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ABSTRACT
We consider the setting of cascades that result from contagion

dynamics on large realistic contact networks. We address the ques-

tion of whether the structural properties of a (partially) observed

cascade can characterize the contagion scenario and identify the

interventions that might be in effect. Using epidemic spread as a

concrete example, we study how social interventions such as com-

pliance in social distancing, extent (and efficacy) of vaccination,

and the transmissibility of disease can be inferred. The techniques

developed are more generally applicable to other contagions as

well.

Our approach involves the use of large realistic social contact net-

works of certain regions of USA and an agent-based model (ABM)

to simulate spread under two interventions, namely vaccination

and generic social distancing (GSD). Through a machine learning

approach, coupled with parameter significance analysis, our exper-

imental results show that subgraph counts of the graph induced by

the cascade can be used effectively to characterize the contagion

scenario even during the initial stages of the epidemic, when tra-

ditional information such as case counts alone are not adequate

for this task. Further, we show that our approach performs well

even for partially observed cascades. These results demonstrate that

cascade data collected from digital tracing applications under poor

digital penetration and privacy constraints can provide valuable

information about the contagion scenario.
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1 INTRODUCTION
1.1 Background and Motivation
In the context of contagion processes on networks, the evolution of

a contagion in a contact graph can be represented as a who-infected-

who graph [40], which we refer to as a cascade graph or simply a

cascade. Various cascade sensing or tracing methods are employed

to collect fine-grained cascade data. For example, in the context of

infectious diseases (human or livestock), manual and digital tracing

have been applied at varied spatial scales ranging from individual

buildings (such as hospitals) [55] to the regional scale [6, 23, 41].

The ongoing COVID-19 pandemic has seen the emergence of mobile

tracing technologies (see e.g., [2, 4, 6, 12, 14, 16, 20, 44, 49, 53, 56]).

Delimitation surveys in the context of invasive species [19] and

reconstruction of diffusion trees in social contagions [1, 7] are

other examples of cascade tracing. While there are many challenges

associated with data collection [44] (e.g., low penetration levels and

adoption, privacy concerns), cascade tracing can provide valuable

contact-network-level information. This helps in understanding

the heterogeneous individual-level and location-level interactions

that result from complex activity patterns of the population and its

response (or the lack thereof) to an ongoing epidemic. A natural

question is how data generated from cascade tracing can be used

effectively to inform public health decisions for ongoing and future

disease outbreaks. The application context considered in this paper

is that of infectious disease spread in a human population, but it

can be readily extended to study other types of contagions.
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The evolution of an epidemic is influenced not only by the char-

acteristics of the disease but also by those of the population, such

as its size, immunity levels, nature of interactions, and the response

to the disease [11, 46, 54]. In recent years, there have been several

papers on using very high-resolution agent-based models to repre-

sent and study these complex contagion scenarios [3, 13, 20, 25, 27].

These models use digital twins of real-world populations and in-

frastructure, and capture individual-level, spatial and temporal het-

erogeneity by using large node- and edge–attributed networks in

the context of disease spread. Such simulation systems are an ideal

platform for exploring and evaluating the utility of cascade trac-

ing datasets. However, simulation analysis is a challenging task.

Even simple contagion scenarios can lead to a distribution of large

attributed cascade graphs that are not amenable to analysis.

In this setting, we consider the scenario identification problem,

where given features of a (partially) observed cascade graph, the

objective is to identify the disease properties, and behavioral aspects

of the population. Accounting for these dynamics in modeling

efforts is critical in predicting the future course of the disease and

making informed public health decisions [9, 22, 54]. Statistics such

as case counts over time are important and are usually adequate

to characterize the disease under the assumption of simple and

homogeneous systems that account only for disease characteristics

and population size. However, drawing conclusions based solely

on these aggregated measures can turn out to be misleading in

complex scenarios, where behavioral aspects shape individual-level

interactions. The COVID-19 pandemic has highlighted how shifts

in control policies and public response can shape the evolution of a

disease [31].

We view the scenario identification problem as a learning prob-

lem in the context of a simulation system used to study contagion

dynamics. Cascades generated from various scenarios are used to

train a machine learning algorithm for the following multiclass

classification problem: given the features of a cascade, identify the

scenario(s) that generated it. Through subsequent interpretability

and parameter significance analysis, one can identify how different

model parameters affect the cascade structure. Such approaches

are being considered in the analysis of complex simulation systems

using machine learning techniques [5, 21, 30].

1.2 Our contributions

A learning-based approach in an adversarial setting. In this

work, we consider cascades resulting from complex disease dynam-

ics that include pharmaceutical and non-pharmaceutical interven-

tions in large realistic contact networks. Our objective is to study

how the different aspects of disease scenarios manifest in the graph

structure of the cascade, and if these relationships can be effectively

utilized in tasks such as forecasting and counterfactual scenario

analyses. To this end, we address the scenario identification prob-

lem in an adversarial setting where we construct multiple scenarios

differing in levels of transmissibility, vaccination, and generic social

distancing (GSD), in such a way that they cannot be distinguished

from one another based on infection counts at the early stages of

the disease (denoted by time horizon 𝑇 ). The input feature vector
corresponds to the counts of structural features of the cascade as

described below. The objective of the learner is to classify a given

cascade into a scenario given its features.

