing.

Lemma 7.6. Letp,q € Rlxy,...,x,]be stable, multiaffine and homogeneous. Let P, Q be

the associated minor lifts. Then p interlaces q if and only if P interlaces Q.

Proof. Assume that p interlaces g. Then by the multivariate Hermite-Biehler theorem
[7, Thm. 5.3] we have that p 4 iq is stable. Let A be a symmetric n x n matrix. We have to
show that P(tI+A) interlaces Q(tI+A). From [5, Thm. 1.3] we see that the linear operator
T, that sends a multiaffine polynomial p to the polynomial P(Diag(x,,...,x,) +A) is a
stability preserver. Thus, T, (p + iq) is stable. Substituting ¢ for all variables in T, (p +
iq) shows that P(tI + A) + iQ(tI + A) is stable. Now the claim follows from another
application of the Hermite-Biehler theorem. The other direction is clear, since p and g

are the respective restrictions of P and Q to the diagonal matrices. |

Lemma 7.7. Suppose that p is a stable, multiaffine and homogeneous polynomial of
degree d, and that e;_; interlaces p. Further, suppose that for any X € H(P), there
is some eigenvalue vector A of X, such that p(A) > P(X). Then p has the spectral

containment property.

Proof. We first note the fact that if p is any hyperbolic polynomial, and g interlaces
p, then x is in the interior of H(p) if and only if x is in H(q) and p(x) > 0. This follows
easily from considering the bivariate case.

Let X be in the interior of H(P). We first want to show that there is an eigenvalue
vector of X that is contained in H(p); the case for general X will then follow from the fact
that the eigenvalues of a symmetric matrix are continuous as a function of the entries
of the matrix.

Since e;_; interlaces p, by Theorem 7.6, we have that E;_; interlaces P. From
this, we conclude that since X € H(P), X is contained in H(E;_,), and so any vector of

eigenvalues of X is contained in H(e,_;).
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Let A be any eigenvalue vector of X so that 0 < P(X) < p(4), then we see that this
A must then be in the interior of H(p), as desired. [ |

In Lemma 7.9, we show that the set of stable multiaffine forms interlacing e;_,
is an open subset containing e;. This implies that if we have a hyperbolic polynomial
p that is sufficiently close to e;, then p will have the spectral containment property as
long as for any X € H(P), there is some eigenvalue vector A, so that p(1) > P(X).

We will apply this lemma in a few cases, together with some variational
characterizations for eigenvalues to show the spectral containment property for some

special kinds of polynomials.

Lemma 7.8. Let p,q be multiaffine polynomials of degree d + 1 and d, and let a € R™.

There exist multiaffine polynomials m,,..., mg, n,,..., ng of degree d such that
D,p-q—p-D,gq=mn; +...+ mgn,.

Proof. This is straightforward. |

Proposition 7.9. There is an open neighborhood U of e;,, in the vector space of
multiaffine forms of degree d + 1 such that every stable multiaffine p € U of degree
d + 1 is interlaced by e;.

Proof. LetI be the ideal generated by all multiaffine polynomials of degree d and let V
be the degree 2d part of I2. Let £ C V be the set of all polynomials that can be written
as a sum of squares of multiaffine polynomials of degree d. It follows from the proof
of [17, Thm. 6.2] that D,e;,, - €5 — €4, - D, ey is in the interior of ¥ (with respect to
the euclidean topology on V). Thus, it follows from Lemma 7.8 that there is an open
neighborhood U of e;,; such that for every stable multiaffine p € U the polynomial
D,p-e;—p-D,e,4isin X. Thus, e; interlaces p by [18, Thm. 2.1]. |

7.4 Generalized Schur-Horn property and the spectral containment property

We say that an n-variate multiaffine homogeneous polynomial p has the Schur-Horn

property if for any n x n symmetric matrix X with some eigenvalue vector A,

max p(mw (X)) = max P(UXUT). (3)
eGy UeO(n)
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The Schur-Horn property for p is equivalent to the fact that for any n x n symmetric

matrix X with eigenvalue vector A,
max p(r (1)) > P(X).
ey

Another equivalent formulation states that p has the Schur-Horn property if and only if
the maximum of P(UXUT) as U varies over O(n) is obtained for some U such that UXUT
is diagonal.

The Schur-Horn theorem states that any linear homogeneous polynomial has the

Schur-Horn property. We now relate Schur-Horn property and the spectral containment

property.

Theorem 7.10. Let p be a homogeneous multiaffine form of degree d. If p has the

Schur-Horn property, and e;_; interlaces p, then p has the spectral containment

property.

Proof. It is clear that if p has the Schur-Horn property, then in particular, for any
X € H(P), there is some eigenvalue vector A so that p(A) > P(X). Therefore, p has the

spectral containment property by Lemma 7.7. [ |

Using the Schur-Horn property and our previous lemmas, we can show that a

family of stable polynomials have the spectral containment property.

