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1 Introduction

Let © C R? be a bounded polygonal domain and f € L2(Q2). A model Dirichlet boundary value problem is
to find u € Hg () such that

/Vu-Vvdac:/fvd:r Vv e Hy(Q). (1.1)
Q Q

Here and below we follow the standard notation for differential operators, function spaces and norms that
can be found for example in [1, 8, 13].

Let T, be a simplicial triangulation of €2, & > 1 and V}, be the space of discontinuous piecewise
polynomial functions of degree < k associated with Ty, i.e.,

Vi={veL?(Q): vy =v|, €PW(T) VT €Th}.
As usual, the mesh parameter h is the maximum of the diameters of the triangles in 7j,.
Remark 1.1. We will treat all triangles as open triangles.

The symmetric interior penalty (SIP) method (cf. [3, 33]) for (1.1) computes up, € V}, such that

ap(up,v /fvdm Yo eV, (1.2)

where the bilinear form ap (-, -) is given by
ap(w,v) = Y /Vw Vo dx + Z/ {ow/on}[v] + {ov/on}w])ds + o > ‘/[[w]][[uﬂds (1.3)
TETh T e€&y e eely |

Here &}, is the set of the edges of Ty, |e| is the length of the edge e and o is a positive penalty parameter.
On each e € 5}; (the set of the interior edges of T;) shared by two triangles T, we define the average of
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the normal derivative of v across e by

ovg  OvF
{ov/on} = o, + on.

(1.4)

where vF = ’U‘Ti and n, is a unit vector normal to e pointing from T~ to T.". The jump [v] of v across e
is defined by
[v] = v} — v, . (1.5)

On an edge e € 82 (the set of the boundary edges of 7,) that is an edge of T, € T, we define

Ove

[Ov/on] = .

and [v] = —ve, (1.6)

where v, = ’U‘Tc and n. is the unit vector normal to e pointing towards the outside of €.

We assume that the penalty parameter o is sufficiently large so that the discrete problem is uniquely
solvable (cf. [24]). We also assume that Ty, is properly graded around the reentrant corners of  (cf. [2, 5, 17])
to ensure the optimal convergence of finite element methods.

Let K be a compact subset of the open subset D of  such that D € Q (i.e., D is a compact subset of
Q). Our goal is to give a self-contained derivation of the following estimate:

o= e sy < O = Tl ey + 500+ 1Al s = Tl
+ Hu_uhHLQ(D) +hHU_HhuHW}}v2(Q)) (1.7)

asymptotically as h | 0, where IIj, is the nodal interpolation operator for the P, Lagrange finite element
space H}(€2) NV}, and the positive constant C is independent of h.
The mesh-dependent (semi-) norms in (1.7) are defined as follows. Let G be a subset of 2. We take

Th(G)={T €Ty, :TNG # 0}, (1.8)

and define the (semi-) norms || - ”W}}'Z(G) and || - HW;,OC(G) by

Wol2gy = D [IV0leiy+ . (ell€00/0n}Eac + el MeT3aqe)) - (1:9)

TeTh(G) eCOT
ol o) = s (190l cry + max (HO0/onHl ) +lel " Idlimo) ] (110)

Interior maximum norm (or pointwise) error estimates for classical finite element methods (cf. [27, 32]
and the references therein) were extended to the two dimensional SIP method (with & = 1) in [22] under a
global H? regularity assumption that is valid only for convex domains. Pointwise error estimates for the
SIP method in arbitrary dimensions were established in [12] in terms of the global weighted norms from
[25] that are in some sense localized. The results in [12] were extended in [20] to other two dimensional
discontinuous Galerkin methods. The theory in both of the papers [12, 20] requires the domain € to be
smooth. Other related work can be found in [10, 11, 23].

However the true interior pointwise error estimate in [26] (that improved the results in [27]) has not yet
been extended to discontinuous Galerkin methods. We believe this is due to the fact that the derivations
in [26, 27] require Galerkin approximations for an auxiliary Neumann problem on a local disc around the
point under consideration. But it is not clear how Galerkin approximations for the Neumann problem can
be obtained by using discontinuous finite element functions on a mesh that does not fit the disc exactly.

