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ABSTRACT

Evacuation planning is an essential part of disaster management
where the goal is to relocate people in a safe and orderly manner.
Existing research has shown that such problems are hard to ap-
proximate and current methods are difficult to scale to real-life
applications. We introduce a notion of fairness and two related ob-
jectives while studying evacuation planning, namely: minimizing
maximum inconvenience and minimizing average inconvenience.
We show that both problems are not just NP-hard to solve exactly,
but in fact are NP-hard to approximate. On the positive side, we
present a heuristic optimization method MIP-LNS, based on the
well-known Large Neighborhood Search framework, that can find
good approximate solutions in reasonable amount of time. We also
consider a multi-objective problem where the goal is to minimize
both objectives and solve it using MIP-LNS. We use real-world
road network and population data from Harris County in Houston,
Texas (a region that needed large-scale evacuations in the past) ,
and apply MIP-LNS to calculate evacuation plans for the area. We
compare the quality of the plans in terms of evacuation efficiency
and fairness. We find that the solutions to the multi-objective prob-
lem are superior in both of these aspects. We also perform statistical
tests to show that the solutions are significantly different.
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1 INTRODUCTION

Evacuation plans are essential to ensure the safety of people after
human-initiated or natural disasters such as hurricanes, tsunamis,
wildfires, bioterrorism, toxic chemical spills [5, 6, 9, 21, 32]. Emer-
gency management organizations have often made plans on best
ways to evacuate individuals during such disasters; see [5, 9, 21, 32].
During the past hurricane seasons, for example, many states such
as Florida, Texas, Louisiana, and Mississippi, executed large-scale
evacuations in affected regions. Examples of hurricanes when such
evacuations were carried out include Katrina & Rita (2005), Ike &
Gustav (2008), Irma & Harvey (2017), Laura (2020), and Ida (2021).
The recent category four hurricane, Ida caused a total of $75 billion
in damages and 55 deaths in the United States alone [6]. We are also
anticipating that the 2022 hurricane season will have above-normal
activity [31]. To give a sense of the scale of evacuations due to such
hurricanes, about 2.5 million individuals were evacuated from the
coastal areas of Texas [5] before the landfall of Hurricane Rita. It
is therefore crucial for cities or communities to have effective and
efficient evacuation plans in place, to be sustainable. Any such plan
needs to have two components: (i) Evacuation Routes, which are
paths that the evacuees will take to egress out of the area under
danger, and (ii) Evacuation Schedule which dictates when people
should leave from different regions. Unfortunately, optimizing over
both is often theoretically hard and computationally intractable in
a realistic scenario. Thus, it remains open to provide an approxima-
tion algorithm with a reasonable runtime given real-life data.

In addition to the efficiency aspect of an evacuation, it is also
important to reduce inequality among evacuees so that no person
faces any undue burden. For instance, assigning longer routes or
delaying the evacuation of certain evacuees to improve overall
evacuation efficiency could place extra burden on them. Moreover,
people living in low-lying areas incur a higher level of risk due to
potential flooding during hurricanes. It is, therefore, necessary to
evacuate them as early as possible. This might not happen if we
design evacuation plans by optimizing efficiency only.

Our Contributions As our first contribution, we define two ob-
jective functions to capture the notion of fairness in the context
of evacuation. We then formulate the optimization problems: Min-
Max Fair Dynamic Confluent Flow Problem (MM-FDCFP) and Total
Fair Dynamic Confluent Flow Problem (T-FDCFP). In MM-FDCFP, the
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goal is to determine a dynamic confluent flow of evacuees so that
the maximum average inconvenience cost incurred by evacuees at
different regions is minimized. In contrast, the aim in T-FDCFP is to
minimize total inconvenience cost of all evacuees. The problems
are formally defined in Section 3. We show in Section 4 that both
MM-FDCFP and T-FDCFP are hard to approximate. We also define the
Hybrid Fair Dynamic Confluent Flow Problem (H-FDCFP) where the
goal is to simultaneously optimize for both objectives.

As our second contribution, we present a Large Neighborhood
Search heuristic (MIP-LNS) for MM-FDCFP, T-FDCFP and H-FDCFP
where we use Mixed Integer Program (MIP) solvers in conjunc-
tion with combinatorial methods. MIP-LNS, designed based on the
Large Neighborhood Search (LNS) framework, starts with an initial
feasible solution and then uses MIP solvers to solve problems that
explore the neighborhood of the solution. It significantly reduces
the network, providing a tractable approximation to the problems.
It can also be adapted easily for other objective functions.

As our final contribution, we apply MIP-LNS on a real-world
situation: evacuating the 1.5 million households of Harris County
in Houston, Texas that is often affected by hurricanes (e.g. Rita, Ike,
Harvey, Laura). We use road network data from HERE maps [18] and
population data generated by Adiga et al. [3] to construct a realistic
problem instance. MIP-LNS was able to efficiently find solutions to
all three problems for this instance. We compare these solutions in
terms of evacuation completion time, average evacuation time, and
the fairness objectives. We observe that the MM-FDCFP objective
ensures the inconvenience cost at all the regions to be small but
resulting evacuation completion time is high. In contrast, the T-
FDCFP objective induces a lower evacuation completion time but
at the expense of high inconvenience cost at some regions. By
optimizing for both in H-FDCFP, we were able to find solutions that
have low inconvenience cost and low evacuation completion time.