Lemma 7.11. If p is a degree d homogeneous multiaffine polynomial with the Schur—

Horn property (which is not necessarily stable), then e;(x) + p also has the Schur-Horn

property.

Proof. It can easily be seen that if X is an n x n symmetric matrix, with an eigenvalue

vector A, that

max (eg(w(A) + p( (1)) = eg(h) + max p(m (1))
eSSy €6y
= E4(X) + max P(UXUT)
UeO(n)

= max E (UXUT) + P(UXUT).
UeO(n)

This gives the desired result. |
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26 G. Blekherman et al.

Lemma 7.12. If p is a degree d homogeneous multiaffine polynomial with the Schur—

Horn property, then for € > 0 sufficiently small, e;(x) + ¢p has the spectral containment

property.

Proof. By Lemma 7.9, we see that for € sufficiently small, e;(x) + ep is interlaced by
e4_1- Moreover, by Lemma 7.11, we see that e;(x) + ¢p has the Schur-Horn property.

Therefore, by Theorem 7.10, we see that e;(x)+€p has the spectral containment property.

|
We now give some examples of polynomials with the Schur-Horn property.
7.5 The Schur-Horn property for degree n — 1 polynomials
Theorem 7.13. If p € Rlx;,...,x,] is a degree n — 1 multiaffine homogeneous

polynomial, then p has the Schur-Horn property.

Proof. Write p(x) = >i; @; [[jc(n); X;- In this case,

PX) = Z a; d'313(X[n]\i)

i=1

Recall that the dual of p(x) was defined in Section 3, as
n
p*(X) = ZaiXi.
i=1
Abusing notation, we define P* to be
n
i=1

Define the adjugate matrix of X by Adj(X) = det(X)X~!. By Cramer’s rule, the

diagonal entries of the adjugate matrix are given by

Hence, using Remark 3.1, we see that P*(Adj(X)) = P(X). Also, it is clear that
Adj(UTXU) = UAdj(X)UT.
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The eigenvalues of Adj(X) are of the form y; = [[;cp,\;A; where 1 is an eigenvalue
vector of X. We see then that p*(u) = p(A). Now we apply the Schur-Horn theorem to the
linear form p* and the matrix Adj(X) to see that

max p*(m(n)) = max P*(UTAdj(X)U). (4)
1eGy UeO(n)

Notice that forany 7 € G,,,

() =Dty

i=1

ZZHZHM‘

i=1 jeln\r~1(i)

n
=2 1
i=1 jelnl\i
= p(@(A)).
Also, for any U € O(n),
P*(UTAdj(X)U) = P*(Adj(UXUT)) = P(UXUT).

Applying these identities to the maximizer of Equation (4), we obtain

max p(7w (1)) = max P(UTXU).
eSSy UeO(n)

From this, we immediately obtain a corollary.

Corollary 7.14. There is an open set U in the space of degree n — 1 homogeneous
multiaffine polynomials, such that U contains e,,_; and every element of U is stable

and has the spectral containment property.

7.6 Extensions of elementary symmetric polynomials and the Schur-Horn property

Let m < n, and consider Rlx,...,x,,] € Rlx,...,x,] under the natural inclusion. If we
have a homogeneous multiaffine polynomial p € Rlx;,...,x,,], we may say that it has

the Schur-Horn property with respect to m x m matrices if it satisfies the analogue of
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Equation (3) for m x m matrices X:
max p(7 (1)) = max P(UXUT).
7€Gm UeO(m)

If p has the Schur-Horn property, then p has the Schur-Horn property with respect to
m x m matrices a fortiori. However, if p has the Schur-Horn property with respect to
m x m matrices, it is not clear that it has the full Schur-Horn property.

For example, if we consider the linear polynomial x; € Rlx;,...,x,], it clearly
has the Schur-Horn property for n arbitrarily large. We may then say a polynomial p €
Rl[x,, ..., x,,] has the extended Schur-Horn property if for any n > m, the corresponding
polynomial p € Rlxy,...,x,] has the Schur-Horn property. We now show that if p =
+ey(x;,...,X,,), then p has the extended Schur-Horn property.

Proposition 7.15. Fix d < m < n. The polynomial +e;(x;,...,x,,) € Rlx;,...,x,] has

the extended Schur-Horn property.

For convenience, in the remainder of this discussion, we will use p to denote
eqx;,...,x,) € Rlxy,...,x,], and as usual, we will use P to denote its minor lift. To
show Proposition 7.15, we will require Theorem 6.23 from [9]. This theorem describes a
construction known as a generalized compound of a matrix X. We restate the parts of

this theorem needed for our purposes in the following lemma:

Lemma 7.16. Let X be an n xn symmetric matrix with eigenvalue vector A. There exists

a () x () symmetric matrix D#™X with the following properties:

1. The maximum eigenvalue of Dadmx is max, g, p(7(})), and the minimum
eigenvalue of Dadmy ig min, g, P@QR)).
2. P(X)is a diagonal entry of pdmx.