We obtain the estimate (1.7) by avoiding the local Neumann problem, at the expense of involving a
nonlocal term (the fourth term on the right-hand side). Nevertheless, under our assumption on 7, the
estimate

lu = unllp () < CRP(1+ |Inhl) (1.11)

follows immediately from (1.7) (cf. (2.3), (2.10), (2.11) and (2.13)) provided that u € Wl2O’C°°(Q), which is
valid for example if f is locally Hélder continuous (cf. [18]).
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Remark 1.2. The estimate (1.11) is optimal for k = 1 (cf. [21]). For k > 2, we expect the term 1+ |Inh|
can be removed after additional (nontrivial) efforts (cf. [27, 29]).

Remark 1.3. The Green’s function for the boundary value problem (1.1) plays a role in the analysis in
[12, 20], which is behind the smooth domain assumption in these papers. In our approach we use instead the
fundamental solution in the free space and therefore we do not need to assume that the domain is smooth.

The rest of the paper is organized as follows. We recall some preliminary results concerning the SIP method
in Section 2 and obtain a discrete Caccioppoli estimate in Section 3 that is crucial for the local energy norm
error estimate in Section 4. We then use the result in Section 4 to derive an interior W' error estimate
in Section 5, which provides the final tool for establishing the interior maximum norm error estimate in
Section 6. We end with some concluding remarks in Section 7.

Throughout the paper we use C' (with or without subscripts) to denote a generic positive constant that
is independent of h. (The dependence of C' on other parameters will be mentioned in context.) We also use
the notation A < B to represent the statement that A < (constant)B, where the hidden positive constant
is independent of h. The notation A ~ B is equivalent to A < B and B < A.

We will frequently use the following elementary scaling estimates, where h, denotes the diameter of the
triangle T

Discrete Estimates

IVoll L2 (ry < Chz ol L2z Vo € Py, (1.12)
lollz2ory < Chzllollzry Yo € Py (1.13)

Trace Inequality
hi 'l Z2ory < C(hi vz + IVOI2(ry) Vv e HY(T). (1.14)

Finally we record the following useful inequality.
Young’s Inequality

ab< a?t 2

-2 2

—b*  Ve>0. (1.15)
€

2 Preliminaries

2.1 Energy Space

The energy space for the Dirichlet boundary value problem (1.1) is
B(A;LX(Q)) = {v e H}(Q) : Av e L(Q)},

where Av is understood in the sense of distributions.

It is well-known (cf. [14, 19]) that E‘(A; LQ(Q)) C H'*2(Q) for some o € (1/2,1]. Therefore functions in
E(A; L2(Q)) are continuous by the Sobolev inequality (cf. [1]) and Lagrange interpolations are well-defined
on E‘(A; L2(Q)). If Q is convex, then a = 1 and E(A; L2(€2)) coincides with the space H?(Q) N H} ().

Note that

E(A;LA(Q)) C Hppo() (2.1)

by interior elliptic regularity (cf. [16]).
We can include both E (A; LQ(Q)) and V3, in the space

H™ (4 Th) = {v e L*(Q) : vp =v|, e HFYT) VT €T},

and (1.3)—(1.6) are well-defined for functions in H'+(Q;Ty,).
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2.2 Interpolation Errors

Let II7 be the nodal interpolation operator for the Py, Lagrange finite element on the triangle 7. We have
the following standard error estimates (cf. [8, 13]):

¢ = Tl 2y + hrl = Mol gy + 2l = Wpllazery < ChEICg2ry V¢ € HA(T), (2.2)
and
1€ = €|l oo (1) + el = TrClwrco () < ChZ|Clw2oo(ry V¢ € WH(T). (2.3)

Moreover, the estimates (1.14) and (2.2) imply

I¢ = TrCll 2oy < CRYCluzery V¢ € HA(T). (2.4)

2.3 Results for the SIP Method

It follows from (1.3), (1.9) and the Cauchy-Schwarz inequality that
ap(w,v) < CHw”Wﬁ'Q(Q)HUHW,}’Z(Q) Vo, we H1+Q(Q;E), (2.5)
and for a sufficiently large o, we also have (cf. [24])

ap(v,v) > C|lv Yo € V. (2.6)

