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Raman-induced mode coupling in temporal waveguides formed by short solitons
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We study the propagation of optical pulses trapped inside a temporal waveguide formed by two solitons in a

dispersive nonlinear medium such as an optical fiber. The solitons are short enough that they decelerate as their

spectra shift continuously toward the red side because of intrapulse Raman scattering. We show that the shape

of a probe pulse trapped between the two solitons evolves in a periodic fashion, while its spectrum shifts toward

the blue side. We develop a coupled-mode theory showing that such changes occur because of mode coupling

induced by the deceleration of the short solitons, resulting in a curved waveguide. A simplified two-mode model

is used to introduce a single-parameter governing modal coupling and to find the condition under which coupling

becomes weak enough that the probe pulse blueshifts its spectrum without changes in its pulse shape.
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I. INTRODUCTION

The interaction of optical pulses with a temporal boundary

inside a dispersive medium has recently attracted considerable

attention [1–6]. A temporal boundary is formed when the

refractive index of the medium changes at a certain time. In

the context of photon acceleration in plasmas [2,3], changes

in the refractive index can be induced through an ionization

front that creates a moving boundary. Such a moving bound-

ary can also be produced using nonlinear optics. Sending a

strong pump pulse through an optical fiber creates a mov-

ing boundary via the optical Kerr effect [4–6]. When such a

boundary is formed inside a dispersive medium, a temporal

analog of reflection occurs when a weak probe pulse inter-

acts with the boundary [4]. When the index change is large

enough, the probe pulse is totally reflected at this bound-

ary, and its speed changes because of a large shift in its

wavelength. This phenomenon has also been studied as an

optical analog of the event horizon associated with a black

hole [7–11].

Two moving boundaries that are separated in time can form

a temporal waveguide that confines pulses to the time win-

dow created by the two boundaries [12]. Similar to a spatial

waveguide, such a temporal waveguide has a set of modes

with different shapes that propagate inside the temporal

waveguide without any distortion.

If a pump pulse is used to create a moving temporal bound-

ary within a nonlinear dispersive medium, its shape should

not change much with propagation. One way to realize this

is to ensure that the pump pulse propagates as a fundamental

soliton in that medium. In the case of optical fibers, stable

solitons form when pump pulses are not too short (width

>1 ps). The situation changes for femtosecond pump pulses

because several higher-order phenomena affect such pulses,
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the most important being the intrapulse Raman scattering

[13], which slows down the soliton by redshifting its spec-

trum continuously. Such solitons are called Raman solitons.

A probe pulse’s interaction with a Raman soliton has been

studied [14–16] and it was found that the probe pulse can be

trapped by the Raman soliton. There have also been studies

on trapping of weak pulses between two solitons, effectively

forming a temporal waveguide [17–20].

When two Raman solitons are created by a pair of short

identical pump pulses, separated in time by a fixed delay,

they form a temporal waveguide that is different from the

waveguides studied earlier [6]. Because of intrapulse Raman

scattering, both Raman solitons slow down identically, and the

temporal window associated with the waveguide shifts in time

continuously. In this paper, we study the evolution of a trapped

probe pulse in such a decelerating temporal waveguide. We

show that this type of temporal waveguide is analogous to a

spatial waveguide whose core is curved or bent. Similar to

the spatial case, the bending leads to coupling among differ-

ent modes of the waveguide. We show that a trapped probe

pulse undergoes periodic changes in its shape resulting from

mode coupling, while its spectrum blueshifts continuously to

ensure that its speed matches the speed of pump pulses. We

develop an analytic approach based on coupled-mode theory

and show that its predictions agree well with the numerical

results.

The paper is organized as follows: Sec. II introduces the

numerical model used to simulate the propagation of probe

pulses in a temporal waveguide formed by two Raman soli-

tons. Section III solves the coupled pump-probe equations

numerically and discusses the behavior of a probe pulse

trapped inside the waveguide. In Sec. IV, a noninertial frame

in which the waveguide appears stationary is introduced. Us-

ing this frame, a coupled-mode theory is developed in Sec. V.