Using this lemma, we show Proposition 7.15.

Proof of Proposition 7.15. Fix an n x n symmetric matrix X, and consider D4™X. It is
clear (say, from the Cauchy interlacing theorem) that the maximum eigenvalue of DX

is larger than any diagonal entry of D%™X. Therefore, Lemma 7.16 implies that

max p(w(A)) > P(X).
eSSy

This in particular implies that p has the Schur-Horn property.
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Similarly, Lemma 7.16 implies that
min p(r (1)) < P(X),
TeSy
which implies that
max —p(w (1)) = —P(X),
1€y

so that —p also has the Schur-Horn property. |

8 The Permutation Property

The goal of this section is to prove Theorem 2.11. It says that given any point v in the
hyperbolicity cone of e, and any other homogeneous stable multiaffine polynomial & of
the same degree, some permuation of the coordinates of v is in the hyperbolicity cone of
h. We call this remarkable propery of e, the permutation property. We first need some

preparation.

Lemma 8.1. Assume that the homogeneous stable polynomials g, h € Rlx;,...,x,] have
nonnegative coefficients and a common interlacer. Then f = g+ h is stable. If v is in the
hyperbolicity cone of f, then v is in the hyperbolicity cone of g or in the hyperbolicity

cone of h.

Proof. Let e be the all-ones vector. The univariate polynomials F = f(te—v), G = g(te —
v) and H = h(te — v) have a common interlacer. Further, all roots of F are nonnegative.
The existence of a common interlacer implies that G and H have at most one negative
root each. Assume for the sake of a contradiction that both G and H have a negative root.
Then G and H have the same (nonzero) sign on the smallest root of F. This contradicts

F = G + H. Thus, either G or H have only nonnegative roots, which implies the claim. B

Lemma 8.2. Let h € R[x;,...,x,] be homogeneous, multiaffine and stable. Let r € &,

be a transposition. Then h and 7(h) have a common interlacer.

Proof. Without loss of generality assume that t = (12) and let g = 7(h). We can write

h=A.-x, -x,4+B-x;,+C-x,+D

€202 1890100 €7 uo Jasn ABojouyoa] Jo aynsu| eibioss) Aq 8566189/ 6ZOBUI/UIWISE0 "0 | /I0p/8|01B-80UBAPER/UIWI/WO02 dNO dIWapeae//:sd)jy Wol) PapEOjUMO(]



30 G. Blekherman et al.

for some multiaffine A, B, C,D € Rlxj,...,x,]. Then the polynomial
(i—i- 8)h A -(x;+x)+B+C= (i—i-i)g
dx,  3x, 0x; 0xy
is a common interlacer of h and g. |
Corollary 8.3. Leth € R[xy,...,x,] be homogeneous, multiaffine and stable. Let r € §,,

be a transposition, g = t(h) and f = Ag + uh for some nonnegative A, u € R. Then,
H(f) C H(g) UH(h).

Proof. This is a direct consequence of the two preceding lemmas. |

Let QI&,,] be the group algebra of the symmetric group &,, on n elements, that
is, Q[&,,] is the vector space over Q with basis e, for g € &,, whose ring structure is

defined by extending ey ey =eyp linearly. In Q[&,,] we have the identity
n j-1
HH( e(l])) = Z €g/ (5)
j=21i=1 9eSn
see, for example, [22, p. 192]. From this we obtain our desired theorem.

Theorem 8.4. Lete, € Rlxy,...,x,] be the elementary symmetric polynomial of degree
d and h € Rlxy,...,x,] any other nonzero homogeneous multiaffine stable polynomial
of degree d. If v is in the hyperbolicity cone of e;4, then 7(v) is in the hyperbolicity cone

of h for some permutation r € &,,.

Proof. We have ¢-e; = (3 g, €4)h for some nonzero scalar ¢ € R. Thus, by Equation

c. ed—(H(l—f-ke )

for some positive ; € R, transpositions 7; € &, and (},). We define h; = (Hle(l +

(5) we can write

kieri))h fork=0,...,r. Since hy = hy_; + A, t;(hyt_;), Corollary 8.3 implies that if v is in
the hyperbolicity cone of hy, then either v or t;(v) is in the hyperbolicity cone of h;_;.
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Since h, = ¢ - e; and hy = h, this argument shows that if v is in the hyperbolicity cone
of ey, then (z; o---o7; )(v) is in the hyperbolicity cone of h for some 1 <i; <--- <ig <r.
|

9 Open Problems

Our work sparks a wide range of open problems. We mention some of them here. For
several of these problems, we presented proofs for some special cases, whereas the
general case remains open. Some of our questions may be related to the work in [2],
which uses a different construction to lift an n-variate hyperbolic polynomial to a

hyperbolic polynomial in the entries of n x n symmetric matrices.