1212
W, ()
In view of (2.5) and (2.6), we can define the Riesz projection operator Py, : H'T(Q;T;) — Vj, by
ap(Pr¢,v) = ap(C,v) Yo e V. (2.7)
It follows from (2.5)—(2.7) that
HPhCHW;’Q(Q) < C||§||thv2(9) V(e H1+Q(Q§7;z)~ (2.8)
The SIP method is consistent (cf. [24]) in the sense that

ap(¢,v) = /(fAC)vd:r V(e E‘(A;LQ(Q)), v € Vp, (2.9)
Q

which together with (1.1) and (1.2) implies
Up = Phu. (2.10)

Remark 2.1. The relation (2.9), which comes from integration by parts, is also valid for ¢ € H?(Q) and
v e HT(Q;T;,) as long as suppv € .

Under the assumption that 7y, is properly graded around the reentrant corners, we have (cf. [7])

¢~ Tl S hIACLe@) ¢ e B(ALA(©@). (2.11)
Combining (2.5), (2.6), (2.9) and (2.11), we see that (cf. [24])

I6 = Prcllwr 2y < ChIAClIL2 @) V¢ € E(AL(Q)), (2.12)
and then a standard duality argument and (2.12) yield the estimate

16 = Pugllzz() < CBIIC = Pucllypr gy < CRAIAC L2y V¢ € B(ALP(). (2.13)
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2.4 Mesh-Dependent Norms

Besides the mesh-dependent (semi-) norms defined in (1.9) and (1.10), we will also use the norm || - le,l(G)
h
defined by
Pl = > [IVolzay+ > (leli{ov/nHie + 11z o)) (2.14)
TETH(G) eCoT

We can bound ||’UHW1,1(G) by HUHW1,2(G), as indicated by the following lemma.
h h
Lemma 2.2. We have

Il gy gc( 3 |T|)2|\u||whl,2(c) Vo e B(A; LX(Q)). (2.15)
TeTh(G) )

Proof. Tt follows from (2.14) and the Cauchy-Schwarz inequality for integrals that

Phyire s > [TVl + > (el 140v/0nllsa) + lel Tl 2o ) |

TeTh(G) eCOT
1 1/ 1 _1
< S [TVl + Y 1TV (el I400/0n} 2oy + el B3¢, )]
TETH(G) eCoT
which together with (1.9) and the discrete Cauchy-Schwarz inequality yields (2.15). O

It is also convenient to introduce the semi-norm

\le:,z(G):( > |z|%V2,2(T)>‘ (2.16)

TeTh(G)

Nl

2.5 Mesh-Subdomains

A subdomain D of © is a mesh-subdomain of Ty, if (cf. (1.8))

b= \J

TeTHL(D)

Let D be a mesh-subdomain. We define the bilinear form ap p(-,-) by

an,p(w,v) = Z (/Vw-Vvdx—l— Z ue{/({{ﬁw/an}ﬂv]+{8v/3n}[[w]])ds
T

TCD eCoT "
o
+ [[wﬂ[[v]]ds}), 217)
e
e
where
i ifeecé&
He = .
1 ifecé&p
Then we have, by (1.3) and (2.17),
ap(w,v) = ap,p(w,v) + ap o\ p(w,v) Yo, we HT(Q;Tp). (2.18)

Remark 2.3. The two bilinear forms ay(-,-) and ap (-, ) are identical on H'T(; 7).

It follows from (1.9), (1.10), (2.14) and Holder’s inequality that

Jan,p(w,0)| < Cllwlyrz oz Vowe HH@T), (2.19)

‘ah,D(wvv) < C”“’”w}tm(D)””HV[/;J(D) Vo,w e H1+Q(Q§Th)- (2-20)
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2.6 A Commutation Formula

The following lemma provides a useful relation for moving a smooth function inside the bilinear form ay (-, -).
A more general form of this relation can be found in [12, displays (4.6) and (4.7)].