This theory is used in Sec. VI to discuss the special case

in which only two low-order modes are coupled strongly.

A parameter indicative of the strength of mode coupling is
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introduced and the conditions under which mode coupling

becomes negligible and the probe pulse evolves without

changing its shape is found. The main conclusions are sum-

marized in Sec. VII.

II. PUMP-PROBE EQUATIONS

We consider a single-mode optical fiber as an example

of a dispersive nonlinear medium. The generalized nonlin-

ear Schrödinger equation is known to provide an excellent

model for propagation of short optical pulses in such a

medium [13]:

∂A

∂z
−

∑

m � 2

im+1

m!
βm

∂mA

∂tm

= iγ A(z, t )

∫ ∞

−∞
R(t ′)|A(z, t − t ′)|2dt ′. (1)

The electric field E (z, t ) is related to the slowly varying

envelope A(z, t ) as

E (z, t ) = 1
2
(A(z, t ) exp{i[β(ω1)z − ω1t]} + c.c.), (2)

where ω1 is the pump’s center frequency and β(ω1) is the

propagation constant at this frequency. The variable t is re-

lated to the actual time ta as t = ta − β1z and βm = dmβ/dωm

is the mth−order dispersion parameter of the fiber at the

frequency ω1. Also, γ is the nonlinear parameter and the

nonlinear response function [13],

R(t ) = (1 − fR)δ(t ) + fRhR(t ), (3)

includes the Raman response through hR(t ), and fR is its

fractional contribution to R(t ).

As discussed earlier, pump pulses need to propagate as

fundamental solitons, and their wavelength should lie in the

anomalous dispersion region of the fiber where β2 < 0. To

form a temporal waveguide, the probe-pulse’s group velocity

should be close to that of pump pulses [12]. Moreover, a

probe pulse is reflected only if its wavelength lies in the

region where β2 > 0. These two conditions imply that the

probe-pulse’s frequency ω2 should be on the opposite side of

the zero-dispersion wavelength of the fiber such that its speed

nearly matches that of the pump pulses. As an example, the

zero-dispersion wavelength of a standard single-mode fiber is

near 1310 nm. If we choose 1500 nm as the wavelength of

pump pulses, the wavelength of probe pulse should be near

1145 nm.

Since the spectra of such pump and probe pulses are widely

separated, it is reasonable to separate the envelopes of the

pump and the probe pulses using

A(z, t ) = A1(z, t ) + A2(z, t )ei(�βz−�ωt ), (4)

where �ω = ω2–ω1 and

�β = β(ω2) − β(ω1) − β1(ω1)�ω. (5)

We substitute this form of A(z, t ) into Eq. (1) and sepa-

rate the terms falling in two distinct spectral regions. This

allows us to obtain two coupled pump-probe equations in

the form

∂A1

∂z
−

∑

m � 2

im + 1

m!
βm1

∂mA1

∂tm

= iγ A1(1 − fR)(|A1|2 + 2|A2|2)

+ iγ fRA1

∫ ∞

−∞
hR(t ′)(|A1|2 + |A2|2)(z, t − t ′)dt ′, (6)

∂A2

∂z
−

∑

m � 2

im+1

m!
βm2

∂mA2

∂tm

= iγ A2(1 − fR)(|A2|2 + 2|A1|2)

+ iγ fRA2

∫ ∞

−∞
hR(t ′)(|A2 |2 + |A1|2)(z, t − t ′)dt ′, (7)

where we neglected the terms that lie outside the pump

and probe spectral regions. Such terms originate mostly from

four-wave mixing, and can be neglected when the underlying

phase-matching condition is not satisfied.

We solve the preceding coupled pump-probe equations

numerically with the split-step Fourier method [13]. In our

simulations, we used the following functional form for the

Raman response function [21]:

hR(t ) = (1 − fb)
τ 2

1 + τ 2
2

τ1τ
2
2

e−t/τ2 sin
t

τ1

+ fb

2τb − t

τ 2
b

e−t/τb,

(8)

with τ1 = 12.2 fs, τ2 = 32 fs, τb = 96 fs, fb = 0.21, and fR =
0.245.

