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ABSTRACT

Evacuation planning is an essential part of disaster management

where the goal is to relocate people in a safe and orderly manner.

Existing research has shown that such problems are hard to ap-

proximate and current methods are difficult to scale to real-life

applications. We introduce a notion of fairness and two related ob-

jectives while studying evacuation planning, namely: minimizing

maximum inconvenience and minimizing average inconvenience.

We show that both problems are not just NP-hard to solve exactly,

but in fact are NP-hard to approximate. On the positive side, we

present a heuristic optimization method MIP-LNS, based on the

well-known Large Neighborhood Search framework, that can find

good approximate solutions in reasonable amount of time. We also

consider a multi-objective problem where the goal is to minimize

both objectives and solve it using MIP-LNS. We use real-world

road network and population data from Harris County in Houston,

Texas (a region that needed large-scale evacuations in the past) ,

and apply MIP-LNS to calculate evacuation plans for the area. We

compare the quality of the plans in terms of evacuation efficiency

and fairness. We find that the solutions to the multi-objective prob-

lem are superior in both of these aspects. We also perform statistical

tests to show that the solutions are significantly different.
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1 INTRODUCTION

Evacuation plans are essential to ensure the safety of people after

human-initiated or natural disasters such as hurricanes, tsunamis,

wildfires, bioterrorism, toxic chemical spills [5, 6, 9, 21, 32]. Emer-

gency management organizations have often made plans on best

ways to evacuate individuals during such disasters; see [5, 9, 21, 32].

During the past hurricane seasons, for example, many states such

as Florida, Texas, Louisiana, and Mississippi, executed large-scale

evacuations in affected regions. Examples of hurricanes when such

evacuations were carried out include Katrina & Rita (2005), Ike &

Gustav (2008), Irma & Harvey (2017), Laura (2020), and Ida (2021).

The recent category four hurricane, Ida caused a total of $75 billion

in damages and 55 deaths in the United States alone [6]. We are also

anticipating that the 2022 hurricane season will have above-normal

activity [31]. To give a sense of the scale of evacuations due to such

hurricanes, about 2.5 million individuals were evacuated from the

coastal areas of Texas [5] before the landfall of Hurricane Rita. It

is therefore crucial for cities or communities to have effective and

efficient evacuation plans in place, to be sustainable. Any such plan

needs to have two components: (𝑖) Evacuation Routes, which are

paths that the evacuees will take to egress out of the area under

danger, and (𝑖𝑖) Evacuation Schedule which dictates when people

should leave from different regions. Unfortunately, optimizing over

both is often theoretically hard and computationally intractable in

a realistic scenario. Thus, it remains open to provide an approxima-

tion algorithm with a reasonable runtime given real-life data.

In addition to the efficiency aspect of an evacuation, it is also

important to reduce inequality among evacuees so that no person

faces any undue burden. For instance, assigning longer routes or

delaying the evacuation of certain evacuees to improve overall

evacuation efficiency could place extra burden on them. Moreover,

people living in low-lying areas incur a higher level of risk due to

potential flooding during hurricanes. It is, therefore, necessary to

evacuate them as early as possible. This might not happen if we

design evacuation plans by optimizing efficiency only.

Our Contributions As our first contribution, we define two ob-

jective functions to capture the notion of fairness in the context

of evacuation. We then formulate the optimization problems: Min-

Max Fair Dynamic Confluent Flow Problem (mm-fdcfp) and Total

Fair Dynamic Confluent Flow Problem (t-fdcfp). In mm-fdcfp, the
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goal is to determine a dynamic confluent flow of evacuees so that

the maximum average inconvenience cost incurred by evacuees at

different regions is minimized. In contrast, the aim in t-fdcfp is to

minimize total inconvenience cost of all evacuees. The problems

are formally defined in Section 3. We show in Section 4 that both

mm-fdcfp and t-fdcfp are hard to approximate. We also define the

Hybrid Fair Dynamic Confluent Flow Problem (h-fdcfp) where the

goal is to simultaneously optimize for both objectives.

As our second contribution, we present a Large Neighborhood

Search heuristic (MIP-LNS) for mm-fdcfp, t-fdcfp and h-fdcfp

where we use Mixed Integer Program (MIP) solvers in conjunc-

tion with combinatorial methods. MIP-LNS, designed based on the

Large Neighborhood Search (LNS) framework, starts with an initial

feasible solution and then uses MIP solvers to solve problems that

explore the neighborhood of the solution. It significantly reduces

the network, providing a tractable approximation to the problems.

It can also be adapted easily for other objective functions.

As our final contribution, we apply MIP-LNS on a real-world

situation: evacuating the 1.5 million households of Harris County

in Houston, Texas that is often affected by hurricanes (e.g. Rita, Ike,

Harvey, Laura).We use road network data fromHEREmaps [18] and

population data generated by Adiga et al. [3] to construct a realistic

problem instance. MIP-LNS was able to efficiently find solutions to

all three problems for this instance. We compare these solutions in

terms of evacuation completion time, average evacuation time, and

the fairness objectives. We observe that the mm-fdcfp objective

ensures the inconvenience cost at all the regions to be small but

resulting evacuation completion time is high. In contrast, the t-

fdcfp objective induces a lower evacuation completion time but

at the expense of high inconvenience cost at some regions. By

optimizing for both in h-fdcfp, we were able to find solutions that

have low inconvenience cost and low evacuation completion time.

2 RELATED WORK

Researchers have approached the evacuation planning problem

primarily with a focus on efficiency. Hamacher and Tjandra [16]

formulated it as a dynamic network flow optimization problem

and used mathematical optimization methods to solve it. However,

the computational cost of their proposed method was prohibitively

expensive. This led to several heuristic methods [20, 23, 29] that

provide unbounded suboptimal solutions. However, these methods

are designed to solve the routing problem only and they either

do not consider the scheduling problem at all or propose simple

schemes such as letting evacuees leave at a constant rate. Even

and Pillac et al. [10], and Romanski and Van Hentenryck et al. [28]

formulated the problem as Mixed Integer Programs and proposed

optimization techniques to find (bounded- sub)optimal solutions.