2 RELATED WORK

Researchers have approached the evacuation planning problem
primarily with a focus on efficiency. Hamacher and Tjandra [16]
formulated it as a dynamic network flow optimization problem
and used mathematical optimization methods to solve it. However,
the computational cost of their proposed method was prohibitively
expensive. This led to several heuristic methods [20, 23, 29] that
provide unbounded suboptimal solutions. However, these methods
are designed to solve the routing problem only and they either
do not consider the scheduling problem at all or propose simple
schemes such as letting evacuees leave at a constant rate. Even
and Pillac et al. [10], and Romanski and Van Hentenryck et al. [28]
formulated the problem as Mixed Integer Programs and proposed
optimization techniques to find (bounded- sub)optimal solutions.
However, their proposed techniques are not scalable enough to
handle city or county-scale evacuation planning problems. A com-
prehensive review of existing works on evacuation planning and
management can be found in the survey paper by Bayram [4].
The use of convergent evacuation routes has been explored in
the literature [10, 15, 17, 28], where all evacuees coming to an
intersection follow the same path afterwards. This is also known
as confluent flow [7]. Golin et al. [12] investigated the single-sink
confluent quickest flow problem where the goal is minimizing the
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time required to send supplies from sources to a single sink. They
showed that the problem cannot be approximated in polynomial
time within a logarithmic approximation factor.

Compared to the existing research works on efficient evacuation
planning, there are few works that have considered fairness. Aalami
and Kattan [1, 2] approached the problem of fair trip planning in
the context of short-notice and transit-based emergency evacuation.
Their proposed method aims to allocate resources such as fleet of
transit vehicles and shelters to different regions in a fair manner.
In contrast, we consider the planning problem where evacuees
use their own personal vehicle and our goal is to prescribe them
evacuation routes and schedule. Evacuation by personal vehicles
was considered by Yan and Liu et al. [33], and Oh and Yu et al. [25].
Yan and Liu et al. [33] defined a risk associated with each location
by looking at its distance from a hazard and combined it with the
efficiency objective of total evacuation time. Oh and Yu et al. [25]
also considered the same notion of risk and defined the ‘suffering’
of each evacuee based on their risk level and required time to reach
safety. The authors evaluated the fairness of an evacuation plan
by looking at how equally the evacuees suffered and quantified it
using the Gini Coefficient. In contrast to these works, we define an
inconvenience cost for each evacuee that considers the risk level
and the inconvenience caused by the length and congestion on the
route. Minimizing inconvenience, instead of time to reach safety, is
important because an evacuee may be situated far away from safe
locations and therefore naturally need longer time to reach safety.
We formally define the inconvenience of an evacuee in Section 3.

Heuristic search methods are generally applied to problems that
are computationally intractable, to find good solutions in a rea-
sonable amount of time. The Large Neighborhood Search (LNS)
framework [30] has been successfully applied to various hard combi-
natorial optimization problems in the literature [26]. Very recently,
Li et al. [22] proposed MAPF-LNS, where the LNS framework was
used to find solutions for the Multi-Agent Path Finding Problem.
Due to the hardness of the evacuation planning problem (Section 4),
we have also designed our algorithm based on the LNS framework.

3 PROBLEM FORMULATION

In this section, we introduce some preliminary terms that we use in
our problem formulation. Then we define two objective functions
to capture the notion of fairness in the context of evacuations. This
allows us to formally define the three optimization problems: Mmm-
FDCFP, T-FDCFP, and H-FDCFP. Next, we describe how we construct
and use time expanded graphs to model the flow of evacuees over
time using a sample problem instance. Finally, we present Mixed
Integer Program (MIP) formulations of MM-FDCFP and T-FDCFP.

Definition 3.1. A road network is a directed graph G = (N, A)
where every edge e € A has (i) a capacity ce, representing the
number of vehicles that can enter the edge at a given time and (i1)
a travel time T, representing the time it takes to traverse the edge.

Definition 3.2. Given a road network, a single dynamic flow is
a flow f along a single path and timestamps ay, representing the
arrival time of the flow at vertex v, that obeys the travel times. In
other words, ay — ay > Typ. A valid dynamic flow is a collection of
single dynamic flows where no edge at any point in time exceeds
its edge capacity.



Incorporating Fairness in Large-scale Evacuation Planning

Definition 3.3. An evacuation network is a road network that
specifies £, S, 7 C N, representing a set of source, safe and transit
nodes respectively. Furthermore, for each source node k € &, let
W(k) and di represent the set of evacuees and the number of
evacuees at source k respectively.

For the purpose of scheduling an evacuation, we observe that
once an evacuee has left their home, it is difficult for them to pause
until they reach their desired destination. We also assume that
people from the same location evacuate to the same destination.
Similarly, we assume that if two evacuation routes meet, they should
both be directed to continue to the same location.

