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1 Introduction
Let Ω ⊂ R2 be a bounded polygonal domain and 𝑓 ∈ 𝐿2(Ω). A model Dirichlet boundary value problem is
to find 𝑢 ∈ 𝐻1

0 (Ω) such that ∫︁
Ω

∇𝑢 · ∇𝑣 𝑑𝑥 =
∫︁
Ω

𝑓𝑣 𝑑𝑥 ∀ 𝑣 ∈ 𝐻1
0 (Ω). (1.1)

Here and below we follow the standard notation for differential operators, function spaces and norms that
can be found for example in [1, 8, 13].

Let 𝒯ℎ be a simplicial triangulation of Ω, 𝑘 ≥ 1 and 𝑉ℎ be the space of discontinuous piecewise
polynomial functions of degree ≤ 𝑘 associated with 𝒯ℎ, i.e.,

𝑉ℎ = {𝑣 ∈ 𝐿2(Ω) : 𝑣𝑇 = 𝑣
⃒⃒
𝑇

∈ P𝑘(𝑇 ) ∀ 𝑇 ∈ 𝒯ℎ}.

As usual, the mesh parameter ℎ is the maximum of the diameters of the triangles in 𝒯ℎ.

Remark 1.1. We will treat all triangles as open triangles.

The symmetric interior penalty (SIP) method (cf. [3, 33]) for (1.1) computes 𝑢ℎ ∈ 𝑉ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣) =
∫︁
Ω

𝑓𝑣 𝑑𝑥 ∀ 𝑣 ∈ 𝑉ℎ, (1.2)

where the bilinear form 𝑎ℎ(·, ·) is given by

𝑎ℎ(𝑤, 𝑣) =
∑︁

𝑇 ∈𝒯ℎ

∫︁
𝑇

∇𝑤 · ∇𝑣 𝑑𝑥 +
∑︁
𝑒∈ℰℎ

∫︁
𝑒

(︀
{{𝜕𝑤/𝜕𝑛}}[[𝑣]] + {{𝜕𝑣/𝜕𝑛}}[[𝑤]]

)︀
𝑑𝑠 + 𝜎

∑︁
𝑒∈ℰℎ

1
|𝑒|

∫︁
𝑒

[[𝑤]][[𝑣]]𝑑𝑠. (1.3)

Here ℰℎ is the set of the edges of 𝒯ℎ, |𝑒| is the length of the edge 𝑒 and 𝜎 is a positive penalty parameter.
On each 𝑒 ∈ ℰ 𝑖

ℎ (the set of the interior edges of 𝒯ℎ) shared by two triangles 𝑇 ±
𝑒 , we define the average of
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the normal derivative of 𝑣 across 𝑒 by

{{𝜕𝑣/𝜕𝑛}} = 𝜕𝑣−
𝑒

𝜕𝑛𝑒
+ 𝜕𝑣+

𝑒

𝜕𝑛𝑒
, (1.4)

where 𝑣±
𝑒 = 𝑣

⃒⃒
𝑇 ±

𝑒
and 𝑛𝑒 is a unit vector normal to 𝑒 pointing from 𝑇 −

𝑒 to 𝑇 +
𝑒 . The jump [[𝑣]] of 𝑣 across 𝑒

is defined by
[[𝑣]] = 𝑣+

𝑒 − 𝑣−
𝑒 . (1.5)

On an edge 𝑒 ∈ ℰ𝑏
ℎ (the set of the boundary edges of 𝒯ℎ) that is an edge of 𝑇𝑒 ∈ 𝒯ℎ, we define

[[𝜕𝑣/𝜕𝑛]] = 𝜕𝑣𝑒

𝜕𝑛𝑒
and [[𝑣]] = −𝑣𝑒, (1.6)

where 𝑣𝑒 = 𝑣
⃒⃒
𝑇𝑒

and 𝑛𝑒 is the unit vector normal to 𝑒 pointing towards the outside of Ω.
We assume that the penalty parameter 𝜎 is sufficiently large so that the discrete problem is uniquely

solvable (cf. [24]). We also assume that 𝒯ℎ is properly graded around the reentrant corners of Ω (cf. [2, 5, 17])
to ensure the optimal convergence of finite element methods.

Let 𝐾 be a compact subset of the open subset 𝐷 of Ω such that 𝐷 b Ω (i.e., 𝐷̄ is a compact subset of
Ω). Our goal is to give a self-contained derivation of the following estimate:

‖𝑢 − 𝑢ℎ‖𝐿∞(𝐾) ≤ 𝐶
(︀
‖𝑢 − Πℎ𝑢‖𝐿∞(𝐷) + ℎ(1 + | ln ℎ|)‖𝑢 − Πℎ𝑢‖𝑊 1,∞

ℎ
(𝐷)

+ ‖𝑢 − 𝑢ℎ‖𝐿2(𝐷) + ℎ‖𝑢 − Πℎ𝑢‖𝑊 1,2
ℎ

(Ω)
)︀

(1.7)

asymptotically as ℎ ↓ 0, where Πℎ is the nodal interpolation operator for the P𝑘 Lagrange finite element
space 𝐻1

0 (Ω) ∩ 𝑉ℎ and the positive constant 𝐶 is independent of ℎ.
The mesh-dependent (semi-) norms in (1.7) are defined as follows. Let 𝐺 be a subset of Ω. We take

𝒯ℎ(𝐺) = {𝑇 ∈ 𝒯ℎ : 𝑇 ∩ 𝐺 ̸= ∅}, (1.8)

and define the (semi-) norms ‖ · ‖𝑊 1,2
ℎ

(𝐺) and ‖ · ‖𝑊 1,∞
ℎ

(𝐺) by

‖𝑣‖2
𝑊 1,2

ℎ
(𝐺) =

∑︁
𝑇 ∈𝒯ℎ(𝐺)

[︁
‖∇𝑣‖2

𝐿2(𝑇 ) +
∑︁

𝑒⊂𝜕𝑇

(︁
|𝑒|‖{{𝜕𝑣/𝜕𝑛}}‖2

𝐿2(𝑒) + |𝑒|−1‖[[𝑣]]‖2
𝐿2(𝑒)

)︁]︁
, (1.9)

‖𝑣‖𝑊 1,∞
ℎ

(𝐺) = max
𝑇 ∈𝒯ℎ(𝐺)

[︁
‖∇𝑣‖𝐿∞(𝑇 ) + max

𝑒⊂𝜕𝑇

(︁
‖{{𝜕𝑣/𝜕𝑛}}‖𝐿∞(𝑒) + |𝑒|−1‖[[𝑣]]‖𝐿∞(𝑒)

)︁]︁
. (1.10)

Interior maximum norm (or pointwise) error estimates for classical finite element methods (cf. [27, 32]
and the references therein) were extended to the two dimensional SIP method (with 𝑘 = 1) in [22] under a
global 𝐻2 regularity assumption that is valid only for convex domains. Pointwise error estimates for the
SIP method in arbitrary dimensions were established in [12] in terms of the global weighted norms from
[25] that are in some sense localized. The results in [12] were extended in [20] to other two dimensional
discontinuous Galerkin methods. The theory in both of the papers [12, 20] requires the domain Ω to be
smooth. Other related work can be found in [10, 11, 23].

However the true interior pointwise error estimate in [26] (that improved the results in [27]) has not yet
been extended to discontinuous Galerkin methods. We believe this is due to the fact that the derivations
in [26, 27] require Galerkin approximations for an auxiliary Neumann problem on a local disc around the
point under consideration. But it is not clear how Galerkin approximations for the Neumann problem can
be obtained by using discontinuous finite element functions on a mesh that does not fit the disc exactly.

