Commun. Math. Phys. 402, 79-96 (2023) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04713-w M ath emat i c al

Physics
)]

Check for
updates

Topological Quantum Computation is Hyperbolic

Eric Samperton

Departments of Mathematics and Computer Science, Purdue University, 150 N University St, West Lafayette,
IN 47907, USA. E-mail: eric@purdue.edu

Received: 9 September 2022 / Accepted: 28 March 2023
Published online: 5 May 2023 — © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany,
part of Springer Nature 2023

Abstract: We show that a topological quantum computer based on the evaluation of
a Witten—Reshetikhin—Turaev TQFT invariant of knots can always be arranged so that
the knot diagrams with which one computes are diagrams of hyperbolic knots. The dia-
grams can even be arranged to have additional nice properties, such as being alternating
with minimal crossing number. Moreover, the reduction is polynomially uniform in the
self-braiding exponent of the coloring object. Various complexity-theoretic hardness re-
sults regarding the calculation of quantum invariants of knots follow as corollaries. In
particular, we argue that the hyperbolic geometry of knots is unlikely to be useful for
topological quantum computation.

1. Introduction

Topology, quantum computing, and condensed matter theory have had significant inter-
actions in recent decades, one of the most notable being topological quantum computa-
tion. Freedman, Kitaev, Larsen and Wang established this quantum computing paradigm
by showing that there exist unitary topological quantum field theories (TQFTs) based on
evaluations of the Jones polynomial at roots of unity for which certain approximations
of knot and link invariants are equivalent in power to the usual quantum circuit model
of BQP [FLW02a,FLW02b,FKW02]. On the other hand, topology and geometry—
especially hyperbolic geometry—also have significant interactions in low dimensions,
thanks to pioneering work of Thurston and many others. In particular, there are var-
ious conjectural relationships expected to connect the hyperbolic geometry of a knot
with its TQFT invariants, the volume conjecture of Kashaev, Murakami and Murakami
being perhaps the most infamous [Kas95,MMO1]. Moreover, in a slightly different con-
text, Gromov hyperbolicity is known to have substantial algorithmic implications in the
theory of finitely presented groups.
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Idly combining these various lines of thought leads to a question: Can the hyperbolic
geometry of knots be used as a resource to speed-up topological quantum computations?

1.1. Main results. We argue no. To this end, we first show that any topological quan-
tum computation can be arranged so that all of the knots one uses to perform quantum
calculations are guaranteed to be hyperbolic knots, a fact we might glibly call “hy-
perbolic quantum computation."! In mathematical terms, we show that for any fixed
Witten—Reshetikhin—Turaev TQFT invariant of ribbon knots Z, there is a polynomial
time algorithm that replaces a given knot diagram K with a particularly nice kind of
diagram of a hyperbolic knot K’ so that Z(K) and Z(K') are essentially equal. In fact,
we have in mind two different ways in which a diagram can be “particularly nice," and
our first two results make each of them precise.

Theorem 1. Fix a modular fusion category € and an object V with a scalar twist Oy .
Let Z be the Witten—Reshetikhin—Turaev invariant of oriented ribbon knots colored by
V. Then there exists a classical polynomial time algorithm that converts a given oriented
ribbon knot diagram K into a diagram K' such that

Z(K'y = 6,0 2(K)

where r(K) is a polynomial-time computable integer, and K' has the follow additional
properties:

e K' is alternating,
e K’ has minimal crossing number (over all diagrams of equivalent knots), and
e K’ is a hyperbolic knot.

Ifwe also allow € and V to vary, then the reduction runs in time that is jointly polynomial
in the self-braiding exponent e(V, V) and the crossing number of K.

Theorem 2. Fix a modular fusion category € and an object V with a scalar twist Oy .
Let Z be the Witten—Reshetikhin—Turaev invariant of oriented ribbon knots colored by
V. Then there exists a classical polynomial time algorithm that converts a given oriented
ribbon knot diagram K into a diagram K’ such that Z(K') = Z(K), and K' has the
following additional properties:

e K' is in bridge position,

e The distance of the induced bridge sphere of K' is known,

o The bridge number b(K') of K' is minimal (over all diagrams of equivalent knots)
and the induced bridge sphere of K' is the unique minimal bridge sphere (up to
isotopy), and

e K' is a hyperbolic knot.

Ifwe also allow € and V to vary, then the reduction runs in time that is jointly polynomial
in the self-braiding exponent e(V, V) and the crossing number of K.

' To be clear, we have in mind a strict notion of “topological quantum computation” along the lines of
the original papers [FLW02a, FLW02b,FKWO02] that means “approximate a TQFT invariant of a knot or link
inside a closed 3-manifold." There are now more wide-ranging ideas of topological quantum computation
that allow for invariants of colored, trivalent ribbon graphs (meaning projective measurements are performed
during the computation), adaptive topological charge measurements (in which the amplitudes with which one
computes are topologically protected but are not exactly topological invariants of 3-dimensional objects), or
the braiding of Majorana zero modes. We shall make no attempt to address these broader paradigms.
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Several minor comments are in order. First, an object of ¢ has a scalar twist exactly
when itis a direct sum of simple objects whose twists are equal to each other; in particular,
simple objects themselves have scalar twists. Second, the self-braiding exponent e(V, V)
of V is the order of the squared braiding isomorphism br‘z/’v = bryy o bry y; see
Sect.3.1 for more details. Third, for a discussion of why it is helpful to know either a
minimal crossing number or bridge number diagram of a knot, see the last paragraph of
Sect. 1.2. Fourth, we conjecture that there exists a single reduction that builds a knot K’
with a combination of all of the properties in both Theorems 1 and 2. Finally, we also
expect that there is an analog of Theorem 2 for closed, triangulated 3-manifolds.