Definition 3.4. Given an evacuation network, we say a valid

dynamic flow is an evacuation schedule if the following are satisfied:

e all evacuees end up at some safe node,

e no single dynamic flow has any intermediary wait-time (i.e. a, —
ay = Ty and,

e the underlying flow (without considering time) is confluent,
where if two single dynamic flows use the same vertex (possibly
at different times), their underlying path afterwards is identical.

In order to define the objective functions, we introduce a notion
of fairness based on the idea of risk and inconvenience.

Due to various natural factors such as proximity to shelter, eleva-
tion, etc., it is very natural for different locations to have different
levels of risk and thus different urgency to evacuate. Thus, it is
reasonable to incorporate the risk ry for source node k.

Now, let 73 be the average evacuation time of evacuees at source
k, if they were the only evacuees in the network and they followed
the quickest path [8] to safety. Let t; be the actual evacuation time
of evacuee i € W (k) for a given evacuation schedule. Then, the
inconvenience cost (s;) of evacuee i, in this schedule, is defined as:

si = rjc(ti — ¢ ¢Y)

Since all evacuees from the same location needs to evacuate
to the same safe spot, it is natural to consider them as a collec-
tive and use their average inconvenience as a measure of the ef-
fectiveness of the schedule for that location. Then, two natural
objectives arise, (i) minimizing the worst average inconvenience:

min {manea i Yiew (k) si} or (ii) minimizing the total inconve-

nience: min {Zkea Z,—ew(k) s,-},
Minimizing the max average inconvenience is equivalent to:

. T
min { max — L | — etk (2)
kes di \ .
ieW(k)
Minimizing the total inconvenience is equivalent to:
min Z Ik Z ti (3)

ke& ieW(k)
Detailed derivations are provided in Appendix A. Now, we can

formally define our two problems.

Problem 1. Min-Max Fair Dynamic Confluent Flow Problem (Mm-
FDCFP). Given an evacuation network, let Tp,4x represent an upper
bound on evacuation time. Find an evacuation schedule such that
all evacuees arrive at some safe node before time Tj;,qx While mini-

P T
mizing maxy g d—’; (ZieW(k) ti) — Tk Tk
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(1,2)

(a) Sample Evacuation Network.
Edges are labeled with travel
time and flow capacity respec-
tively. Source, safe and transit
nodes are denoted by squares,
triangles, and circles respec-
tively. Source nodes are labeled
with number of evacuees and
risk level respectively.

(b) Time Expanded Graph (TEG)
for the Sample Network. Edges
are labeled with capacity. Con-
struction of this TEG sets an up-
per bound of 3 time units for
evacuation completion.

Figure 1: Sample Problem Instance

Problem 2. Total Fair Dynamic Confluent Flow Problem (T-FDCFP).
Given an evacuation network, let Tp,qx represent an upper bound
on evacuation time. Find an evacuation schedule such that all evac-
uees arrive at some safe node before time T, 4x While minimizing

2ke& Tk Liew (k) ti-

Additionally, we define the following problem where we optimize
for both objectives:

Problem 3. Hybrid Fair Dynamic Confluent Flow Problem (u-
FDCFP). Given an evacuation network, let Tp,4x represent an upper
bound on evacuation time. Find an evacuation schedule such that all
evacuees arrive at some safe node before time Tj;,qx While minimiz-

ing both maxgeg ¢ (ZieW(k) ti) =1t and Ypeg Tk Diew (k) bi-

To capture the flow of the evacuees over time, we use a time
expanded graph (TEG) denoted by G* = (N* = EXUTX¥US*, A¥).
To build it, we first fix a time horizon 9 and discretize the temporal
domain into discrete timesteps of equal length. Then we create
copies of each node at each timestep within H. After that, for each
edge e(u,v) in the road network, we create edges in the TEG as
et (ug, vp41,) for each t < H — T, where the edges e; have the same
flow capacity as e. Finally, we add a super sink node v; that connects
to the nodes u; for eachu € S and each t < H.

A sample evacuation network and its corresponding TEG with
time horizon H = 3 are shown in Figure (1a-1b). The source, safe
and transit nodes are denoted by squares, triangles, and circles
respectively. In the TEG, there may be some nodes that are (i) not
reachable from the source nodes, or (i) no safe node can be reached
from these nodes within the time horizon. These nodes are greyed
out in Figure 1b.

The optimal solution of MM-FDCFP for this sample problem in-
stance is to use the routes 0 — 2 — A from source node 0 and
1 — 2 — A from source node 1, where the evacuee at source node
0 and 1 leave at timestep 1 and 0 respectively. Letting the evacuee
from source node 1 leave first is better because they face a higher
level of risk than the evacuee at source node 0. T-FDCFP and H-FDCFP
have the same optimal solution.
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3.1 Mixed Integer Program Model

We formulate MM-FDCFP and T-FDCFP as Mixed Integer Programs
(MIPs). In our formulation, we use two types of variables: (i) Binary
variable x.,Ve € A, which will be equal to one if and only if
the edge e is used for evacuation. Otherwise, it will be zero. (ii)
Continuous variable ¢ ., Vk € &, e € A*, which denotes the flow
of evacuees on edge e from source node k.