We obtain the estimate (1.7) by avoiding the local Neumann problem, at the expense of involving a
nonlocal term (the fourth term on the right-hand side). Nevertheless, under our assumption on 𝒯ℎ, the
estimate

‖𝑢 − 𝑢ℎ‖𝐿∞(𝐾) ≤ 𝐶ℎ2(1 + | ln ℎ|) (1.11)

follows immediately from (1.7) (cf. (2.3), (2.10), (2.11) and (2.13)) provided that 𝑢 ∈ 𝑊 2,∞
𝑙𝑜𝑐 (Ω), which is

valid for example if 𝑓 is locally Hölder continuous (cf. [18]).
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Remark 1.2. The estimate (1.11) is optimal for 𝑘 = 1 (cf. [21]). For 𝑘 ≥ 2, we expect the term 1 + | ln ℎ|
can be removed after additional (nontrivial) efforts (cf. [27, 29]).

Remark 1.3. The Green’s function for the boundary value problem (1.1) plays a role in the analysis in
[12, 20], which is behind the smooth domain assumption in these papers. In our approach we use instead the
fundamental solution in the free space and therefore we do not need to assume that the domain is smooth.

The rest of the paper is organized as follows. We recall some preliminary results concerning the SIP method
in Section 2 and obtain a discrete Caccioppoli estimate in Section 3 that is crucial for the local energy norm
error estimate in Section 4. We then use the result in Section 4 to derive an interior 𝑊 1,1 error estimate
in Section 5, which provides the final tool for establishing the interior maximum norm error estimate in
Section 6. We end with some concluding remarks in Section 7.

Throughout the paper we use 𝐶 (with or without subscripts) to denote a generic positive constant that
is independent of ℎ. (The dependence of 𝐶 on other parameters will be mentioned in context.) We also use
the notation 𝐴 . 𝐵 to represent the statement that 𝐴 ≤ (constant)𝐵, where the hidden positive constant
is independent of ℎ. The notation 𝐴 ≈ 𝐵 is equivalent to 𝐴 . 𝐵 and 𝐵 . 𝐴.

We will frequently use the following elementary scaling estimates, where ℎ𝑇 denotes the diameter of the
triangle 𝑇 .
Discrete Estimates

‖∇𝑣‖𝐿2(𝑇 ) ≤ 𝐶ℎ−1
𝑇 ‖𝑣‖𝐿2(𝑇 ) ∀ 𝑣 ∈ P𝑘, (1.12)

‖𝑣‖𝐿2(𝜕𝑇 ) ≤ 𝐶ℎ
−1/2
𝑇 ‖𝑣‖𝐿2(𝑇 ) ∀ 𝑣 ∈ P𝑘. (1.13)

Trace Inequality

ℎ−1
𝑇 ‖𝑣‖2

𝐿2(𝜕𝑇 ) ≤ 𝐶
(︀
ℎ−2

𝑇 ‖𝑣‖2
𝐿2(𝑇 ) + ‖∇𝑣‖2

𝐿2(𝑇 )
)︀

∀ 𝑣 ∈ 𝐻1(𝑇 ). (1.14)

Finally we record the following useful inequality.
Young’s Inequality

𝑎𝑏 ≤ 𝜖

2𝑎2 + 1
2𝜖

𝑏2 ∀ 𝜖 > 0. (1.15)

2 Preliminaries

2.1 Energy Space

The energy space for the Dirichlet boundary value problem (1.1) is

𝐸
(︀
Δ; 𝐿2(Ω)

)︀
= {𝑣 ∈ 𝐻1

0 (Ω) : Δ𝑣 ∈ 𝐿2(Ω)},

where Δ𝑣 is understood in the sense of distributions.
It is well-known (cf. [14, 19]) that 𝐸

(︀
Δ; 𝐿2(Ω)

)︀
⊂ 𝐻1+𝛼(Ω) for some 𝛼 ∈ (1/2, 1]. Therefore functions in

𝐸
(︀
Δ; 𝐿2(Ω)

)︀
are continuous by the Sobolev inequality (cf. [1]) and Lagrange interpolations are well-defined

on 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
. If Ω is convex, then 𝛼 = 1 and 𝐸

(︀
Δ; 𝐿2(Ω)

)︀
coincides with the space 𝐻2(Ω) ∩ 𝐻1

0 (Ω).
Note that

𝐸
(︀
Δ; 𝐿2(Ω)

)︀
⊂ 𝐻2

𝑙𝑜𝑐(Ω) (2.1)

by interior elliptic regularity (cf. [16]).
We can include both 𝐸

(︀
Δ; 𝐿2(Ω)

)︀
and 𝑉ℎ in the space

𝐻1+𝛼(Ω; 𝒯ℎ) = {𝑣 ∈ 𝐿2(Ω) : 𝑣𝑇 = 𝑣
⃒⃒
𝑇

∈ 𝐻1+𝛼(𝑇 ) ∀ 𝑇 ∈ 𝒯ℎ},

and (1.3)–(1.6) are well-defined for functions in 𝐻1+𝛼(Ω; 𝒯ℎ).
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2.2 Interpolation Errors

Let Π𝑇 be the nodal interpolation operator for the P𝑘 Lagrange finite element on the triangle 𝑇 . We have
the following standard error estimates (cf. [8, 13]):

‖𝜁 − Π𝑇 𝜁‖𝐿2(𝑇 ) + ℎ𝑇 |𝜁 − Π𝑇 𝜁|𝐻1(𝑇 ) + ℎ2
𝑇 |𝜁 − Πℎ𝜁|𝐻2(𝑇 ) ≤ 𝐶ℎ2

𝑇 |𝜁|𝐻2(𝑇 ) ∀ 𝜁 ∈ 𝐻2(𝑇 ), (2.2)

and

‖𝜁 − Π𝑇 𝜁‖𝐿∞(𝑇 ) + ℎ𝑇 |𝜁 − Π𝑇 𝜁|𝑊 1,∞(𝑇 ) ≤ 𝐶ℎ2
𝑇 |𝜁|𝑊 2,∞(𝑇 ) ∀ 𝜁 ∈ 𝑊 2,∞(𝑇 ). (2.3)

Moreover, the estimates (1.14) and (2.2) imply

‖𝜁 − Π𝑇 𝜁‖𝐿2(𝜕𝑇 ) ≤ 𝐶ℎ
3/2
𝑇 |𝜁|𝐻2(𝑇 ) ∀ 𝜁 ∈ 𝐻2(𝑇 ). (2.4)

2.3 Results for the SIP Method

It follows from (1.3), (1.9) and the Cauchy-Schwarz inequality that

𝑎ℎ(𝑤, 𝑣) ≤ 𝐶‖𝑤‖𝑊 1,2
ℎ

(Ω)‖𝑣‖𝑊 1,2
ℎ

(Ω) ∀ 𝑣, 𝑤 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ), (2.5)

and for a sufficiently large 𝜎, we also have (cf. [24])

𝑎ℎ(𝑣, 𝑣) ≥ 𝐶‖𝑣‖2
𝑊 1,2

ℎ
(Ω) ∀ 𝑣 ∈ 𝑉ℎ. (2.6)

In view of (2.5) and (2.6), we can define the Riesz projection operator 𝑃ℎ : 𝐻1+𝛼(Ω; 𝒯ℎ) −→ 𝑉ℎ by

𝑎ℎ(𝑃ℎ𝜁, 𝑣) = 𝑎ℎ(𝜁, 𝑣) ∀ 𝑣 ∈ 𝑉ℎ. (2.7)

It follows from (2.5)–(2.7) that

‖𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω) ≤ 𝐶‖𝜁‖𝑊 1,2
ℎ

(Ω) ∀ 𝜁 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ). (2.8)

The SIP method is consistent (cf. [24]) in the sense that

𝑎ℎ(𝜁, 𝑣) =
∫︁
Ω

(−Δ𝜁)𝑣 𝑑𝑥 ∀ 𝜁 ∈ 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
, 𝑣 ∈ 𝑉ℎ, (2.9)

which together with (1.1) and (1.2) implies
𝑢ℎ = 𝑃ℎ𝑢. (2.10)

Remark 2.1. The relation (2.9), which comes from integration by parts, is also valid for 𝜁 ∈ 𝐻2(Ω) and
𝑣 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ) as long as supp 𝑣 b Ω.