Network features. We consider features of cascade graphs consis-

tent with data that can be collected from cascade tracing protocols

such as number of infected nodes, number of interactions, the av-

erage number of neighbors infected by nodes in the cascade (out

degree), sequence of interactions (unlabeled and labeled path mo-

tifs), properties of uninfected boundary nodes (i.e., uninfected nodes

adjacent to at least one infected node), etc. In many of these cases,

we also use features where the count is a function of time. To the

best of our knowledge, previous works in the context of contact

tracing have not considered these features even though such in-

formation is potentially available [49, 56]. Also, all the features

considered are aggregate counts of subgraph structures. Some of

them can be computed using private methods (see e.g., [48]).

Novel simulation analytics. We consider realistic scenarios of

disease propagation in a population with complex interactions and

multiple types of interventions in place. To this end, we use a digital

twin of two regions from the contiguous United States [13, 18]

that have node-level and edge-level attributes embedded in them

representative of the populations of the regions. We use an agent-

based model (ABM) to simulate disease spread under vaccination

and GSD interventions.

Partial observation model. Motivated by the fact that not all

individuals in a population can be traced, we consider a partial ob-

servation model, where only a subset of nodes are observed, and the

features are available for only the subgraph of the cascade induced

by this subset. The size of the observed node set is determined by

the coverage parameter 𝜅 ∈ (0, 1], where 𝜅 = 1 corresponds to

complete information about the cascade.

Experimental results.We performed extensive experimental anal-

ysis on the two networks for different values of the time horizon 𝑇

and coverage 𝜅 for four disease scenarios with varying levels of

transmissibility and interventions. We used three machine learning

algorithms for the scenario prediction problem: Support Vector

Machines (SVM), Random Forest (RF), and Logistic Regression (LR).

The 𝑘-fold cross-validation technique was used for hyperparameter

tuning and model selection. For interpretability, we used Shapley

value analysis and ablation analysis. Our results are as follows.

• Learning algorithms fare poorly when trained with features cor-

responding to case counts alone (accuracy ≤ 0.3), but when

network structural information is included in the feature set, the

performance increases greatly (accuracy ≈ 0.8).

• Labeled path motifs played a significant role in distinguishing

different scenarios, while unlabeled structural characteristics did

not. The edge labels on the paths encode the activity types of the

end points such as essential–essential, essential–non-essential,

etc. Some of this can be attributed to the behavioral model in

our simulations; the greater the level of GSD, the larger is the

number of non-essential interactions removed from the network.

• For decreasing coverage levels, the performance of the learner

degraded gracefully, showing that these statistics can be applied

in practical situations where the digital penetration or public

acceptance is low.
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• Our results show that even during very early stages of the diffu-

sion process (small time horizon), the prediction performance is

good.

2 DISEASE CASCADES AND THEIR
STRUCTURAL FEATURES

2.1 Preliminaries
For an integer 𝑘 > 0, let [𝑘] denote the set {1, 2, · · · , 𝑘}. We con-

sider both undirected and directed graphs. In an undirected simple

graph 𝐺 (𝑉 , 𝐸) with node set 𝑉 and edge set 𝐸, let 𝑁 (𝑣) denote
the set of neighbors of 𝑣 and 𝑑 (𝑣) = |𝑁 (𝑣) | denote its degree.

A graph 𝐻 (𝑉 , 𝐸) with node set 𝑉 and edge set 𝐸 is a directed
acyclic graph (DAG), if it is directed and does not have any di-

rected cycles. Following [15], a node 𝑣 of a DAG is a source node
if 𝑣 has no in-neighbors (i.e., nodes from which 𝑣 has an incoming

edge). Likewise, a node 𝑣 of a DAG without any out-neighbors

(i.e., nodes to which 𝑣 has outgoing edges) is called a sink node.

When 𝐻 (𝑉 , 𝐸) is restricted to be a directed tree, level(𝑣) denotes
the distance of 𝑣 from the unique source node from which 𝑣 is

reachable. Let 𝑁out (𝑣) and 𝑁in (𝑣) denote respectively the set of

out- and in-neighbors of 𝑣 . Thus, 𝑣 ′ ∈ 𝑁out (𝑣) ⇔ (𝑣, 𝑣 ′) ∈ 𝐸 (𝐻 )
and 𝑣 ′ ∈ 𝑁in (𝑣) ⇔ (𝑣 ′, 𝑣) ∈ 𝐸 (𝐻 ).
Contact graph. Let𝐺 (𝑉 , 𝐸) be a contact graph with node set𝑉 (𝐺)
and edge set 𝐸 (𝐺) on which the contagion occurs. It is undirected,

with each edge having a label and weight associated with it. Each

edge label indicates the nature of interaction between the two

end points and can be of the following types: (i) essential (like
interactions at home or work); (ii) non-essential (like shopping);

or (iii) mixed (one end point performing essential activity, while

the other a non-essential activity). In addition, each edge weight

(𝑤𝑒 for an edge 𝑒) corresponds to the time duration of interaction.

Diffusion model. Our work is applicable to a broad class of diffu-

sion models on networks [17]. In this work, we consider a simple

class of discrete-time network-based Susceptible-Exposed-Infectious-
Recovered (SEIR) models [35], where a susceptible 𝑣 (node state S)
is infected by an infectious neighbor 𝑢 (node state I) probabilisti-
cally. Transmission is modeled by the Direct Gillespie Method. The

probability that node 𝑣 is infected depends on the propensity 𝜌 for

each edge 𝑒 between 𝑣 and each 𝑢 of the infectious neighbors of 𝑣 :

𝜌 (𝑣,𝑢, 𝑒) = 𝑤𝑒𝜏𝜎𝑣𝜄𝑢 , where weight𝑤𝑒 of edge 𝑒 is the duration of

the contact, transmissibility 𝜏 is a global parameter representing a

rate proportional to the likelihood of transmission per unit of time,

𝜎𝑣 is the susceptibility of 𝑣 , and 𝜄𝑢 is the infectivity of 𝑢. Nodes in

E state transition to the infectious (I) state after a dwell time (mean

1.7 days). Nodes in I state transition to the recovered (R) state after
a dwell time (mean 4.1 days).