MM-FDCFP or T-FDCFP Obj 4)
s.t. Z Xe =1 Vke & (5)
eed* (k)
Z xe <1 ieT  (6)
eed* (i)

Vke&  (7)

Z Pre, = di

ecd* (k) t<H

Z ¢k,e: Z ¢k,e

Vie N*\ {o} ®

e€d (i) eed* (i)

D B < xece, Vee At<H  (9)
ke&

Pke 20 Vke&ecAX  (10)
xe € {0,1} Ve € A (11)

The MIP formulation of MM-FDCFP as well as T-FDCFP is given
by (4-11) when used with the corresponding objective function. To
solve H-FDCFP we use a hierarchical approach that is described in
Section 5.2. The objective and constraints of the above MIP model
are explained in Table 1. The constraint that evacuation completion
time needs to be less than the given upper bound is implicit in the
model, as we set the time horizon of the TEG to this upper bound.

Explanation

Objective (4) The MM-FDCFP or the T-FDCFP objective.

Constraint (5) Ensures that there is only one outgoing edge

from each evacuation node.

Ensures that at each transit node, there is at
most one outgoing edge. This is necessary for
convergent routes.

Constraint (6)

Constraint (7) Ensures that the total flow coming out of every
evacuation node is equal to the number of evac-

uees at the corresponding node.

Constraint (8) Flow conservation constraint, incoming flow
equals outgoing flow. 6~ (i) and 57 (i) denote
the set of incoming and outgoing edges to/from

node i, respectively.

Constraint (9) Flow capacity constraint: total flow on an edge
will not exceed its capacity. Also, flows are only

allowed on assigned edges.

Flow variables are continuous and non-
negative.

Constraint (10)

Constraint (11)  Edge assignment variables are binary.

Table 1: Model (4-11) Explanation
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4 INAPPROXIMABILITY RESULTS

In this section, we show that our problems, even with one safe node
is hard to approximate.

THEOREM 1. Given an arbitrarily large evacuee size of M, it is NP-
hard to approximate MM-FDCFP and T-FDCFP to a factor of O(M/n)
where M is the size of the total population, even when there are only
two sources and one safe node.

Since these problems are closely related to the single-sink Con-
fluent Quickest Flow Problem in [12], the proofs of their hardness
are also very similar. The main difference is in its analysis since the
objective of the problems differ. The hardness result relies on the
NP-hardness of the capacitated version Two Distinct Path Problem.

Problem 4 (Two Distinct Path Problem). Let G be a graph with
two sources x1, x2 and two sinks yj, yo. Every edge is labelled with
either 1 or 2. Determine if there exists two edge-disjoint paths P;, Py
such that P; is a path from x; to y; for i = 1,2 and P, only uses
edges with label 2 (P; can use any edge).

The above problem is known to be NP-hard [14]. Other varia-
tions of the problem such as uncapacitated, undirected/directed,
edge/node-disjoint paths are also known to be hard (see e.g. [11],
[24] and [27]). The proof of hardness for our two problems are very
similar. Thus, we only provide the proofin the context of MM-FDCFP.

Proor oF THEOREM 1. Given an instance 7 of the Two Disjoint
Path Problem, consider constructing the following graph G where
we attach safe node t to yj, y2 with an edge of capacity 1, 2 respec-
tively. For i = 1, 2, we also add a source s; and attach it to x; with
an edge of capacity of i. Every edge with label i also has capacity
i. Sources s; has M * i evacuees for some large value of M, result-
ing in a total of 3M evacuees. Both sources have a risk factor of 1.
Each edge has a travel time of 1. The upperbound completion time
Tinax is set to be M2n. This ensures that the problem has a feasible
solution, otherwise, it is futile to provide any approximations. It
also follows from construction that for certain choices of Ty, 4y, the
problem is equivalent to the Two-Disjoint Path Problem, and thus
hard to determine feasibility.

First, consider the case where there exists two disjoint paths in
I . To upperbound the inconvenience cost at source i, we need to
upperbound its average evacuation time in an optimal schedule and
lowerbound the average evacuation time if the source i is the only
source in the network. For the first upperbound, consider a valid
schedule that sends i evacuees at every time step, where the last
group of people leaves their sources at time M. Since each path has
length at most M +n ~ M, the i evacuee that left source s; at time k
is guaranteed to arrive by time k + M. On average, the arrival time
of the evacuees from source s; is at most (M +n) /2. If source i is the
only source in the network, since the first edge incident to s; has
capacity i, it takes at least M rounds to finish evacuating the people
at its location. This results in an average of at least M/2. Therefore,
the maximum inconvenience cost is at most (M+n)/2—M/2 < n/2.