Under the assumption that 𝒯ℎ is properly graded around the reentrant corners, we have (cf. [7])

‖𝜁 − Πℎ𝜁‖𝑊 1,2
ℎ

(Ω) . ℎ‖Δ𝜁‖𝐿2(Ω) ∀ 𝜁 ∈ 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
. (2.11)

Combining (2.5), (2.6), (2.9) and (2.11), we see that (cf. [24])

‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω) ≤ 𝐶ℎ‖Δ𝜁‖𝐿2(Ω) ∀ 𝜁 ∈ 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
, (2.12)

and then a standard duality argument and (2.12) yield the estimate

‖𝜁 − 𝑃ℎ𝜁‖𝐿2(Ω) ≤ 𝐶ℎ‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω) ≤ 𝐶ℎ2‖Δ𝜁‖𝐿2(Ω) ∀ 𝜁 ∈ 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
. (2.13)
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2.4 Mesh-Dependent Norms

Besides the mesh-dependent (semi-) norms defined in (1.9) and (1.10), we will also use the norm ‖ · ‖𝑊 1,1
ℎ

(𝐺)
defined by

‖𝑣‖𝑊 1,1
ℎ

(𝐺) =
∑︁

𝑇 ∈𝒯ℎ(𝐺)

[︁
‖∇𝑣‖𝐿1(𝑇 ) +

∑︁
𝑒⊂𝜕𝑇

(︁
|𝑒|‖{{𝜕𝑣/𝜕𝑛}}‖𝐿1(𝑒) + ‖[[𝑣]]‖𝐿1(𝑒)

)︁]︁
. (2.14)

We can bound ‖𝑣‖𝑊 1,1
ℎ

(𝐺) by ‖𝑣‖𝑊 1,2
ℎ

(𝐺), as indicated by the following lemma.

Lemma 2.2. We have

‖𝑣‖𝑊 1,1
ℎ

(𝐺) ≤ 𝐶
(︁ ∑︁

𝑇 ∈𝒯ℎ(𝐺)

|𝑇 |
)︁ 1

2 ‖𝑣‖𝑊 1,2
ℎ

(𝐺) ∀ 𝑣 ∈ 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
. (2.15)

Proof. It follows from (2.14) and the Cauchy-Schwarz inequality for integrals that

‖𝑣‖𝑊 1,1
ℎ

(𝐺) ≤
∑︁

𝑇 ∈𝒯ℎ(𝐺)

[︁
|𝑇 |

1
2 ‖∇𝑣‖𝐿2(𝑇 ) +

∑︁
𝑒⊂𝜕𝑇

(︁
|𝑒|

3
2 ‖{{𝜕𝑣/𝜕𝑛}}‖𝐿2(𝑒) + |𝑒|

1
2 ‖[[𝑣]]‖𝐿2(𝑒)

)︁]︁
.

∑︁
𝑇 ∈𝒯ℎ(𝐺)

[︁
|𝑇 |

1
2 ‖∇𝑣‖𝐿2(𝑇 ) +

∑︁
𝑒⊂𝜕𝑇

|𝑇 |
1
2

(︁
|𝑒|

1
2 ‖{{𝜕𝑣/𝜕𝑛}}‖𝐿2(𝑒) + |𝑒|−

1
2 ‖[[𝑣]]‖2

𝐿2(𝑒)

)︁]︁
,

which together with (1.9) and the discrete Cauchy-Schwarz inequality yields (2.15).

It is also convenient to introduce the semi-norm

|𝑧|𝑊 2,2
ℎ

(𝐺) =
(︁ ∑︁

𝑇 ∈𝒯ℎ(𝐺)

|𝑧|2𝑊 2,2(𝑇 )

)︁ 1
2
. (2.16)

2.5 Mesh-Subdomains

A subdomain 𝐷 of Ω is a mesh-subdomain of 𝒯ℎ if (cf. (1.8))

𝐷̄ =
⋃︁

𝑇 ∈𝒯ℎ(𝐷)

𝑇 .

Let 𝐷 be a mesh-subdomain. We define the bilinear form 𝑎ℎ,𝐷(·, ·) by

𝑎ℎ,𝐷(𝑤, 𝑣) =
∑︁

𝑇 ⊂𝐷

(︂ ∫︁
𝑇

∇𝑤 · ∇𝑣 𝑑𝑥 +
∑︁

𝑒⊂𝜕𝑇

𝜇𝑒

[︁ ∫︁
𝑒

(︀
{{𝜕𝑤/𝜕𝑛}}[[𝑣]] + {{𝜕𝑣/𝜕𝑛}}[[𝑤]]

)︀
𝑑𝑠

+ 𝜎

|𝑒|

∫︁
𝑒

[[𝑤]][[𝑣]]𝑑𝑠
]︁)︂

, (2.17)

where

𝜇𝑒 =

⎧⎨⎩
1
2 if 𝑒 ∈ ℰ 𝑖

ℎ

1 if 𝑒 ∈ ℰ𝑏
ℎ

.

Then we have, by (1.3) and (2.17),

𝑎ℎ(𝑤, 𝑣) = 𝑎ℎ,𝐷(𝑤, 𝑣) + 𝑎ℎ,Ω∖𝐷(𝑤, 𝑣) ∀ 𝑣, 𝑤 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ). (2.18)

Remark 2.3. The two bilinear forms 𝑎ℎ(·, ·) and 𝑎ℎ,Ω(·, ·) are identical on 𝐻1+𝛼(Ω; 𝒯ℎ).

It follows from (1.9), (1.10), (2.14) and Hölder’s inequality that⃒⃒
𝑎ℎ,𝐷(𝑤, 𝑣)

⃒⃒⃒
≤ 𝐶‖𝑤‖𝑊 1,2

ℎ
(𝐷)‖𝑣‖𝑊 1,2

ℎ
(𝐷) ∀ 𝑣, 𝑤 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ), (2.19)⃒⃒

𝑎ℎ,𝐷(𝑤, 𝑣)
⃒⃒⃒

≤ 𝐶‖𝑤‖𝑊 1,∞
ℎ

(𝐷)‖𝑣‖𝑊 1,1
ℎ

(𝐷) ∀ 𝑣, 𝑤 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ). (2.20)
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2.6 A Commutation Formula

The following lemma provides a useful relation for moving a smooth function inside the bilinear form 𝑎ℎ(·, ·).
A more general form of this relation can be found in [12, displays (4.6) and (4.7)].

Lemma 2.4. Let 𝜔 ∈ 𝐶∞(R2). We have

𝑎ℎ(𝜔𝑣, 𝑧) = 𝑎ℎ(𝑣, 𝜔𝑧) +
∑︁

𝑇 ∈𝒯ℎ

∫︁
𝑇

𝑣
[︀
∇𝜔 · ∇𝑧 + ∇ · (𝑧∇𝜔)

]︀
𝑑𝑥

+ 2
∑︁
𝑒∈ℰℎ

∫︁
𝑒

(𝜕𝜔/𝜕𝑛){{𝑣}}[[𝑧]]𝑑𝑠 ∀ 𝑣, 𝑧 ∈ 𝐻1+𝛼(Ω; 𝒯ℎ), (2.21)

where {{𝑣}} is the average of the values of 𝑣 from the two triangles that share the edge 𝑒 as a common edge
if 𝑒 ∈ ℰ 𝑖

ℎ, and {{𝑣}} = 𝑣 if 𝑒 ∈ ℰ𝑏
ℎ.