Lemma 2.4. Let w € C(R?). We have

ap(wv, z) = ap(v,wz) + Z v[Vw Vz+ V- (2Vw)|dz
T€ETh T

+2)° [ (0w/on){v}elds  Vv,z € HF(QT), (2.21)

ecéy, e

where {v} is the average of the values of v from the two triangles that share the edge e as a common edge

ife€ &, and {fv} =v ifeeé'g.
Proof. First it follows from (1.3)—(1.6), the smoothness of w and the product rule that

an(wv, z) = Z/ (Vw - V2)dx — Z/w (2Vw)dz + Z/w V(wz)da

TETh ¢ TETh 7p TeTh

+ Z /(ﬂav/an}[[wz]] + (Ow/On){v}[2] + w{0z/On}[v])ds

e€ln

+o Z / [v][w=]ds. (2.22)

e€fp

Secondly, it follows from integration by parts that

S / (:Vw)de = 3 / (:Vw)dz+ 3 /[[UMZ} 0w/ On)ds

TETh TETh €€,
+ > / {v}2](8w/On)ds. (2.23)
e€&p
The relation (2.21) is obtained by substituting (2.23) into (2.22). O

3 A Discrete Caccioppoli Estimate

First we recall a superapproximation result. Let T be a triangle, d be a positive parameter and p be a
smooth function on R? that satisfies

plwecemey < Crd™" for£=0,1,2,... (3.1)
We have (cf. [6, 15, 20])

10°X = O (p*X)| 1 (1) + hrlp®x — Do (0*X) 21y < Ched ™ (Xl L2(7) + dlpxX| (1)) (32)

for all x € Py, where Il is the nodal interpolation operator for the P, Lagrange finite element on 7', and
the positive constant C' depends on Cj, k and the shape of T
Let ¢ be an open subset of Q2 and x;, € Vj, satisfy

an(xn,v) =0 Vo eV, v=00n N\ Qyq, (3.3)

where
Qg = {x € Q: dist(z, Q) < d}. (3.4)
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Let p € C°°(R?) satisfy (3.1) and

1 on g
0 on 2\ Qs
where
c1 <(0/d) < e for some ¢1,co € (0,1). (3.6)

The following result is a discrete analog of the Caccioppoli estimate for second order elliptic partial
differential equations (cf. [9]).

Lemma 3.1. We have
loxnllr2 ) < Cd™ Ixnllz2 (3.7)

provided that (h/d) is sufficiently small.

Proof. Let p; € H&(Q) be the nodal interpolant of p in the P; conforming finite element space associated
with Tj,. It follows from (1.9), (3.1) and standard interpolation error estimates (cf. [8, 13]) that

2
1(p — pI)XhHW;vQ(Q)

S Y (V= poliaey + 10— ) Vxalieir)
TETn(Qs)

+ > > el(Hxa@o = pr)/om) HF2 () + (0 = pr)fOxn/On}I7 ()

TeTH(Qs) eCOT

+ > Y el e = e Ixnll3 o

TeTH(Qs5) eCOT

S > [/ @Vl Ty + (or /D IV xR 2 ()]
T€7-)L(Q5)

+> ) lel[Uel/d) I xn Mz e + (el /D)2 [€0xn/On}F 2 o))

TEn(Q(;) eCOT

> D el e/ I xnd 72 ey

TeTH(Qs) eCOT
which together with (1.12), (1.13), (3.6) and (h/d) < 1 implies
160 = Xl 2y S 4 el (- (35)
Using (2.6) and (3.8), we find
loxally 120y S IxnlGyaz gy + 10 = poxRI 12 (q) S anlpixn, pxn) + A7 xnl72,), (39
and, in view of (2.5),

an(piXn, pixn) = an(pXn, pXn) — 2an ((p = p1)Xn, pxn) + an((p = p1)Xn, (P — pr)Xn)
S anpxns pxn) + (0 = pr)xnllw 2 o) loxXn w2 o) + 10 = pOXR Iy 1.2 g

< an(pxn: pxn) + A7 xnll 20 lloxally 2 @) +d 72 IxnlI22 () - (3.10)
It then follows from (1.15), (3.9) and (3.10) that
||/7Xh|\%;vi,2(ﬂ) S an(pxn, pxn) + d72||Xh\|2L2(95)7 (3.11)

and it only remains to estimate the first term on the right-hand side of (3.11).
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According to Lemma 2.4, we can write

an(pXns PX1) = an(Xns p°X1) + R (3.12)

where

R= )" /Xh (Vo Vipxn) +V - (pxnVp)|de +2 /(ap/an){xh}[[m]]ds,
TETh e€ln

and we have, by (1.9), (1.12), (1.13), (3.1), (3.4)—(3.6) and the Cauchy-Schwarz inequality,