Now, consider the instance where 7 does not have two disjoint
paths. To lowerbound the average inconvenience at source i, we
need to lowerbound its average evacuation time in a schedule and
upperbound the average time if it was the only source. Consider the
two paths Pj, Py in a solution to MM-FDCFP in G. If Py, P, intersects
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before ¢, since it is a confluent flow, the edge following their node
of intersection is a single-edge cut that separates the sources from
the sink. If the two paths only intersects at ¢, since we are in a
NO-instance of 7, P, must have used an edge of capacity 1. Then,
deleting that edge along with s1x; also separates the sources from
the sink. Note that in both cases, the cut has capacity at most 2. Then,
at every time step, at most 2 evacuees can cross the cut. Thus, for all
3M evacuees to cross the cut, it takes at least 3M/2 time steps. Due
to this bottleneck, it follows that the smallest total evacuation time
is at least Ziﬁ/ 2
at least 3M /4. Let Ty, T, be the average evacuation time for source
s1, s respectively. It follows that the overall average of all evacuees
is at most max(Ty, Tz), providing a lowerbound to their average
evacuation time in the schedule. If source i is the only source in the
network, note that there exists a path from s, to ¢ that only uses
path of capacity 2 otherwise 7 is a hard instance. Therefore, s; can
evacuate its population along the path in M rounds, achieving an
average completion time of at most (M+n) /2. Similarly for s1, there
exist a path (of any label) to t, giving it an average evacuation time of
at most (M) /2. Since T, T averages to 3M/4, the one with a larger
value has an inconvenience cost of at least 3M/4 — M/2 = M /4.
Since the YES and NO instances cause the objective value of
MM-FDCFP to have a gap of O(M/n) our result follows. O

k > 9M? /4, giving an average evacuation time of

5 HEURISTIC OPTIMIZATION

As shown in Section 4, solving MM-FDCFP and the T-FDCFP are both
computationally hard. For this reason, we present the heuristic
search method MIP-LNS where we use MIP solvers in conjunction
with combinatorial methods.

First, we calculate an initial feasible solution in two steps: (i)
calculating an initial convergent route set, and (ii) calculating the
schedule that minimizes the target objective using the just calcu-
lated initial route set (Appendix B). To calculate the initial route set,
we take the shortest path from each source to its nearest safe node
by road. To calculate the schedule, we use the just calculated route
set to fix the binary variables x, in model (4-11). This gives us a
linear program that can be solved optimally to get the schedule.

Next, we start searching for better solutions in the neighborhood
of the solution at hand using MIP-LNS (Algorithm 1). It runs for
n iterations, where in each iteration, we select ¢ = (100 — p)% of
source locations uniformly at random and keep their routes fixed.
This reduces the size of the MIP as we have fixed values for a
subset of the variables. We then optimize this ‘reduced’ MIP model
using the Gurobi [13] MIP solver. Essentially, we are searching for
a better solution in the neighborhood where the selected g% routes
are already decided. Any solution found in the process will also be a
feasible solution for the original problem. If we find a better solution
with an evacuation completion time T that is less than the current
time horizon, T, then we also update the model by setting the time
horizon to T”. When resetting the time horizon, we (i) remove edges
in the time expanded graph whose start or end node have a time
stamp greater than T’, and (ii) we prune the TEG by removing
nodes that are unreachable from the evacuation nodes, and nodes
from which none of the safe nodes can be reached within time T’.
This pruning process reduces the number of variables in the MIP
model and simplifies the constraints. At the end of each iteration,
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Algorithm 1: MIP-LNS Method

Input: Initial solution: sol, Time Expanded Graph: TEG,
Time Horizon: T, Model to optimize: model, Percent
of routes to update in the first iteration: p, Number
of Iterations: n

Output: Solution of model

for 1tondo

-

2 Select (100-p)% of the source locations uniformly at
random. Let their set be S.
3 Fix the routes from the source locations in S. Set x, = 1
if e is on any of the routes from S in sol.
4 sol « Solution of reduced model from a MIP solver
5 T’ « evacuation completion time for solution sol
6 if T — T’ > +threshold then
7 Update the model by setting the time horizon to T”.
Prune TEG and model by removing:
8 (i) nodes that are unreachable from the evacuation
nodes within time horizon T’, and
9 (ii) nodes from which none of the safe nodes can be
reached within time horizon T’
10 Increase p

11 return sol

we increase the value of p. Note that, when p = 100, we will be
solving the original optimization problem. In our experiments, we
set the initial value of p to 50 and then gradually increased it to 65.

When solving the reduced problem in each iteration (line 4), we
use (i) a time limit, and (ii) a parameter threshold_gap to decide
when to stop. MIP solvers keep track of an upper bound (Zy) (pro-
vided by the current best solution) and a lower bound (Z ) (obtained
by solving relaxed LP problems) of the objective value. We stop the
optimization when the relative gap between these two becomes
smaller than the threshold_gap. In our experiments, we set this
threshold to 10%. In some iterations, it may happen that the current
solution is already within this threshold, in that case, the algorithm
will simply continue to the next iteration.

5.1 Selection of Sources

In MIP-LNS, instead of selecting source locations (to optimize over)
using a uniform random distribution (Algorithm 1 line 2), we can
assign weights to source locations according to the inconvenience
cost of evacuees at those locations and then use a probability distri-
bution calculated based on these values.