Proof. First it follows from (1.3)–(1.6), the smoothness of 𝜔 and the product rule that

𝑎ℎ(𝜔𝑣, 𝑧) =
∑︁

𝑇 ∈𝒯ℎ

∫︁
Ω

𝑣(∇𝜔 · ∇𝑧)𝑑𝑥 −
∑︁

𝑇 ∈𝒯ℎ

∫︁
𝑇

∇𝑣 · (𝑧∇𝜔)𝑑𝑥 +
∑︁

𝑇 ∈𝒯ℎ

∫︁
𝑇

∇𝑣 · ∇(𝜔𝑧)𝑑𝑥

+
∑︁
𝑒∈ℰℎ

∫︁
𝑒

(︀
{{𝜕𝑣/𝜕𝑛}}[[𝜔𝑧]] + (𝜕𝜔/𝜕𝑛){{𝑣}}[[𝑧]] + 𝜔{{𝜕𝑧/𝜕𝑛}}[[𝑣]]

)︀
𝑑𝑠

+ 𝜎
∑︁
𝑒∈ℰℎ

1
|𝑒|

∫︁
𝑒

[[𝑣]][[𝜔𝑧]]𝑑𝑠. (2.22)

Secondly, it follows from integration by parts that

−
∑︁

𝑇 ∈𝒯ℎ

∫︁
𝑇

∇𝑣 · (𝑧∇𝜔)𝑑𝑥 =
∑︁

𝑇 ∈𝒯ℎ

∫︁
𝑇

𝑣 ∇ · (𝑧∇𝜔)𝑑𝑥 +
∑︁
𝑒∈ℰℎ

∫︁
𝑒

[[𝑣]]{{𝑧}}(𝜕𝜔/𝜕𝑛)𝑑𝑠

+
∑︁
𝑒∈ℰℎ

∫︁
𝑒

{{𝑣}}[[𝑧]](𝜕𝜔/𝜕𝑛)𝑑𝑠. (2.23)

The relation (2.21) is obtained by substituting (2.23) into (2.22).

3 A Discrete Caccioppoli Estimate
First we recall a superapproximation result. Let 𝑇 be a triangle, 𝑑 be a positive parameter and 𝜌 be a
smooth function on R2 that satisfies

|𝜌|𝑊 ℓ,∞(R2) ≤ 𝐶†𝑑−ℓ for ℓ = 0, 1, 2, . . . (3.1)

We have (cf. [6, 15, 20])

|𝜌2𝜒 − Π𝑇 (𝜌2𝜒)|𝐻1(𝑇 ) + ℎ𝑇 |𝜌2𝜒 − Π𝑇 (𝜌2𝜒)|𝐻2(𝑇 ) ≤ 𝐶ℎ𝑇 𝑑−2(‖𝜒‖𝐿2(𝑇 ) + 𝑑|𝜌𝜒|𝐻1(𝑇 )) (3.2)

for all 𝜒 ∈ P𝑘, where Π𝑇 is the nodal interpolation operator for the P𝑘 Lagrange finite element on 𝑇 , and
the positive constant 𝐶 depends on 𝐶†, 𝑘 and the shape of 𝑇 .

Let Ω0 be an open subset of Ω and 𝜒ℎ ∈ 𝑉ℎ satisfy

𝑎ℎ(𝜒ℎ, 𝑣) = 0 ∀ 𝑣 ∈ 𝑉ℎ, 𝑣 = 0 on Ω ∖ Ω𝑑, (3.3)

where
Ω𝑑 = {𝑥 ∈ Ω : dist(𝑥, Ω0) < 𝑑}. (3.4)



S.C. Brenner et al., An Interior Maximum Norm Error Estimate for the Planar SIP Method 7

Let 𝜌 ∈ 𝐶∞(R2) satisfy (3.1) and

𝜌 =

⎧⎨⎩1 on Ω0

0 on Ω ∖ Ω𝛿

, (3.5)

where
𝑐1 ≤ (𝛿/𝑑) ≤ 𝑐2 for some 𝑐1, 𝑐2 ∈ (0, 1). (3.6)

The following result is a discrete analog of the Caccioppoli estimate for second order elliptic partial
differential equations (cf. [9]).

Lemma 3.1. We have
‖𝜌𝜒ℎ‖𝑊 1,2

ℎ
(Ω) ≤ 𝐶𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑) (3.7)

provided that (ℎ/𝑑) is sufficiently small.

Proof. Let 𝜌𝐼 ∈ 𝐻1
0 (Ω) be the nodal interpolant of 𝜌 in the P1 conforming finite element space associated

with 𝒯ℎ. It follows from (1.9), (3.1) and standard interpolation error estimates (cf. [8, 13]) that

‖(𝜌 − 𝜌𝐼)𝜒ℎ‖2
𝑊 1,2

ℎ
(Ω)

.
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

(︀
‖𝜒ℎ∇(𝜌 − 𝜌𝐼)‖2

𝐿2(𝑇 ) + ‖(𝜌 − 𝜌𝐼)∇𝜒ℎ‖2
𝐿2(𝑇 )

)︀
+

∑︁
𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

|𝑒|
(︀
‖{{𝜒ℎ(𝜕(𝜌 − 𝜌𝐼)/𝜕𝑛)}}‖2

𝐿2(𝑒) + ‖(𝜌 − 𝜌𝐼){{𝜕𝜒ℎ/𝜕𝑛}}‖2
𝐿2(𝑒)

)︀
+

∑︁
𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

|𝑒|−1‖(𝜌 − 𝜌𝐼)[[𝜒ℎ]]‖2
𝐿2(𝑒)

.
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

[︀
(ℎ𝑇 /𝑑2)2‖𝜒ℎ‖2

𝐿2(𝑇 ) + (ℎ𝑇 /𝑑)2‖∇𝜒ℎ‖2
𝐿2(𝑇 )

]︀
+

∑︁
𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

|𝑒|
[︀
(|𝑒|/𝑑2)2‖{{|𝜒ℎ|}}‖2

𝐿2(𝑒) + (|𝑒|/𝑑)2‖{{𝜕𝜒ℎ/𝜕𝑛}}‖2
𝐿2(𝑒)

]︀
+

∑︁
𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

|𝑒|−1(|𝑒|/𝑑)2‖[[𝜒ℎ]]‖2
𝐿2(𝑒),

which together with (1.12), (1.13), (3.6) and (ℎ/𝑑) ≪ 1 implies

‖(𝜌 − 𝜌𝐼)𝜒ℎ‖𝑊 1,2
ℎ

(Ω) . 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑). (3.8)

Using (2.6) and (3.8), we find

‖𝜌𝜒ℎ‖2
𝑊 1,2

ℎ
(Ω) . ‖𝜌𝐼𝜒ℎ‖2

𝑊 1,2
ℎ

(Ω) + ‖(𝜌 − 𝜌𝐼)𝜒ℎ‖2
𝑊 1,2

ℎ
(Ω) . 𝑎ℎ(𝜌𝐼𝜒ℎ, 𝜌𝐼𝜒ℎ) + 𝑑−2‖𝜒ℎ‖2

𝐿2(Ω𝑑), (3.9)

and, in view of (2.5),

𝑎ℎ(𝜌𝐼𝜒ℎ, 𝜌𝐼𝜒ℎ) = 𝑎ℎ(𝜌𝜒ℎ, 𝜌𝜒ℎ) − 2𝑎ℎ

(︀
(𝜌 − 𝜌𝐼)𝜒ℎ, 𝜌𝜒ℎ

)︀
+ 𝑎ℎ

(︀
(𝜌 − 𝜌𝐼)𝜒ℎ, (𝜌 − 𝜌𝐼)𝜒ℎ

)︀
. 𝑎ℎ(𝜌𝜒ℎ, 𝜌𝜒ℎ) + ‖(𝜌 − 𝜌𝐼)𝜒ℎ‖𝑊 1,2

ℎ
(Ω)‖𝜌𝜒ℎ‖𝑊 1,2

ℎ
(Ω) + ‖(𝜌 − 𝜌𝐼)𝜒ℎ‖2

𝑊 1,2
ℎ

(Ω)

. 𝑎ℎ(𝜌𝜒ℎ, 𝜌𝜒ℎ) + 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑)‖𝜌𝜒ℎ‖𝑊 1,2
ℎ

(Ω) + 𝑑−2‖𝜒ℎ‖2
𝐿2(Ω𝑑). (3.10)

It then follows from (1.15), (3.9) and (3.10) that

‖𝜌𝜒ℎ‖2
𝑊 1,2

ℎ
(Ω) . 𝑎ℎ(𝜌𝜒ℎ, 𝜌𝜒ℎ) + 𝑑−2‖𝜒ℎ‖2

𝐿2(Ω𝛿), (3.11)

and it only remains to estimate the first term on the right-hand side of (3.11).
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According to Lemma 2.4, we can write