Complexity-theoretic hardness results—both quantum and classical—follow from
Theorems 1 and 2 as easy corollaries. Roughly speaking, each theorem implies that
whenever a Witten—Reshetikhin—Turaev invariant Z is known to be hard to compute (or
approximate) on knots, then the same hardness result persists even on the restricted class
of nice knot diagrams indicated. We list some concrete applications of this principle here:

Corollary 3. Fix i = 1 or 2. Let K be a diagram of a knot in S>, treated as computa-
tional input, and suppose as a promise that K satisfies all of the listed properties in the
conclusion of Theorem i. Then each of the following previously known hardness results
continues to hold for such restricted diagrams:

(1) Fix a principal root of unity t that is not of order 1,2,3,4 or 6, and let V(K t)
be the value of the Jones polynomial of K at t. Then it is BQP-hard to “additively
approximate" the complex number V (K , t). More precisely, given a quantum circuit
C over some fixed, finite gate set and a fixed error ¢ > 0, there is a classical
polynomial time reduction that encodes C as a knot diagram K¢ such that

VKe,ny P

(t1/2 ++=1/2)b(Ko)-1

P(C accepts on 6) — < e&. (*)

(2) Fix a principal root of unity t that is not of order 1,2,3,4 0r6. Let0 < a < b be two
positive real numbers, and assume as a further promise that either |V (K, t)| < a or
|V(K,t)| > b. Then it is #P-hard, in the sense of Cook-Turing reduction, to decide
which inequality holds.

(3) Fix a nonabelian finite simple group G and a non-trivial conjugacy class C C G.
Orient K and let y € m (83 — K) be a meridian. Then it is #P-hard, via almost
parsimonious reduction, to compute

#H(K,G,C) L #(¢ : m11(S —K) = G | 6(y) € C).

In particular, deciding when 71(S® — K) admits a homomorphism to G with non-
cyclic image and y mapping to C is NP-hard.

If we were to remove the listed promises on the diagram K, then parts (1), (2), and
(3) in Corollary 3 are almost verbatim the main results of [FLW02b,Kup15,KS21], re-
spectively. The only difference is that [FLW02b] proves the BQP-hardness of additively
approximating V (K, t) for links K, while [Kup15] improves their result to knots K. The
proof of Corollary 3 is in Sect. 3.4.

We note that Kuperberg conjectured that his results should hold for atoroidal knots
[Kup15, Sec. 5.1]. Part (2) of Corollary 3 confirms this conjecture, because hyperbolic
knots are atoroidal.
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In particular, parts (1) and (2) of Corollary 3 show that when a knot invariant can
be used for universal quantum computation, then hyperbolic geometry can not gener-
ally be expected to be helpful for achieving significant qualitative improvements in the
calculation of such invariants without violating various standard conjectures such as
BQP # P or P*P £ P. This justifies our claim that hyperbolic geometry is not useful
for algorithmic purposes in topological quantum computation.

As explained in their proofs, the three parts of Corollary 3 each correspond to a fixed
choice of € and V in Theorems 1 and 2. By applying the uniformity statements in these
theorems, we can further expect that whenever we know a uniform hardness result for a
family of modular fusion categories %; and objects V;, then this uniform result should
persist when restricted to the kinds of nice hyperbolic diagrams produced by our main
theorems. Here is a specific manifestation of what we have in mind:

Corollary 4. Fix i = 1 or 2, and fix a polynomial p(n) such that p(n) > 0 for all
integers n > 0. Let K be a diagram of a knot in S°, treated as computational input,
and suppose as a promise that K satisfies all of the listed properties in the conclusion of
Theorem i. Let n be the crossing number of K and let t = *™'/P™ be a principle root
of unity of order p(n). Then it is BQP-hard to “additively approximate" the complex
number V (K, t) in the sense of Eq. x above.

Corollary 4 simply comes from applying Theorems 1 and 2 to the main result of
[AAT11]. See Sect. 3.5 for the proof.
We now turn to three additional take-aways from our results.