However, their proposed techniques are not scalable enough to

handle city or county-scale evacuation planning problems. A com-

prehensive review of existing works on evacuation planning and

management can be found in the survey paper by Bayram [4].

The use of convergent evacuation routes has been explored in

the literature [10, 15, 17, 28], where all evacuees coming to an

intersection follow the same path afterwards. This is also known

as confluent flow [7]. Golin et al. [12] investigated the single-sink

confluent quickest flow problem where the goal is minimizing the

time required to send supplies from sources to a single sink. They

showed that the problem cannot be approximated in polynomial

time within a logarithmic approximation factor.

Compared to the existing research works on efficient evacuation

planning, there are few works that have considered fairness. Aalami

and Kattan [1, 2] approached the problem of fair trip planning in

the context of short-notice and transit-based emergency evacuation.

Their proposed method aims to allocate resources such as fleet of

transit vehicles and shelters to different regions in a fair manner.

In contrast, we consider the planning problem where evacuees

use their own personal vehicle and our goal is to prescribe them

evacuation routes and schedule. Evacuation by personal vehicles

was considered by Yan and Liu et al. [33], and Oh and Yu et al. [25].

Yan and Liu et al. [33] defined a risk associated with each location

by looking at its distance from a hazard and combined it with the

efficiency objective of total evacuation time. Oh and Yu et al. [25]

also considered the same notion of risk and defined the ‘suffering’

of each evacuee based on their risk level and required time to reach

safety. The authors evaluated the fairness of an evacuation plan

by looking at how equally the evacuees suffered and quantified it

using the Gini Coefficient. In contrast to these works, we define an

inconvenience cost for each evacuee that considers the risk level

and the inconvenience caused by the length and congestion on the

route. Minimizing inconvenience, instead of time to reach safety, is

important because an evacuee may be situated far away from safe

locations and therefore naturally need longer time to reach safety.

We formally define the inconvenience of an evacuee in Section 3.

Heuristic search methods are generally applied to problems that

are computationally intractable, to find good solutions in a rea-

sonable amount of time. The Large Neighborhood Search (LNS)

framework [30] has been successfully applied to various hard combi-

natorial optimization problems in the literature [26]. Very recently,

Li et al. [22] proposed MAPF-LNS, where the LNS framework was

used to find solutions for the Multi-Agent Path Finding Problem.

Due to the hardness of the evacuation planning problem (Section 4),

we have also designed our algorithm based on the LNS framework.

3 PROBLEM FORMULATION

In this section, we introduce some preliminary terms that we use in

our problem formulation. Then we define two objective functions

to capture the notion of fairness in the context of evacuations. This

allows us to formally define the three optimization problems: mm-

fdcfp, t-fdcfp, and h-fdcfp. Next, we describe how we construct

and use time expanded graphs to model the flow of evacuees over

time using a sample problem instance. Finally, we present Mixed

Integer Program (MIP) formulations of mm-fdcfp and t-fdcfp.

Definition 3.1. A road network is a directed graph G = (N ,A)
where every edge 𝑒 ∈ A has (𝑖) a capacity 𝑐𝑒 , representing the

number of vehicles that can enter the edge at a given time and (𝑖𝑖)

a travel time 𝑇𝑒 representing the time it takes to traverse the edge.

Definition 3.2. Given a road network, a single dynamic flow is

a flow 𝑓 along a single path and timestamps 𝑎𝑣 , representing the

arrival time of the flow at vertex 𝑣 , that obeys the travel times. In

other words, 𝑎𝑣 − 𝑎𝑢 ≥ 𝑇𝑢𝑣 . A valid dynamic flow is a collection of

single dynamic flows where no edge at any point in time exceeds

its edge capacity.
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Definition 3.3. An evacuation network is a road network that

specifies E,S,T ⊂ N , representing a set of source, safe and transit

nodes respectively. Furthermore, for each source node 𝑘 ∈ E, let
𝑊 (𝑘) and 𝑑𝑘 represent the set of evacuees and the number of

evacuees at source 𝑘 respectively.

For the purpose of scheduling an evacuation, we observe that

once an evacuee has left their home, it is difficult for them to pause

until they reach their desired destination. We also assume that

people from the same location evacuate to the same destination.

Similarly, we assume that if two evacuation routesmeet, they should

both be directed to continue to the same location.

Definition 3.4. Given an evacuation network, we say a valid

dynamic flow is an evacuation schedule if the following are satisfied:

• all evacuees end up at some safe node,

• no single dynamic flow has any intermediary wait-time (i.e. 𝑎𝑣 −
𝑎𝑢 = 𝑇𝑢𝑣 and,

• the underlying flow (without considering time) is confluent,

where if two single dynamic flows use the same vertex (possibly

at different times), their underlying path afterwards is identical.

In order to define the objective functions, we introduce a notion

of fairness based on the idea of risk and inconvenience.

Due to various natural factors such as proximity to shelter, eleva-

tion, etc., it is very natural for different locations to have different

levels of risk and thus different urgency to evacuate. Thus, it is

reasonable to incorporate the risk 𝑟𝑘 for source node 𝑘 .

Now, let 𝜏𝑘 be the average evacuation time of evacuees at source

𝑘 , if they were the only evacuees in the network and they followed

the quickest path [8] to safety. Let 𝑡𝑖 be the actual evacuation time

of evacuee 𝑖 ∈ 𝑊 (𝑘) for a given evacuation schedule. Then, the

inconvenience cost (𝑠𝑖 ) of evacuee 𝑖 , in this schedule, is defined as:

𝑠𝑖 = 𝑟𝑘 (𝑡𝑖 − 𝜏𝑘 ) (1)

Since all evacuees from the same location needs to evacuate

to the same safe spot, it is natural to consider them as a collec-

tive and use their average inconvenience as a measure of the ef-

fectiveness of the schedule for that location. Then, two natural

objectives arise, (𝑖) minimizing the worst average inconvenience:

min

{
max𝑘∈E

1

𝑑𝑘

∑
𝑖∈𝑊 (𝑘) 𝑠𝑖

}
or (𝑖𝑖) minimizing the total inconve-

nience: min

{∑
𝑘∈E

∑
𝑖∈𝑊 (𝑘) 𝑠𝑖

}
.