𝑎ℎ(𝜌𝜒ℎ, 𝜌𝜒ℎ) = 𝑎ℎ(𝜒ℎ, 𝜌2𝜒ℎ) + 𝑅 (3.12)

where
𝑅 =

∑︁
𝑇 ∈𝒯ℎ

∫︁
𝑇

𝜒ℎ

[︀
∇𝜌 · ∇(𝜌𝜒ℎ) + ∇ · (𝜌𝜒ℎ∇𝜌)

]︀
𝑑𝑥 + 2

∑︁
𝑒∈ℰℎ

∫︁
𝑒

(𝜕𝜌/𝜕𝑛){{𝜒ℎ}}[[𝜌𝜒ℎ]]𝑑𝑠,

and we have, by (1.9), (1.12), (1.13), (3.1), (3.4)–(3.6) and the Cauchy-Schwarz inequality,

|𝑅| .
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

‖𝜒ℎ‖𝐿2(𝑇 )
[︀
𝑑−1|𝜌𝜒ℎ|𝐻1(𝑇 ) + 𝑑−2‖𝜒ℎ‖𝐿2(𝑇 )

]︀
+ 𝑑−1

∑︁
𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

(︀
|𝑒|

1
2 ‖{{𝜒ℎ}}‖𝐿2(𝑒)

)︁(︀
|𝑒|−1/2‖[[𝜌𝜒ℎ]]‖𝐿2(𝑒)

)︀
. 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑)‖𝜌𝜒ℎ‖𝑊 1,2

ℎ
(Ω) + 𝑑−2‖𝜒ℎ‖2

𝐿2(Ω𝑑). (3.13)

Now we use (3.3), (3.5) and (ℎ/𝑑) ≪ 1 to write

𝑎ℎ(𝜒ℎ, 𝜌2𝜒ℎ) = 𝑎ℎ

(︀
𝜒ℎ, 𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)

)︀
, (3.14)

and it follows from (1.3), (1.9), (3.5) and the Cauchy-Schwarz inequality that

𝑎ℎ

(︀
𝜒ℎ, 𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)

)︀
=

∑︁
𝑇 ∈𝒯ℎ

∫︁
𝑇

∇𝜒ℎ · ∇
(︀
𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)

)︀
𝑑𝑥

+
∑︁
𝑒∈ℰℎ

∫︁
𝑒

[︀
{{𝜕𝜒ℎ/𝜕𝑛}}[[𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)]] + {{𝜕(𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ))/𝜕𝑛}}[[𝜒ℎ]]

]︀
𝑑𝑠

+ 𝜎
∑︁
𝑒∈ℰℎ

|𝑒|−1
∫︁
𝑒

[[𝜒ℎ]][[𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)]]𝑑𝑠

.
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

|𝜒ℎ|𝐻1(𝑇 )|𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)|𝐻1(𝑇 )

+
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

(|𝑒|
3
2 ‖{{𝜕𝜒ℎ/𝜕𝑛}}‖𝐿2(𝑒))(|𝑒|−

3
2 ‖[[𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)]]‖𝐿2(𝑒))

+
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

(|𝑒|−
1
2 ‖{{𝜕(𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ))/𝜕𝑛}}‖𝐿2(𝑒))(|𝑒|

1
2 ‖[[𝜒ℎ]]‖𝐿2(𝑒))

+
∑︁

𝑇 ∈𝒯ℎ(Ω𝛿)

∑︁
𝑒⊂𝜕𝑇

(|𝑒|
1
2 ‖[[𝜒ℎ]]‖𝐿2(𝑒))(|𝑒|−

3
2 ‖[[𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)]]‖𝐿2(𝑒)),

which together with (1.12)–(1.14), (2.4), (3.2) and (3.4)–(3.6) gives the estimate

𝑎ℎ

(︀
𝜒ℎ, 𝜌2𝜒ℎ − Πℎ(𝜌2𝜒ℎ)

)︀
.

∑︁
𝑇 ∈𝒯ℎ(Ω𝛿)

‖𝜒ℎ‖𝐿2(𝑇 )
(︀
𝑑−2‖𝜒ℎ‖𝐿2(𝑇 ) + 𝑑−1|𝜌𝜒ℎ|𝐻1(𝑇 )

)︀
. 𝑑−2‖𝜒ℎ‖2

𝐿2(Ω𝑑) + 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑)‖𝜌𝜒ℎ‖𝑊 1,2
ℎ

(Ω). (3.15)

Putting (3.11)–(3.15) together, we arrive at the estimate

‖𝜌𝜒ℎ‖2
𝑊 1,2

ℎ
(Ω) . 𝑑−2‖𝜒ℎ‖𝐿2(Ω𝑑) + 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑)‖𝜌𝜒ℎ‖𝑊 1,2

ℎ
(Ω),

which implies (3.7) through (1.15).
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4 A Local Energy Norm Error Estimate
We derive a local energy norm error estimate that is needed in Section 5 and Section 6. A similar result can
also be found in [12, Section 4].

We will use the notation Ω0 and Ω𝑑 introduced in Section 3.

Lemma 4.1. We have

‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω0) ≤ 𝐶
(︁

inf
𝑣∈𝑉ℎ

[︁
‖𝜁 − 𝑣‖𝑊 1,2

ℎ
(Ω𝑑) + 𝑑−1‖𝜁 − 𝑣‖𝐿2(Ω𝑑)

]︁
+ 𝑑−1‖𝜁 − 𝑃ℎ𝜁‖𝐿2(Ω𝑑)

)︁
(4.1)

for all 𝜁 ∈ 𝐸
(︀
Δ; 𝐿2(Ω)

)︀
, provided that (ℎ/𝑑) is sufficiently small.

Proof. Let 𝜔 be a smooth function defined on R2 such that

𝜔 =

⎧⎨⎩1 on Ω𝑑/3

0 on Ω ∖ Ω2𝑑/3

(4.2)

and
‖∇𝜔‖𝐿∞(Ω) ≤ 𝐶𝑑−1. (4.3)

We have
‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2

ℎ
(Ω0) = ‖𝜔𝜁 − 𝑃ℎ𝜁‖𝑊 1,2

ℎ
(Ω0) (4.4)

by (1.9), (4.2) and (ℎ/𝑑) ≪ 1, and we can write

𝜔𝜁 − 𝑃ℎ𝜁 = [𝜔𝜁 − 𝑃ℎ(𝜔𝜁)] + [𝑃ℎ(𝜔𝜁) − 𝑃ℎ𝜁]. (4.5)

There is also a straightforward estimate

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖2
𝑊 1,2

ℎ
(Ω0) ≤ ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖2

𝑊 1,2
ℎ

(Ω)

. ‖𝜔𝜁‖2
𝑊 1,2

ℎ
(Ω)

.
∑︁

𝑇 ∈𝒯ℎ(Ω2𝑑/3)

(︁
‖∇(𝜔𝜁)‖2

𝐿2(𝑇 ) +
∑︁

𝑒⊂𝜕𝑇

|𝑒| ‖{{𝜕(𝜔𝜁)/𝜕𝑛}}‖2
𝐿2(𝑒)

)︁
.