III. NUMERICAL SIMULATIONS

We consider the situation where the probe pulse is located

in the middle of two identical pump pulses that form two

Raman solitons inside an optical fiber. Mathematically, we

solve the coupled pump-probe equation with the following

input at z = 0:

A1(0, t ) =
√

P1

[

sech

(

t − �T /2

T1

)

+ isech

(

t + �T /2

T1

)]

,

(9)

A2(0, t ) =
√

P2 exp

(

−
t2

2T2
2

)

, (10)

where �T is the separation between the two pump pulses

of width T1. Their peak power is chosen such that P1 =
|β21|/γ T 2

1 corresponds to a fundamental soliton. The 90◦

phase shift between the two pump pulses is introduced to

prevent any nonlinear interaction between them [13]. The

probe pulse has a Gaussian shape and its width T2 is chosen to

be considerably larger than that of pump pulses. In contrast,

peak power P2 of the probe is much smaller compared to that

of the pump pulses to prevent its influence on the pump pulse.

As a specific example, we choose T1 = 200 fs, T2 =
1 ps, and �T = 5 ps. The width of probe pulse approx-

imately matches the fundamental mode of the temporal

waveguide formed by two pump pulses. The values of dis-

persion parameters, β21 = −β22 = −13.4 ps2/km and β31 =
β32 = 0.07 ps3/km, correspond to a silica fiber pumped at

1500 nm. All dispersion terms higher than third order were
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FIG. 1. (a), (c) Temporal and (b), (d) spectral evolutions of pump

(top) and probe (bottom) pulses over a 1-km-long fiber. Probe pulse

is trapped within the temporal waveguide formed by two Raman

solitons. The intensity is plotted on a logarithmic (dB) scale.

neglected in our simulations. The nonlinear coefficient γ is 2

W km−1.

Figure 1 shows the temporal and spectral evolution of

the pump (top) and probe (bottom) pulses for a 1-km-long

fiber. As expected, the spectrum of pump pulses continuously

redshifts because of intrapulse Raman scattering. In the time

domain, the trajectory of pump pulses is bent in a parabolic

fashion because their deceleration caused by the spectral red-

shift produces a time delay varying as z2.

The evolution of the probe pulse in Fig. 1(c) shows clearly

that it is trapped within the temporal waveguide formed by

two solitons. In the absence of pump pulses, the probe’s trajec-

tory would be vertical, its spectrum would remain unchanged,

and its width would increase because of dispersion. When the

two pump pulses form a waveguide, the probe pulse is trapped

between them and is forced to decelerate with them. In the

spectral domain, the probe’s spectrum shifts toward higher

frequencies (a blueshift), and this shift is required for its speed

to decrease. An interesting feature seen in Fig. 1(d) is that,

although the pump’s spectrum redshifts linearly with distance,

the probe’s spectrum does not do so. It exhibits a periodic evo-

lution pattern in addition to the blueshift. In the time domain,

the probe pulse also changes its shape in a periodic fashion.

When the probe pulse collides with the soliton, it bounces

back and its spectrum is shifted. This is the temporal reflection

effect discussed in Ref. [4]. It can also be interpretated as

the Doppler effect in a dispersive system. To understand the

origin of these features, we develop a semianalytic approach

in the next section. It reveals that the decelerating temporal

waveguide is the temporal analog of a bent (or curved) spatial

waveguide. The periodic spatial and temporal features result

in both cases from coupling between the waveguide’s modes

induced by such bending.

IV. NONINERTIAL FRAME

The pump equation in Eq. (6) becomes decoupled from

the probe equation when we neglect the terms containing

|A2|2 for weak probe pulses. If we also neglect the third-

and higher-order dispersion terms, the pump equation can

be solved approximately for pump pulses forming solitons

[13]. Even though the soliton’s shape does not change, its

frequency and position change such that the solution has the

form

A1(z, t ) =
√

P1

[

sech

(

t − �T /2 − qp

T1

)

+ isech

(

t + �T /2 − qp

T1

)]

e−i	pt+iφp, (11)

where the Raman-induced frequency and temporal shifts are

given by

	p = −
8TR|β21|z

15T 4
1

, qp =
4TRβ2

21z2

15T 4
1

= az2. (12)

The parameter TR has a value of about 3 fs found from the

Raman response function [13]. The coefficient a, introduced

using qp = az2, sets the quadratic delay of the pump pulse.