1.2. Additional take-aways. First, there is a subtle proviso we should make about the
phrase “K is hyperbolic," which stems from the fact that promises do not come with
certificates. Namely, when we say K is promised to be a hyperbolic knot, this does not
mean we necessarily have a description of a hyperbolic structure on its complement in
hand, say, as an ideal triangulation equipped with an algebraic solution to Thurston’s
gluing equations. Rather, the diagram K will satisfy an easily-verifiable combinatorial
condition that indirectly guarantees its hyperbolicity by combining work of Johnson and
Moriah [JM16] with Thurston’s hyperbolization theorem. So it is still conceivable that
a more explicit description of a hyperbolic structure could be exploited, for example,
to decide if a hyperbolic knot’s fundamental group admits a non-trivial homomorphism
to the alternating group As in polynomial time. We consider this unlikely, since if this
were the case then by part 3 of Corollary 3 either computing hyperbolic structures on
hyperbolic knots is NP-hard, or P = NP. Instead, we conjecture that the diagrams of
hyperbolic knots that we construct all admit geometric triangulations constructible in
polynomial time. Recent work of Ham and Purcell on effective Dehn filling lends further
evidence to this conjecture [HP21].

Second, while we already have argued that hyperbolic geometry is not useful for
algorithmic purposes in topological quantum computation, we note that we also have
low expectations regarding the possibility of useful applications of “hyperbolic quantum
computation” to the subject of (quantum) circuit complexity. One reason is that there
exist large quantum circuits that implement the same unitary as the trivial circuit, and
our reduction sends these “complicated-but-trivial" circuits to highly non-trivial knots.
This means the hyperbolic geometry of the encoding knot (more specifically, its volume)
can not be used to derive lower bounds on circuit complexity, only upper bounds.

Third, from the perspective of practical algorithmic topology the most important
part of Theorem 1 is the promise that K’ has minimal crossing number. Likewise, the
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most important part of Theorem 2 is the promise that K” has minimal bridge number.
Indeed, a common strategy when computing an invariant of a knot from a diagram K
is to first perform some heuristic preprocessing that replaces K with a simpler diagram
K’ of the same knot. Depending on the specifics of the implementation, the diagram
K’ might be simpler because it has smaller crossing number than K, or it might be
“thinner" in various senses (e.g. smaller bridge number or tree width). This strategy is
often quite useful in practice, and results on the role of parameterized complexity in knot
theory give some sense of the reasons why [BMS18]. However, unfortunately, Theorem
1 implies that even with oracle access to a blackbox that replaces an input diagram with
an equivalent minimal crossing diagram, computing a TQFT invariant still typically has
#P-hard worst case complexity. Theorem 2 provides a similar conclusion for oracle
access to a blackbox that replaces a diagram with an equivalent minimal bridge number
diagram.

1.3. Related results. In arelated vein, our results and their proofs complement the ideas
of Cui, Freedman and Wang in [CFW16,CFW16]. These papers begin with the observa-
tion that for a TQFT invariant of knots there exist, in addition to the usual Reidemeister
moves, more severe diagrammatic simplifications one can make that change the topol-
ogy of the knot represented by the diagram but nevertheless preserve the value of the
invariant. So one might try to perform a similar simplification strategy as in the previous
paragraph using this larger set of moves. The main result of [CFW16] builds on the
ideas of [CFW16] to show that if the separation conjecture BQP ¢ NDQC1 holds, then
polynomially many applications of the simplifying moves can not always effect linear
simplifications of diagrams.

Finally, we note that the early work [JVW90] of Jaeger, Vertigan and Welsh shows
that exact calculation of the value of the Jones polynomial at any ¢ that is not a root
of unity of order 1, 2, 3, 4, or 6 is #P-hard for alternating links. They prove their
result by first establishing hardness results for evaluations of the Tutte polynomial of
planar graphs. Then they identify planar graphs with alternating diagrams of links via
the Tait/checkerboard graph construction, and exploit elementary identities between
the Tutte polynomial of the Tait graphs and the Jones polynomials of the associated
link diagrams. While their result does not make any promises about crossing number,
hyperbolicity, having only one component, etc., we can imagine a strengthening of
their result along these lines with a proof that builds on their techniques. However,
we believe our proof is conceptually much simpler, essentially only requiring Vafa’s
theorem for modular fusion categories and well-known results in combinatorial topology.
In particular, our technique applies to arbitrary Witten—Reshetikhin—Turaev invariants
of knots and can be “plugged into" different kinds of hardness results in a blackbox
fashion.

1.4. Notation caveats. We warn the reader that we regularly abuse notation by letting K
denote both a knot and a diagram of that knot. It should always be clear in context which
we mean (almost always the latter). “Crossing number” will always mean crossing
number of a diagram. We may also abuse language by saying “knot" when strictly
speaking, in the context of Witten—Reshetikhin—Turaev invariants, we ought to consider
ribbon knots. To rectify this, we use the blackboard framing.
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2. Knot Diagrams and Hyperbolic Geometry

A knot K in the 3-sphere S° is hyperbolic if there exists a complete hyperbolic structure
on its complement S3\ K. Such a structure can be described explicitly either by finding
a triangulation of $° \ K together with a solution to Thurston’s gluing equations, or by
finding a discrete and faithful representation 71 (S 3\K) — PSL(2, C). As mentioned in
Sect. 1.2, explicit descriptions of hyperbolic structures are not necessary for our purposes.
Thanks to the central role of both knots and hyperbolic geometry throughout 3-manifold
topology, there is an extensive literature on the problem of converting combinatorial
properties of a knot diagram to hyperbolic geometric properties of the knot. We make
no attempt to summarize this large body of work, but focus on two well-studied such
combinatorial properties: alternating diagrams and the bridge distance of a plat diagram.
Nothing in this section is new and ribbon framings play no role.