∑︁
𝑇 ∈𝒯ℎ(Ω2𝑑/3)

(︀
𝑑−2‖𝜁‖2

𝐿2(𝑇 ) + ‖∇𝜁‖2
𝐿2(𝑇 )

)︀
+

∑︁
𝑇 ∈𝒯ℎ(Ω2𝑑/3)

∑︁
𝑒⊂𝜕𝑇

|𝑒|
(︀
𝑑−2‖{{𝜁}}‖2

𝐿2(𝑒) + ‖{{𝜕𝜁/𝜕𝑛}}‖2
𝐿2(𝑒)

)︀
. ‖𝜁‖2

𝑊 1,2
ℎ

(Ω𝑑) + 𝑑−2‖𝜁‖2
𝐿2(Ω𝑑) (4.6)

that follows from (1.9), (1.13), (2.8), (4.2), (4.3) and (ℎ/𝑑) ≪ 1.
Note also that

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝐿2(Ω) . ℎ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,2
ℎ

(Ω) . ℎ
(︀
‖𝜁‖𝑊 1,2

ℎ
(Ω𝑑) + 𝑑−1‖𝜁‖𝐿2(Ω𝑑)

)︀
(4.7)

by (2.13) and (4.6).
It only remains to estimate the function 𝜒ℎ = 𝑃ℎ(𝜔𝜁) − 𝑃ℎ𝜁 ∈ 𝑉ℎ that satisfies

𝑎ℎ(𝜒ℎ, 𝑣) = 0 ∀ 𝑣 ∈ 𝑉ℎ, 𝑣 = 0 on Ω ∖ Ω𝑑/3 (4.8)

because of (2.7) and (4.2).
Let 𝜌 be a smooth function on R2 such that

𝜌 =

⎧⎨⎩1 on Ω0

0 on Ω ∖ Ω𝑑/4

(4.9)
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and
‖𝜌‖𝑊 ℓ,∞(R2) ≤ 𝐶𝑑−ℓ for ℓ = 0, 1, 2, . . . .

In view of Lemma 3.1 and (4.8), we have

‖𝜌𝜒ℎ‖𝑊 1,2
ℎ

(Ω) . 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑/3). (4.10)

Combining (4.2), (4.4)–(4.7), (4.9)–(4.10) and (ℎ/𝑑) ≪ 1, we find

‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω0) ≤ ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,2
ℎ

(Ω0) + ‖𝜌𝜒ℎ‖𝑊 1,2
ℎ

(Ω0)

. ‖𝜁‖𝑊 1,2
ℎ

(Ω𝑑) + 𝑑−1‖𝜁‖𝐿2(Ω𝑑) + 𝑑−1‖𝜒ℎ‖𝐿2(Ω𝑑/3)

. ‖𝜁‖𝑊 1,2
ℎ

(Ω𝑑) + 𝑑−1‖𝜁‖𝐿2(Ω𝑑)

+ 𝑑−1(︀
‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝐿2(Ω𝑑/3) + ‖𝜔𝜁 − 𝑃ℎ𝜁‖𝐿2(Ω𝑑/3)

)︀
. ‖𝜁‖𝑊 1,2

ℎ
(Ω𝑑) + 𝑑−1‖𝜁‖𝐿2(Ω𝑑) + 𝑑−1‖𝜁 − 𝑃ℎ𝜁‖𝐿2(Ω𝑑),

which implies (4.1) if we replace 𝜁 by 𝜁 − 𝑣 for an arbitrary 𝑣 ∈ 𝑉ℎ.

Corollary 4.2. In the case where Ω0 b Ω, we have

‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω0) ≤ 𝐶
(︀
ℎ|𝜁|𝑊 2,2

ℎ
(Ω𝑑) + 𝑑−1‖𝜁 − 𝑃ℎ𝜁‖𝐿2(Ω𝑑)

)︀
for all 𝜁 ∈ 𝐸

(︀
Δ; 𝐿2(Ω)

)︀
, provided that (ℎ/𝑑) is sufficiently small.

Proof. First we note that we can adjust the value of 𝑑 in (4.1) so that

‖𝜁 − 𝑃ℎ𝜁‖𝑊 1,2
ℎ

(Ω0) . ‖𝜁 − Πℎ𝜁‖𝑊 1,2
ℎ

(Ω𝑑/2) + 𝑑−1‖𝜁 − Πℎ𝜁‖𝐿2(Ω𝑑/2) + 𝑑−1‖𝜁 − 𝑃ℎ𝜁‖Ω𝑑/2 .

Next, in view of (1.9), (1.14), (2.1), (2.2) and (2.16), we have

‖𝜁 − Πℎ𝜁‖2
𝑊 1,2

ℎ
(Ω𝑑/2) =

∑︁
𝑇 ∈𝒯ℎ(Ω𝑑/2)

[︁
‖∇(𝜁 − Πℎ𝜁)‖2

𝐿2(𝑇 ) +
∑︁

𝑒⊂𝜕𝑇

|𝑒|‖{{𝜕(𝜁 − Πℎ𝜁)/𝜕𝑛}}‖2
𝐿2(𝑒)

]︁
.

∑︁
𝑇 ∈𝒯ℎ(Ω𝑑/2)

ℎ2
𝑇 |𝜁|2𝐻2(𝑇 ) +

∑︁
𝑇 ∈𝒯ℎ(Ω𝑑)

(︁
|𝜁 − Πℎ𝜁|2𝐻1(𝑇 ) + ℎ2

𝑇 |𝜁 − Πℎ𝜁|2𝐻2(𝑇 )

)︁
.

∑︁
𝑇 ∈𝒯ℎ(Ω𝑑)

ℎ2
𝑇 |𝜁|2𝐻2(𝑇 )

≤ ℎ2|𝜁|𝑊 2,2
ℎ

(Ω𝑑)

and

𝑑−2‖𝜁 − Πℎ𝜁‖2
𝐿2(Ω𝑑/2) ≤ 𝑑−2

∑︁
𝑇 ∈𝒯ℎ(Ω𝑑)

‖𝜁 − Πℎ𝜁‖2
𝐿2(𝑇 ) . 𝑑−2

∑︁
𝑇 ∈𝒯ℎ(Ω𝑑)

ℎ4
𝑇 |𝜁|2𝐻2(𝑇 ) ≤ ℎ2|𝜁|2

𝑊 2,2
ℎ

(Ω𝑑).

5 An Interior 𝑊 1,1 Error Estimate
Let 𝑇* ∈ 𝒯ℎ such that 𝑇* is a compact subset of the open set 𝐷 b Ω, 𝜑* ∈ 𝐶∞

𝑐 (𝑇*) and the function 𝜁 be
the Newtonian potential with density 𝜑* defined by

𝜁(𝑥) =
∫︁
𝑇*

𝑁(𝑥 − 𝑦)𝜑*(𝑦)𝑑𝑦, (5.1)
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where
𝑁(𝑥) = − 1

2𝜋
ln |𝑥| (5.2)

is the fundamental solution for −Δ in the free space R2.
Then 𝜁 belongs to 𝐶∞(R2),

− Δ𝜁 = 𝜑*, (5.3)

and direct calculations produce the following estimates:

|𝜁(𝑥)| ≤ 𝐶[1 + | ln dist(𝑥, 𝑇*)|] ‖𝜑*‖𝐿1(𝑇*) ∀ 𝑥 ∈ R2, (5.4a)
‖∇𝜁(𝑥)‖ ≤ 𝐶[dist(𝑥, 𝑇*)]−1‖𝜑*‖𝐿1(𝑇*) ∀ 𝑥 ∈ R2, (5.4b)

‖∇2𝜁(𝑥)‖ ≤ 𝐶[dist(𝑥, 𝑇*)]−2‖𝜑*‖𝐿1(𝑇*) ∀ 𝑥 ∈ R2. (5.4c)

Lemma 5.1. Let 𝜁 be defined by (5.1). Given any 𝜔 ∈ 𝐶∞
𝑐 (Ω) such that

𝜔 = 1 on 𝐷, (5.5)

we have
‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1

ℎ
(𝐷) ≤ 𝐶ℎ2(1 + | ln ℎ|)‖𝜑*‖𝐿2(𝑇*), (5.6)

where the positive constant 𝐶 is independent of ℎ but increases as dist(𝑇*, Ω ∖ 𝐷) decreases.

Proof. Observe that 𝜔𝜁 ∈ 𝐶∞
𝑐 (Ω) and

‖Δ(𝜔𝜁)‖𝐿2(Ω) . ‖𝜑*‖𝐿2(𝑇*) (5.7)

by (5.3)–(5.5), where the hidden constant increases as dist(𝑇*, Ω ∖ 𝐷) decreases.
We follow the approach in [27] to employ a dyadic decomposition

𝐴𝑗 = {𝑥 ∈ Ω : 2−𝑗−1𝑑 < dist(𝑥, 𝑇*) < 2−𝑗𝑑},

where
𝑑 = max

𝑥∈𝜕𝐷
dist(𝑥, 𝑇*).