Minimizing the max average inconvenience is equivalent to:

min

max

𝑘∈E
𝑟𝑘

𝑑𝑘

©­«
∑︁

𝑖∈𝑊 (𝑘)
𝑡𝑖
ª®¬ − 𝑟𝑘𝜏𝑘

 (2)

Minimizing the total inconvenience is equivalent to:

min

∑︁
𝑘∈E

𝑟𝑘

∑︁
𝑖∈𝑊 (𝑘)

𝑡𝑖 (3)

Detailed derivations are provided in Appendix A. Now, we can

formally define our two problems.

Problem 1. Min-Max Fair Dynamic Confluent Flow Problem (mm-

fdcfp). Given an evacuation network, let 𝑇𝑚𝑎𝑥 represent an upper

bound on evacuation time. Find an evacuation schedule such that

all evacuees arrive at some safe node before time 𝑇𝑚𝑎𝑥 while mini-

mizing max𝑘∈E
𝑟𝑘
𝑑𝑘

(∑
𝑖∈𝑊 (𝑘) 𝑡𝑖

)
− 𝑟𝑘𝜏𝑘 .

(a) Sample Evacuation Network.

Edges are labeled with travel

time and flow capacity respec-

tively. Source, safe and transit

nodes are denoted by squares,

triangles, and circles respec-

tively. Source nodes are labeled

with number of evacuees and

risk level respectively.

(b) Time Expanded Graph (TEG)

for the Sample Network. Edges

are labeled with capacity. Con-

struction of this TEG sets an up-

per bound of 3 time units for

evacuation completion.

Figure 1: Sample Problem Instance

Problem 2. Total Fair Dynamic Confluent Flow Problem (t-fdcfp).

Given an evacuation network, let 𝑇𝑚𝑎𝑥 represent an upper bound

on evacuation time. Find an evacuation schedule such that all evac-

uees arrive at some safe node before time 𝑇𝑚𝑎𝑥 while minimizing∑
𝑘∈E 𝑟𝑘

∑
𝑖∈𝑊 (𝑘) 𝑡𝑖 .

Additionally, we define the following problemwherewe optimize

for both objectives:

Problem 3. Hybrid Fair Dynamic Confluent Flow Problem (h-

fdcfp). Given an evacuation network, let 𝑇𝑚𝑎𝑥 represent an upper

bound on evacuation time. Find an evacuation schedule such that all

evacuees arrive at some safe node before time𝑇𝑚𝑎𝑥 while minimiz-

ing both max𝑘∈E
𝑟𝑘
𝑑𝑘

(∑
𝑖∈𝑊 (𝑘) 𝑡𝑖

)
− 𝑟𝑘𝜏𝑘 and

∑
𝑘∈E 𝑟𝑘

∑
𝑖∈𝑊 (𝑘) 𝑡𝑖 .

To capture the flow of the evacuees over time, we use a time

expanded graph (TEG) denoted by G𝑥 = (N𝑥 = E𝑥 ∪T𝑥 ∪S𝑥 ,A𝑥
).

To build it, we first fix a time horizonH and discretize the temporal

domain into discrete timesteps of equal length. Then we create

copies of each node at each timestep withinH . After that, for each

edge 𝑒 (𝑢, 𝑣) in the road network, we create edges in the TEG as

𝑒𝑡 (𝑢𝑡 , 𝑣𝑡+𝑇𝑒 ) for each 𝑡 ≤ H −𝑇𝑒 where the edges 𝑒𝑡 have the same

flow capacity as 𝑒 . Finally, we add a super sink node 𝑣𝑡 that connects

to the nodes 𝑢𝑡 for each 𝑢 ∈ S and each 𝑡 ≤ H .

A sample evacuation network and its corresponding TEG with

time horizonH = 3 are shown in Figure (1a-1b). The source, safe

and transit nodes are denoted by squares, triangles, and circles

respectively. In the TEG, there may be some nodes that are (𝑖) not

reachable from the source nodes, or (𝑖𝑖) no safe node can be reached

from these nodes within the time horizon. These nodes are greyed

out in Figure 1b.

The optimal solution of mm-fdcfp for this sample problem in-

stance is to use the routes 0 → 2 → 𝐴 from source node 0 and

1→ 2→ 𝐴 from source node 1, where the evacuee at source node

0 and 1 leave at timestep 1 and 0 respectively. Letting the evacuee

from source node 1 leave first is better because they face a higher

level of risk than the evacuee at source node 0. t-fdcfp and h-fdcfp

have the same optimal solution.
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3.1 Mixed Integer Program Model

We formulate mm-fdcfp and t-fdcfp as Mixed Integer Programs

(MIPs). In our formulation, we use two types of variables: (𝑖) Binary

variable 𝑥𝑒 ,∀𝑒 ∈ A, which will be equal to one if and only if

the edge 𝑒 is used for evacuation. Otherwise, it will be zero. (𝑖𝑖)

Continuous variable 𝜙𝑘,𝑒 ,∀𝑘 ∈ E, 𝑒 ∈ A𝑥
, which denotes the flow

of evacuees on edge 𝑒 from source node 𝑘 .

mm-fdcfp or t-fdcfp Obj (4)

𝑠 .𝑡 .
∑︁

𝑒∈𝛿+ (𝑘)
𝑥𝑒 = 1 ∀𝑘 ∈ E (5)∑︁

𝑒∈𝛿+ (𝑖)
𝑥𝑒 ≤ 1 𝑖 ∈ T (6)∑︁

𝑒∈𝛿+ (𝑘)