The phase φp is not relevant for the following discussion.

Given the form in Eq. (11), it is beneficial to work in a

noninertial frame in which the trajectory of pump solitons

does not shift. This is done through the transformation

τ = t − az2. (13)

In this frame, the temporal shape of each pump-pulse

power does not change with z, i.e., |A1(z, τ )|2 = |A1(0, τ )|2.
However, a new term appears in the probe Eq. (7):

∂A2

∂z
− 2az

∂A2

∂τ
+

i

2
β22

∂2A2

∂τ 2
= ib(τ )A2, (14)

where we kept only the dominant m = 2 dispersion term and

defined b(τ ) as

b(τ ) = 2γ (1 − fR)|A1(τ )|2 + γ fR

∫ ∞

−∞
hR(τ ′)|A1(τ − τ ′)|2

× dτ ′ ≈ γ (2 − fR)|A1(τ )|2. (15)

The approximate form of b(τ ) holds for probe pulses con-

siderably wider than pump pulses.

We use Eq. (14) in the next section to find the waveguide

modes and to study the Raman-induced coupling among them.

If the second term containing the parameter a is absent in this

equation, its form becomes identical to the 1D Schrödinger

equation, with z playing the role of time and b(τ ) acting as

the potential created by the pump pulses. The term containing

a results from the use of a noninertial frame and its depen-

dence on z makes the Hamiltonian “time dependent.” It per-

turbs a temporal waveguide such that its modes keep changing

with z.

V. COUPLED-MODE EQUATIONS

We write Eq. (14) in the form of a Schrödinger equation as

−i
∂A2

∂z
= Ĥ (z)A2(z, τ ), (16)

where the Hamiltonian is given by

Ĥ (z) = −
β22

2

∂2

∂τ 2
− 2iaz

∂

∂τ
+ b(τ ). (17)
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FIG. 2. First two modes of the temporal waveguide formed by

two solitons with T1 = 0.2 ps and �T = 5 ps.

Recalling that z plays the role of time and τ that of a spatial

coordinate, Eq. (16) shows that we are dealing with a time-

dependent Hamiltonian. We can find the eigenmodes of this

Hamiltonian for any value of z, but they will evolve with z.

We adopt the approach used for a harmonic oscillator whose

frequency varies with time [22].

Let ψp(z, τ ) be the pth eigenmode of the Hamiltonian with

the eigenvalue �βp(z), i.e.,

Ĥ (z)ψp(z, t ) = �βp(z)ψp(z, t ). (18)

The eigenmodes at z = 0 can be found numerically using

the same parameters as those in Fig. 1. The first- and second-

order modes are shown in Fig. 2. The two modes resemble the

eigenmodes of a quantum well because each soliton acts as a

high-index barrier.

In Eq. (17), the second term containing az has its

origin in the group-velocity mismatch between the pump

and probe pulses. This mismatch can be compensated if the

probe pulse shifts its frequency to match the group veloc-

ity of the pump. Based on this concept, the eigenmodes

and eigenvalues of Eq. (18) at any distance z are found

to be

ψp(z, τ ) = ψp(0, τ ) exp(−i2azτ/β22), (19)

�βp(z) = �βp(0) − 2a2z2/β22. (20)

It is easy to conclude that the temporal shape of the eigen-

modes does not change on propagation, but they undergo a

frequency shift that increases linearly with the propagation

distance. This shift has its origin in the linear redshift of pump

pulses resulting from intrapulse Raman scattering. However,

its sign is opposite to that of pump pulses, indicating that the

mode frequencies shift toward the blue side.