IRl < Z Ixallzzcry [ oxnla oy + 42 Ixall 2]
TETh(2s)

a7 Y (el ) (el lpxallze)

TET(Qs) eCOT

< dilHXhHL2(Qd)||thHW;‘2(Q) + diZ”Xh”%z(Qd)- (3-13)
Now we use (3.3), (3.5) and (h/d) < 1 to write
an(xXn: P*Xn) = an (Xn: P*xn — Tr(p*xn)), (3.14)
and it follows from (1.3), (1.9), (3.5) and the Cauchy-Schwarz inequality that
an(xn: P°xn — n(p*xn))

= Z Vxn - V(p*xn — n(p®xn))da

TeTh
+ Z [{oxn/0n}p*xn — Tn(p*xn)] + £0(p*xn — Tn(p®xn))/On}[xn]]ds
e€ln
o S0kl [ Bl s — TPl
e€lp e

SO almnle®xn = (e xn) m(r)
TeTh(Qs)

+ 3 S dlel®{0xa/0n I 2 (el =2 T xn — Tn(p®xn) L2 o))

TeTh(Qs) eCOT

+ >0 S (el 100 — T(p®xn))/On Y o)) (el 1Txnll 2e))

TE'Th(Q(;) eCOT

+ 3 S elF ealllzze) (el 2Tp*xn — Tap*x)lllz2e))s

TETH(Qs) eCOT

which together with (1.12)—(1.14), (2.4), (3.2) and (3.4)—(3.6) gives the estimate

an(xn P°xn = n(p*xn)) S Z Ixellz2ery (A2 IxnllLzcry + 4~ Hoxalery)
TeTn(Qs)

S A2 |xnll7e g, + 4 Ixall 2w loxnllw 2 (q)- (3.15)
Putting (3.11)—(3.15) together, we arrive at the estimate
HthHiVi,z(Q) S d?lxnllpz0q) + d_1|\Xh||L2(Qd,)||PXhHW;’2(Q),

which implies (3.7) through (1.15). O
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4 A Local Energy Norm Error Estimate

We derive a local energy norm error estimate that is needed in Section 5 and Section 6. A similar result can
also be found in [12, Section 4].

We will use the notation 2y and €4 introduced in Section 3.

Lemma 4.1. We have
16 = Paclluz 2o < C(int [I6 = ol oy + 7 E — vz + 746 - Prclisnn)  (@1)

forall ¢ € E’(A; LQ(Q)), provided that (h/d) is sufficiently small.

Proof. Let w be a smooth function defined on R? such that

1 on 2
w— 4/ (4.2)
0 on {2 \ QQd/3
and
V| oo () < Cd™ (4.3)
We have
||<*PhCHW2’2(QO) = ||W<*PhC||W;v2(QO) (4-4)
by (1.9), (4.2) and (h/d) < 1, and we can write
w(@ = Pp¢ = [w¢ = Pp(wC)] + [Pr(wC) — Pa¢]. (4.5)

There is also a straightforward estimate
2 2
HWC - Ph(wC)HW}?Q(QO) < HWC - Ph(UJC)HW}t?(Q)
2
S/ HWCHW}12(Q)

S Y (V@O + X lel 0w/ )

TETH(Q2ay3) eCdT
S0 (@2 e + IVC 2 )
TETh(Q24/3)

+ > > lel(@ I 2y + I1HOC /O 13 )

TETh(Q2a/3) eCOT
S HCH?;th(Qd) +d721¢1 72 00 (4.6)

that follows from (1.9), (1.13), (2.8), (4.2), (4.3) and (h/d) < 1.
Note also that

¢ = Pa@Ollzay S Mot = PawOllwraay S b(IClwr 2y + 47 Cl2@n)  @47)

by (2.13) and (4.6).
It only remains to estimate the function x5, = Py(w() — Pr¢ € V}, that satisfies

an(xn,v) =0 Vo€ Vy, v=00nQ\ Q3 (4.8)

because of (2.7) and (4.2).
Let p be a smooth function on R? such that

1 on Qo
p= (4.9)
0 on Q\ Qg4
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and
ol we.o 2y < cd=* for £=0,1,2,....

