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ABSTRACT

We consider the setting of cascades that result from contagion
dynamics on large realistic contact networks. We address the ques-
tion of whether the structural properties of a (partially) observed
cascade can characterize the contagion scenario and identify the
interventions that might be in effect. Using epidemic spread as a
concrete example, we study how social interventions such as com-
pliance in social distancing, extent (and efficacy) of vaccination,
and the transmissibility of disease can be inferred. The techniques
developed are more generally applicable to other contagions as
well.

Our approach involves the use of large realistic social contact net-
works of certain regions of USA and an agent-based model (ABM)
to simulate spread under two interventions, namely vaccination
and generic social distancing (GSD). Through a machine learning
approach, coupled with parameter significance analysis, our exper-
imental results show that subgraph counts of the graph induced by
the cascade can be used effectively to characterize the contagion
scenario even during the initial stages of the epidemic, when tra-
ditional information such as case counts alone are not adequate
for this task. Further, we show that our approach performs well
even for partially observed cascades. These results demonstrate that
cascade data collected from digital tracing applications under poor
digital penetration and privacy constraints can provide valuable
information about the contagion scenario.
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1 INTRODUCTION
1.1 Background and Motivation

In the context of contagion processes on networks, the evolution of
a contagion in a contact graph can be represented as a who-infected-
who graph [40], which we refer to as a cascade graph or simply a
cascade. Various cascade sensing or tracing methods are employed
to collect fine-grained cascade data. For example, in the context of
infectious diseases (human or livestock), manual and digital tracing
have been applied at varied spatial scales ranging from individual
buildings (such as hospitals) [55] to the regional scale [6, 23, 41].
The ongoing COVID-19 pandemic has seen the emergence of mobile
tracing technologies (see e.g., [2, 4, 6, 12, 14, 16, 20, 44, 49, 53, 56]).
Delimitation surveys in the context of invasive species [19] and
reconstruction of diffusion trees in social contagions [1, 7] are
other examples of cascade tracing. While there are many challenges
associated with data collection [44] (e.g., low penetration levels and
adoption, privacy concerns), cascade tracing can provide valuable
contact-network-level information. This helps in understanding
the heterogeneous individual-level and location-level interactions
that result from complex activity patterns of the population and its
response (or the lack thereof) to an ongoing epidemic. A natural
question is how data generated from cascade tracing can be used
effectively to inform public health decisions for ongoing and future
disease outbreaks. The application context considered in this paper
is that of infectious disease spread in a human population, but it
can be readily extended to study other types of contagions.
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The evolution of an epidemic is influenced not only by the char-
acteristics of the disease but also by those of the population, such
as its size, immunity levels, nature of interactions, and the response
to the disease [11, 46, 54]. In recent years, there have been several
papers on using very high-resolution agent-based models to repre-
sent and study these complex contagion scenarios [3, 13, 20, 25, 27].
These models use digital twins of real-world populations and in-
frastructure, and capture individual-level, spatial and temporal het-
erogeneity by using large node- and edge-attributed networks in
the context of disease spread. Such simulation systems are an ideal
platform for exploring and evaluating the utility of cascade trac-
ing datasets. However, simulation analysis is a challenging task.
Even simple contagion scenarios can lead to a distribution of large
attributed cascade graphs that are not amenable to analysis.

In this setting, we consider the scenario identification problem,
where given features of a (partially) observed cascade graph, the
objective is to identify the disease properties, and behavioral aspects
of the population. Accounting for these dynamics in modeling
efforts is critical in predicting the future course of the disease and
making informed public health decisions [9, 22, 54]. Statistics such
as case counts over time are important and are usually adequate
to characterize the disease under the assumption of simple and
homogeneous systems that account only for disease characteristics
and population size. However, drawing conclusions based solely
on these aggregated measures can turn out to be misleading in
complex scenarios, where behavioral aspects shape individual-level
interactions. The COVID-19 pandemic has highlighted how shifts
in control policies and public response can shape the evolution of a
disease [31].

We view the scenario identification problem as a learning prob-
lem in the context of a simulation system used to study contagion
dynamics. Cascades generated from various scenarios are used to
train a machine learning algorithm for the following multiclass
classification problem: given the features of a cascade, identify the
scenario(s) that generated it. Through subsequent interpretability
and parameter significance analysis, one can identify how different
model parameters affect the cascade structure. Such approaches
are being considered in the analysis of complex simulation systems
using machine learning techniques [5, 21, 30].