2.1. Alternating diagrams, nugatory crossings, and Menasco’s theorems. A link dia-
gram is called alfernating when traversing along the diagram results in a sequence of
crossings that always alternate between over and under. Thanks largely to theorems
of Menasco [Men84] and the resolution of the Tait conjectures [Kau87, Mur87, Mur88,
Thi87,Thi87,MT93], isotopy of alternating link diagrams is essentially entirely under-
stood. More precisely, the following appears to be either a folklore result or conjecture:
given two /-component alternating link diagrams K and L with crossing numbers m and
n (respectively), there exists an algorithm to decide if K and L represent isotopic links
that runs in time poly(/, m, n).

As far as we are aware, neither the precise statement of this folklore claim nor its
proof have appeared in the literature before, cf. [Lac23]. We do not utilize this full result
in the present work, and it would be too much of a digression to attempt to include a full
proof. However, the next two lemmas constitute the easiest, first steps in the algorithm,
and we provide some comments at the end of this subsection to indicate how one might
complete the algorithm.

A crossing in a knot diagram is called nugatory if it looks like

s a4 D s

where A and B are tangle sub-diagrams. One of the Tait conjectures, independently
proved by Kaufman [Kau87], Murasugi [Mur87] and Thistlethwaite [Thi87] (all using
the Jones polynomial!), says that an alternating link diagram has minimal crossing
number whenever it has no nugatory crossings. A single nugatory crossing can be found
and removed in time polynomial in the crossing number of L, so removing all of them
takes at most polynomial time. Indeed, if we compute either of the Tait/checkerboard
graphs associated to L (which can surely be done in polynomial time), then the nugatory
crossings correspond precisely to isolated vertices and length 2 cycles enclosing a single
crossing, both of which are easy to identify. This proves:

Lemma 5. An alternating link diagram L can be reduced to a minimal crossing alter-
nating diagram in polynomial time.

Any knot or link diagram is called reduced if all nugatory crossings have been re-
moved as above. Thus, reduced alternating diagrams are all minimal-crossing.
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A link is prime if it can not be expressed as a connected sum of two non-trivial
links. A diagram L is diagrammatically prime if for each disk D in the plane of the
diagram with 9D meeting L transversely in two non-crossing points, at least one of
DN Lor(S3\ DN L) consists of a single arc with no crossings. Menasco proved
that a non-split, reduced alternating link diagram represents a prime link if and only
if it is diagrammatically prime [Men84]. For reduced alternating diagrams, non-trivial
diagrammatic connected summations correspond exactly to length two cycles in the
checkerboard graph. An innermost such cycle can be identified in polynomial time,
from which we may bubble off one prime, reduced summand; by induction on crossing
number, we can bubble off all of the connected summands one-by-one in polynomial
time. This proves:

Lemma 6. A reduced, alternating knot diagram K can be identified as prime in poly-
nomial time, and if K is not prime, then a diagrammatic connected sum decomposition
K = #l].‘: | Pi can be identified in polynomial time. Here each P; is a non-trivial reduced,
prime, alternating knot diagram.

We note that a version of the lemma can be stated for alternating /inks, not just knots.
However, since we do not need to deal with links later and since it would require some
additional care to define connected sums of links, we have decided to avoid this more
general statement.

Menasco furthermore proved in [Men84] that reduced, prime, alternating diagrams
of knots are either trivial, (2, p) torus knots, or hyperbolic. By the solution to the Tait
flyping conjecture [MT93], a (2, p) torus knot has a unique minimal crossing alternating
diagram.? Given any diagram, we can check in constant time if it equals (as a diagram)
the trivial unknot diagram, and in polynomial time we can check if it equals (again,
as a diagram) the standard (2, p) torus knot diagram. We combine these results in the
following:

Lemma 7. Any reduced, prime, alternating knot diagram is precisely one of the follow-
ing:

(1) The trivial unknot diagram,

(2) The unique minimal crossing alternating diagram of a (2, p) torus knot (in particular,
pisoddand|p| > 3) or

(3) A hyperbolic knot.

Either of the first two types of diagrams can be recognized in polynomial time, and hence
so can the third type.

We conclude this subsection with a brief sketch of an idea for a polynomial time
algorithm to solve the isotopy problem for alternating diagrams. First, we recall yet
another theorem of Menasco: if K is an alternating link diagram, then K represents a
split link if and only if the diagram is disconnected [Men84]. Now, given K and L,
we first identify each of their sets of split pieces K1, ..., K4, L1, ..., Lp (of course if
a # b, then the links are not isotopic). Lemmas 5 and 6 together allow us to decompose
each of the K; and L into their prime summands in polynomial time. By uniqueness
of prime factorizations, all of the split pieces are determined by their lists of prime
summands. Thus, if we can decide when two prime, reduced, non-split, and alternating

2 We note that all of our diagrams should be considered as diagrams on the 2-sphere 52, not as diagrams
in R2.
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link diagrams are isotopic in polynomial time, then we can simply compare these lists
to conclude whether or not K and L are isotopic.