2.2 Cascade graph
Supposing that a contagion process is observed for time steps 0, . . . ,𝑇

on the contact graph 𝐺 (𝑉 , 𝐸). We refer to 𝑇 as the time horizon.
The evolution of the diffusion process can be captured through a

cascade graph𝐶 (V𝐶 , E𝐶 ) whose node setV𝐶 ⊆ 𝑉 × [𝑇 ] is the time-
expanded version of the 𝑉 , where each node (𝑣, 𝑡) ∈ V𝐶 denotes

that 𝑣 was exposed at time 𝑡 . Its edge set 𝐸𝐶 corresponds to the

set of directed edges

(
(𝑣, 𝑡), (𝑣 ′, 𝑡 ′)

)
, with 𝑡 < 𝑡 ′, denoting that 𝑣

infected 𝑣 ′ at time 𝑡 ′. Let C denote the set of all valid cascade graphs.

Note that each cascade graph is a DAG. In the case of SEIR model,

a node is infected at most once. Hence, in some instances, we use

a simpler version of the node and edge set by stripping the time

information. Let𝑉𝐶 = {𝑣 | (𝑣, 𝑡) ∈ V𝐶 } denote the set of nodes in𝑉
that were infected in𝐶 and 𝐸𝐶 = {(𝑣, 𝑣 ′) |

(
(𝑣, 𝑡), (𝑣 ′, 𝑡 ′)

)
∈ E𝐶 } de-

note the set of edges on which transmissions occurred. An example

cascade is illustrated in Figure 1.

E

M

E

N

M

E

M

E

M

N

Infected node

Boundary node

Untouched node

Edge label

dout = 2

dBC = 3

E-M path
motif

Figure 1: An example of a cascade graphwith boundary nodes
and edge labels.

2.3 Structural features of cascade graphs
Directed labeled path motifs. We consider both labeled and

unlabeled directed path subgraphs or motifs. Let 𝑛𝑃 (𝑘) denote
the number of 𝑘-length unlabeled directed motifs in the cascade

graph 𝐶 . We will also consider path count as a function of time in

which case, 𝑛𝑃 (𝑘, 𝑡) denotes the number of 𝑘-length paths where

the 𝑡 is the time at which the first node in the path was exposed.

In the labeled case, we assume that each directed edge has a label

from a given set L. A path motif is highlighted in Figure 1. For

any 𝑘 ≥ 1, given a label sequence 𝐿 = ⟨ℓ1, ℓ2, . . . , ℓ𝑘 ⟩ with 𝑘 labels

each from L and a directed simple path 𝑃 = (𝑒1, 𝑒2, . . . , 𝑒𝑘 ) with
𝑘 directed edges (i.e., a 𝑘-length directed path motif), we say that

𝑃 is consistent with 𝐿 if the label of edge 𝑒𝑖 = ℓ𝑖 for 1 ≤ 𝑖 ≤ 𝑘 .

Let𝑛𝑃 (𝑘, 𝐿) denote the number of𝑘-length paths that are consistent

with a label sequence 𝐿. Given a DAG, integer𝑘 and a label sequence

𝐿, we will present a polynomial time algorithm to compute 𝑛𝑃 (𝑘, 𝐿)
in Section 2.4.

Out-degree or directed star motifs. The out-degree of a node 𝑣
in the cascade, denoted by 𝑑out (𝑣), corresponds to the number of

neighbors of 𝑣 that were successfully infected by 𝑣 in the cascade.

Since out-degree counts correspond to star motifs, we will use

the notation 𝑛𝑆 (𝑘) to denote the number of directed star graph

motifs in the cascade with 𝑘 edges (and therefore, 𝑘 + 1 nodes).

Similarly, 𝑛𝑆 (𝑘, 𝑡) corresponds to number of star motifs of size 𝑘

with the center node infected at time 𝑡 .

Boundary of the cascade graph.Given a cascade graph𝐶 (𝑉𝐶 , 𝐸𝐶 )
and the underlying contact graph 𝐺 (𝑉 , 𝐸), the node boundary 𝛿𝑉𝐶
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is the set of nodes outside 𝑉𝐶 that have at least one neighbor in 𝑉𝐶 ,

i.e., 𝛿𝑉𝐶 = {𝑣 | 𝑣 ∈ 𝑉 \ 𝑉𝐶 , 𝑁 (𝑣) ∩ 𝑉𝐶 ≠ ∅}. Similarly 𝛿𝐸𝐶
is the set of edges for which one end point is in 𝑉𝐶 and the other

in𝑉 \𝑉𝐶 . For each boundary node 𝑣 , let its boundary degree 𝑑𝐵
𝐶
(𝑣)

be the number of its neighbors in the cascade graph𝐶 , i.e., 𝑑𝐵
𝐶
(𝑣) =

|𝑁 (𝑣) ∩ 𝑉𝐶 |. See Figure 1 for an example. Let 𝑛𝐵 (𝑘) denote the

number of boundary nodes with boundary degree equal to 𝑘 , which

we will refer to as boundary-degree counts.