1.2 Our contributions

A learning-based approach in an adversarial setting. In this
work, we consider cascades resulting from complex disease dynam-
ics that include pharmaceutical and non-pharmaceutical interven-
tions in large realistic contact networks. Our objective is to study
how the different aspects of disease scenarios manifest in the graph
structure of the cascade, and if these relationships can be effectively
utilized in tasks such as forecasting and counterfactual scenario
analyses. To this end, we address the scenario identification prob-
lem in an adversarial setting where we construct multiple scenarios
differing in levels of transmissibility, vaccination, and generic social
distancing (GSD), in such a way that they cannot be distinguished
from one another based on infection counts at the early stages of
the disease (denoted by time horizon T). The input feature vector
corresponds to the counts of structural features of the cascade as
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described below. The objective of the learner is to classify a given
cascade into a scenario given its features.

Network features. We consider features of cascade graphs consis-
tent with data that can be collected from cascade tracing protocols
such as number of infected nodes, number of interactions, the av-
erage number of neighbors infected by nodes in the cascade (out
degree), sequence of interactions (unlabeled and labeled path mo-
tifs), properties of uninfected boundary nodes (i.e., uninfected nodes
adjacent to at least one infected node), etc. In many of these cases,
we also use features where the count is a function of time. To the
best of our knowledge, previous works in the context of contact
tracing have not considered these features even though such in-
formation is potentially available [49, 56]. Also, all the features
considered are aggregate counts of subgraph structures. Some of
them can be computed using private methods (see e.g., [48]).

Novel simulation analytics. We consider realistic scenarios of
disease propagation in a population with complex interactions and
multiple types of interventions in place. To this end, we use a digital
twin of two regions from the contiguous United States [13, 18]
that have node-level and edge-level attributes embedded in them
representative of the populations of the regions. We use an agent-
based model (ABM) to simulate disease spread under vaccination
and GSD interventions.

Partial observation model. Motivated by the fact that not all
individuals in a population can be traced, we consider a partial ob-
servation model, where only a subset of nodes are observed, and the
features are available for only the subgraph of the cascade induced
by this subset. The size of the observed node set is determined by
the coverage parameter k € (0, 1], where k = 1 corresponds to
complete information about the cascade.

Experimental results. We performed extensive experimental anal-
ysis on the two networks for different values of the time horizon T
and coverage « for four disease scenarios with varying levels of
transmissibility and interventions. We used three machine learning
algorithms for the scenario prediction problem: Support Vector
Machines (SVM), Random Forest (RF), and Logistic Regression (LR).
The k-fold cross-validation technique was used for hyperparameter
tuning and model selection. For interpretability, we used Shapley
value analysis and ablation analysis. Our results are as follows.

e Learning algorithms fare poorly when trained with features cor-
responding to case counts alone (accuracy < 0.3), but when
network structural information is included in the feature set, the
performance increases greatly (accuracy = 0.8).

Labeled path motifs played a significant role in distinguishing
different scenarios, while unlabeled structural characteristics did
not. The edge labels on the paths encode the activity types of the
end points such as essential-essential, essential-non-essential,
etc. Some of this can be attributed to the behavioral model in
our simulations; the greater the level of GSD, the larger is the
number of non-essential interactions removed from the network.
For decreasing coverage levels, the performance of the learner
degraded gracefully, showing that these statistics can be applied
in practical situations where the digital penetration or public
acceptance is low.
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e Our results show that even during very early stages of the diffu-
sion process (small time horizon), the prediction performance is
good.

2 DISEASE CASCADES AND THEIR
STRUCTURAL FEATURES

2.1 Preliminaries

For an integer k > 0, let [k] denote the set {1,2,-- -, k}. We con-
sider both undirected and directed graphs. In an undirected simple
graph G(V, E) with node set V and edge set E, let N(v) denote
the set of neighbors of v and d(v) = |N(v)| denote its degree.
A graph H(V,E) with node set V and edge set E is a directed
acyclic graph (DAG), if it is directed and does not have any di-
rected cycles. Following [15], a node v of a DAG is a source node
if v has no in-neighbors (i.e., nodes from which v has an incoming
edge). Likewise, a node v of a DAG without any out-neighbors
(i.e., nodes to which v has outgoing edges) is called a sink node.
When H(V, E) is restricted to be a directed tree, level(v) denotes
the distance of v from the unique source node from which v is
reachable. Let Noyt(v) and Ni, (v) denote respectively the set of
out- and in-neighbors of v. Thus, v’ € Nout(v) & (v,0”) € E(H)
and v’ € Ny, (v) & (v/,0) € E(H).

Contact graph. Let G(V, E) be a contact graph with node set V(G)
and edge set E(G) on which the contagion occurs. It is undirected,
with each edge having a label and weight associated with it. Each
edge label indicates the nature of interaction between the two
end points and can be of the following types: (i) essential (like
interactions at home or work); (ii) non-essential (like shopping);
or (iii) mixed (one end point performing essential activity, while
the other a non-essential activity). In addition, each edge weight
(we for an edge e) corresponds to the time duration of interaction.