Unfortunately, the statement of the flyping conjecture alone is not sufficient to do
this is in polynomial time, for the reason that a diagram might have an exponentially
large flyping space (note that this would be sufficient to put the isotopy problem in
NP). However, with some additional ideas, we expect that in polynomial time one can
compute a normal form for a reduced, alternating, non-split diagram with the property
that two diagrams are isotopic if and only if their normal forms are equal. It is this last
step which does not appear in the literature in this precise way, although we conjecture
that either the methods of [Lac04, Sec. 4] or [Ran04] can be made to work.

2.2. Plat diagrams and bridge distance. For any knot K in S3, a bridge sphere ¥ is an
embedded 2-sphere in $3 such that K intersects both sides of ¥ in a trivial tangle. That
is, a bridge sphere ¥ of K cuts S into two closed balls V and W such that:

Vnw=%,

K N X is 2m points for some positive integer m,
K NV can be ambiently isotoped rel X into X,

K N W can be ambiently isotoped rel X into X.

Define

sk @e\k, vk E¥vik,  and wx ¥ w\ k.

The decomposition

S\K =Vg| |wk
Xk

is called a bridge decomposition of S3 \ K, and m is called the bridge number of the
bridge decomposition. Bridge decompositions of knots are knot-theoretic analogs of
Heegaard splittings of closed, orientable 3-manifolds.

A diagram K in the xy-plane is in bridge position if, with respect to the y coordinate,
all local maxima of the diagram occur above all local minima. A knot diagram in bridge
position encodes an obvious bridge sphere by horizontally slicing through the thickest
part. More precisely, suppose the diagram K lies in the xy-plane, considered as a subset
of R3 equipped with the usual coordinates x, v, z, and let S be R? together with a point
at infinity oo. Let y = ¢ be any plane that cuts K so that the minima and maxima of
K are on opposite sides. Then ¥ = {y = ¢} U {00} is a bridge sphere for K. We call
Y an induced bridge sphere of the bridge diagram. The bridge number of X equals the
number of local minima (equivalently, maxima) in the diagram K. If an induced bridge
sphere ¥ of the bridge diagram K has bridge number m, then we say K is an m-bridge
diagram. Every knot-bridge sphere pair can be ambiently isotoped so the bridge sphere
is an induced bridge sphere of a bridge diagram.

Our interest is mainly in bridge diagrams of a specific type. We say a diagram K is
in m-plat position if:

e K is in m-bridge position,
e All of the local maxima of K occur above all of the crossings, and
e All of the local minima of K occur below all of the crossings.
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The plats of the diagram are the arcs where minima or maxima occur. Every diagram
in plat position determines two sets of plats, the fop plats and the bottom plats, each of
which is equivalent to a planar matching of 2m points.
We shall arrange all of our plat diagram into rows, which are tangle subdiagrams of
the form
[ I

a1 ai2 cee aim—1 ai.m

if i is even, or

a1 a2 s ai,m—1

if i is odd. Each box is called a twist region, and is labeled by an integer a; ; € Z called
a twist coefficient that indicates a number of half-twists, e.g.

L L |O|= |_2|:J
|+l|_\ 1 1 %

For a typical m-plat diagram, many of the twist coefficients a; ; may equal 0. An m-
plat diagram with an even number of rows is standard if the top plats form this planar

matching:

and the bottom plats form this one:

When an m-plat diagram has an odd number of rows, it is standard if the bottom plats
are as above, but the top plats form this planar matching:

NN N

See Figs. 1 and 2. Finally, we say an m-plat diagram is highly twisted if it is standard
and |a; ;| > 3 foralli and j.

Suppose X is a bridge sphere for a knot K. The curve graph € (Xg) of Xk is the
infinite simplicial graph defined as follows:

e The vertices of € (X ) are the isotopy classes [y ] of simple closed curves y C Tk
that are non-trivial and non-peripheral (meaning y bounds neither a disk nor a once-
punctured disk in Xk ), and
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a1 a2 ar3 ar4
I N O
ar—1,1 ar—12 ar—13
T T T T 1
N N I R S e B
as asn as3 asqq
I N O
asz asn aszs
I I
azn azn as a4
I N O
ary ap a3

Fig. 1. A standard 4-plat diagram with an even number of rows

e Two vertices v| # vy of €' (X ) are connected by an edge if and only if v; = [y1]
and vy = [y2] where y1 Ny = 0.

If v; and v, are two vertices of €' (X k), we let d (v, v2) denote their distance from one
another with respect to the combinatorial path metric on ¢’ (X ). More generally, if A
and B are two subsets of the vertex set of 4 (X ), we define

d(A, B) ¥ min{d(a,b) |a € A, b € B).

Computing or bounding the distance between various subsets of curve graphs is a basic
and important problem in combinatorial topology, as the following exemplifies.