2.4 Computing consistent labeled path counts
Let𝐻 (𝑉𝐻 , 𝐸𝐻 ) denote the givenDAG,where |𝑉𝐻 | = 𝑛 and |𝐸𝐻 | =𝑚.

For some 𝑘 ≥ 1, let 𝐿 = ⟨ℓ1, ℓ2, . . . , ℓ𝑘 ⟩ denote a label sequence of
length 𝑘 . Our algorithm for computing 𝑛𝑃 (𝑘, 𝐿), that is, the number

of 𝑘-length directed paths that are consistent with 𝐿, is based on

dynamic programming (DP). We recall that the nodes of any DAG

can be arranged along a line in a topologically sorted order [15] so

that every directed edge has a left to right orientation. For 1 ≤ 𝑗 ≤ 𝑘 ,

we use 𝐿𝑗 to denote the subsequence of 𝐿 containing the first 𝑗

entries of 𝐿. Our DP approach maintains an array 𝑞𝑖 [1 : 𝑘] of size
𝑘 with each node 𝑣𝑖 . Specifically, for 1 ≤ 𝑗 ≤ 𝑘 , 𝑞𝑖 [ 𝑗] will store
the number of 𝑗-length directed paths that satisfy the following

two conditions: (i) they are consistent with 𝐿𝑗 and (ii) they end at

𝑣𝑖 . Once we have the quantities 𝑞𝑖 [𝑘] for 1 ≤ 𝑖 ≤ 𝑛, the quantity

𝑛𝑃 (𝑘, 𝐿) is equal to
∑𝑛
𝑖=1 𝑞𝑖 [𝑘]. Thus, we now focus on computing

the quantities 𝑞𝑖 [ 𝑗], 1 ≤ 𝑗 ≤ 𝑘 , for each node 𝑣𝑖 . We will do this in

the chosen topological order.

Note that 𝑞1 [ 𝑗] = 0 for 1 ≤ 𝑗 ≤ 𝑘 , since 𝑣1 is a source node

(which has no incoming edges) in the topological order. For each

node 𝑞𝑖 , with 𝑖 ≥ 2, we have

𝑞𝑖 [1] = No. of incoming edges to 𝑣𝑖 with label ℓ1 .

For 2 ≤ 𝑗 ≤ 𝑘 , let 𝑉𝑖 [ 𝑗] denote the subset of {𝑣1, 𝑣2, . . . , 𝑣𝑖−1} such
that each 𝑣𝑟 ∈ 𝑉𝑖 [ 𝑗] is an in-neighbor of 𝑣𝑖 and the label on the

directed edge (𝑣𝑟 , 𝑣𝑖 ) is ℓ𝑗 . Then, we have

𝑞𝑖 [ 𝑗] =
∑︁

𝑣𝑟 ∈𝑉𝑖 [ 𝑗 ]
𝑞𝑟 [ 𝑗 − 1] .

Since nodes are processed in topologically sorted order, when we

need to compute 𝑞𝑖 [ 𝑗] for some 𝑗 , all the required values would

have already been computed.

The pseudo code for the above computation appears as Algo-

rithm 1. We can estimate the running time of the algorithm as

follows. Recall that 𝑛 and𝑚 denote the number of nodes and edges

in the given DAG 𝐻 . A topological sort of 𝐻 can be obtained in

𝑂 (𝑚 + 𝑛) time [15]. For any node 𝑣𝑖 and any 𝑗 , 1 ≤ 𝑗 ≤ 𝑘 , the time

used to compute 𝑞𝑖 [ 𝑗] is 𝑂 (Indegree(𝑣𝑖 )) since only the incoming

edges of 𝑣𝑖 are used in the computation of 𝑞𝑖 [ 𝑗]. Thus, for any 𝑗 ,

the total time used to compute the entry 𝑞𝑖 [ 𝑗] for all the nodes of
𝐻 is 𝑂 (∑𝑖 Indegree(𝑣𝑖 )) = 𝑂 (𝑚). Consequently, the time used to

compute 𝑞𝑖 [𝑘] for all the nodes of 𝐻 is 𝑂 (𝑘𝑚). Hence, the overall
running time to compute the quantity 𝑛𝑃 (𝑘, 𝐿) is 𝑂 (𝑘𝑚 + 𝑛).

The following theorem summarizes the above discussion.

Theorem 2.1. Given a DAG 𝐻 (𝑉𝐻 , 𝐸𝐻 ), where |𝑉𝐻 | = 𝑛, |𝐸𝐻 | =
𝑚, and a label sequence 𝐿 of length 𝑘 ≥ 1, Algorithm 1 finds the
number of 𝑘-length directed paths in 𝐻 that are consistent with 𝐿 in
𝑂 (𝑘𝑚 + 𝑛) time.

Algorithm 1: Counting the number of 𝑘-length paths in

a DAG that are consistent with a given label sequence of

length 𝑘 .

Input :Directed acyclic graph 𝐻 (𝑉𝐻 , 𝐸𝐻 ) and a label

sequence 𝐿 = ⟨ℓ1, . . . , ℓ𝑘 ⟩ of length 𝑘 .
Output :The value 𝑛𝑃 (𝑘, 𝐿), i.e., the number of 𝑘-length

directed paths in 𝐻 that are consistent with 𝐿.

1 Let 𝐿 = ⟨ℓ1, ℓ2, . . . , ℓ𝑘 ⟩ denote the given label sequence of

length 𝑘 . For 1 ≤ 𝑗 ≤ 𝑘 , let 𝐿𝑗 = ⟨ℓ1, ℓ2, . . . , ℓ𝑗 ⟩ denote the
𝑗-length subsequence of 𝐿.

2 Let ⟨𝑣1, 𝑣2, . . . , 𝑣𝑛⟩ denote a topologically sorted order of the

nodes of 𝐻 .