Diffusion model. Our work is applicable to a broad class of diffu-
sion models on networks [17]. In this work, we consider a simple
class of discrete-time network-based Susceptible-Exposed-Infectious-
Recovered (SEIR) models [35], where a susceptible v (node state S)
is infected by an infectious neighbor u (node state I) probabilisti-
cally. Transmission is modeled by the Direct Gillespie Method. The
probability that node v is infected depends on the propensity p for
each edge e between v and each u of the infectious neighbors of v:
p(v,u, e) = weroyly, where weight we of edge e is the duration of
the contact, transmissibility 7 is a global parameter representing a
rate proportional to the likelihood of transmission per unit of time,
0y is the susceptibility of v, and 1, is the infectivity of u. Nodes in
E state transition to the infectious (I) state after a dwell time (mean
1.7 days). Nodes in I state transition to the recovered (R) state after
a dwell time (mean 4.1 days).

2.2 Cascade graph

Supposing that a contagion process is observed for time steps 0, ..., T
on the contact graph G(V, E). We refer to T as the time horizon.
The evolution of the diffusion process can be captured through a
cascade graph C(Ve, Ec) whose node set Ve C V X [T] is the time-
expanded version of the V, where each node (v,t) € V¢ denotes
that v was exposed at time ¢. Its edge set Ec corresponds to the
set of directed edges ((v,¢), (¢v/,t")), with t < ¢/, denoting that v
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infected o’ at time ¢’. Let C denote the set of all valid cascade graphs.
Note that each cascade graph is a DAG. In the case of SEIR model,
a node is infected at most once. Hence, in some instances, we use
a simpler version of the node and edge set by stripping the time
information. Let Vo = {v | (v,t) € V¢ } denote the set of nodes in V'
that were infected in C and Ec = {(v,v") | ((0,2), (v/, ) € Ec} de-
note the set of edges on which transmissions occurred. An example
cascade is illustrated in Figure 1.

E-M path
motif

@
Edge label 7

o ©

|
@ 7
.\ dout = 2 @ Infected node
M\ @ Boundary node

(O Untouched node

Figure 1: An example of a cascade graph with boundary nodes
and edge labels.

2.3 Structural features of cascade graphs

Directed labeled path motifs. We consider both labeled and
unlabeled directed path subgraphs or motifs. Let np(k) denote
the number of k-length unlabeled directed motifs in the cascade
graph C. We will also consider path count as a function of time in
which case, np(k, t) denotes the number of k-length paths where
the t is the time at which the first node in the path was exposed.
In the labeled case, we assume that each directed edge has a label
from a given set L. A path motif is highlighted in Figure 1. For
any k > 1, given a label sequence L = (¢1, 2, ..., f) with k labels
each from £ and a directed simple path P = (e, ep,...,e;) with
k directed edges (i.e., a k-length directed path motif), we say that
P is consistent with L if the label of edge e; = ; for 1 < i < k.
Let np(k, L) denote the number of k-length paths that are consistent
with a label sequence L. Given a DAG, integer k and a label sequence
L, we will present a polynomial time algorithm to compute np(k, L)
in Section 2.4.
Out-degree or directed star motifs. The out-degree of a node v
in the cascade, denoted by dout (v), corresponds to the number of
neighbors of v that were successfully infected by v in the cascade.
Since out-degree counts correspond to star motifs, we will use
the notation ng(k) to denote the number of directed star graph
motifs in the cascade with k edges (and therefore, k + 1 nodes).
Similarly, ng(k, t) corresponds to number of star motifs of size k
with the center node infected at time ¢.
Boundary of the cascade graph. Given a cascade graph C(V, Ec)
and the underlying contact graph G(V, E), the node boundary 8§V
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is the set of nodes outside V¢ that have at least one neighbor in V¢,
ie, Ve ={v | v € V\ Ve, N(@w) NVe # @}. Similarly §Ec
is the set of edges for which one end point is in V¢ and the other
in V'\ V¢. For each boundary node v, let its boundary degree dg (v)
be the number of its neighbors in the cascade graph C, i.e., dg(v) =
[N(v) N V¢|. See Figure 1 for an example. Let ng(k) denote the
number of boundary nodes with boundary degree equal to k, which
we will refer to as boundary-degree counts.

