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We discover a pronounced temporal shift of the peak of an optical pulse upon total internal reflection of
the pulse from a sharp temporal boundary propagating in a homogeneous, isotropic, weakly dispersive linear
medium. We derive an analytical expression for this shift and juxtapose the discovered effect to the spatial
Goos-Hänchen shift occurring on reflection of a beam from an interface separating two homogeneous, isotropic,
conservative linear media. In particular, we show that, in contrast to the spatial shift, the sign of the temporal shift
is dictated by that of the group-velocity mismatch between the pulse and the temporal boundary, implying the
possibility of a delay or advancement of the pulse upon reflection. Our analytical results, which are in excellent
agreement with our numerical simulations, shed light on the fundamental aspects of the interaction of wave
packets with temporal boundaries in material media.
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The celebrated Goos-Hänchen (GH) effect corresponds to
a shift of the beam center relative to its geometrical-optics
prediction upon total internal reflection of a light beam from a
spatial boundary separating two homogeneous optical media
[1]. The GH effect takes place in frustrated total internal
reflection as well [2,3]. The significance of the GH effect
is twofold. On the one hand, the GH shift heralds the wave
nature of light and underscores the inadequacy of a purely
geometrical-optics description of light beams in the situations
involving light-matter interactions. On the other hand, the GH
effect is germane to wave packets in material media of any
nature. Indeed, the optical GH effect [4,5] has been discovered
and documented for an impressive variety of natural materials,
including glasses [6], noble metals [7,8], superconductors [9],
nematic liquid crystals [10], graphene [11], nonlinear mate-
rials [12,13], as well as for metamaterials [14–17]. Besides
photonics, the GH effect has been discovered for wave packets
in atom optics [18], electron wave packets [19,20], neutrons
[21], spin waves [22], and even quantized matter waves [23].
In addition, GH shifts were observed in acoustics [24,25] and
are predicted to occur in seismology [26].

While light-matter interactions at spatial interfaces have
been extensively studied, the behavior of light in time-varying
media has attracted attention only recently [27,28], triggered
by the concept of a temporal boundary (TB) [29] and the
exploration of light transmission and reflection through the
TB [30]. To date, many of the concepts and phenomena as-
sociated with light-matter interactions at the spatial interface
have been extended to the time domain, including total inter-
nal reflection [31], waveguides [32,33], the effective medium
theory [34], antireflection coatings [35], Fabry-Pérot cavities

*serpo@dal.ca

[36,37], photonic crystals [38–40], and the Brewster angle
[41]. In addition, anomalous light statistics associated with the
TB soliton formation [42], extreme energy transformations at
non-Hermitian TBs [43], and temporal aiming [44] have been
discovered that have no direct spatial analogues.

In this context, a fundamental question can be raised: Does
there exist a counterpart of a spatial GH effect taking place
at the TB, and if so, what are the key parameters of a time-
varying medium supporting such an effect?

In this Letter, we show that even in the most basic setting of
a homogeneous, isotropic, weakly dispersive linear medium,
a pronounced temporal shift of the peak of an optical pulse
can occur upon total internal reflection (TIR) of the pulse
from a sharp TB propagating in such a medium. We refer
to this phenomenon as a Goos-Hänchen shift at a tempo-
ral boundary (GHSTB). In a parameter regime accessible in
typical silica-glass fibers, the discovered GHSTB is much
larger than its spatial counterpart at the interface separating
two homogeneous, isotropic, lossless linear media. We also
demonstrate that unlike its spatial analog in the same condi-
tions, the GHSTB can be either positive (delay) or negative
(advancement) depending on the sign of the group-velocity
mismatch between the pulse and the TB. We stress that our
results link two active areas of research: the physics of wave-
matter interactions at interfaces and photonics of time-varying
media.