3 For all 𝑣, 𝑖 ∈ 𝑉 , let 𝑞𝑖 [ 𝑗], 1 ≤ 𝑗 ≤ 𝑘 , denote the number of

𝑗-length paths which are consistent with 𝐿𝑗 and which end

at 𝑣𝑖 .

4 Set 𝑞1 [ 𝑗] = 0, for 1 ≤ 𝑗 ≤ 𝑘 .

5 for 𝑖 = 2, . . . , 𝑘 do
6 Set 𝑞𝑖 [1] = No. of incoming edges to 𝑣𝑖 with label ℓ1.

7 end
8 for 𝑗 = 2, . . . , 𝑘 do
9 for 𝑖 = 2, . . . , 𝑛 do
10 Let 𝑉𝑖 [ 𝑗] denote the subset of {𝑣1, . . . , 𝑣𝑖−1} such

that each 𝑣𝑟 ∈ 𝑉𝑖 [ 𝑗] is an in-neighbor of 𝑣𝑖 and the

label of the directed edge (𝑣𝑟 , 𝑣𝑖 ) is ℓ𝑗 .
11 Set 𝑞𝑖 [ 𝑗] =

∑
𝑣𝑟 ∈𝑉𝑖 [ 𝑗 ] 𝑞𝑟 [ 𝑗 − 1].

12 end
13 end
14 Return 𝑛𝑃 (𝑘, 𝐿) =

∑𝑛
𝑖=1 𝑞𝑖 [𝑘].

3 SCENARIOS OF DISEASE DYNAMICS
A scenario 𝑆 corresponds to themodel parameters that generated the

cascade graphs, which could include disease or diffusion model pa-

rameters, seeding, and agent behavior capturing various responses

to the disease spread. In this work, the transmissibility 𝜏 determined

the infectiousness of the disease in each scenario.

3.1 Interventions
Interventions include pharmaceutical interventions (PIs), such as

vaccination, which change node susceptibility and/or infectivity;

and non-pharmaceutical interventions (NPIs), such as social dis-

tancing, which change node behavior, and as a result, change edges

of the contact graph. An intervention is triggered by either time or a

threshold, and has a target set. For example, we can apply vaccines

to senior people (65+) from the beginning of September; or we can

quarantine people who have close contacts with an individual once

we confirm that this individual is infected. People in the targeted

set may or may not comply.

Vaccination (VAX). This intervention reduces the susceptibility

𝜎 of a compliant node by a fraction, which is called the vaccine

efficacy (VE). This intervention reduces the probability that the

node will be infected by other nodes.

Generic social distancing (GSD). This intervention removes all

non-essential activities of a compliant node. The essential activities
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include home, work and school, while the nonessential activities
include shop and other. GSD removes each edge in the contact

graph that satisfies the following two properties: (i) the edge is

incident on compliant nodes and (ii) the edge label has at least

one non-essential activity. Since every edge is associated with two

activities, one for each end point, we combine the two activities in

the following manner to generate a label for each edge: essential–

essential (E), non-essential–non-essential (N) and essential–non-

essential (M). All type-N edges incident with the compliant nodes

and those type-M edges where the non-essential side belongs to a
compliant node will be removed from the contact graph.

3.2 Partial observation model
To model low penetration levels and adoption, we define coverage 𝜅
as the fraction of nodes that are observed in a cascade. We consider

a simple partial observation model where a random subset 𝑉
obs

of 𝜅 · |𝑉 | nodes from the contact graph 𝐺 (𝑉 , 𝐸) are chosen as the

observed nodes. For any cascade 𝐶 (𝑉𝐶 , 𝐸𝐶 ), the structural features
are extracted from the subgraph induced by 𝑉

obs
∩ 𝑉𝐶 . Also, we

only consider the boundary nodes corresponding to 𝑉
obs

∩ 𝑉𝐶 .

When 𝜅 = 1, all nodes in the contact graph are observable, and

therefore, all the structural features are computed for the entire

cascade.

4 PROBLEM FORMULATIONS
To understand how structural features of the cascade can charac-

terize the scenario that generated it, we consider a learning-based

framework. Using well-established techniques to assess parameter

significance and interpretability, we will then be able to quantify

the importance of each class of features (such as number of infec-

tions, motif counts, etc.). Further, this framework will also provide

the first steps for incorporating these features in learning tasks like

forecasting or predicting the time of peak infection.

We define the scenario identification (SI) problem as follows.

LetS = {𝑆1, 𝑆2, · · · , 𝑆𝑚} denote a set of contagion scenarios and 𝑓 (𝑇 )
:

C → Z𝑘 correspond to the feature vector of a cascade graph ob-

served up to a time horizon 𝑇 consisting of motif counts, number

of nodes, edges, epidemic characteristics, etc. Let F (𝑇 )
be the set

of all possible feature vectors, which will be till some time hori-

zon. Let Cℓ =
{
(𝑓1, 𝑙1), (𝑓2, 𝑙2), · · ·

}
denote a set of labeled feature

vectors (𝑓𝑖 , ℓ𝑖 ) where 𝑓𝑖 = 𝑓 (𝑇 ) (𝐶) is a feature vector correspond-
ing to a cascade graph 𝐶 for the scenario ℓ𝑖 ∈ S. The objective

of the full information horizon 𝑇 SI problem is to learn a classi-

fier 𝑔 : F (𝑇 ) → S that, given a feature vector, classifies it as being

generated by a particular scenario. We get different variations by

changing 𝑇—these correspond to varying amounts of available

information. We also consider different classes of features F (𝑇 )
,

e.g., those using epidemic features, or graph structural features,

and explore how well such classifiers can be learned. It is possible

that (i) the scenarios are not mutually exclusive, and (ii) the same

cascade graph can be generated by two different scenarios.