Let us consider the situation in which a specific eigenmode,

say ψp(0, τ ), is excited at the input end of the temporal

waveguide. If Ĥ (z) changes slowly enough that the adia-

batic approximation holds, this mode will evolve to become

ψp(z, τ ) without coupling to other modes [22]. From Eq. (20),

the mode shape will not change even though its frequency will

shift toward the blue side.

In general, a probe pulse will excite multiple modes of

the temporal waveguide, and its shape will change because

of the coupling among different modes taking place during its

propagation. To study this mode coupling, we decompose the

probe pulse into the eigenmodes of Ĥ (z) as

A2(z, τ ) =
∑

p

Cp(z)ψp(z, τ ) . (21)

Using this expansion in Eq. (16), we obtain

∑

p

dCp

dz
ψp +

∑

p

Cp

∂ψp

∂z
= i

∑

p

Cp�βpψp. (22)

After decomposing ∂ψp/∂z in terms of the eigenmodes,

we obtain the following evolution equation for the modal

amplitudes [22]:

dCp

dz
+

∑

n

dpnCn = iCp�βp, (23)

where dpn = 〈ψp|∂ψn/∂z〉 is given by

dpn = −
2ia

β22

∫ ∞

−∞
τψ∗

p (0, τ )ψn(0, τ )dτ = −
2ia

β22

Tpn (24)

Noting that ψp(0, τ ) is real, Tpn is defined as

Tpn = Tnp =
∫ ∞

−∞
τψp(0, τ ) ψn(0, τ )dτ. (25)

The last term in Eq. (23) can be eliminated with the trans-

formation

Cp(z) = Ep(z) exp

[

i

∫ z

0

�βp(z′)dz′
]

. (26)

In terms of Ep, the set of coupled-mode equations takes the

form

dEp

dz
=

2ia

β22

∑

n

TpneibnpzEn, (27)

where bnp is defined as

bnp = �βn(z) − �βp(z) = �βn(0) − �βp(0). (28)
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FIG. 3. Temporal evolution of probe pulse in the noninertial

frame with the same parameter values used in Fig. 1. Left: Solution

of Eq. (14). Right: Solution based on the coupled-mode equations in

Eq. (27).

This set of relatively simple equations governs the Raman-

induced coupling of the modes of a temporal waveguide.

Notice that only the difference of initial eigenvalues at z = 0

appears in Eq. (28) because all eigenvalues change with z by

the same amount in Eq. (20). Note that in this case, there is no

geometrical phase because Tnn = 0 from the parity symmetry

of the eigenmode.

Using the same parameter values used for Fig. 1, we sim-

ulated the probe-pulse propagation in the noninertial frame in

two different ways. The results are shown in Fig. 3, where we

plot the temporal evolution of the probe pulse in a 1-km-long

fiber. On the left, we directly solved the wave equation given

in Eq. (14). Results shown on the right were obtained by

solving the coupled-mode equations in Eq. (27). In both cases,

white dashed lines show the trajectories of the pump solitons

that become vertical (no temporal shift) in the noninertial

frame used here. The probe pulse, trapped between the two

pump solitons, undergoes periodic changes in its shape, which

become more apparent in the noninertial frame compared to

the results shown in Fig. 1. The excellent agreement between

the two approaches verifies the accuracy of our coupled-

mode equations and justifies the approximations made in their

derivation.

It should be apparent from Eq. (27) that |Ep(z)|2 is a

good measure of the fraction of energy of the probe pulse

in a specific mode of the temporal waveguide at a distance

z. Changes in the distribution of energy in different modes

of the waveguide are shown in Fig. 4. As seen there, even

though the first mode initially carries most energy at z = 0,

coupling of this mode to higher-order modes leads to transfer

of energy to other modes in a periodic fashion. This energy

transfer manifests as periodic changes in the probe-pulse’s

shape in Fig. 3. However, the total energy of all the modes is

conserved during the propagation. This is because the probe

FIG. 4. Changes occurring with distance in the distribution of

pulse’s energy among different modes. Parameter values are the same

as in Fig. 1.

pulse remains trapped during propagation and there is no

energy exchange between the pump and probe.