Algorithm 2: Heuristic Selection

Input: Current solution: sol, Number of Sources to
Optimize Over: m
Output: Set of Sources to Optimize Over Sop;
1 W « List containing average inconvenience of evacuees at
the sources for sol
2 P < Normalized W so that the values sum up to 1
3 Sopt < Select m sources from the distribution P at random
without replacement
4 return Spp;
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Algorithm 2 shows the process in detail. First, we calculate the
average inconvenience at each of the source locations for the cur-
rent solution. Then, we normalize the values so that they sum up to
one and represent a probability distribution. Finally, we randomly
pick the required number of sources from this distribution. The
motivation for using this selection process is to focus on the source
locations that currently have high inconvenience cost.

5.2 Solving H-FDCFP with MIP-LNS

To solve H-FDCFP, we can take a linear combination of the mm-
FDCFP objective and the T-FDCFP objective and then optimize the
new objective using MIP-LNS. An alternative method is to use a
hierarchical approach of solving multi-objective problems. Here,
each objective is assigned a priority and the objectives are optimized
in a decreasing order of priority.

As our goal in this paper is to focus on the fairness aspect of
evacuation, we used the hierarchical approach to solve H-FDCFP.
Specifically, we define the MM-FDCFP objective (Equation 2) as the
primary objective (i.e high priority) as it ensures that the maximum
inconvenience over the sources is minimized. We then use the T-
FDCFP objective (Equation 3) as the secondary (i.e. lower priority)
objective. During the optimization process, in each iteration of MIP-
LNS, we first optimize the ‘reduced’ MIP for the primary objective.
Once the optimality gap for the primary objective becomes less
than a threshold or a predefined time limit is exceeded, we start
optimizing for the second objective. At this stage, we do not allow
any degradation in the primary objective.

6 EXPERIMENT RESULTS

In this section, we present details of our problem instance, its MIP
formulation, and a pruning technique that we used to reduce the
MIP size. Then, we provide analyses of the algorithm execution and
the solutions to MM-FDCFP, T-FDCFP and H-FDCFP.

6.1 Problem Instance

We use data from HERE maps [18] to construct a road network
for our study area Harris County, Houston, Texas. The network
contains roads of five (1 to 5) different function classes. It has a
hierarchical structure, where lower-level roads (function class 3/4)
are connected to higher-level roads (function class 1/2) through
entrance and exit ramps. In our experiments, we consider the nodes
(of the road network) which connect and lead from function class
3/4 roads to function class 1/2 roads as the source nodes. We then
consider the problem of (i) when should evacuees enter the function
class 1/2 roads and (ii) how to route them through the function class
1/2 roads to safety. We use the synthetic population data of Adiga
et al. [3] to extract the location of each household in the study area.
We consider that one vehicle is used per household for evacuation.
We fix the nearest exit ramp to each household as their source. As
safe location, we select eight locations at the periphery of Harris
County, which are on major roads. A visualization of the problem
instance is presented in Figure 2. Additional details regarding the
final network and the study area are provided in Table 2.
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Figure 2: Harris County Problem Instance.

# Nodes in the road network 927
# Edges in the road network 1339
# Source locations 109
Number of Households in the study area ~ 1.5M

Table 2: Harris County Dataset Summary

6.2 Pruning the MIP Model

The Time expanded graph for our problem instance, with a time
unit of five minutes and a time horizon of 15 hours, contains 135,596
nodes and 207,867 edges. This makes the problem about four times
as large as previously considered problems.

Property Before Pruning  After Pruning
# Binary Variables 1339 1339
# Continuous Variables ~ 22.7M ~ 14.5M
# Constraints ~ 15M ~ 10M

Table 3: Properties of the MIP for our problem instance before
and after pruning. The number of constraints goes down by
33.33% and the number of continuous variables by about 36%.

In our MIP formulation (Section 3.1), we define a flow variable
for flow coming from each source to each edge of the TEG. However,
not all edges e € A are reachable from a source node. For example,
in our sample problem (Figure 1a) the edge (1, 2) is not reachable
from source 0 and therefore a flow from source 0 can never reach
any copies of this edge in the TEG. Based on this observation, we
discard the unnecessary flow variables which reduces the number
of variables and the number of constraints as shown in (Table 3).

6.3 Analyses of Results

In our formulation of MM-FDCFP and T-FDCFP, we consider different
levels of risk associated with source locations. However, estimating
these risks requires accurate domain knowledge (Appendix C). For
this reason, in our experiments we set the risk values of all source
locations to one. This is equivalent to assuming that all the sources
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different iterations of MIP-LNS. A decrease in value indicates
improvement of the objective.

face the same level of risk. However, our methodology is capable
of using this information effectively when provided.

We performed all our experiments and subsequent analyses on
a high-performance computing cluster, with 128GB RAM and 24
CPU cores allocated to our tasks. We tried two different methods to
solve MM-FDCFP and T-FDCFP for our problem instance. These are:

(1) Solve model (4-11) directly using the Gurobi MIP solver
(2) Apply MIP-LNS

6.3.1 Gurobi. In this experiment, we used Gurobi [13] to directly
solve model (4-11) for our problem instance. However, Gurobi
reported that it needs about 700GB of memory to optimize the
model, which exceeds our memory capacity. Note that, this large
amount of memory is needed for the internal data structures Gurobi
uses during the optimization process.