Given this framework, we consider an adversarial setting where

the scenarios are chosen in such a manner that the distribution of

cascades observed until time-horizon 𝑇 are indistinguishable by

simply observing the case counts or number of infected nodes at

every time step 𝑡 ≤ 𝑇 .

5 EXPERIMENT DESIGN
Cascade data sets. Our data sets include cascade graphs generated
by simulations of SEIR disease spread on synthetic contact networks

for two states in USA, namely Tennessee (TN) and Virginia (VA).

Structural parameters of these two networks appear in Table 1. The

simulation takes a scenario, which specifies the parameters of the

disease and interventions, seeds 20 randomly chosen nodes, lets the

disease propagate through the contact network for 300 days, and

generates cascade data as output. We design four scenarios, with

different transmissibility, vaccination, and generic social distancing

levels, for each state, and run 1000 replicates per scenario. Thus,

each of the TN and VA data sets includes 4000 cascade graphs. We

choose the parameter values carefully so that it is not easy to dis-

tinguish between scenarios by aggregate measures of the cascade,

such as the overall size or the daily difference in cascade size (aka

daily infection incidence). Both VAX and GSD interventions are

applied to compliant nodes, which are randomly chosen with a

probability equal to the specified compliance, at the beginning (day

0) and remain effective until the end (day 300). The vaccine reduces

the susceptibility of the node that receives it by 80%. The disease

transmissibility 𝜏 , vaccine coverage VAX, and generic social dis-

tancing compliance GSD for simulations that generate TN cascade

data are shown in Table 2. Those for VA cascade data are similar.

Graph |V| |E| Max deg. Avg deg. Dia.
TN 6,041,517 62,149,441 461 20.57 14

VA 7,602,717 83,162,927 543 21.88 14

Table 1: General structural information about the synthetic contact
networks used to generate the cascade graphs.

Scenario 𝜏 VAX GSD
No vax + Low GSD 0.09 None 25%

No vax + High GSD 0.09 None 70%

Vax + Low GSD 0.16∗ 50% 25%

Vax + High GSD 0.16∗ 50% 65%
†

Table 2: Disease and intervention parameters for different scenarios.
∗Scenarios on the VA network used 𝜏 = 0.155. †Scenario on the VA
network used GSD = 60%.

Partial observation. The generated cascades were further sampled

based on the coverage 𝜅 . We used𝜅 = 0.6, 0.7, . . . , 1. In each cascade,

a subset of nodes was chosen depending on 𝜅. We considered five

such sets of sampling instances for each 𝜅 value.

Learning methodology. We considered several machine learning

algorithms for this purpose. But we have provided results corre-

sponding to three of them based on superior performance: random

forest classifiers (RF), support vector machines (SVM), and logis-

tic regression (LR). We considered both one-versus-one and one-

versus-all approaches. We explored different approaches to feature

engineering, in particular with respect to the epicurve related fea-

tures. This was in part to ensure that there was very low likelihood

that an epicurve-based approach could meaningfully distinguish
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Name Description
Infection progress (epi-

curve)

Number of infections that occurred within

evenly spaced time periods. The periods

used are 1, 5, and 10 days.

Out-degree values Number of infected nodes in the cascade

with out-degrees that fall within equally

sized bins. The bin sizes are 1, 2, and 10.

Boundary degree bins Number of boundary nodes with boundary

degrees falling within equally sized periods.

The bin sizes used are 1,2 and 10.

Counts of labeled paths

of length-1 and 2

Number of occurrences of each length-1 and

length-2 labeled motif.

Normalized counts of

labeled length-1 and

length-2 path counts

Number of occurrences of each labeled path

normalized by the total number of paths

with the same length.

Unlabeled path counts Number of occurrences of unlabeled paths

of lengths 1, 2, 3, 4.

Table 3: Groups of features of cascade graphs considered in the
paper.

different scenarios. The feature groups used in this exercise are

shown in Table 3.

Though our data in some sense already represents a true distribu-

tion, and thus mitigates much of the risk of overfitting, we split our

data into training and evaluation sets. We used stratified sampling,

and used 25% of our data as the evaluation set. We selected hyper-

parameters by stratified 5-fold cross validation within the training

set. The hyperparameters we selected were 𝐶 , the regularization

factor for SVM and LR approaches, and the maximum number of

features considered by each tree in the RF approach.

Our objective for feature importance studies was to evaluate the

importance of groups of features (described in Table 3), not that of

an individual feature (such as out degree count for one particular

value of out degree). We used ablation analysis and Shapley additive

explanations (SHAP) [33, 34]. We note that the SHAP value is a

local method which quantifies the importance of a feature for a

data instance. The mean absolute SHAP value across data instances

is indicative of the global importance of the target feature. Here,

since we are evaluating groups of features, we adapt the SHAP

method to our purpose in the following manner. In our problem,

given a data instance 𝑥 𝑗 , feature 𝑖 and scenario 𝑆 , let 𝜙𝑥 𝑗 ,𝑖,𝑆 denote

the SHAP value of feature 𝑖 for deciding whether 𝑥 𝑗 belongs to

scenario 𝑆 or not. To assess the importance of groups of features,

we report the distribution of the absolute value of SHAP value

across data instances 𝑥 𝑗 and across features belonging to one group.

We take a similar approach with ablation analysis, where we assess

the importance of a feature group by comparing the performance

of the model trained with all features with the model trained with

all features minus the target feature group. We used the SHAP [52]

estimator in Python [45] and associated packages to do this analysis.