2.4 Computing consistent labeled path counts

Let H(Vy, Exy) denote the given DAG, where V| = nand |Eg| = m.
For some k > 1,let L = (1, £, ..., £, ) denote a label sequence of
length k. Our algorithm for computing np(k, L), that is, the number
of k-length directed paths that are consistent with L, is based on
dynamic programming (DP). We recall that the nodes of any DAG
can be arranged along a line in a topologically sorted order [15] so
that every directed edge has a left to right orientation. For 1 < j < k,
we use L; to denote the subsequence of L containing the first j
entries of L. Our DP approach maintains an array g;[1 : k] of size
k with each node v;. Specifically, for 1 < j < k, g;[j] will store
the number of j-length directed paths that satisfy the following
two conditions: (i) they are consistent with L; and (ii) they end at
v;. Once we have the quantities g;[k] for 1 < i < n, the quantity
np(k,L) is equal to 37, g;[k]. Thus, we now focus on computing
the quantities g;[j], 1 < j < k, for each node v;. We will do this in
the chosen topological order.

Note that q1[j] = 0 for 1 < j < k, since v; is a source node
(which has no incoming edges) in the topological order. For each
node g;, with i > 2, we have

qi[1] = No. of incoming edges to v; with label ¢.

For 2 < j < k, let V;[j] denote the subset of {v1,v2,...,v;—1} such
that each v, € V;[j] is an in-neighbor of v; and the label on the
directed edge (vr,v;) is €. Then, we have

> ali-1l.

v,€Vi[Jj]

qiJj]

Since nodes are processed in topologically sorted order, when we
need to compute g;[j] for some j, all the required values would
have already been computed.

The pseudo code for the above computation appears as Algo-
rithm 1. We can estimate the running time of the algorithm as
follows. Recall that n and m denote the number of nodes and edges
in the given DAG H. A topological sort of H can be obtained in
O(m + n) time [15]. For any node v; and any j, 1 < j < k, the time
used to compute g;[j] is O(Indegree(v;)) since only the incoming
edges of v; are used in the computation of g;[j]. Thus, for any j,
the total time used to compute the entry g;[j] for all the nodes of
H is O(}}; Indegree(v;)) = O(m). Consequently, the time used to
compute g;[k] for all the nodes of H is O(km). Hence, the overall
running time to compute the quantity np(k, L) is O(km + n).

The following theorem summarizes the above discussion.

THEOREM 2.1. Given a DAG H(Vy, Exy), where |Vy| = n, |[Eg| =
m, and a label sequence L of length k > 1, Algorithm 1 finds the
number of k-length directed paths in H that are consistent with L in
O(km + n) time.
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Algorithm 1: Counting the number of k-length paths in
a DAG that are consistent with a given label sequence of
length k.

Input :Directed acyclic graph H(Vy, Efy) and a label
sequence L = (f1,...,{) of length k.

Output:The value np(k, L), i.e., the number of k-length
directed paths in H that are consistent with L.

1 Let L = (f1, 0y, ..., £ ) denote the given label sequence of
length k. For 1 < j < k,let Lj = (f1,4s,...,¢j) denote the
Jj-length subsequence of L.

2 Let (v1,02,...,0,) denote a topologically sorted order of the
nodes of H.

3 Forallo,i € V,let ¢;[j], 1 < j <k, denote the number of
Jj-length paths which are consistent with L; and which end
at v;.

4 Setqi[j]=0,for1 <j<k.

s fori=2 ...,k do

6 ‘ Set g;[1] = No. of incoming edges to v; with label #.

7 end

8 for j=2,...,kdo

9 fori=2,...,ndo

Let V;[j] denote the subset of {01, ...,v;—1} such

that each v, € V;[j] is an in-neighbor of v; and the
label of the directed edge (vy, v;) is ¢.

Set gi[j] = X, evi(j1 9 [ — 1]

12 end

13 end

4 Return np(k,L) = X1, qi[k].

=

3 SCENARIOS OF DISEASE DYNAMICS

A scenario S corresponds to the model parameters that generated the
cascade graphs, which could include disease or diffusion model pa-
rameters, seeding, and agent behavior capturing various responses
to the disease spread. In this work, the transmissibility 7 determined
the infectiousness of the disease in each scenario.

3.1 Interventions

Interventions include pharmaceutical interventions (PIs), such as
vaccination, which change node susceptibility and/or infectivity;
and non-pharmaceutical interventions (NPIs), such as social dis-
tancing, which change node behavior, and as a result, change edges
of the contact graph. An intervention is triggered by either time or a
threshold, and has a target set. For example, we can apply vaccines
to senior people (65+) from the beginning of September; or we can
quarantine people who have close contacts with an individual once
we confirm that this individual is infected. People in the targeted
set may or may not comply.

Vaccination (VAX). This intervention reduces the susceptibility
o of a compliant node by a fraction, which is called the vaccine
efficacy (VE). This intervention reduces the probability that the
node will be infected by other nodes.