∑︁
𝑡 ≤H

𝜙𝑘,𝑒𝑡 = 𝑑𝑘 ∀𝑘 ∈ E (7)∑︁
𝑒∈𝛿− (𝑖)

𝜙𝑘,𝑒 =
∑︁

𝑒∈𝛿+ (𝑖)
𝜙𝑘,𝑒 ∀𝑖 ∈ N𝑥 \ {𝑣𝑡 } (8)∑︁

𝑘∈E
𝜙𝑘,𝑒𝑡 ≤ 𝑥𝑒𝑐𝑒𝑡 ∀𝑒 ∈ A, 𝑡 ≤ H (9)

𝜙𝑘,𝑒 ≥ 0 ∀𝑘 ∈ E, 𝑒 ∈ A𝑥
(10)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ A (11)

The MIP formulation of mm-fdcfp as well as t-fdcfp is given

by (4–11) when used with the corresponding objective function. To

solve h-fdcfp we use a hierarchical approach that is described in

Section 5.2. The objective and constraints of the above MIP model

are explained in Table 1. The constraint that evacuation completion

time needs to be less than the given upper bound is implicit in the

model, as we set the time horizon of the TEG to this upper bound.

Explanation

Objective (4) The mm-fdcfp or the t-fdcfp objective.

Constraint (5) Ensures that there is only one outgoing edge

from each evacuation node.

Constraint (6) Ensures that at each transit node, there is at

most one outgoing edge. This is necessary for

convergent routes.

Constraint (7) Ensures that the total flow coming out of every

evacuation node is equal to the number of evac-

uees at the corresponding node.

Constraint (8) Flow conservation constraint, incoming flow

equals outgoing flow. 𝛿− (𝑖) and 𝛿+ (𝑖) denote
the set of incoming and outgoing edges to/from

node 𝑖 , respectively.

Constraint (9) Flow capacity constraint: total flow on an edge

will not exceed its capacity. Also, flows are only

allowed on assigned edges.

Constraint (10) Flow variables are continuous and non-

negative.

Constraint (11) Edge assignment variables are binary.

Table 1: Model (4–11) Explanation

4 INAPPROXIMABILITY RESULTS

In this section, we show that our problems, even with one safe node

is hard to approximate.

Theorem 1. Given an arbitrarily large evacuee size of𝑀 , it is NP-

hard to approximate mm-fdcfp and t-fdcfp to a factor of 𝑂 (𝑀/𝑛)
where𝑀 is the size of the total population, even when there are only

two sources and one safe node.

Since these problems are closely related to the single-sink Con-

fluent Quickest Flow Problem in [12], the proofs of their hardness

are also very similar. The main difference is in its analysis since the

objective of the problems differ. The hardness result relies on the

NP-hardness of the capacitated version Two Distinct Path Problem.

Problem 4 (Two Distinct Path Problem). Let 𝐺 be a graph with

two sources 𝑥1, 𝑥2 and two sinks 𝑦1, 𝑦2. Every edge is labelled with

either 1 or 2. Determine if there exists two edge-disjoint paths 𝑃1, 𝑃2
such that 𝑃𝑖 is a path from 𝑥𝑖 to 𝑦𝑖 for 𝑖 = 1, 2 and 𝑃2 only uses

edges with label 2 (𝑃1 can use any edge).

The above problem is known to be NP-hard [14]. Other varia-

tions of the problem such as uncapacitated, undirected/directed,

edge/node-disjoint paths are also known to be hard (see e.g. [11],

[24] and [27]). The proof of hardness for our two problems are very

similar. Thus, we only provide the proof in the context of mm-fdcfp.

Proof of Theorem 1. Given an instance I of the Two Disjoint

Path Problem, consider constructing the following graph 𝐺 where

we attach safe node 𝑡 to 𝑦1, 𝑦2 with an edge of capacity 1, 2 respec-

tively. For 𝑖 = 1, 2, we also add a source 𝑠𝑖 and attach it to 𝑥𝑖 with

an edge of capacity of 𝑖 . Every edge with label 𝑖 also has capacity

𝑖 . Sources 𝑠𝑖 has𝑀 ∗ 𝑖 evacuees for some large value of 𝑀 , result-

ing in a total of 3𝑀 evacuees. Both sources have a risk factor of 1.

Each edge has a travel time of 1. The upperbound completion time

𝑇𝑚𝑎𝑥 is set to be𝑀2𝑛. This ensures that the problem has a feasible

solution, otherwise, it is futile to provide any approximations. It

also follows from construction that for certain choices of 𝑇𝑚𝑎𝑥 , the

problem is equivalent to the Two-Disjoint Path Problem, and thus

hard to determine feasibility.

First, consider the case where there exists two disjoint paths in

I. To upperbound the inconvenience cost at source 𝑖 , we need to

upperbound its average evacuation time in an optimal schedule and

lowerbound the average evacuation time if the source 𝑖 is the only

source in the network. For the first upperbound, consider a valid

schedule that sends 𝑖 evacuees at every time step, where the last

group of people leaves their sources at time𝑀 . Since each path has

length at most𝑀 +𝑛 ≈ 𝑀 , the 𝑖 evacuee that left source 𝑠𝑖 at time 𝑘

is guaranteed to arrive by time 𝑘 +𝑀 . On average, the arrival time

of the evacuees from source 𝑠𝑖 is at most (𝑀 +𝑛)/2. If source 𝑖 is the
only source in the network, since the first edge incident to 𝑠𝑖 has

capacity 𝑖 , it takes at least𝑀 rounds to finish evacuating the people

at its location. This results in an average of at least𝑀/2. Therefore,
the maximum inconvenience cost is at most (𝑀 +𝑛)/2−𝑀/2 ≤ 𝑛/2.