Let 𝐽 be the largest integer such that
2−𝐽 𝑑 ≥ 𝑚ℎ (5.8)

for a sufficiently large positive integer 𝑚 (independent of ℎ), Ωℎ = 𝐷 ∖
⋃︀𝐽

𝑗=0 𝐴𝑗 and 𝐴−1 =
{︀

𝑥 ∈ Ω : 𝑑 <

dist(𝑥, 𝑇*) < 𝑑 + 1
2 dist(𝐷,R2 ∖ Ω)

}︀
. Note that |𝐴𝑗 | ≈ 2−𝑗𝑑 for 0 ≤ 𝑗 ≤ 𝐽 and (5.8) implies |Ωℎ| ≈ ℎ2.

We have

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1
ℎ

(𝐷) ≤ ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1
ℎ

(Ωℎ) +
𝐽∑︁

𝑗=0
‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1

ℎ
(𝐴𝑗) (5.9)

and

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1
ℎ

(Ωℎ) . ℎ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,2
ℎ

(Ωℎ)

≤ ℎ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,2
ℎ

(Ω) . ℎ2‖Δ(𝜔𝜁)‖𝐿2(Ω) . ℎ2‖𝜑*‖𝐿2(𝑇*) (5.10)

by (2.12), Lemma 2.2 and (5.7).
For 𝑗 = 0, . . . , 𝐽 and 𝑑𝑗 = 2−𝑗𝑑, we have

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1
ℎ

(𝐴𝑗) . 𝑑𝑗‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,2(𝐴𝑗)

. 𝑑𝑗

(︀
ℎ|𝜔𝜁|𝑊 2,2

ℎ
(𝐴𝑗−1∪𝐴𝑗∪𝐴𝑗+1) + 𝑑−1

𝑗 ‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝐿2(𝐴𝑗−1∪𝐴𝑗∪𝐴𝑗+1)
)︀

(5.11)

by Lemma 2.2, Corollary 4.2 (with Ω0 = 𝐴𝑗 and 𝑑 ≈ 𝑑𝑗), and

|𝜔𝜁|𝑊 2,2
ℎ

(𝐴𝑗−1∪𝐴𝑗∪𝐴𝑗+1) . 𝑑−1
𝑗 ‖𝜑*‖𝐿1(𝑇*) . 𝑑−1

𝑗 ℎ‖𝜑*‖𝐿2(𝑇*) (5.12)
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by (5.4) and the Cauchy-Schwarz inequality.
It follows from (2.13), (5.7), (5.8), (5.11) and (5.12) that

𝐽∑︁
𝑗=0

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝑊 1,1
ℎ

(𝐴𝑗) .
𝐽∑︁

𝑗=0
ℎ2‖𝜑*‖𝐿2(𝑇*) +

𝐽∑︁
𝑗=0

‖𝜔𝜁 − 𝑃ℎ(𝜔𝜁)‖𝐿2(Ω)

. ℎ2(1 + | ln ℎ|)‖𝜑*‖𝐿2(𝑇*),

which together with (5.9) and (5.10) implies (5.6).

6 An Interior Maximum Norm Error Estimate
Let 𝑇* ∈ 𝒯ℎ and 𝑥* ∈ 𝑇*. We follow [28, 29] to introduce a smoothed Dirac delta function 𝜑* ∈ 𝐶∞

𝑐 (𝑇 )
such that ∫︁

𝑇*

𝑝𝜑*𝑑𝑥 = 𝑝(𝑥*) ∀ 𝑝 ∈ P𝑘. (6.1)

More precisely, we start with the construction in the reference simplex 𝑇 with vertices (0, 0), (1, 0) and
(0, 1). Let 𝜆 be a nonnegative function in 𝐶∞

𝑐 (𝑇 ) such that∫︁
𝑇

𝜆 𝑑𝑥 = 1.

The formula
((𝑝, 𝑞)) =

∫︁
𝑇

𝑝𝑞𝜆 𝑑𝑥

defines an inner product on P𝑘 and there exists 𝑞 ∈ P𝑘 such that

((𝑝, 𝑞)) = 𝑝(𝑥̂*) ∀𝑝 ∈ P𝑘,

where 𝑥̂* is the point in the closure of 𝑇 corresponding to 𝑥* ∈ 𝑇* under an orientation preserving affine
transformation 𝐴* that maps 𝑇 to 𝑇*. We have∫︁

𝑇

𝑝𝜑*𝑑𝑥 = 𝑝(𝑥̂*) ∀ 𝑝 ∈ P𝑘,

where 𝜑* = 𝑞𝜆 ∈ 𝐶∞
𝑐 (𝑇 ). We then take 𝜑* to be the function (2|𝑇 |)−1(𝜑* ∘ 𝐴−1

* ). In particular we have

ℎ𝑇*‖𝜑*‖𝐿2(𝑇*) + ‖𝜑*‖𝐿1(𝑇*) ≈ 1. (6.2)

Theorem 6.1. Let 𝐾 be a compact subset of the open subset 𝐷 b Ω. We have

‖𝑢 − 𝑢ℎ‖𝐿∞(𝐾) ≤ 𝐶
(︀
‖𝑢 − Πℎ𝑢‖𝐿∞(𝐷) + ℎ(1 + | ln ℎ|)‖𝑢 − Πℎ𝑢‖𝑊 1,∞

ℎ
(𝐷)

+ ‖𝑢 − 𝑢ℎ‖𝐿2(𝐷) + ℎ‖𝑢 − Πℎ𝑢‖𝑊 1,2
ℎ

(Ω)
)︀

asymptotically as ℎ ↓ 0, where the positive constant 𝐶 is independent of ℎ.

Proof. We may take 𝐷 to be a mesh-subdomain of 𝒯ℎ without loss of generality in the following arguments.
(Otherwise we replace 𝐷 by a mesh-subdomain that is a subset of 𝐷, which is possible because ℎ ↓ 0.)

Let 𝑇* ∈ 𝒯ℎ(𝐾), 𝑥* ∈ 𝑇* be one of the nodes for the P𝑘 Lagrange element, and 𝜑* ∈ 𝐶∞
𝑐 (𝑇*) satisfy

(6.1) and (6.2). We can assume that ℎ is sufficiently small so that dist(𝑇*, Ω ∖ 𝐷) ≥ 1
2 dist(𝐾, Ω ∖ 𝐷).
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Let 𝜔 ∈ 𝐶∞
𝑐 (Ω) satisfy (5.5). We have, by (6.1) and (5.5),

𝑢(𝑥*) − 𝑢ℎ(𝑥*) = (Πℎ𝑢)(𝑥*) − 𝑢ℎ(𝑥*)

=
∫︁
Ω

𝜔(Πℎ𝑢 − 𝑢ℎ)𝜑*𝑑𝑥 =
∫︁
Ω

𝜔(Πℎ𝑢 − 𝑢)𝜑*𝑑𝑥 +
∫︁
Ω

𝜔(𝑢 − 𝑢ℎ)𝜑*𝑑𝑥, (6.3)

and, in view of (5.5) and (6.2),⃒⃒⃒ ∫︁
Ω

𝜔(Πℎ𝑢 − 𝑢)𝜑*𝑑𝑥
⃒⃒⃒

≤ ‖Πℎ𝑢 − 𝑢‖𝐿∞(𝐷)‖𝜑*‖𝐿1(𝑇*) . ‖Πℎ𝑢 − 𝑢‖𝐿∞(𝐷). (6.4)

Let 𝑁(𝑥) be the fundamental solution of −Δ in (5.2) and

𝑔(𝑥) =
∫︁
𝑇*

𝑁(𝑥 − 𝑦)𝜑*(𝑦)𝑑𝑦

be the Newtonian potential with density 𝜑*.
We have 𝑔 ∈ 𝐶∞(R2),

− Δ𝑔 = 𝜑*, (6.5)

and
‖𝑔‖𝑊 2,∞(Ω∖𝐷̃) . ‖𝜑*‖𝐿1(𝑇*) ≈ 1, (6.6)

where 𝐷̃ is a mesh-subdomain of 𝒯ℎ such that 𝐾 ⊂ 𝐷̃ b 𝐷 and that dist(𝐷̃, Ω ∖ 𝐷) ≈ 1
2 dist(𝐾, Ω ∖ 𝐷).