Our implementation and analysis code may be found at https://

github.com/NSSAC/cascade_analytics_public.

6 RESULTS
Cascade graph structure under different scenarios. The val-
ues of various groups of features were computed for each scenario

(Table 2), with 100 replicates per scenario. The results are in Fig-

ures 2, 3 and 4. Figure 2 shows the distribution of the number of

infections per day or the epicurves. Due to space constraints, we

show results only for the TN network in Figures 3 and 4. We found

similar results for the VA network. These results are included in

the full version of this work [24].

As the disease progresses, the epicurves can be distinguished

from one another, especially around the peak of the infection

spread; pharmaceutical and nonpharmaceutical interventions lead

to smaller peaks in the infection curve. We observe a similar trend

with other feature groups as well except for the labeled path mo-

tifs. In Figure 3, the scenario-specific counts of path frequency,

out-degree, boundary degree, and cascade size counts are shown.

From this, we can conclude that from the structure of the unlabeled

cascade graph, it seems to be hard to distinguish between scenarios

at the early stages (𝑇 = 70) of the cascade (left column), while in the

long-term (𝑇 = 300), the counts are very different and the cascades

can be easily distinguished using any feature group (row).

On the other hand, labeled motif counts, shown in Figure 4,

exhibit distinct patterns that remain consistent as time progresses.

We observe that the proportion of non-E edges is less in the high

GSD case as compared to the low GSD case when the vaccination

aspect is kept the same. This is because in the high GSD case, due to

a large number of nodes selected for GSD, and subsequent removal

of all their non-E edges, their proportion is reduced in the residual

graph. However, we also note that for the same level of GSD, the

proportion of E edges is less in the high VAX case when compared

to low VAX case; this is an unexpected outcome of the simulation

analysis process. We attribute this to the non-uniform distribution

of essential and non-essential edges among nodes. We observed

similar trends with longer labeled paths.

Scenario identification under complete observation. The re-
sults of the performance of the different machine learning ap-

proaches are summarized in Table 4. We first note that models

trained with the feature group of infected node counts (epicurve)

alone did not do well. This is a reflection of the way the scenarios

were chosen (see Figure 2 and the related discussion). However, we

observe that the addition of structural features greatly improves

the performance of all the algorithms consistently across networks.

For LR, the one-versus-all approach performed better, while for

SVM, the one-versus-one approach with linear kernel did better.

We found that a linear kernel resulted in the best performance for

the SVM.

Significance of different network measures. Our results for
the TN experiment using SHAP are provided in Figure 5 for the

different machine learning algorithms. We observe that in all three

algorithms, the labeled path counts play a dominant role in decision-

making. Particularly in the case of LR, the labeled edges have very

high average absolute SHAP values compared to others, while in

the case of SVM, the labeled path counts for longer paths play a

more prominent role. In the case of SVM, unlike the other meth-

ods, there are several outliers suggesting that individual features

corresponding to almost all the groups play a prominent role. The

column ablation results in the full version [24] also show very sim-

ilar results. In summary, we found that the group of features that

achieves the best performance varies depending on the model, but
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Figure 2: Distribution of the number of infections per day
on the TN and VA networks over 400 cascades. Each colored
line represents the mean value of all the cascades of the
corresponding scenario, and the shaded area around the line
is the confidence interval of the data. The red vertical line
marks day 70 on the time horizon 𝑇 .

TN VA

Model All Epi-only All Epi-only

SVM 0.82 ± 0.032 0.30 ± 0.040 0.87 ± 0.037 0.25 ± 0.017

RF 0.80 ± 0.041 0.26 ± 0.041 0.82 ± 0.029 0.29 ± 0.034

LR 0.79 ± 0.020 0.26 ± 0.024 0.80 ± 0.036 0.25 ± 0.038

Table 4: The accuracy values of the different models on the
test set and their standard deviations derived by repeating
the training and evaluation steps 10 times.

all the most accurate models included either the labeled edge count

(path length 1) or the labeled 2-length path counts.

Coverage Effects. We looked at the effect of coverage, or how

much of the network was necessary to observe in order to derive us-

able information under the observation model defined in Section 5.

The proportion of edge motifs of each type by scenario remained

relatively stable. These results, available in the full version [24] are

also reflected in the model performance. The performance for the

TN network is shown in Figure 7a. We observed minimal differ-

ences between model accuracy at 60% coverage as opposed to 90%

coverage, with SVM performing the best. The epicurve-only-based

models did not perform significantly above random guessing and

therefore were unaffected by the coverage. We observed similar

patterns for the VA network (see Figure 7b). That there was so little

change with less coverage is encouraging, as it suggests that even

partial efforts at contact tracing may yield useful insights.

Time horizon. We investigated whether the predictability was

impacted by the time at which the observations were taken. That is,

how early in a cascade can we predict the scenario? As mentioned

Figure 3: Network and node-level feature distributions at two
points in time on TN cascades. Within each figure, a box rep-
resents the distribution over 100 cascades. The distributions
on the left column are measured at time 𝑡 = 70, and the ones
on the right are measured at time 𝑡 = 300. The plots show the
frequencies of unlabeled paths of different lengths, frequen-
cies of nodes with the corresponding out-degrees (i.e., star
motif counts), frequencies of nodes with the corresponding
boundary degrees, and the total number of infections at time
𝑡 . Due to the wide range of their values, the out-degree and
boundary degree plots show distributions for two elements
only. However, more results in the full version [24] demon-
strate that the same trend can be seen across other values of
boundary degrees and out-degrees. We provide correspond-
ing visualizations for the VA network in the full version [24].