VI. MODEL BASED ON TWO MODES

Mode coupling is an undesirable feature for practical ap-

plications. For example, the blueshift of the probe’s spectrum

can be useful for frequency conversion applications. However,

because of mode coupling, probe-pulse’s spectrum does not

shift to the blue side in a controlled fashion. In this section, we

use the coupled-mode equations to find the conditions under

which coupling of the fundamental mode to its neighboring

modes can be largely suppressed. In this situation, a temporal

waveguide can be used to shift the probe’ spectrum toward the

blue side in an adiabatic fashion.

We have seen in Sec. V that the evolution of a probe pulse

is governed by a z-dependent Hamiltonian. When the

Hamiltonian changes slowly with z, the fundamental mode

evolves adiabatically without coupling to neighboring modes

of the waveguide. Close to this adiabatic limit, mode coupling

is relatively weak, and the fundamental mode should couple

only to the second mode. This suggests that we can get con-

siderable physical insight by considering only the first two

modes in Eq. (27) and solving the following set of two coupled

equations:

dE1

dz
=

2ia

β22

T12eib21
z
E2,

dE2

dz
=

2ia

β22

T12e−ib21zE1. (29)

The preceding equations are identical to those obtained for

a directional coupler and can be solved easily because of their

linear nature. Assuming that only the fundamental mode is

excited at the input end, the energy in the second-order mode

is found to be

|E2(z)|2 = |E1(0)|2
(

4aT12

β22K

)2

sin2 Kz

2
, (30)
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where

K =
√

b2
21 + (4aT12/β22)2. (31)

Similar to a directional coupler, the mode’s energy os-

cillates with z with the period Lp = 2π/K and becomes

maximum in the middle of each period. Using Eq. (30),

the maximum energy fractional energy in the second order

mode is

|E2(z)|2max

|E1(0)|2
=

F

1 + F
, (32)

where the parameter F is introduced as

F = (4aT12/β22b21)2. (33)

When a temporal waveguide is designed to ensure F << 1,

almost all energy of the probe pulse remains in the fundamen-

tal mode, and the mode evolves in an adiabatic fashion. When

F becomes close to 1, the fundamental mode does not evolve

adiabatically. The two-mode model ceases to apply for F > 1

because coupling to higher-order modes cannot be ignored.

For the results shown in Figs. 3 and 4, the estimated value

of F is 6.5. It is evident that more than two modes should be

included for such large values of F. The main conclusion is

that the mode coupling can be made negligible by ensuring

that F << 1.

The expression for F in Eq. (33) depends on T12, whose

value can be calculated from Eq. (25) but requires the mode

profiles that must be obtained numerically. To estimate the

values of F as simply as possible, we assume that pump pulses

are so short compared to the probe pulse that we can treat the

waveguide as a quantum well of width �T , surrounded by

walls of infinite potentials. The eigenfunctions and eigenval-

ues of such a quantum well are known in an analytic form, and

they can be used to find the parameters T12 and b21 in Eq. (33).

The use of these parameters leads to the following expression

for F:

F ≈ 1.68 × 10−4T 2
R �T 6/T 8

1 . (34)

We stress that Eq. (34) provides only a rough estimate of

F and should be used only for a qualitative understanding. To

estimate the numerical value of F for optical fibers, we use

the TR = 3 fs. F depends both on the widths and spacing of

two pump pulses used as temporal boundaries. High powers

of both of these parameters in Eq. (34) indicate that mode

coupling is very sensitive to the values of both of them. To

make F small, we need to either increase T1 or decrease

�T . Increasing T1 decreases the Raman-induced redshift and

reduces bending of the waveguide. In practice, the delay �T

between the two pump pulses is easily controlled. Its lower

values reduce the waveguide’s width and increase the differ-

ence in eigenvalues of different waveguide modes.

As seen in Eq. (34), F varies as (�T )6. Therefore, decreas-

ing �T by 50% should significantly suppress mode coupling

for the situation shown in Fig. 4. We keep all other param-

eters the same but choose �T = 2.5 ps and T2 = 0.5 ps.