Now, consider the instance where I does not have two disjoint

paths. To lowerbound the average inconvenience at source 𝑖 , we

need to lowerbound its average evacuation time in a schedule and

upperbound the average time if it was the only source. Consider the

two paths 𝑃1, 𝑃2 in a solution to mm-fdcfp in 𝐺 . If 𝑃1, 𝑃2 intersects
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before 𝑡 , since it is a confluent flow, the edge following their node

of intersection is a single-edge cut that separates the sources from

the sink. If the two paths only intersects at 𝑡 , since we are in a

NO-instance of I, 𝑃2 must have used an edge of capacity 1. Then,

deleting that edge along with 𝑠1𝑥1 also separates the sources from

the sink. Note that in both cases, the cut has capacity at most 2. Then,

at every time step, at most 2 evacuees can cross the cut. Thus, for all

3𝑀 evacuees to cross the cut, it takes at least 3𝑀/2 time steps. Due

to this bottleneck, it follows that the smallest total evacuation time

is at least

∑
3𝑀/2
𝑘=1

𝑘 ≥ 9𝑀2/4, giving an average evacuation time of

at least 3𝑀/4. Let 𝑇1,𝑇2 be the average evacuation time for source

𝑠1, 𝑠2 respectively. It follows that the overall average of all evacuees

is at most max(𝑇1,𝑇2), providing a lowerbound to their average

evacuation time in the schedule. If source 𝑖 is the only source in the

network, note that there exists a path from 𝑠2 to 𝑡 that only uses

path of capacity 2 otherwise I is a hard instance. Therefore, 𝑠2 can

evacuate its population along the path in𝑀 rounds, achieving an

average completion time of at most (𝑀+𝑛)/2. Similarly for 𝑠1, there

exist a path (of any label) to 𝑡 , giving it an average evacuation time of

at most (𝑀𝑛)/2. Since𝑇1,𝑇2 averages to 3𝑀/4, the one with a larger
value has an inconvenience cost of at least 3𝑀/4 −𝑀/2 = 𝑀/4.

Since the YES and NO instances cause the objective value of

mm-fdcfp to have a gap of 𝑂 (𝑀/𝑛) our result follows. □

5 HEURISTIC OPTIMIZATION

As shown in Section 4, solving mm-fdcfp and the t-fdcfp are both

computationally hard. For this reason, we present the heuristic

search method MIP-LNS where we use MIP solvers in conjunction

with combinatorial methods.

First, we calculate an initial feasible solution in two steps: (𝑖)

calculating an initial convergent route set, and (𝑖𝑖) calculating the

schedule that minimizes the target objective using the just calcu-

lated initial route set (Appendix B). To calculate the initial route set,

we take the shortest path from each source to its nearest safe node

by road. To calculate the schedule, we use the just calculated route

set to fix the binary variables 𝑥𝑒 in model (4-11). This gives us a

linear program that can be solved optimally to get the schedule.

Next, we start searching for better solutions in the neighborhood

of the solution at hand using MIP-LNS (Algorithm 1). It runs for

𝑛 iterations, where in each iteration, we select 𝑞 = (100 − 𝑝)% of

source locations uniformly at random and keep their routes fixed.

This reduces the size of the MIP as we have fixed values for a

subset of the variables. We then optimize this ‘reduced’ MIP model

using the Gurobi [13] MIP solver. Essentially, we are searching for

a better solution in the neighborhood where the selected 𝑞% routes

are already decided. Any solution found in the process will also be a

feasible solution for the original problem. If we find a better solution

with an evacuation completion time 𝑇 ′ that is less than the current

time horizon, 𝑇 , then we also update the model by setting the time

horizon to𝑇 ′. When resetting the time horizon, we (𝑖) remove edges

in the time expanded graph whose start or end node have a time

stamp greater than 𝑇 ′, and (𝑖𝑖) we prune the TEG by removing

nodes that are unreachable from the evacuation nodes, and nodes

from which none of the safe nodes can be reached within time 𝑇 ′.
This pruning process reduces the number of variables in the MIP

model and simplifies the constraints. At the end of each iteration,

Algorithm 1: MIP-LNS Method

Input: Initial solution: sol, Time Expanded Graph: 𝑇𝐸𝐺 ,

Time Horizon: 𝑇 , Model to optimize:𝑚𝑜𝑑𝑒𝑙 , Percent

of routes to update in the first iteration: 𝑝 , Number

of Iterations: 𝑛

Output: Solution of𝑚𝑜𝑑𝑒𝑙

1 for 1 to n do

2 Select (100-p)% of the source locations uniformly at

random. Let their set be 𝑆 .

3 Fix the routes from the source locations in 𝑆 . Set 𝑥𝑒 = 1

if 𝑒 is on any of the routes from 𝑆 in sol.

4 sol← Solution of reduced𝑚𝑜𝑑𝑒𝑙 from a MIP solver

5 𝑇 ′← evacuation completion time for solution sol

6 if 𝑇 −𝑇 ′ > +𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

7 Update the𝑚𝑜𝑑𝑒𝑙 by setting the time horizon to 𝑇 ′.
Prune 𝑇𝐸𝐺 and𝑚𝑜𝑑𝑒𝑙 by removing:

8 (𝑖) nodes that are unreachable from the evacuation

nodes within time horizon 𝑇 ′, and
9 (𝑖𝑖) nodes from which none of the safe nodes can be

reached within time horizon 𝑇 ′
10 Increase 𝑝

11 return sol

we increase the value of 𝑝 . Note that, when 𝑝 = 100, we will be

solving the original optimization problem. In our experiments, we

set the initial value of 𝑝 to 50 and then gradually increased it to 65.