Generic social distancing (GSD). This intervention removes all
non-essential activities of a compliant node. The essential activities
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include home, work and school, while the nonessential activities
include shop and other. GSD removes each edge in the contact
graph that satisfies the following two properties: (i) the edge is
incident on compliant nodes and (ii) the edge label has at least
one non-essential activity. Since every edge is associated with two
activities, one for each end point, we combine the two activities in
the following manner to generate a label for each edge: essential-
essential (E), non-essential-non-essential (N) and essential-non-
essential (M). All type-N edges incident with the compliant nodes
and those type-M edges where the non-essential side belongs to a
compliant node will be removed from the contact graph.

3.2 Partial observation model

To model low penetration levels and adoption, we define coverage
as the fraction of nodes that are observed in a cascade. We consider
a simple partial observation model where a random subset Vg
of k - |V] nodes from the contact graph G(V, E) are chosen as the
observed nodes. For any cascade C(V¢, E¢), the structural features
are extracted from the subgraph induced by Vyps N V. Also, we
only consider the boundary nodes corresponding to Vi, N V.
When k = 1, all nodes in the contact graph are observable, and
therefore, all the structural features are computed for the entire
cascade.

4 PROBLEM FORMULATIONS

To understand how structural features of the cascade can charac-
terize the scenario that generated it, we consider a learning-based
framework. Using well-established techniques to assess parameter
significance and interpretability, we will then be able to quantify
the importance of each class of features (such as number of infec-
tions, motif counts, etc.). Further, this framework will also provide
the first steps for incorporating these features in learning tasks like
forecasting or predicting the time of peak infection.

We define the scenario identification (SI) problem as follows.

LetS = {51, S2, - - - , S} denote a set of contagion scenarios and f(T) :

C — zk correspond to the feature vector of a cascade graph ob-
served up to a time horizon T consisting of motif counts, number
of nodes, edges, epidemic characteristics, etc. Let F(T) be the set
of all possible feature vectors, which will be till some time hori-

zon. Let Cr = {(fl, h), (fa ), } denote a set of labeled feature

vectors (f;, ;) where f; = f(T)(C) is a feature vector correspond-
ing to a cascade graph C for the scenario ¢; € S. The objective
of the full information horizon T SI problem is to learn a classi-
fierg: F(T) - S that, given a feature vector, classifies it as being
generated by a particular scenario. We get different variations by
changing T—these correspond to varying amounts of available
information. We also consider different classes of features ¥ (T),
e.g., those using epidemic features, or graph structural features,
and explore how well such classifiers can be learned. It is possible
that (i) the scenarios are not mutually exclusive, and (ii) the same
cascade graph can be generated by two different scenarios.

Given this framework, we consider an adversarial setting where
the scenarios are chosen in such a manner that the distribution of
cascades observed until time-horizon T are indistinguishable by
simply observing the case counts or number of infected nodes at
every time step t < T.
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5 EXPERIMENT DESIGN

Cascade data sets. Our data sets include cascade graphs generated
by simulations of SEIR disease spread on synthetic contact networks
for two states in USA, namely Tennessee (TN) and Virginia (VA).
Structural parameters of these two networks appear in Table 1. The
simulation takes a scenario, which specifies the parameters of the
disease and interventions, seeds 20 randomly chosen nodes, lets the
disease propagate through the contact network for 300 days, and
generates cascade data as output. We design four scenarios, with
different transmissibility, vaccination, and generic social distancing
levels, for each state, and run 1000 replicates per scenario. Thus,
each of the TN and VA data sets includes 4000 cascade graphs. We
choose the parameter values carefully so that it is not easy to dis-
tinguish between scenarios by aggregate measures of the cascade,
such as the overall size or the daily difference in cascade size (aka
daily infection incidence). Both VAX and GSD interventions are
applied to compliant nodes, which are randomly chosen with a
probability equal to the specified compliance, at the beginning (day
0) and remain effective until the end (day 300). The vaccine reduces
the susceptibility of the node that receives it by 80%. The disease
transmissibility 7, vaccine coverage VAX, and generic social dis-
tancing compliance GSD for simulations that generate TN cascade
data are shown in Table 2. Those for VA cascade data are similar.

Graph V] |E| Max deg. | Avgdeg. | Dia.
TN 6,041,517 | 62,149,441 461 20.57 14
VA 7,602,717 | 83,162,927 543 21.88 14

Table 1: General structural information about the synthetic contact
networks used to generate the cascade graphs.

Scenario T VAX | GSD

No vax + Low GSD | 0.09 | None | 25%
No vax + High GSD | 0.09 | None | 70%
Vax + Low GSD 0.16* | 50% 25%
Vax + High GSD | 0.16* | 50% | 65%"

Table 2: Disease and intervention parameters for different scenarios.
*Scenarios on the VA network used 7 = 0.155. 'Scenario on the VA
network used GSD = 60%.

Partial observation. The generated cascades were further sampled
based on the coverage k. We used k = 0.6,0.7,.. .., 1. In each cascade,
a subset of nodes was chosen depending on k. We considered five
such sets of sampling instances for each x value.