The results are shown in Fig. 5. Temporal evolution of the

probe pulse should be compared to that in Fig. 3. Clearly,

distortion of the probe pulse is reduced considerably. Note

also that the probe’s spectrum shifts toward the blue much

FIG. 5. (a) Temporal and (b) spectral evolution of a probe pulse

(T2 = 0.5 ps) inside a temporal waveguide with �T = 2.5 ps.

more smoothly. The value of the parameter F is 0.0648 for

the parameters used here. As F ≪ 1, modal coupling should

be relatively weak. This is indeed the case in Fig. 6, where

the fractional energy of each mode is shown as a function of

z using the coupled-mode equations. The fundamental mode

dominates, and only a small fraction of its energy is trans-

ferred to the second mode in a periodic fashion. The results of

the two-mode theory [Eq. (30)] agree well with the solution

of the full coupled-mode equations [Eq. (27)] for such small

values of F.

For completeness, we also consider the strong-coupling

case by increasing the separation between the two pump

pulses to 10 ps. The resulting temporal waveguide supports

a large number of modes. The parameter F is 546 for this

waveguide, indicating that mode coupling would lead to pulse

distortion that is much more severe than that seen in Fig. 3.

The results are shown in Fig. 7 for a probe pulse with T2 =
2 ps. Coupling among a large number of modes severely

FIG. 6. Mode energies evolution in a 2.5-ps temporal waveguide

in Fig. 5. Dashed lines show the result from two-mode theory.
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FIG. 7. (a) Temporal and (b) spectral evolution of a probe pulse

(T2 = 2 ps) inside a temporal waveguide with �T = 10 ps.

distorts the shape of probe pulses, and the pulse’s spectrum

does not blueshift in a regular fashion.

VII. CONCLUSIONS

We have studied the propagation of optical pulses inside a

temporal waveguide formed by two short pump-pulse solitons

acting as high-index barriers. The wavelength of pump pulses

is chosen such that they form solitons inside a dispersive

nonlinear medium such as an optical fiber. The solitons are

short enough that they decelerate as their spectra shift con-

tinuously toward the red side because of intrapulse Raman

scattering. We show that the temporal waveguide formed by

such solitons is not stationary, and the situation is analo-

gous to a three-layer waveguide whose core is curved in

space.

We use the coupled pump-probe equations to show that

a probe pulse shifts its spectrum toward the blue side to

match its speed with that of pump pulses so that it remains

trapped inside such a temporal waveguide. However, the shape

of the probe pulse evolves in a periodic fashion inside the

waveguide. To understand this behavior, we make use of a

noninertial reference frame for the probe pulse and find the

eigenmodes and eigenvalues of the curved waveguide in this

frame. We use these modes to develop a set of coupled-

mode equations, showing that shape changes occur because

of mode coupling induced by the Raman-induced deceleration

of pump solitons used to make the waveguide. A simplified

two-mode model is used to introduce a single parameter gov-

erning modal coupling and to find the condition under which

coupling becomes weak enough that the probe pulse blueshifts

its spectrum without changes in its pulse shape.

From a practical standpoint, our study shows that the ef-

fects of stimulated Raman scattering must be considered when

two femtosecond pump pulses with a fixed separation are

employed to form a temporal waveguide that traps a probe

pulse between the two pump pulses. The spectral blueshift

of the probe pulse in such a waveguide can be useful for

applications that require a tunable source of short pulses. It

is difficult to change the wavelength of low-energy pulses.

The technique used in this work transfers the Raman-induced

redshift of pump pulses to probe pulses through cross-phase

modulation as a blueshift, whose magnitude can be controlled

by adjusting the width and spacing of pump pulses used to

form the waveguide. It is worth noting that the mode coupling

can also be induced through effects other than Raman scatter-

ing. As long as the speed of moving index boundary changes

during propagation, temporal mode coupling would occur. For

example, temporal mode coupling can be induced by tapering

a waveguide.
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