6.3.2 MIP-LNS. We ran MIP-LNS to solve MM-FDCFP, T-FDCFP and
also H-FDCFP (as described in Section 5.2). We used two different
selection methods for choosing the sources to optimize over in
each iteration of MIP-LNS, the random selection method and the
heuristic selection method (Algorithm 2). Furthermore, as we have
randomness in both selection procedures, we ran ten experiment
runs using different random seeds, for each problem and each se-
lection method. In each run of MIP-LNS, we performed twenty
iterations (Algorithm 1 line 1).

First, we look at the execution of a single run of MIP-LNS for mm-
FDCFP, T-FDCFP and H-FDCFP where we used the heuristic selection
method. Figure (3a) shows the MM-FDCFP objective value of the
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Figure 5: Histogram showing the distribution of average in-
convenience cost at sources for the final solutions of Mm-
FDCFP, T-FDCFP and H-FDCFP. Some sources in T-FDCFP solu-
tion have high average inconvenience cost (last three orange
bars on the right). However, the maximum average incon-
venience cost in MM-FDCFP and H-FDCFP solutions is nicely
bounded (second blue and green bar from the left).

solution in hand at different iterations of MIP-LNS. We observe
improvements of the objective value over the iterations starting
from 5.45 hours for the initial solution and ending at a final value
of 1.8 hours. Figure (3b) shows the average inconvenience cost
of all evacuees (which is proportional to the T-FDCFP objective)
over the iterations. Here, we start with a solution with average
inconvenience of 1.7 hours and at the end find a solution with
average inconvenience of 0.76 hours.

Figure 4 shows the primary and secondary objective values of
H-FDCFP at different iterations of MIP-LNS. As we use a hierar-
chical approach, we see that the primary objective value steadily
decreases over the iterations. However, as seen in some iterations,
the secondary objective value can degrade. This is because, in the
hierarchical approach, even if a new solution is worse than the old
one in terms of the secondary objective, we accept it if it is better
than the old one in terms of the primary objective.

Figure (5) shows the histogram of average inconvenience cost at
the sources for the final solution of MM-FDCFP, T-FDCFP and H-FDCFP.
We observe from this figure that the average inconvenience cost at
several source locations is quite high (highest value of 4.83 hours)
for the T-FDCFP solution. For the MM-FDCFP and H-FDCFP solutions,
on the other hand, the maximum value is nicely bounded at 1.8 and
1.69 hours respectively. This indicates that in terms of minimizing
maximum average inconvenience, MM-FDCFP and H-FDCFP solutions
clearly outperform the T-FDCFP solution.

So far, we have only looked at one experiment run of the three
problems. To do a complete comparison, we now look at all the
solutions found from the ten experiment runs for each problem
and each source selection procedure. To assess the quality of the
solutions, we use the following three metrics: (i) Evacuation Com-
pletion Time, (ii) Average Evacuation Time over all evacuees, and
(iif) Maximum Average Inconvenience over all sources. Figure 6
shows a comparison of the solutions in terms of the three metrics
using boxplots. Our observations from these results are:

(1) From Figure (6a), all ten MM-FDCFP solutions have an evacuation
completion time of 15 hours which is the time horizon we have
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Figure 6: Box-plots showing comparison of MM-FDCFP, T-FDCFP and H-FDCFP solutions when using Random and Heuristic
selection. Ten experiment runs were performed in each configuration. The performance metrics used are evacuation completion
time, average evacuation time over all evacuees and maximum average inconvenience over all sources. H-FDCFP solutions
generally outperform the MM-FDCFP and the T-FDCFP solutions in terms of all three metrics. The Heuristic selection method, in
general, finds better solutions than the Random selection method in terms of the three metrics.

MM-FDCFP  T-FDCFP H-FDCFP
Random Selection 2.1 1.28 1.16
Heuristic Selection 2.98 2.21 3.69

Table 4: Average run-time (hours) of MIP-LNS for each prob-
lem and source selection procedure over ten experiment runs.

used. This indicates that optimizing MM-FDCFP objective does
not help in improving evacuation completion time.

(2) Although T-FDCFP solutions have lower evacuation completion
time and average evacuation time than MM-FDCFP solutions
(Figure 6a, 6b), the maximum average inconvenience cost over
the sources for these solutions can be very high (Figure 6c).

(3) H-FDCFP solutions have the good properties of both MM-FDCFP
and T-FDCFP solutions, outperforming both of them in general.

(4) Comparing the red boxplots to the blue boxplots in Figures
6a, 6b, 6¢, we observe that the solutions found by performing
heuristic selection generally have lower values for the three
metrics, compared to solutions found by random selection. How-
ever, as shown in Table 4, the better solutions found by using
heuristic selection comes at a cost of additional run time.