Let [y] be a vertex of ¥ (Xg). We say [y] bounds a disk in Vi if there exists a
properly embedded disk D C Vg with D = y. Let 2(Vk) denote the disk set of Vi
consisting of all vertices in € (X ) that bound a disk in V. Likewise, Z(Wk) denotes
the disk set of Wk . The distance of the bridge decomposition of K by X is

d(K, %) E d(@(Vk), D(Wi)).
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ar-1,1 ar—12 ar-13
T T T T 1
N ES N (S S R
a1 asn ass a4 4
L 11T 1 |
as asn ass
L1 [ |
a1 azn a3 az4
L 11T 1 |
ar a2 a3

U

Fig. 2. A standard 4-plat diagram with an odd number of rows

We refer the reader to [BS05,Tom07,JM16] for much more information about bridge
distance.> We summarize everything we need with the following mega-proposition.

Proposition 8. (After Johnson and Moriah [JM16, Thm. 1.2]) If K is a highly twisted
standard m-plat link diagram with n rows where m > 3 and n > 4m(m — 2) then the

following hold:

(1) The distance of the induced bridge sphere ¥ is d(K, X) = [n/2(m — 2))],

(2) The bridge number m is minimal (over all diagrams of equivalent links) and the
induced bridge sphere of K is the unique minimal bridge sphere (up to isotopy), and

(3) K is a hyperbolic link.

Proof. (1) This is the conclusion of [JM 16, Thm. 1.2], which holds without the assump-
tion n > 4m(m — 2)).

(2) The assumptions on m and n imply d(K, ¥) > 2m, so Tomova’s work [Tom07]
shows X is the unique minimal bridge sphere of K.

(3) Since d(X) > 2, K is prime, atoroidal, and an-annular. Thus K is hyperbolic by
Thurston’s hyperbolization theorem. (The same argument is found in the proof of

[BSO05, Cor. 6.2], for example.)
O

3 Note that the first reference uses a slightly different (but equivalent) definition of distance. Our definition
follows [TomO07] and [JM16].
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In fact, if K is a highly twisted knot diagram satisfying the conditions of Proposition
8 that also happens to be alternating, then Agol and Thurston’s refinement of a theorem
of Lackenby [Lac04] shows the hyperbolic volume of K satisfies

v3(t(K) —2) < Vol(§° \ K) < 10u3(1(K) — 1)
where v3 & 1.01494 is the volume of a regular hyperbolic ideal 3-simple and
1(K)=12m —1)(n/2)]

is the number of twist regions of K. We do not use or need this result. Rather, we include
it simply to provide the reader some sense of how the hyperbolic geometry of such a
knot depends on its diagram. The main behavior to note is that so long as the diagram
is highly twisted, the precise twist coefficients don’t affect the volume very much, as
the volume is coarsely proportional to the number of twist regions. In other words,
Vol($3\K) = O(t(K)).

3. Proofs

The proofs of Theorems 1 and 2 use the same basic idea. Given a knot diagram K, we
pad it by inserting additional crossings in the diagram. The result is another diagram K’
of a different knot, but if we pad with an appropriate number of crossings in a row (see
Vafa’s theorem, Lemma 9 below), then we can guarantee Z(K) = Z(K'). If we perform
this kind of padding in enough places, and also use some other tricks, then we can apply
the results of Sect.2 to build K’ and K” with the desired properties in the conclusions
of the two theorems.

3.1. Braiding exponents in modular fusion categories. Given a pair of objects V, W in
a modular fusion category %, define the braiding exponent e(V, W) to be the order of

the “squared braiding" morphism brv W= brW v obry, w. The self-braiding exponent
of a single object V is e(V, V). Vafa’s theorem says e(V, W) is a well-defined integer.

Lemma 9 (Vafa’s theorem [Vaf88], see also [AMS88,Eti02]). In any (2 + 1)-dimensional
Witten—Reshetikin—Turaev TQFT determined by a modular fusion category, the square
of the braiding of any two objects is a finite order linear map.

3.2. Proof of Theorem 2. Theorem 2 follows immediately by combining the following
result with Proposition 8.

Proposition 10. Fix a modular fusion category € and an object V with a scalar twist
0. Let Z be the Witten—Reshetikhin—Turaev invariant of oriented ribbon knots colored
by V. Then there exists a classical polynomial time algorithm that converts an oriented
ribbon knot diagram K into an alternating and highly twisted standard m-plat ribbon
diagram K" with Z(K") = Z(K) and n = 2k rows, where m > 3 andn > 4m(m — 2).

Proof. Using Vafa’s theorem, we fix an even constant 27 > e¢(V, V) > 0 (depending
on ¢ and V) such that adding a string of 27 crossings (all with the same sign) anywhere
in a diagram produces a new knot diagram with the same Z invariant. That is, we pick

T so that
2(—=) = z(J&21)).
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Let K = Ky be our initial (oriented, ribbon) knot diagram. We reduce it to K” in
two steps.