In view of Lemma 3.1 and (4.8), we have
loxnllwr2) S a7 Ixall L2 (90)- (4.10)
Combining (4.2), (4.4)-(4.7), (4.9)-(4.10) and (h/d) < 1, we find
¢ — PhCHw}l 2(90) < lw¢ = Ph(wOHWl 2(Q0) + HPXhHWl 2(Q0)
S Kz, +d” Mi¢lz2u) + 47 IxallL2(a)0)
[ T IS P

Hlw¢ = PuwO)ll L2 (0q)5) + 190C = Prlllz2(2y)s))
Sl 2,y +d ISl 2@y +d7HIC = Prclizaiay):

which implies (4.1) if we replace ¢ by ¢ — v for an arbitrary v € V},. O

Corollary 4.2. In the case where Qg € 2, we have

¢ — PhCHWh1=2(QO) < C(hmw}f@(gd) + dil”C - PhCHLQ(Qd))

forall ¢ € E(A; L2(Q)), provided that (h/d) is sufficiently small.

Proof. First we note that we can adjust the value of d in (4.1) so that

1€ = Prcllyr2qy) S 1€ = MnCllyr2(q, ) + 47 IS = Tncllza(e, ) + 47 IS = Prdlle,.-

Next, in view of (1.9), (1.14), (2.1), (2.2) and (2.16), we have

16 =Tz, = Do [IVC =T Zagry + 3 IellOC ~ 1) /Onbl3a,)|

TeTh(Qay2) eCoT

S Y RBem+ > (16T + R Tl )
TETH(Qay2) TE€Th(Qa)

S Y hCBem

TeTh(2a)

2
= IClwz 2,

and

A2 =il <A™ D0 IC=TClleery Sd72 Y halli) < P2ICG 220,

TeTn(Qa) TeTh(Qa)

5 An Interior W1! Error Estimate

Let T, € Ty, such that T, is a compact subset of the open set D € Q, ¢, € C2°(T,) and the function ¢ be
the Newtonian potential with density ¢, defined by

(@) = / Nz — y)é. (y)dy, (5.1)
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where

N(z) = f% In |z| (5.2)

is the fundamental solution for —A in the free space R2.
Then ¢ belongs to C*°(R?),

— AC = ¢y, (5.3)
and direct calculations produce the following estimates:

@) < CIL+ [ndist(e, T[] [éelli(r) Vo € B2, (5.4a)

IV¢ () < Cldist(z, T ™ osll Lacr) Vo eR? (5.4D)

IV2¢ ()| < Cldist(z, T)) 2 ésll 122 Vo e R (5.4c)

Lemma 5.1. Let ¢ be defined by (5.1). Given any w € C(Q) such that
w=1 onD, (5.5)

we have
lwC = Pr(wOllwi1py < CR*(1+ [ Al L2 (1., (5.6)

where the positive constant C is independent of h but increases as dist(Tx, Q\ D) decreases.

Proof. Observe that w( € C2°(2) and

AW z2(0) S lY«llL2 (1) (5.7)

by (5.3)—(5.5), where the hidden constant increases as dist(T%, Q2 \ D) decreases.
We follow the approach in [27] to employ a dyadic decomposition

Aj={ze€Q:27971d < dist(x,T) < 277d},

where
d = max dist(x, T%).
x€dD
Let J be the largest integer such that
277d > mh (5.8)

for a sufficiently large positive integer m (independent of h), Qp = D \ U}]:o Ajand A_; = {3: eN:d<
dist(z,7%) < d+ 3dist(D,R?\ ) }. Note that |A;| ~279d for 0 < j < J and (5.8) implies |y, ~ h%.
We have