9.1 Hyperbolic Schur-Horn theorem

In Section 4 we proved the hyperbolic generalization of Hadamard-Fischer inequality
as well as Koteljanskii’'s inequality, in Theorem 2.4 and Theorem 2.6. Here we present
another potential generalization of classical linear algebra results in Schur-Horn
theorem.

The Schur-Horn theorem appears in our previous section on the spectral
containment property. Here we will form a different generalization of Schur-Horn
theorem in terms of hyperbolic polynomials.

We will formulate our generalization in the language of majorization. Given
polynomials p and g of the same degree, both hyperbolic with respect to the direction v,
we say that p majorizes g in direction v if for all x € R", the roots of p(x — tv) majorize
the roots of q(x — tv). Recall that given «, 8 € R¥, « majorizes  if XX | o; = 3% | g, and
the following holds: let «’, 8’ be obtained from «, 8 by reordering coordinates such that
of > ..>«a;and B] > ... > B, thenforeach1 <m < k, > o/ > > 1", B/. Equivalently, o
majorizes g if and only if 8 € conv(S, («)), where the symmetric group &, acts on « by
permuting its coordinates.

In this language, we can restate the Schur direction of the Schur-Horn theorem

as follows:
Lemma 9.1. (Schur) det(X) majorizes det(diag(X)) in the identity direction.

We conjectured that a generalization should hold for all homogeneous PSD-
stable lpm-polynomials. After we posted the original version of this paper, James

Saunderson suggested a proof of the following theorem [27].
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Theorem 9.2. Let P be a homogeneous PSD-stable lpm-polynomial. Then P(X)
majorizes P(diag(X)) in the identity direction [27].

9.2 Spectral containment property and the Schur-Horn property

We showed that many polynomials have the spectral containment property. Based on

these examples and additional computational evidence we conjecture the following:

Conjecture 9.3. All homogeneous multiaffine stable polynomials have the spectral

containment property.

There are several special cases of this conjecture which are of particular

interest, which we enumerate separately.

Conjecture 9.4. All quadratic homogeneous multiaffine stable polynomials have the

spectral containment property.

This case is of special interest because quadratic multiaffine polynomials have

especially simple minor lifts. Namely, if

PO =D ayxx;,
A
then
PX) = p(diag(X)) - D ayX}.
A

It is therefore plausible that this conjecture could be proved (or disproved) by exploiting

this special structure.

Conjecture 9.5. Let D be a positive definite diagonal matrix, and let p(x) = e, (Dx).

Then p(x) has the spectral containment property.

Again, this is of special interest because of its relation to diagonal congruence

as we now explain.

Lemma 9.6. Let p be a homogeneous, multiaffine stable polynomial, let D be a positive
definite diagonal matrix, and let g = p(Dx). Then x € H(q) if and only if Dx € H(p), and
X € H(Q) if and only if DXD € H(P).
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Proof. x € H(q) if and only if q(x + ti) > 0 for all ¢ > 0. This is equivalent to the
statement that p(D(x + ti)) = p(Dx + tdiag(D)) > 0 for all ¢ > 0. Notice though that
if D is positive definite, then diag(D) is in the interior of the hyperbolicity cone of p.
Therefore, p(Dx + tdiag(D)) > 0 for all ¢ > 0 if and only if Dx € H(p).

Similarly, if p(x) = ngn] ag [ ;e X;, we see that g(x) = ng[n] (ITies Diiag) [ies xi-

Therefore,

aX) = > ([ Duas) detX|g) = D> agdet((D'/2xD'/?)|5) = P(D'/*XD'/%).

SCln] ieS SClin]

We thus have that
Q(X + tI) = P(D'/?(X + t1)D'/?) = P(D'/?XD"/? + tD).

Because D is positive definite, it is in the interior of H(P), and therefore, P(D'/2XD'/? +
tD) > 0 for all ¢t > 0 if and only if D/2XD'/2 € H(P). This implies the result. [ |

From, this we see that Conjecture 9.5 is equivalent to the statement that for any
X € H(E,), and any positive definite diagonal matrix D, we have that there exists an
eigenvalue vector A of DY/2XD1/2 so that D~!A € H(e). This gives us a very quantitative
relationship between the eigenvalues of a symmetric matrix X and those of D/2XD'/2,
which are of fundamental interest in a number of situations.

The Schur-Horn property is another interesting property of a multiaffine
polynomial. Once again, despite computer search, we are unable to find an example
of a multiaffine homogeneous polynomial that does not have the Schur-Horn property.

From this, we conjecture

Conjecture 9.7. All homogeneous multiaffine polynomials have the Schur-Horn
property.
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