As the GH effect at the TB is intimately related to TIR,
we start by ensuring that the conditions for temporal TIR,
elucidated in Ref. [31], are met. To this end, we consider a
sharp, steplike TB moving at a speed of vb in a weakly dis-
persive linear medium. The TB introduces a refractive-index
jump �n(t ) = �nθ (t − tb − z/vb), where �n and tb are the
magnitude and temporal position of the jump, respectively,
and θ (x) is the Heaviside step function. The envelope E of
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the electric field E (t, z) = E (t, z)ei(β0z−ω0t ) of a pulse with
the carrier frequency ω0 obeys a quasimonochromatic wave
equation,

i∂zE + iβ1∂tE − 1
2β2∂

2
ttE + k0�nθ (t − tb − z/vb)E = 0,

(1)
where β1 and β2 are the usual notations for the inverse of the
group velocity and its dispersion. Transforming to the TB’s
reference frame by changing variables as ζ = z, τ = t − tb −

z/vb, we arrive at

i∂ζE + i�β1∂τE − 1
2β2∂

2
ττE + k0�nθ (τ )E = 0. (2)

Here, �β1 = β1 − v
−1
b

is (inverse) group-velocity mismatch
between the pulse and the TB.

At this point, we clarify the distinct roles of group-velocity
dispersion and group-velocity mismatch in the light-matter
interaction at the TB. With this objective, we make a gauge
transformation, E = Uei(ντ+αζ ), and choose ν and α to elim-
inate the convective (linear) term on the left-hand side of
Eq. (2), thereby reducing the latter to

i∂ζU − 1
2β2∂

2
ττU + k0�nθ (τ )U = 0, (3)

for ν = −�β1/β2 and α = �β2
1/2β2. Equation (3) is math-

ematically equivalent to the Schrödinger equation with an
effective potential barrier k0�nθ (τ ). We notice that in the
reference frame of the TB, the barrier is independent of
the spatial coordinate, thereby implying the existence of the
refractive-index jump in time only. This jump is independent
of the group-velocity mismatch. Hence the latter cannot affect
the energy distribution between the transmitted and reflected
waves, which is governed by the interplay of the refractive-
index jump and group-velocity dispersion [45]. However, a
group-velocity mismatch does affect the kinematics of the
reflected pulse, and hence the magnitude of the GHSTB in-
curred during TIR of a relatively long incident pulse at the
TB.

Next, we seek plane-wave solutions to Eq. (3) in the form

U =

{

ei(qζ−�iτ ) + Rei(qζ−�rτ ), τ < 0,

Tei(qζ−�t τ ), τ > 0,
(4)

where R and T are, in general, complex reflection and trans-
mission amplitudes and the subscripts i, r, and t stand for
incident, reflected, and transmitted waves. In the reference
frame of the TB, the wave number q is the same for the three
waves because translational invariance implies linear momen-
tum conservation in this reference frame. On substituting from
Eq. (4) into (3) we can determine the frequencies (relative
to the carrier) of the transmitted and reflected waves and
by applying the boundary conditions to the TB, we can find
the complex transmission and reflection amplitudes (see Sup-
plemental Material [45] for details). We find that �r = −�i

and �t =

√

�2
i − �2

cr, where the critical frequency for TIR is

given by

�cr =
√

2k0�n/β2. (5)

It follows that any incident wave with the frequency |�i| �

�cr is totally internally reflected from the TB (because �t be-
comes purely imaginary). Moreover, it can be shown [45] that

FIG. 1. Qualitative behavior of the magnitude of the GHSTB
(solid blue curve) and maximum available bandwidth (dashed red
lines) as a function of �β1/β2. Dotted lines mark the limiting values.

the reflection amplitude is unimodular such that RTIR = eiφTIR ,
where the TIR phase is given by

φTIR(�i ) = 2 arctan
(

√

�2
cr/�

2
i − 1

)

. (6)

For a pulse to undergo TIR, all frequency components within
its bandwidth �ωB must satisfy the condition |�i| � �ωB,
which translates to the constraint [45]

�ωB � �ωmax = �cr − |�β1/β2|. (7)

As a final step of our derivation, we Fourier synthesize all
frequency components of the pulse to infer that a totally in-
ternally reflected pulse maintains its shape, acquires a global
phase shift, and, most important, exhibits a shift of its center
position given by the expression [45]

�τGHSTB = ∂�i
φTIR|�i=�β1/β2

. (8)

On substituting from Eq. (6) into (8) we obtain, after elemen-
tary algebra, the following elegant analytical expression for
the GHSTB of the pulse:

�τGHSTB =
2 sgn(�β1)

√

�2
cr − �β2

1/β2
2

. (9)

Prior to analyzing our main result, we note that the validity
of Eq. (9) requires that the reflected pulse shape remain intact,
which mathematically translates to [45]

|�τGHSTB| �

√

8

�ωB

∣

∣

∣

∣

β2

�β1

∣

∣

∣

∣

. (10)

Equations (7), (9), and (10) determine the magnitude and sign
of the GHSTB and establish the range of applicability of our
main analytical result.