Learning methodology. We considered several machine learning
algorithms for this purpose. But we have provided results corre-
sponding to three of them based on superior performance: random
forest classifiers (RF), support vector machines (SVM), and logis-
tic regression (LR). We considered both one-versus-one and one-
versus-all approaches. We explored different approaches to feature
engineering, in particular with respect to the epicurve related fea-
tures. This was in part to ensure that there was very low likelihood
that an epicurve-based approach could meaningfully distinguish
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Name Description
Infection progress (epi- | Number of infections that occurred within
curve) evenly spaced time periods. The periods

used are 1, 5, and 10 days.

Number of infected nodes in the cascade
with out-degrees that fall within equally
sized bins. The bin sizes are 1, 2, and 10.
Number of boundary nodes with boundary
degrees falling within equally sized periods.
The bin sizes used are 1,2 and 10.

Number of occurrences of each length-1 and
length-2 labeled motif.

Number of occurrences of each labeled path
normalized by the total number of paths

Out-degree values

Boundary degree bins

Counts of labeled paths
of length-1 and 2
Normalized counts of
labeled length-1 and
length-2 path counts
Unlabeled path counts

with the same length.
Number of occurrences of unlabeled paths

of lengths 1, 2, 3, 4.

Table 3: Groups of features of cascade graphs considered in the
paper.

different scenarios. The feature groups used in this exercise are
shown in Table 3.

Though our data in some sense already represents a true distribu-
tion, and thus mitigates much of the risk of overfitting, we split our
data into training and evaluation sets. We used stratified sampling,
and used 25% of our data as the evaluation set. We selected hyper-
parameters by stratified 5-fold cross validation within the training
set. The hyperparameters we selected were C, the regularization
factor for SVM and LR approaches, and the maximum number of
features considered by each tree in the RF approach.

Our objective for feature importance studies was to evaluate the
importance of groups of features (described in Table 3), not that of
an individual feature (such as out degree count for one particular
value of out degree). We used ablation analysis and Shapley additive
explanations (SHAP) [33, 34]. We note that the SHAP value is a
local method which quantifies the importance of a feature for a
data instance. The mean absolute SHAP value across data instances
is indicative of the global importance of the target feature. Here,
since we are evaluating groups of features, we adapt the SHAP
method to our purpose in the following manner. In our problem,
given a data instance x;, feature i and scenario S, let ¢xj,i, s denote
the SHAP value of feature i for deciding whether x; belongs to
scenario S or not. To assess the importance of groups of features,
we report the distribution of the absolute value of SHAP value
across data instances x; and across features belonging to one group.
We take a similar approach with ablation analysis, where we assess
the importance of a feature group by comparing the performance
of the model trained with all features with the model trained with
all features minus the target feature group. We used the SHAP [52]
estimator in Python [45] and associated packages to do this analysis.
Our implementation and analysis code may be found at https://
github.com/NSSAC/cascade_analytics_public.

6 RESULTS

Cascade graph structure under different scenarios. The val-
ues of various groups of features were computed for each scenario
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(Table 2), with 100 replicates per scenario. The results are in Fig-
ures 2, 3 and 4. Figure 2 shows the distribution of the number of
infections per day or the epicurves. Due to space constraints, we
show results only for the TN network in Figures 3 and 4. We found
similar results for the VA network. These results are included in
the full version of this work [24].

As the disease progresses, the epicurves can be distinguished
from one another, especially around the peak of the infection
spread; pharmaceutical and nonpharmaceutical interventions lead
to smaller peaks in the infection curve. We observe a similar trend
with other feature groups as well except for the labeled path mo-
tifs. In Figure 3, the scenario-specific counts of path frequency,
out-degree, boundary degree, and cascade size counts are shown.
From this, we can conclude that from the structure of the unlabeled
cascade graph, it seems to be hard to distinguish between scenarios
at the early stages (T = 70) of the cascade (left column), while in the
long-term (T = 300), the counts are very different and the cascades
can be easily distinguished using any feature group (row).

On the other hand, labeled motif counts, shown in Figure 4,
exhibit distinct patterns that remain consistent as time progresses.
We observe that the proportion of non-E edges is less in the high
GSD case as compared to the low GSD case when the vaccination
aspect is kept the same. This is because in the high GSD case, due to
a large number of nodes selected for GSD, and subsequent removal
of all their non-E edges, their proportion is reduced in the residual
graph. However, we also note that for the same level of GSD, the
proportion of E edges is less in the high VAX case when compared
to low VAX case; this is an unexpected outcome of the simulation
analysis process. We attribute this to the non-uniform distribution
of essential and non-essential edges among nodes. We observed
similar trends with longer labeled paths.