When solving the reduced problem in each iteration (line 4), we

use (𝑖) a time limit, and (𝑖𝑖) a parameter 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑔𝑎𝑝 to decide

when to stop. MIP solvers keep track of an upper bound (𝑍𝑈 ) (pro-

vided by the current best solution) and a lower bound (𝑍𝐿) (obtained

by solving relaxed LP problems) of the objective value. We stop the

optimization when the relative gap between these two becomes

smaller than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑔𝑎𝑝 . In our experiments, we set this

threshold to 10%. In some iterations, it may happen that the current

solution is already within this threshold, in that case, the algorithm

will simply continue to the next iteration.

5.1 Selection of Sources

InMIP-LNS, instead of selecting source locations (to optimize over)

using a uniform random distribution (Algorithm 1 line 2), we can

assign weights to source locations according to the inconvenience

cost of evacuees at those locations and then use a probability distri-

bution calculated based on these values.

Algorithm 2: Heuristic Selection

Input: Current solution: sol, Number of Sources to

Optimize Over:𝑚

Output: Set of Sources to Optimize Over 𝑆𝑜𝑝𝑡

1 𝑊 ← List containing average inconvenience of evacuees at

the sources for sol

2 𝑃 ← Normalized𝑊 so that the values sum up to 1

3 𝑆𝑜𝑝𝑡 ← Select𝑚 sources from the distribution 𝑃 at random

without replacement

4 return 𝑆𝑜𝑝𝑡
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Algorithm 2 shows the process in detail. First, we calculate the

average inconvenience at each of the source locations for the cur-

rent solution. Then, we normalize the values so that they sum up to

one and represent a probability distribution. Finally, we randomly

pick the required number of sources from this distribution. The

motivation for using this selection process is to focus on the source

locations that currently have high inconvenience cost.

5.2 Solving h-fdcfp withMIP-LNS
To solve h-fdcfp, we can take a linear combination of the mm-

fdcfp objective and the t-fdcfp objective and then optimize the

new objective using MIP-LNS. An alternative method is to use a

hierarchical approach of solving multi-objective problems. Here,

each objective is assigned a priority and the objectives are optimized

in a decreasing order of priority.

As our goal in this paper is to focus on the fairness aspect of

evacuation, we used the hierarchical approach to solve h-fdcfp.

Specifically, we define the mm-fdcfp objective (Equation 2) as the

primary objective (i.e high priority) as it ensures that the maximum

inconvenience over the sources is minimized. We then use the t-

fdcfp objective (Equation 3) as the secondary (i.e. lower priority)

objective. During the optimization process, in each iteration of MIP-
LNS, we first optimize the ‘reduced’ MIP for the primary objective.

Once the optimality gap for the primary objective becomes less

than a threshold or a predefined time limit is exceeded, we start

optimizing for the second objective. At this stage, we do not allow

any degradation in the primary objective.

6 EXPERIMENT RESULTS

In this section, we present details of our problem instance, its MIP

formulation, and a pruning technique that we used to reduce the

MIP size. Then, we provide analyses of the algorithm execution and

the solutions to mm-fdcfp, t-fdcfp and h-fdcfp.

6.1 Problem Instance

We use data from HERE maps [18] to construct a road network

for our study area Harris County, Houston, Texas. The network

contains roads of five (1 to 5) different function classes. It has a

hierarchical structure, where lower-level roads (function class 3/4)

are connected to higher-level roads (function class 1/2) through

entrance and exit ramps. In our experiments, we consider the nodes

(of the road network) which connect and lead from function class

3/4 roads to function class 1/2 roads as the source nodes. We then

consider the problem of (𝑖) when should evacuees enter the function

class 1/2 roads and (𝑖𝑖) how to route them through the function class

1/2 roads to safety. We use the synthetic population data of Adiga

et al. [3] to extract the location of each household in the study area.

We consider that one vehicle is used per household for evacuation.

We fix the nearest exit ramp to each household as their source. As

safe location, we select eight locations at the periphery of Harris

County, which are on major roads. A visualization of the problem

instance is presented in Figure 2. Additional details regarding the

final network and the study area are provided in Table 2.

Figure 2: Harris County Problem Instance.

# Nodes in the road network 927

# Edges in the road network 1339

# Source locations 109

Number of Households in the study area ∼ 1.5M

Table 2: Harris County Dataset Summary

6.2 Pruning the MIP Model

The Time expanded graph for our problem instance, with a time

unit of five minutes and a time horizon of 15 hours, contains 135,596

nodes and 207,867 edges. This makes the problem about four times

as large as previously considered problems.

Property Before Pruning After Pruning

# Binary Variables 1339 1339

# Continuous Variables ∼ 22.7M ∼ 14.5M

# Constraints ∼ 15M ∼ 10M

Table 3: Properties of theMIP for our problem instance before

and after pruning. The number of constraints goes down by

33.33% and the number of continuous variables by about 36%.

In our MIP formulation (Section 3.1), we define a flow variable

for flow coming from each source to each edge of the TEG. However,

not all edges 𝑒 ∈ A are reachable from a source node. For example,

in our sample problem (Figure 1a) the edge (1, 2) is not reachable
from source 0 and therefore a flow from source 0 can never reach

any copies of this edge in the TEG. Based on this observation, we

discard the unnecessary flow variables which reduces the number

of variables and the number of constraints as shown in (Table 3).

6.3 Analyses of Results

In our formulation of mm-fdcfp and t-fdcfp, we consider different

levels of risk associated with source locations. However, estimating

these risks requires accurate domain knowledge (Appendix C). For

this reason, in our experiments we set the risk values of all source

locations to one. This is equivalent to assuming that all the sources
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(a) mm-fdcfp maximum aver-

age inconvenience cost over the

sources at different iterations.

(b) t-fdcfp average inconve-

nience cost over all evacuees at

different iterations.

Figure 3: mm-fdcfp and t-fdcfp objective values over the

iterations of MIP-LNS. A decrease in value indicates improve-

ment of the objective.

Figure 4: h-fdcfp primary and secondary objective values at

different iterations of MIP-LNS. A decrease in value indicates

improvement of the objective.

face the same level of risk. However, our methodology is capable

of using this information effectively when provided.