J

¢ ~ Pa@Q)lly 11y < € ~ Pa(@ 11 gy + D 19 ~ Pa@llyr 4. (5.9)
=0

and
llw¢ — Ph(WC)HW;J(Qh) S hflw¢ — Ph(wC)HW;v?(Qh)
< hfjw( — Ph(wC)HW;ﬂ(Q) SIPIAWO 2 ) S WP lbsll 22ty (5.10)

by (2.12), Lemma 2.2 and (5.7).
For j =0,...,J and d; = 277d, we have

o€ = P@Olly ) S 5l = Pa() s,
S dj (h|w<|W§»2(Aj,1uAjuAH1) + dflﬂwC — Pr(wQ)l2(a,_yua,04,,0))  (5:11)
by Lemma 2.2, Corollary 4.2 (with Qo = A; and d = d;), and

|WC|W§’2(AJ,1UAJUAH1) 5 d]'_1‘|¢*||L1(T*) 5 dj_lh||¢’*HL2(T*) (5-12)
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by (5.4) and the Cauchy-Schwarz inequality.
It follows from (2.13), (5.7), (5.8), (5.11) and (5.12) that

J J
lewC Pr(@)lly11 4, Zh||¢*\|L2<T*>+Z\|w<—Ph<w<>||Lz<m
=0

7=0 =0
< h2(1 + I |pallz2(T.),

which together with (5.9) and (5.10) implies (5.6). O

6 An Interior Maximum Norm Error Estimate

Let T € T and 2, € Ti. We follow [28, 29] to introduce a smoothed Dirac delta function ¢, € C°(T)
such that

/W*dw =p(re) VpeP. (6.1)

T,

More precisely, we start with the construction in the reference simplex 7' with vertices (0,0), (1,0) and
(0,1). Let A be a nonnegative function in C2°(T") such that

/Ad:c:l.

T
The formula

(p,q) = / pgAdx

T

defines an inner product on Py and there exists ¢ € P, such that

(p,q) = p(@s)  Vp€EPy,

where Z, is the point in the closure of T corresponding to x, € T, under an orientation preserving affine
transformation A, that maps TtoT +. We have

/pé*dw =p(@s)  Vp€EPy,
T
where ¢, = g\ € C°(T"). We then take ¢, to be the function (2|T])~ (¢« o A71). In particular we have
hr ||« ll2 (1) + |@<llLr(r) = 1. (6.2)
Theorem 6.1. Let K be a compact subset of the open subset D € 2. We have
It = wn| oo (x6) < C(lu = Tl L () + (1 + [ lu = Thully0 )
+ [l = unll2(py + hllu — HhUHW}}L’Q(Q))
asymptotically as h | 0, where the positive constant C' is independent of h.

Proof. We may take D to be a mesh-subdomain of 7, without loss of generality in the following arguments.
(Otherwise we replace D by a mesh-subdomain that is a subset of D, which is possible because h | 0.)

Let T, € Ti(K), x4 € Tx be one of the nodes for the P, Lagrange element, and ¢, € C2°(T,) satisfy
(6.1) and (6.2). We can assume that h is sufficiently small so that dist(Z%,Q\ D) > Ldist(K,Q\ D).
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Let w € C2°(Q) satisty (5.5). We have, by (6.1) and (5.5),
w(s) —up(@s) = (Mpu)(zs) — un(zs)

= /w(Hhu—uh)qﬁ*dm = /w(Hhu—u)qb*dx—i—/w(u—uh)gzﬁ*d:c,

Q Q Q

and, in view of (5.5) and (6.2),

| /w(Hhu — wrda| < My = ull (Il ry S [T = ull o ():
Q

Let N(z) be the fundamental solution of —A in (5.2) and

g(x) = [ N(z —y)¢s«(y)dy
/

be the Newtonian potential with density ¢..
We have g € C™(R?),
- Ag = ¢*a
and

lgllyz.c 5y S NsllLr(r.) = 1,

—_— 13

where D is a mesh-subdomain of 75, such that K C D € D and that dist(D, Q2 \ D) ~ $dist(X,Q\ D).

The estimate
1AW L2 Sh

is then a simple consequence of (5.5), (6.2), (6.5) and (6.6).
It follows from Remark 2.1, Lemma 2.4 and (6.5) that

/w(u —up)Pxdr = ap(w(u —up), g) = ap(u — up,wg) + I,
Q

where

I= Z (u—up)[Vw-Vg+ V- (9Vw)|dx
TeTn

satisfies
1| < lu— UhHL?(D)

because of (5.5) and (6.6).
Next we use (2.7), (2.10) and (2.18) to write

ap(u — up,wg) = ap (u — yu,wg — Py(wg))