Scenario identification under complete observation. The re-
sults of the performance of the different machine learning ap-
proaches are summarized in Table 4. We first note that models
trained with the feature group of infected node counts (epicurve)
alone did not do well. This is a reflection of the way the scenarios
were chosen (see Figure 2 and the related discussion). However, we
observe that the addition of structural features greatly improves
the performance of all the algorithms consistently across networks.
For LR, the one-versus-all approach performed better, while for
SVM, the one-versus-one approach with linear kernel did better.
We found that a linear kernel resulted in the best performance for
the SVM.

Significance of different network measures. Our results for
the TN experiment using SHAP are provided in Figure 5 for the
different machine learning algorithms. We observe that in all three
algorithms, the labeled path counts play a dominant role in decision-
making. Particularly in the case of LR, the labeled edges have very
high average absolute SHAP values compared to others, while in
the case of SVM, the labeled path counts for longer paths play a
more prominent role. In the case of SVM, unlike the other meth-
ods, there are several outliers suggesting that individual features
corresponding to almost all the groups play a prominent role. The
column ablation results in the full version [24] also show very sim-
ilar results. In summary, we found that the group of features that
achieves the best performance varies depending on the model, but
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Figure 2: Distribution of the number of infections per day
on the TN and VA networks over 400 cascades. Each colored
line represents the mean value of all the cascades of the
corresponding scenario, and the shaded area around the line
is the confidence interval of the data. The red vertical line
marks day 70 on the time horizon T.

N VA
Model All Epi-only All Epi-only
SVM | 0.82+0.032 | 0.30+0.040 | 0.87 £0.037 | 0.25+0.017
RF 0.80 +£0.041 | 0.26 +£0.041 | 0.82+0.029 | 0.29 +0.034
LR 0.79 +0.020 | 0.26 £0.024 | 0.80 £ 0.036 | 0.25+ 0.038

Table 4: The accuracy values of the different models on the
test set and their standard deviations derived by repeating
the training and evaluation steps 10 times.

all the most accurate models included either the labeled edge count
(path length 1) or the labeled 2-length path counts.

Coverage Effects. We looked at the effect of coverage, or how
much of the network was necessary to observe in order to derive us-
able information under the observation model defined in Section 5.
The proportion of edge motifs of each type by scenario remained
relatively stable. These results, available in the full version [24] are
also reflected in the model performance. The performance for the
TN network is shown in Figure 7a. We observed minimal differ-
ences between model accuracy at 60% coverage as opposed to 90%
coverage, with SVM performing the best. The epicurve-only-based
models did not perform significantly above random guessing and
therefore were unaffected by the coverage. We observed similar
patterns for the VA network (see Figure 7b). That there was so little
change with less coverage is encouraging, as it suggests that even
partial efforts at contact tracing may yield useful insights.

Time horizon. We investigated whether the predictability was
impacted by the time at which the observations were taken. That is,
how early in a cascade can we predict the scenario? As mentioned
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Figure 3: Network and node-level feature distributions at two
points in time on TN cascades. Within each figure, a box rep-
resents the distribution over 100 cascades. The distributions
on the left column are measured at time ¢ = 70, and the ones
on the right are measured at time ¢ = 300. The plots show the
frequencies of unlabeled paths of different lengths, frequen-
cies of nodes with the corresponding out-degrees (i.e., star
motif counts), frequencies of nodes with the corresponding
boundary degrees, and the total number of infections at time
t. Due to the wide range of their values, the out-degree and
boundary degree plots show distributions for two elements
only. However, more results in the full version [24] demon-
strate that the same trend can be seen across other values of
boundary degrees and out-degrees. We provide correspond-
ing visualizations for the VA network in the full version [24].

in the discussion for Figure 2, the likely trajectories of infections
overlap early in the cascade. However, it is similarly clear that
there is a point at which scenarios diverge. In Figure 3, the total
number of infected nodes at ¢ = 70 is not informative as to the
scenario. However, at t = 300 (the end of the cascade), there is
a clear separation. A similar pattern occurs with path frequency,
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Figure 4: The ratio of the occurrences of every labeled motif
with respect to the total number of labeled motifs with the
same length. Values were measured at two different time
points on TN cascades. Each box represents value distribu-
tions over 100 cascades. Three figures were used for each
time point as the scales differ significantly. Corresponding
plots for the VA dataset are presented in the full version [24].

though out degree and boundary degree remain relatively similar
at both time points. Labeled motifs (Figure 4) similarly vary in
how informative they are depending on the time step. While they
overlap somewhat at ¢ = 70, they are totally separate at t = 300.