Finally, we performed statistical tests to examine if the solutions
found by solving the problems MM-FDCFP, T-FDCFP and H-FDCFP,
using MIP-LNS and heuristic selection, are significantly different in
terms of the above three performance metrics. The motivation for
this experiment is to investigate whether optimizing for different
objective functions (or their combination) provides us significantly
different solutions. To do the test accurately, we did twenty more ex-
periment runs (thirty in total), using the heuristic selection method,
for all three problems. Then we performed the Welch’s t-test, where
the null hypothesis is that the solutions of the three problems have
equal mean values for the different performance metrics. Table 5
shows the p-values from the test for each pair of problems and the
three metrics. We observe that all the p-values are quite small i.e.
smaller than 0.05. We therefore reject the null hypothesis, which
means the solutions of the different problems have significantly
different means for the three metrics.
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Evacuation Average Maximum Avg.
Completion  Evacuation Inconvenience
Time Time over Sources

MM-FDCFP 1.24e — 26 3.45e — 15 1.46e — 20

VS T-FDCFP

MM-FDCFP 6.06e — 29 1.71e — 17 1.87e — 09

VS H-FDCFP

T-FDCFP 3.79¢ — 13 0.0111 4.15e — 27

VS H-FDCFP

Table 5: p-values from Welch’s t-test for each pair of problems
and three metrics. All the p-values are smaller than 0.05,
which implies that the solutions of the different problems
have significantly different means for the three metrics.

7 CONCLUSION AND FUTURE PLANS

In this paper, we present an approach that uses the Large Neigh-
borhood Search framework in conjunction with mathematical pro-
gramming to find confluent routes and schedule for individuals
from multiple sources to multiple safe nodes in an urban region.
Our problem formulation accounts for fairness of the routes as-
signed as well as the overall time needed to evacuate. A notion of
risk is also considered in the objective function to acknowledge
that individual source nodes might have different levels of risk.
Using realistic networks and a hurricane scenario, we illustrate
the scalability and utility of our methods. In future works, we plan
to consider time varying risks associated with different locations.
A preliminary model for this purpose was proposed by Islam et
al. [19], we plan to incorporate it into our current formulation. We
also have plans to consider evacuation using public transportation
along with private vehicles and investigate notions of fairness in
such scenarios.
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A FAIRNESS OBJECTIVES

Minimizing the maximum average inconvenience (objective of Mm-
FDCFP), is equivalent to:
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Minimizing the total inconvenience (objective of T-FDCFP) is equiv-
alent to:
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B ALGORITHMS

We use Algorithm 3 to calculate the initial feasible solution for our
heuristic search method.

Algorithm 3: Calculate Initial Convergent Route Set
Input: Road Network Graph: G

Output: A Convergent Route set

Add a sink node vg;,; to G

Add edges e(v, vgjn) to G, Yo € Swith T, = 0
Calculate shortest paths from all nodes v € N to v,k

[

[N}

©w

convergent_routeset < Shortest paths from all nodesv € &

'S

3

return convergent_routeset

We use Algorithm 4 to calculate the schedule that minimizes the
target objective using the initial route set.

Algorithm 4: Calculate Best Schedule for the Initial Route
Set
Input: Convergent Route set: routeset, model (4-11)
Output: Evacuation schedule: schedule
1 model},, < Linear Program after fixing the binary variables
Xe in model (4-11) using routeset
2 schedule < Optimal solution of modely,

3 return schedule
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Figure 7: Harris County Problem Instance. Color of the source
nodes indicate their associated risk level.

C QUANTIFYING RISK

To quantify the risk rp associated with each source node k € &
due to potential hurricanes, we need accurate domain knowledge
that includes but is not limited to: (i) geographical location, (ii)
elevation, (iii) flooding history, (iv) available road infrastructure, (v)
number of residents and their demographics etc. Here, we provide
a simplified way of estimating risk level of a source node based
on the the following three assumptions: (i) Locations closer to the
coastline face a higher level of risk than locations situated further
in-land, (if) Locations that are closer to safe nodes face a lower level
of risk, and (iii) Locations that have a history of high inundation
depth face a higher level of flood risk.

To estimate the flood risk associated with each source node,
we use flooding data from Hurricane Harvey (2017) that contains
inundation depth at different point locations of Harris County on
August 27-31 and September 2, 2017. We use the Inverse Distance
Weighted (IDW) interpolation method to estimate the inundation
depth at the source locations. Let di ¢ denote the estimated depth at
source k. Also, let d. and di¢ denote the distance to the coast line,
and the distance to the nearest safe node from source k respectively.

To calculate the risk level, first we normalize each of the three
features individually so that the maximal value of each feature (over
the source locations) is 1. Let the normalized values of di s, d.,

and dj¢ be denoted by d;;f, d;;c, and d;;s respectively. Then we use
Equation (12) to calculate the risk level.

_ % fAdks (12)
dke

Finally, we apply the same normalization process on the calcu-
lated risk values. This gives us a comparison of the source locations
in terms of how much risk is associated with each of them accord-
ing to our assumptions. A visualization of the risk level associated
with the sources in our problem instance is shown in Figure 7.
Here, Red and yellow circles denote high and low risk source nodes

Tk

respectively.
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