We notice that Eq. (9) predicts extremely large shifts as
|�β1/β2| approaches the critical frequency. However, the
bandwidth of any reflected pulse shrinks to zero in the same
limit, as indicated by Eq. (7). It follows that arbitrarily large
values of the GHSTB are unattainable in practice. We illus-
trate this point in Fig. 1, where we sketch the magnitude of
the GHSTB (solid curve) and the maximum bandwidth �ωmax

(tilted dashed lines) as functions of �β1/β2. To provide
a realistic estimate of the GHSTB, we use the parameter
values appropriate for optical fibers: β2 = 0.05 ps2/m and
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FIG. 2. Temporal and spectral evolution of a 6-ps-wide Gaussian
pulse undergoing TIR in a 200-m-long fiber using β2 = 0.05 ps2/m,
�β1 = 0.25 ps/m, and k0�n = 1 m−1. The bottom part compares
the intensity profile of the reflected pulse to a pulse without the
GHSTB.

�β1 = 0.25 ps/m. We choose k0�n = 1 m−1, which corre-
sponds to a refractive-index change at the TB of less than
10−6 at λ0 = 1 µm. We can infer at once from Eq. (9)
that �τGHSTB = 0.516 ps. To verify our analytical result, we
performed numerical simulations based on Eq. (2) with an
incident Gaussian pulse of 6-ps full width at half maximum
(FWHM) at z = 0. The peak of the pulse is initially ahead of
the TB by 14 ps. Figure 2 shows the temporal and spectral
evolution of the pulse undergoing TIR in a 200-m-long fiber.
Note the large spectral shift occurring around 50 m when the
pulse hits the TB. The bottom part compares the intensity
profile of the reflected pulse to a “mirrored” pulse, obtained by
propagating the incident pulse to the point of comparison with
the sign of the group-velocity mismatch reversed. We can infer
from the figure that the peak of the reflected pulse is indeed
delayed relative to that of the mirror image. The numerically
evaluated delay of 0.524 ps agrees well with our analytical
prediction; we attribute a slight discrepancy to numerical
roundoff errors. The magnitude of the GHSTB is 8.6% of
the input pulse’s width. This value should be contrasted to a
tiny spatial GH shift (∼1 µm) occurring at a spatial interface
separating two homogeneous linear media (<1% of the beam
width).

Next, it follows at once from Eq. (9) that the sign of the
GHSTB is governed by that of �β1, implying that the peak

FIG. 3. Temporal and spectral evolution of a 6-ps-wide Gaussian
pulse undergoing TIR under the conditions of Fig. 2 except for a
change in the sign of group-velocity mismatch: �β1 = −0.25 ps/m.

of the reflected pulse is either delayed or advanced in time,
depending on whether the TB overtakes the pulse (�β1 > 0)
or the pulse catches up to the TB (�β1 < 0). This situation
stands in stark contrast to the textbook GH shift at a spatial
boundary between two lossless isotropic media, which always
corresponds to a delay [46]. We note, though, that the sign
of the spatial GH shift can be altered if one of the media
is absorbing [47–49], amplifying [50], or possesses spatial
dispersion [51].

To verify the dependence of the GHSTB on the sign of the
group-velocity mismatch, we show in Fig. 3 the evolution of
the same Gaussian pulse under identical conditions to those
in Fig. 2, except for the sign of group-velocity mismatch:
�β1 = −0.25 ps/m. A comparison of Figs. 2 and 3 reveals
that the GHSTB flips sign as well, in complete agreement with
our predictions. We note that the delay or advancement of the
peak of the reflected pulse is captured in the spectrum by a
red or blue spectral shift triggered by TIR. We also verified
with numerical simulations the range of applicability of our
analytical results (see Fig. 1 of the Supplemental Material
[45]) and near independence of the GHSTB on the pulse
shape—see Fig. 2 of the Supplemental Material [45], where
we exhibit the spectral and temporal evolution for the TIR of
a secant hyperbolic pulse.
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FIG. 4. Optimization of the GHSTB. Temporal and spectral evo-
lution of a 2-ps-wide Gaussian pulse undergoing TIR in a medium
with β2 = 0.05 ps2/m, �β1 = 0.3 ps/m, and k0�n = 1.79 m−1. The
bottom part compares the intensity profile of the reflected pulse to a
pulse without the GHSTB.