To investigate how sensitive our learning models were to the
time of observation, we reran the training and testing using data
derived from observations up to ¢ = 50, 70, 90. The results of these
experiments are shown in Figure 6. We observed a moderate de-
crease in accuracy—the models at time 50 had lower accuracy than
those at time 70 and 90. At the same time, even at t = 50, the
performance is not particularly bad, with a range between 0.6 and
0.8 depending on the model class. We have results in the full ver-
sion [24] to show how the importance of parameters varies over
time. We see that for SVM, some out degree features start becoming
important as T increases, while for LR and RF, the labeled paths
are consistently the dominant feature group.

7 DISCUSSION AND RELATED WORK

The COVID-19 pandemic has underlined the importance of consid-
ering the characteristics of interactions (e.g., interactions in assisted
living facilities, super-spreader events, etc.) [4]. However, recent
studies (see e.g., [3, 27-29]) that have modeled contact tracing do
not assume the availability of such interaction-level information.
Emerging technologies are enabling us to collect richer data on
individual-level interactions and study their effect on disease spread.
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Figure 5: The absolute SHAP value for each model, averaged
over each set of features considered. The results are for cas-
cades over the TN network. Distributions were computed
over the entire training data set.

50 — e Model
o) B LR
g = g | o B RF

50 — . Esw

6.50 0.‘55 0,‘60 0.‘65 0.‘70 0.‘75 0.‘80 0.‘85 O.lC)O 0.'13)5 1.00‘
Accuracy

Figure 6: The accuracy of models trained on Epicurve fea-
tures. Bounds were generated by 10 repetitions of train/test
splits.

Our work is motivated by the need to investigate how such infor-
mation can be utilized to better understand a contagion scenario,
and therefore, inform public policy.

Finding and enumerating motifs in graphs is an important topic
in areas such as computational biology and graph mining (see
e.g., [26, 43]). Other researchers have presented techniques for
finding motifs in temporal graphs [10, 42]. Many of the proposed
methods are for unlabeled networks. Some researchers have studied
problems related to identifying subgraphs in labeled networks. For
example, a scalable framework for finding dense subgraphs that
contain specified labeled motifs (i.e., smaller subgraphs) is presented
in [50]. Our work does not use dense subgraphs; it relies on simple
labeled directed paths. Another study [36] focuses on finding motifs
in undirected graphs with node labels. Our work uses counts of
subgraphs determined by edge labels.

Machine learning approaches are being used to understand the
phase space of complex models. Lamperti et al. [30] used gradient
boosted trees for calibrating a complex agent-based model and sub-
sequently performing parameter importance analysis. Fox et al. [21]
provide an overview of methods by which simulation systems can
be coupled with machine learning based approaches to understand
complex systems. Angione et al. [5] analyze and evaluate a number
of machine learning surrogates for an agent-based model.
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Figure 7: Performance of models with access to structural features vs. Epicurve only models. Bounds were computed over 5
different random selections of nodes, and over 10 train/test repetitions for each of the random selections.

A number of papers have presented methods to analyze observed
cascades and determine various aspects of an epidemic process. For
example, Lokhov [32] considers the problem of identifying the
disease parameters of a spreading epidemic from partially observed
cascades. Raisi et al. [47] present optimization and deep learning
based methods for predicting the future course of a disease. Shah &
Zaman [51] and Zhu & Ying [57] address the problem of identifying
the initially infected nodes under specific propagation models such
as SIR. Problems related to the inference of influence functions at
the nodes of a network are addressed in [39]. Mishra et al. [37]
present an approach based on maximum likelihood estimate (MLE)
to reconstruct an epidemic cascade from partial observations. There
are many differences between our work and the ones mentioned
above. We consider more complex scenarios with interventions and
our goal is to characterize a given cascade in terms of measures
such as compliance to social distancing and efficacy of vaccines.

8 CONCLUSION

In order to characterize the utility of potential data from real-world
cascade tracing and to understand how structural graph parameters
influence network-based disease simulations, we introduced the
scenario identification problem. We performed a series of experi-
ments using realistic networks and cascades. These experiments
demonstrate that even in a semi-adversarial environment, effective
classification is possible if simple structural measures are available.

This work can be considered as a first step towards understand-
ing the importance of subgraph features of cascade graphs. For the
intervention scenarios considered in this work, we observe that the
types of interactions between pairs or chains of individuals (i.e.,
labeled path counts) are by far the most significant set of features
that can be used to characterize the scenarios. However, this could
be scenario dependent. For example, in a more dynamic interven-
tion scenario such as contact tracing followed by quarantining, it
is possible that other features are prominent. Also, in this work,
we have considered a simple SEIR model. Therefore, more complex
scenarios may require characterizations through more complex
subgraphs of cascade graphs. The general framework is relevant
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for other kinds of complex contagion phenomena, which can be
modeled as graph dynamical systems [8, 38].
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