We performed all our experiments and subsequent analyses on

a high-performance computing cluster, with 128GB RAM and 24

CPU cores allocated to our tasks. We tried two different methods to

solve mm-fdcfp and t-fdcfp for our problem instance. These are:

(1) Solve model (4–11) directly using the Gurobi MIP solver

(2) Apply MIP-LNS

6.3.1 Gurobi. In this experiment, we used Gurobi [13] to directly

solve model (4–11) for our problem instance. However, Gurobi

reported that it needs about 700GB of memory to optimize the

model, which exceeds our memory capacity. Note that, this large

amount of memory is needed for the internal data structures Gurobi

uses during the optimization process.

6.3.2 MIP-LNS. We ran MIP-LNS to solve mm-fdcfp, t-fdcfp and

also h-fdcfp (as described in Section 5.2). We used two different

selection methods for choosing the sources to optimize over in

each iteration of MIP-LNS, the random selection method and the

heuristic selection method (Algorithm 2). Furthermore, as we have

randomness in both selection procedures, we ran ten experiment

runs using different random seeds, for each problem and each se-

lection method. In each run of MIP-LNS, we performed twenty

iterations (Algorithm 1 line 1).

First, we look at the execution of a single run of MIP-LNS formm-
fdcfp, t-fdcfp and h-fdcfp where we used the heuristic selection

method. Figure (3a) shows the mm-fdcfp objective value of the

Figure 5: Histogram showing the distribution of average in-

convenience cost at sources for the final solutions of mm-

fdcfp, t-fdcfp and h-fdcfp. Some sources in t-fdcfp solu-

tion have high average inconvenience cost (last three orange

bars on the right). However, the maximum average incon-

venience cost in mm-fdcfp and h-fdcfp solutions is nicely

bounded (second blue and green bar from the left).

solution in hand at different iterations of MIP-LNS. We observe

improvements of the objective value over the iterations starting

from 5.45 hours for the initial solution and ending at a final value

of 1.8 hours. Figure (3b) shows the average inconvenience cost

of all evacuees (which is proportional to the t-fdcfp objective)

over the iterations. Here, we start with a solution with average

inconvenience of 1.7 hours and at the end find a solution with

average inconvenience of 0.76 hours.

Figure 4 shows the primary and secondary objective values of

h-fdcfp at different iterations of MIP-LNS. As we use a hierar-

chical approach, we see that the primary objective value steadily

decreases over the iterations. However, as seen in some iterations,

the secondary objective value can degrade. This is because, in the

hierarchical approach, even if a new solution is worse than the old

one in terms of the secondary objective, we accept it if it is better

than the old one in terms of the primary objective.

Figure (5) shows the histogram of average inconvenience cost at

the sources for the final solution of mm-fdcfp, t-fdcfp and h-fdcfp.

We observe from this figure that the average inconvenience cost at

several source locations is quite high (highest value of 4.83 hours)

for the t-fdcfp solution. For the mm-fdcfp and h-fdcfp solutions,

on the other hand, the maximum value is nicely bounded at 1.8 and

1.69 hours respectively. This indicates that in terms of minimizing

maximum average inconvenience, mm-fdcfp and h-fdcfp solutions

clearly outperform the t-fdcfp solution.

So far, we have only looked at one experiment run of the three

problems. To do a complete comparison, we now look at all the

solutions found from the ten experiment runs for each problem

and each source selection procedure. To assess the quality of the

solutions, we use the following three metrics: (𝑖) Evacuation Com-

pletion Time, (𝑖𝑖) Average Evacuation Time over all evacuees, and

(𝑖𝑖𝑖) Maximum Average Inconvenience over all sources. Figure 6

shows a comparison of the solutions in terms of the three metrics

using boxplots. Our observations from these results are:

(1) From Figure (6a), all ten mm-fdcfp solutions have an evacuation

completion time of 15 hours which is the time horizon we have
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(a) Evacuation Completion Time (b) Average Evacuation Time (c) MaximumAvg. Inconvenience over sources

Figure 6: Box-plots showing comparison of mm-fdcfp, t-fdcfp and h-fdcfp solutions when using Random and Heuristic

selection. Ten experiment runs were performed in each configuration. The performancemetrics used are evacuation completion

time, average evacuation time over all evacuees and maximum average inconvenience over all sources. h-fdcfp solutions

generally outperform the mm-fdcfp and the t-fdcfp solutions in terms of all three metrics. The Heuristic selection method, in

general, finds better solutions than the Random selection method in terms of the three metrics.

mm-fdcfp t-fdcfp h-fdcfp

Random Selection 2.1 1.28 1.16

Heuristic Selection 2.98 2.21 3.69

Table 4: Average run-time (hours) of MIP-LNS for each prob-

lemand source selection procedure over ten experiment runs.

used. This indicates that optimizing mm-fdcfp objective does

not help in improving evacuation completion time.

(2) Although t-fdcfp solutions have lower evacuation completion

time and average evacuation time than mm-fdcfp solutions

(Figure 6a, 6b), the maximum average inconvenience cost over

the sources for these solutions can be very high (Figure 6c).

(3) h-fdcfp solutions have the good properties of both mm-fdcfp

and t-fdcfp solutions, outperforming both of them in general.

(4) Comparing the red boxplots to the blue boxplots in Figures

6a, 6b, 6c, we observe that the solutions found by performing

heuristic selection generally have lower values for the three

metrics, compared to solutions found by random selection. How-

ever, as shown in Table 4, the better solutions found by using

heuristic selection comes at a cost of additional run time.