We observe that the GHSTB, visible in Figs. 2 and 3,
appears smaller relative to the width of the pulse, compared
to the value expected relative to the width of the incident
pulse. This is because the incident pulse broadens before it
arrives at the location where we compare the reflected and
“mirrored” pulses. In this connection, we may inquire about
the conditions under which the relative GHSTB is maximized.
We conjecture that the incident pulse has to be delayed relative
to the TB just enough to ensure that the evolution of the
incident and reflected pulses is symmetric with respect to
the point of contact with the TB. Further numerical analysis
reveals that we can maximize the GHSTB relative to the
width of the reflected pulse as a function of the dimensionless
quantity �crtp. For our numerical simulations, we consider a
linear medium with β2 = 0.05 ps2/m and �β1 = 0.3 ps/m.
The refractive-index jump at the TB is such that k0�n = 1.79
m−1. The TB is delayed by 3.6 ps with respect to the peak
of a Gaussian pulse of 2-ps FWHM. In Fig. 4, we exhibit
the spectral and temporal evolution of the optimized pulse
under TIR and compare the reflected and “mirrored” pulses
at z = 24.2 m; the corresponding maximum GHSTB is 23%
of the incident pulse’s width. We can infer from Fig. 4 that
such a pronounced GHSTB corresponds to a rather symmetric

evolution (both in time and frequency) of the incident pulse
under TIR, thus validating our intuition.

Finally, we discuss how a sharp temporal boundary, which
is a prerequisite for the observation of the GHSTB, can
be engineered. Previous proposals relied, for the most part
[27,31], either on generating a microwave front with the aid
of electro-optical modulation or on producing a moving TB
using cross-phase modulation by a solitonlike pulse through
the Kerr nonlinearity of the medium. Unfortunately, both
approaches suffer from potential drawbacks. The microwave
front can only be generated in a waveguide over a very lim-
ited axial distance, whereas creating a high-intensity kinklike
profile in a nonresonant medium can be a tall order, con-
sidering the relative weakness of the Kerr nonlinearity. To
overcome these hurdles, we propose to dope a fiber with
resonant impurities, such as atom defects or quantum dots,
and launch a quasicontinuous wave with its carrier frequency
close to the impurity resonance into the doped fiber. Provided
the transverse (coherence) relaxation time of the medium
is much shorter than its longitudinal (population inversion)
relaxation time, an optical kink is naturally formed over a
short propagation distance for both homogeneously [52] and
inhomogeneously [53] broadened collections of impurities.
This kink can serve as a sharp temporal boundary for a weak
probe pulse, whose frequency is detuned far from the impurity
resonance, through the cross-phase modulation mediated by
the Kerr nonlinearity of the host medium. We stress that the
advantage of our proposal is in the resonant enhancement of
the index change �n. We also point out that the group-velocity
mismatch can be controlled by adjusting either the probe
wavelength or the detuning from the impurity resonance.

In conclusion, we introduced the concept of a Goos-
Hänchen shift at a temporal boundary moving in a homoge-
neous, weakly dispersive linear medium. We have derived a
simple analytical expression for the GHSTB and showed that
its sign depends on the sign of the group-velocity mismatch
between the pulse and the temporal boundary. Although, for-
mally speaking, the mathematical expression for GHSTB,
Eq. (8), in terms of the derivative of a reflection coefficient
with respect to frequency is reminiscent of a Newton-Wigner
time delay, which occurs on scattering of a pulse from inter-
faces [54–56] or structured media [57], the discovered shifts
are caused by TIR at a TB. Thus, the physics of GHSTB is
intimately linked to the Goos-Hänchen effect at the temporal
boundary. Our results forge a link between the physics of the
GH effect and the photonics of time-varying media. Just as
the spatial GH effect has found numerous applications, from
optical heterodyne sensing [58] to the design of micrometer-
size surface-resonance waveguide devices [59], we anticipate
our results to open additional avenues in the design and ma-
nipulation of time metamaterials. We note that measuring
the discovered GHSTBs presents an open challenge at the
moment. Facing this challenge will trigger interesting funda-
mental developments in the photonics of time-varying media.
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(ECCS-1933328).
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