in the discussion for Figure 2, the likely trajectories of infections

overlap early in the cascade. However, it is similarly clear that

there is a point at which scenarios diverge. In Figure 3, the total

number of infected nodes at 𝑡 = 70 is not informative as to the

scenario. However, at 𝑡 = 300 (the end of the cascade), there is

a clear separation. A similar pattern occurs with path frequency,
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Figure 4: The ratio of the occurrences of every labeled motif
with respect to the total number of labeled motifs with the
same length. Values were measured at two different time
points on TN cascades. Each box represents value distribu-
tions over 100 cascades. Three figures were used for each
time point as the scales differ significantly. Corresponding
plots for the VA dataset are presented in the full version [24].

though out degree and boundary degree remain relatively similar

at both time points. Labeled motifs (Figure 4) similarly vary in

how informative they are depending on the time step. While they

overlap somewhat at 𝑡 = 70, they are totally separate at 𝑡 = 300.

To investigate how sensitive our learning models were to the

time of observation, we reran the training and testing using data

derived from observations up to 𝑡 = 50, 70, 90. The results of these

experiments are shown in Figure 6. We observed a moderate de-

crease in accuracy–the models at time 50 had lower accuracy than

those at time 70 and 90. At the same time, even at 𝑡 = 50, the

performance is not particularly bad, with a range between 0.6 and

0.8 depending on the model class. We have results in the full ver-

sion [24] to show how the importance of parameters varies over

time. We see that for SVM, some out degree features start becoming

important as 𝑇 increases, while for LR and RF, the labeled paths

are consistently the dominant feature group.

7 DISCUSSION AND RELATED WORK
The COVID-19 pandemic has underlined the importance of consid-

ering the characteristics of interactions (e.g., interactions in assisted

living facilities, super-spreader events, etc.) [4]. However, recent

studies (see e.g., [3, 27–29]) that have modeled contact tracing do

not assume the availability of such interaction-level information.

Emerging technologies are enabling us to collect richer data on

individual-level interactions and study their effect on disease spread.
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Figure 5: The absolute SHAP value for each model, averaged
over each set of features considered. The results are for cas-
cades over the TN network. Distributions were computed
over the entire training data set.
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Figure 6: The accuracy of models trained on Epicurve fea-
tures. Bounds were generated by 10 repetitions of train/test
splits.

Our work is motivated by the need to investigate how such infor-

mation can be utilized to better understand a contagion scenario,

and therefore, inform public policy.

Finding and enumerating motifs in graphs is an important topic

in areas such as computational biology and graph mining (see

e.g., [26, 43]). Other researchers have presented techniques for

finding motifs in temporal graphs [10, 42]. Many of the proposed

methods are for unlabeled networks. Some researchers have studied

problems related to identifying subgraphs in labeled networks. For

example, a scalable framework for finding dense subgraphs that

contain specified labeledmotifs (i.e., smaller subgraphs) is presented

in [50]. Our work does not use dense subgraphs; it relies on simple

labeled directed paths. Another study [36] focuses on finding motifs

in undirected graphs with node labels. Our work uses counts of

subgraphs determined by edge labels.

Machine learning approaches are being used to understand the

phase space of complex models. Lamperti et al. [30] used gradient

boosted trees for calibrating a complex agent-based model and sub-

sequently performing parameter importance analysis. Fox et al. [21]

provide an overview of methods by which simulation systems can

be coupled with machine learning based approaches to understand

complex systems. Angione et al. [5] analyze and evaluate a number

of machine learning surrogates for an agent-based model.
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Figure 7: Performance of models with access to structural features vs. Epicurve only models. Bounds were computed over 5
different random selections of nodes, and over 10 train/test repetitions for each of the random selections.

A number of papers have presented methods to analyze observed

cascades and determine various aspects of an epidemic process. For

example, Lokhov [32] considers the problem of identifying the

disease parameters of a spreading epidemic from partially observed

cascades. Raisi et al. [47] present optimization and deep learning

based methods for predicting the future course of a disease. Shah &

Zaman [51] and Zhu & Ying [57] address the problem of identifying

the initially infected nodes under specific propagation models such

as SIR. Problems related to the inference of influence functions at

the nodes of a network are addressed in [39]. Mishra et al. [37]

present an approach based on maximum likelihood estimate (MLE)

to reconstruct an epidemic cascade from partial observations. There

are many differences between our work and the ones mentioned

above. We consider more complex scenarios with interventions and

our goal is to characterize a given cascade in terms of measures

such as compliance to social distancing and efficacy of vaccines.

8 CONCLUSION
In order to characterize the utility of potential data from real-world

cascade tracing and to understand how structural graph parameters

influence network-based disease simulations, we introduced the

scenario identification problem. We performed a series of experi-

ments using realistic networks and cascades. These experiments

demonstrate that even in a semi-adversarial environment, effective

classification is possible if simple structural measures are available.

This work can be considered as a first step towards understand-

ing the importance of subgraph features of cascade graphs. For the

intervention scenarios considered in this work, we observe that the

types of interactions between pairs or chains of individuals (i.e.,

labeled path counts) are by far the most significant set of features

that can be used to characterize the scenarios. However, this could

be scenario dependent. For example, in a more dynamic interven-

tion scenario such as contact tracing followed by quarantining, it

is possible that other features are prominent. Also, in this work,

we have considered a simple SEIR model. Therefore, more complex

scenarios may require characterizations through more complex

subgraphs of cascade graphs. The general framework is relevant

for other kinds of complex contagion phenomena, which can be

modeled as graph dynamical systems [8, 38].
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