First, if necessary, we apply a sequence of Reidemeister 1 and 2 moves to K to get
a regularly isotopic diagram K that is a standard m-plat diagram where m > 3, and
the number of rows n is greater than 4m (m — 2). In detail, let m be the number of local
maxima in K¢ (which equals the number of local minima) with respect to some preferred
coordinates on the diagram plane. If m < 3, then introduce a pair of Reidemeister 1
moves whose framings cancel (recall from Sect. 1.4 that we use the blackboard framing).
The result will have m > 3. Now apply a sequence of Reidemeister 2 moves to make a
standard m-plat diagram. Since we are not requiring K be highly twisted, if necessary,
we introduce twist regions with coefficients a; ; = 0 to ensure that n > 4m(m — 2).
Since K is regularly isotopic to Ko, Z(K{) = Z(Ko). This step takes quadratic time in
the crossing number of K¢ and does not depend on € or V.

Second, we increase the twist coefficients of K| in order to get a highly twisted
alternating diagram. Let the twist coefficients of Ky be g;, ;. Build K3 by replacing each
a; j in K1 with alf’j as follows:

;o Jaij+2T ifa; j >0,
i = a;,j — 2T otherwise.

This step takes a linear amount of time in the crossing number of Ky (note thatifa; ; = 0,
we still count it as a single “crossing").

Let K" = K;.Itis evident from the construction that K" has the same number of plats
and rows as K1, and the assumption 27 > 2 guarantees |a;, ;| = 3foralli, j. Therefore,
K" is a highly-twisted standard m-plat with n rows where m > 3 and n > 4m(m — 2).
Of course, by our choice of T,

Z(K") = Z(K2) = Z(K1) = Z(Ko) = Z(K).

The entire procedure taking K to K" takes quadratic time in the crossing number of K
and is linear in 7. Thus if we also allow € and V to vary, then the reduction runs in
time that is jointly polynomial in the self-braiding exponent e(V, V) and the crossing
number of K. O

3.3. Proof of Theorem 1. As in the previous subsection, fix an even constant 27 >
e(V,V) > 2 (depending on % and V) such that adding 27 consecutive crossings
anywhere in the diagram produces a new knot diagram with the same Z invariant.

Let K be our initial diagram. We must describe a polynomial time algorithm that
builds a diagram K that is alternating, has minimal crossing number, is hyperbolic, and
satisfies

Z(K') =0" B z(K)

for some polynomial time computable function r (K'). We perform the reduction in three
steps, with a conditional fourth step. Let Ko = K.

First, we alter some of the crossings of K in order to get an alternating diagram K
with Z(K1) = Z(Kjp). This is performed as follows. If K¢ is not alternating, then in linear
time we may identify a nonempty set of crossings vy, va, . .., v such that reversing them
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yields an alternating diagram. However, doing this reversal will not necessarily preserve
Z (unless T = 1). Instead, for each of the positive crossings that need to be made
negative, we replace them with 27 — 1 negative crossings, and vice versa for negative
crossings that need to be made positive. The resulting diagram K is an alternating knot
diagram, and each of these crossing replacements can be understood in two steps: insert
2T additional twists in the opposite direction, then apply a Reidemeister 2 move. Thus
Z(K1) = Z(Kp). This entire padding process takes linear time both in the crossing
number of K| andin T.

Second, we use Lemma 5 to reduce K| to a minimal crossing alternating diagram K>
in polynomial time. The removal of each nugatory crossing in the reduction algorithm
changes the writhe of K| by £1. If we let r’(K) be the total change in the writhe
w(Ky) — w(Ky), then

Z(Ky) = oKD EKD 7y = 7' K 7(K).

Clearly r'(K) is computable in polynomial time from K. Except for the value of 6, this
step does not depend on € and V.

Third, we use Lemma 6 to identify the diagrammatic connected sum decomposition
Ky = #5‘21 P; and then perform some additional twist padding to create a new diagram
K3 from K> that is reduced, prime, and alternating. In detail, we build K3 as follows. If
k = 0or 1 (thatis, if K7 is trivial or prime already), then simply set K3 = K». If k > 1,
then by uniqueness of connected sum decompositions we may assume without loss of
generality that K> looks like this:

~ - ~ - ~ - ~ -

Py P, J2 Py

where we’ve suppressed the crossing data for convenience. We pad this diagram with
additional crossings as follows and call the result K3:

, N ’ N ’ ~ , N
’ A ’ A ’ A ’ A
' Y .. Y /. RN A \

S : S : N : |
f : ;o : . : .
et I B | .. ...
} + } }

\ - e 1
\ [T ] i 520 & ,
N e N v N R N Vs
N v A d N 4 N e
N . < . N . N P
.~ - [ -~ _- ~eew
P P Ps Py

Here in diagram K3 each ¢; equals either +1 or —1; we take whichever sign is necessary
to ensure K3 is alternating. This choice depends in a simple way on the two crossings
involved in connected-summing P; and P;;, with two possible cases. Namely, if the
arc leaving P; enters P;y| as an under-crossing (hence, left P; from an over-crossing),
then ¢; = —1; otherwise &; = +1. These &;’s can be determined in polynomial time, and
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+2T 42T
T T
Ll L L]
2T —2T 2T
LT T
+2T 42T
T T
2T —2T 2T
LT T
2T +1 p

Fig. 3. Padding a (2, p) torus knot to make it alternating and hyperbolic

hence K3 can be built from K7 in polynomial time. Clearly Z(K3) = Z(K3), and it is
straightforward to check that K3 is reduced and prime. Note that this step is linear in 7.