The estimate
‖Δ(𝜔𝑔)‖𝐿2(Ω) . ℎ−1 (6.7)

is then a simple consequence of (5.5), (6.2), (6.5) and (6.6).
It follows from Remark 2.1, Lemma 2.4 and (6.5) that∫︁

Ω

𝜔(𝑢 − 𝑢ℎ)𝜑*𝑑𝑥 = 𝑎ℎ(𝜔(𝑢 − 𝑢ℎ), 𝑔) = 𝑎ℎ(𝑢 − 𝑢ℎ, 𝜔𝑔) + 𝐼, (6.8)

where
𝐼 =

∑︁
𝑇 ∈𝒯ℎ

∫︁
𝑇

(𝑢 − 𝑢ℎ)
[︀
∇𝜔 · ∇𝑔 + ∇ · (𝑔∇𝜔)

]︀
𝑑𝑥

satisfies
|𝐼| . ‖𝑢 − 𝑢ℎ‖𝐿2(𝐷) (6.9)

because of (5.5) and (6.6).
Next we use (2.7), (2.10) and (2.18) to write

𝑎ℎ(𝑢 − 𝑢ℎ, 𝜔𝑔) = 𝑎ℎ

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀
= 𝑎ℎ,𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀
+ 𝑎ℎ,Ω∖𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀
, (6.10)

and we find, by (2.19) and (2.20),⃒⃒⃒
𝑎ℎ,𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀⃒⃒⃒
. ‖𝑢 − Πℎ𝑢‖𝑊 1,∞

ℎ
(𝐷)‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,1

ℎ
(𝐷), (6.11)⃒⃒⃒

𝑎ℎ,Ω∖𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀⃒⃒⃒
. ‖𝑢 − Πℎ𝑢‖𝑊 1,2

ℎ
(Ω∖𝐷)‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,2

ℎ
(Ω∖𝐷). (6.12)

It only remains to estimate the two terms ‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,1
ℎ

(𝐷) and ‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,2
ℎ

(Ω∖𝐷).
First we take Ω0 = Ω ∖ 𝐷 and 𝑑 = 1

2 dist(𝐷̃, Ω ∖ 𝐷) in Lemma 4.1 to obtain

‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,2
ℎ

(Ω∖𝐷) = ‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,2
ℎ

(Ω0)

. ‖𝜔𝑔 − Πℎ(𝜔𝑔)‖𝑊 1,2
ℎ

(Ω𝑑) + ‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝐿2(Ω). (6.13)
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From (1.14), (2.2), (6.6) and the same calculation in the proof of Corollary 4.2, we have

‖𝜔𝑔 − Πℎ(𝜔𝑔)‖𝑊 1,2
ℎ

(Ω𝑑) . ℎ, (6.14)

and, from (2.13) and (6.7),
‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝐿2(Ω) . ℎ. (6.15)

Combining (6.13)–(6.15), we see that

‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,2
ℎ

(Ω∖𝐷) . ℎ,

which together with (6.12) gives⃒⃒⃒
𝑎ℎ,Ω∖𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀⃒⃒⃒
. ℎ‖𝑢 − Πℎ𝑢‖𝑊 1,2

ℎ
(Ω). (6.16)

Finally, using Lemma 5.1 and (6.2), we obtain

‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝑊 1,1
ℎ

(𝐷) . ℎ2(1 + | ln ℎ|)‖𝜑*‖𝐿2(𝑇*) . ℎ(1 + | ln ℎ|),

which, in view of(6.11), implies⃒⃒⃒
𝑎ℎ,𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − 𝑃ℎ(𝜔𝑔)

)︀⃒⃒⃒
. ℎ(1 + | ln ℎ|)‖𝑢 − Πℎ𝑢‖𝑊 1,∞

ℎ
(𝐷). (6.17)

Putting (6.3), (6.4), (6.8)–(6.10), (6.16) and (6.17) together, we arrive at the estimate

|𝑢(𝑥*) − 𝑢ℎ(𝑥*)| . ‖𝑢 − Πℎ𝑢‖𝐿∞(𝐷) + ℎ(1 + | ln ℎ|)‖𝑢 − Πℎ𝑢‖𝑊 1,∞
ℎ

(𝐷)

+ ‖𝑢 − 𝑢ℎ‖𝐿2(𝐷) + ℎ‖𝑢 − Πℎ𝑢‖𝑊 1,2
ℎ

(Ω). (6.18)

On the other hand, we have, by scaling,

‖Πℎ𝑢 − 𝑢ℎ‖𝐿∞(𝑇 ) .
𝑁𝑘∑︁
𝑖=1

|(Πℎ𝑢 − 𝑢ℎ)(𝑥𝑖)|, (6.19)

where 𝑥1, . . . , 𝑥𝑁𝑘
∈ 𝑇 are the nodes for the P𝑘 Lagrange finite element.

It then follows from (6.18) and (6.19) that

‖𝑢 − 𝑢ℎ‖𝐿∞(𝑇 ) . ‖𝑢 − Πℎ𝑢‖𝐿∞(𝐷) + ℎ(1 + | ln ℎ|)‖𝑢 − Πℎ𝑢‖𝑊 1,∞
ℎ

(𝐷)

+ ‖𝑢 − 𝑢ℎ‖𝐿2(𝐷) + ℎ‖𝑢 − Πℎ𝑢‖𝑊 1,2
ℎ

(Ω) ∀ 𝑇 ∈ 𝒯ℎ(𝐾).

7 Concluding Remarks
We have established an interior maximum norm error estimate for the SIP method for a simple model
problem in two dimensions. The derivation is self-contained (up to the standard results for the SIP method
and the superapproximation result in (3.2)). The results in this paper can be extended along the lines in
[20] to other discontinuous Galerkin methods in [4].

Our approach can also be applied to elliptic problems with variable coefficients where −Δ is replaced
by an elliptic operator 𝑝(𝑥, 𝐷) in divergence form. One only has to replace the Newtonian potential∫︀

𝑇*
𝑁(𝑥−𝑦)𝜑*(𝑦)𝑑𝑦 by 𝑞(𝑥, 𝐷)𝜑*, where the pseudo-differential operator 𝑞(𝑥, 𝐷) of order −2 is a parametrix

for 𝑝(𝑥, 𝐷) in the free space (cf. [31, Theorem 3.1.3 and Lemma 12.3.1] and [30, Section 6.4]).
Note that the approach in this paper does not work properly in three dimensions because in that case

the estimate (6.2) takes the form

ℎ3/2‖𝜑*‖𝐿2(𝑇*) + ‖𝜑*‖𝐿1(𝑇*) ≈ 1,
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so that
‖𝜔𝑔 − 𝑃ℎ(𝜔𝑔)‖𝐿2(Ω) . ℎ

1
2 .

Consequently the estimate (6.16) now reads⃒⃒⃒
𝑎ℎ,Ω∖𝐷

(︀
𝑢 − Πℎ𝑢, 𝜔𝑔 − Πℎ(𝜔𝑔)

)︀⃒⃒⃒
. ℎ

1
2 ‖𝑢 − Πℎ𝑢‖𝑊 1,2

ℎ
(Ω),

and the fourth term that appears on the right-hand side of (1.7) becomes ℎ
1
2 ‖𝑢 − Πℎ𝑢‖𝑊 1,2

ℎ
(Ω), which is

sub-optimal.
We believe interior pointwise error estimates in three dimensions can still be established without using

a local Neumann problem. However the correct order of convergence can only be achieved if no global term
appears on the right-hand side of the estimate, which means more of the techniques in [27] would have to
be adopted.

Funding: This work was supported in part by the National Science Foundation under Grant No. DMS-19-
13035 and Grant No. DMS-22-08404.
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