Finally, we performed statistical tests to examine if the solutions

found by solving the problems mm-fdcfp, t-fdcfp and h-fdcfp,

usingMIP-LNS and heuristic selection, are significantly different in
terms of the above three performance metrics. The motivation for

this experiment is to investigate whether optimizing for different

objective functions (or their combination) provides us significantly

different solutions. To do the test accurately, we did twenty more ex-

periment runs (thirty in total), using the heuristic selection method,

for all three problems. Then we performed theWelch’s t-test, where

the null hypothesis is that the solutions of the three problems have

equal mean values for the different performance metrics. Table 5

shows the p-values from the test for each pair of problems and the

three metrics. We observe that all the p-values are quite small i.e.

smaller than 0.05. We therefore reject the null hypothesis, which

means the solutions of the different problems have significantly

different means for the three metrics.

Evacuation

Completion

Time

Average

Evacuation

Time

Maximum Avg.

Inconvenience

over Sources

mm-fdcfp

vs t-fdcfp

1.24𝑒 − 26 3.45𝑒 − 15 1.46𝑒 − 20

mm-fdcfp

vs h-fdcfp

6.06𝑒 − 29 1.71𝑒 − 17 1.87𝑒 − 09

t-fdcfp

vs h-fdcfp

3.79𝑒 − 13 0.0111 4.15𝑒 − 27

Table 5: p-values fromWelch’s t-test for each pair of problems

and three metrics. All the p-values are smaller than 0.05,

which implies that the solutions of the different problems

have significantly different means for the three metrics.

7 CONCLUSION AND FUTURE PLANS

In this paper, we present an approach that uses the Large Neigh-

borhood Search framework in conjunction with mathematical pro-

gramming to find confluent routes and schedule for individuals

from multiple sources to multiple safe nodes in an urban region.

Our problem formulation accounts for fairness of the routes as-

signed as well as the overall time needed to evacuate. A notion of

risk is also considered in the objective function to acknowledge

that individual source nodes might have different levels of risk.

Using realistic networks and a hurricane scenario, we illustrate

the scalability and utility of our methods. In future works, we plan

to consider time varying risks associated with different locations.

A preliminary model for this purpose was proposed by Islam et

al. [19], we plan to incorporate it into our current formulation. We

also have plans to consider evacuation using public transportation

along with private vehicles and investigate notions of fairness in

such scenarios.
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A FAIRNESS OBJECTIVES

Minimizing the maximum average inconvenience (objective of mm-

fdcfp), is equivalent to:

min
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1
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Minimizing the total inconvenience (objective of t-fdcfp) is equiv-

alent to:
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B ALGORITHMS

We use Algorithm 3 to calculate the initial feasible solution for our

heuristic search method.

Algorithm 3: Calculate Initial Convergent Route Set

Input: Road Network Graph: G
Output: A Convergent Route set

1 Add a sink node 𝑣𝑠𝑖𝑛𝑘 to G
2 Add edges 𝑒 (𝑣, 𝑣𝑠𝑖𝑛𝑘 ) to G,∀𝑣 ∈ S with 𝑇𝑒 = 0

3 Calculate shortest paths from all nodes 𝑣 ∈ N to 𝑣𝑠𝑖𝑛𝑘

4 convergent_routeset← Shortest paths from all nodes 𝑣 ∈ E
5 return convergent_routeset

We use Algorithm 4 to calculate the schedule that minimizes the

target objective using the initial route set.

Algorithm 4: Calculate Best Schedule for the Initial Route

Set

Input: Convergent Route set: routeset, model (4–11)

Output: Evacuation schedule: schedule

1 𝑚𝑜𝑑𝑒𝑙𝑙𝑝 ← Linear Program after fixing the binary variables

𝑥𝑒 in model (4–11) using routeset

2 schedule← Optimal solution of𝑚𝑜𝑑𝑒𝑙𝑙𝑝

3 return schedule

Figure 7:Harris County Problem Instance. Color of the source

nodes indicate their associated risk level.

C QUANTIFYING RISK

To quantify the risk 𝑟𝑘 associated with each source node 𝑘 ∈ E
due to potential hurricanes, we need accurate domain knowledge

that includes but is not limited to: (𝑖) geographical location, (𝑖𝑖)

elevation, (𝑖𝑖𝑖) flooding history, (𝑖𝑣) available road infrastructure, (𝑣)

number of residents and their demographics etc. Here, we provide

a simplified way of estimating risk level of a source node based

on the the following three assumptions: (𝑖) Locations closer to the

coastline face a higher level of risk than locations situated further

in-land, (𝑖𝑖) Locations that are closer to safe nodes face a lower level

of risk, and (𝑖𝑖𝑖) Locations that have a history of high inundation

depth face a higher level of flood risk.

To estimate the flood risk associated with each source node,

we use flooding data from Hurricane Harvey (2017) that contains

inundation depth at different point locations of Harris County on

August 27-31 and September 2, 2017. We use the Inverse Distance

Weighted (IDW) interpolation method to estimate the inundation

depth at the source locations. Let 𝑑𝑘𝑓 denote the estimated depth at

source 𝑘 . Also, let 𝑑𝑘𝑐 and 𝑑𝑘𝑠 denote the distance to the coast line,

and the distance to the nearest safe node from source 𝑘 respectively.

To calculate the risk level, first we normalize each of the three

features individually so that the maximal value of each feature (over

the source locations) is 1. Let the normalized values of 𝑑𝑘 𝑓 , 𝑑𝑘𝑐 ,

and 𝑑𝑘𝑠 be denoted by
ˆ𝑑𝑘 𝑓 ,

ˆ𝑑𝑘𝑐 , and
ˆ𝑑𝑘𝑠 respectively. Then we use

Equation (12) to calculate the risk level.

𝑟𝑘 =

ˆ𝑑𝑘 𝑓
ˆ𝑑𝑘𝑠

ˆ𝑑𝑘𝑐

(12)

Finally, we apply the same normalization process on the calcu-

lated risk values. This gives us a comparison of the source locations

in terms of how much risk is associated with each of them accord-

ing to our assumptions. A visualization of the risk level associated

with the sources in our problem instance is shown in Figure 7.

Here, Red and yellow circles denote high and low risk source nodes

respectively.
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