Finally, by Lemma 7 K3 is either hyperbolic, the unique minimal crossing alternating
diagram of a (2, p) torus knot for some odd p, or the trivial unknot diagram, and we can
recognize which of these is the case in time polynomial in the crossing number of K3.

If K3 is hyperbolic (this is by far the likeliest outcome), then we let K’ = K3 and
r(K) =r'(K).

If K3 is the minimal crossing alternating (2, p) torus knot diagram, then we use the
Vafa padding trick and Proposition 8 as in Sect. 3.2 to build a highly twisted alternating
knot K4 that has no nugatory crossings, satisfies the conditions of Proposition 8 necessary
to guarantee it is hyperbolic, and has Z(K4) = 0 - Z(K3). Indeed, if p > 0, pick any
one of the diagrams as in Fig.3 with atleastn > 4 x 3(3 —2) = 12 rows. If p < 0, do
the same, but switch all of the signs in the picture. This reduction works in linear time
in p. Now let K’ = Kgand r(K) = r'(K) + 1.

If K3 is the trivial unknot diagram, then by similar reasoning setting p = 27 + 1 in
Fig.3 and choosing such a diagram with n > 12 rows yields an alternating hyperbolic
knot diagram K4 with no nugatory crossings and Z(K4) = 62Z(K3) for some polyno-
mial time r”(K). Let K’ = K4 and r(K) = r”(K) + 2. (We note that there are arguably
“better" ways to cover this case. Our approach here has the benefit of being able to reuse
Fig.3.)

In either of these three cases, the dependence on 7 is linear. Thus, if we allow % and
V to vary, the reduction works in time polynomial in e(V, V). O
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3.4. Proof of Corollary 3. Let Z(—) be any one of the invariants considered inpg
Corollary 3. So, for example, we could have Z(—) = V(—, eZi”/7) or Z(—) =
#H(—, As, (1 2 3 4 5)45) where (1 2 3 4 5)45 is the conjugacy class of (123 45)
in As. Note that, at least in this subsection, we fix one such Z, we do not work uniformly
in all of them.

Recall that for a fixed root of unity g, the value of the Jones polynomial V (K, q)
can be identified (after some minor normalization) with the Witten—Reshetikhin—Turaev
invariant of K determined from the modular fusion category U, (sl>)-mod by coloring
K with the fundamental representation V' of the quantum group U,(sly). Likewise,
#H (K, G, C) can be computed as a WRT invariant using the Dijkgraaf-Witten TQFT
based on the modular fusion category DG-mod, where DG is the untwisted Drinfeld
double of G. Thus, Theorems 1 and 2 apply to these invariants.

In caricature, each of the main results of [FLWO02b,Kup15] and [KS21] is proved
using a similar strategy: given Z, one first finds some model of reversible circuits and
associated problem L that is hard. Then given a circuit C in this model, one constructs a
polynomial time reduction to a knot diagram K ¢ such that computing (or approximating)
|Z(K )| allows one to compute L(C). Of course, there is significant work involved in
proving that these reductions are possible, but this is all we need to know, since it means
we can prove Corollary 3 if we can accomplish the following:

Fix Z and fix i = 1 or 2. Provide a classical polynomial time algorithm that
converts a given knot diagram K to another diagram K’ (possibly of a different
knot!) so that |Z(K")| = |Z(K)| and K’ satisfies all of the desired promises in
Theorem i.

Indeed, if we can do this, then we can first reduce a circuit C to the knot diagram K¢
exactly as in [FLWO02b,Kup15] or [KS21] (as appropriate, depending on Z), and then
simply reduce K¢ to (K¢)'. Theorems 1 and 2 say this is possible. O

3.5. Proofof Corollary 4. Fix apolynomial p(n) as in the statement of Corollary 4. Then
the main result of [AA11] implies that the problem of additively approximating V (L, t)
is BQP-hard when L is a link diagram and t = ¢>7//P(")_ Using the same observation that
Kuperberg made in [Kup15] in order to improve the Freedman—Larsen—Wang hardness
results from links to knots (namely, that braid density implies pure braid density, since
the pure braid subgroup P B, is finite index in By,), we may improve the result of [AA11]
from links to knots.

In caricature, this hardness result is proved by converting a quantum circuit C on m
gates into a knot diagram K ¢ with n = poly(m) crossings and r = ¢>//P" such that an
“additive approximation" of V (K¢, t) approximates the acceptance probability of C. As
in the previous subsection, V (K, t) can be identified (up to some minor normalization)
with the Witten—Reshetikhin—Turaev invariant of K determined from the modular fusion
category U, (slp)-mod by coloring K with the fundamental representation V' of the
quantum group Uy (sl2), except notice that now g =t = e2Ti/P depends on n.

For V the defining representation in the modular fusion category U (sl2)-mod and
g = e>™/* it turns out that e(V, V) = O(poly(k)). Applying the uniformity statements
in Theorems 1 and 2 completes the proof. O
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