= an,p (u—yu,wg — Py(wg)) + apo\p (v — Myu, wg — Py(wg)),

and we find, by (2.19) and (2.20),

ah,D (U —pu, wg — Ph(w!]))‘ Sl — Hh““wiv”(p) |wg — Ph(wg)”Wi*l(D)a

Ah,Q\D (U — pu,wg — Ph(Wg))‘ < Hu - HhuHW;vZ(Q\D)”Wg - Ph(Wg)Hwi’Q(Q\D)-

It only remains to estimate the two terms [jwg — Ph(WQ)HWM(D) and |jwg — Ph(wg)le,z(Q\D).
h h

First we take Qo = Q\ D and d = 3dist(D,Q\ D) in Lemma 4.1 to obtain

lwg = Pr(wa)llwi2@\py = lwg = Pr(wg)lwi2q,)

< lwg — Hh(wg)HW;vZ(Qd) + [lwg — Ph(w9)||L2(Q)-

(6.7)

(6.10)

(6.11)

(6.12)

(6.13)
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From (1.14), (2.2), (6.6) and the same calculation in the proof of Corollary 4.2, we have
lwg — T (w0)lly12q,) < (6.14)
and, from (2.13) and (6.7),
lwg — Pr(wg)llL2() < b (6.15)
Combining (6.13)—(6.15), we see that
lwg — Ph(WQ)”Wi*z(Q\D) S h

which together with (6.12) gives

ap,o\p (v — pu, wg — Ph(wg))‘ S hllu = pullyy 12 q)- (6.16)
Finally, using Lemma 5.1 and (6.2), we obtain
g — Pa(wg) sy S W21+ ADlI6llar.) S h(1+ |nhl),

which, in view of(6.11), implies

an,p (u —pu,wg — Ph(wg))' Sh(l+|Inh|)||uw— Hh“”wi*‘x’(D)' (6.17)
Putting (6.3), (6.4), (6.8)—(6.10), (6.16) and (6.17) together, we arrive at the estimate

(@) —un(@)] S llu = pull Lo oy + A1+ [ A])lu = Hpuly1e )

+ HU*UhHB(D) +h||u7HhuHWi’2(Q)' (6.18)
On the other hand, we have, by scaling,
Ny,
IMTpu — up||poe 1y S Z |(Tpu — up) (4)], (6.19)
i=1
where z1,...,zn, € T are the nodes for the P;, Lagrange finite element.

It then follows from (6.18) and (6.19) that
[ = unllLoe () S lu = Mpuf Loy + A1+ [ hf)[[u = Tpully e

+||u7uh||L2(D)+hHU*HhU”W§=2(Q) VT € Tn(K).

7 Concluding Remarks

We have established an interior maximum norm error estimate for the SIP method for a simple model
problem in two dimensions. The derivation is self-contained (up to the standard results for the SIP method
and the superapproximation result in (3.2)). The results in this paper can be extended along the lines in
[20] to other discontinuous Galerkin methods in [4].

Our approach can also be applied to elliptic problems with variable coefficients where —A is replaced
by an elliptic operator p(x, D) in divergence form. One only has to replace the Newtonian potential
fT* N(z—y)d«(y)dy by q(x, D)d., where the pseudo-differential operator ¢(x, D) of order —2 is a parametrix
for p(z, D) in the free space (cf. [31, Theorem 3.1.3 and Lemma 12.3.1] and [30, Section 6.4]).

Note that the approach in this paper does not work properly in three dimensions because in that case
the estimate (6.2) takes the form

W32 dull 2,y + ldwllrer,) = 1,
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so that
1
lwg — Pr(wg)llr2(0) S h2.

Consequently the estimate (6.16) now reads

1
ah,Q\D (u — Hhu,wg — Hh(wg))’ 5 h2 Hu — Hhu‘|W}1’2(sl)7

and the fourth term that appears on the right-hand side of (1.7) becomes hz |lu — Hhu”W;’Q(Q)’ which is
sub-optimal.

We believe interior pointwise error estimates in three dimensions can still be established without using
a local Neumann problem. However the correct order of convergence can only be achieved if no global term
appears on the right-hand side of the estimate, which means more of the techniques in [27] would have to
be adopted.

Funding: This work was supported in part by the National Science Foundation under Grant No. DMS-19-
13035 and Grant No. DMS-22-08404.
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