Research Article

Susanne C. Brenner* and Li-Yeng Sung

An Interior Maximum Norm Error Estimate for the Symmetric Interior Penalty Method on Planar Polygonal Domains

https://doi.org/10.1515/sample-YYYY-XXXX Received Month DD, YYYY; revised Month DD, YYYY; accepted Month DD, YYYY

Abstract: We establish an interior maximum norm error estimate for the symmetric interior penalty method on planar polygonal domains.

Keywords: interior maximum norm error estimates, symmetric interior penalty method

MSC 2010: 65N30

1 Introduction

Let $\Omega \subset \mathbb{R}^2$ be a bounded polygonal domain and $f \in L^2(\Omega)$. A model Dirichlet boundary value problem is to find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx \qquad \forall v \in H_0^1(\Omega). \tag{1.1}$$

Here and below we follow the standard notation for differential operators, function spaces and norms that can be found for example in [1, 8, 13].

Let \mathcal{T}_h be a simplicial triangulation of Ω , $k \geq 1$ and V_h be the space of discontinuous piecewise polynomial functions of degree $\leq k$ associated with \mathcal{T}_h , i.e.,

$$V_h = \{ v \in L^2(\Omega) : v_T = v \big|_T \in \mathbb{P}_k(T) \quad \forall T \in \mathcal{T}_h \}.$$

As usual, the mesh parameter h is the maximum of the diameters of the triangles in \mathcal{T}_h .

Remark 1.1. We will treat all triangles as open triangles.

The symmetric interior penalty (SIP) method (cf. [3, 33]) for (1.1) computes $u_h \in V_h$ such that

$$a_h(u_h, v) = \int_{\Omega} f v \, dx \qquad \forall \, v \in V_h, \tag{1.2}$$

where the bilinear form $a_h(\cdot,\cdot)$ is given by

$$a_h(w,v) = \sum_{T \in \mathcal{T}_h} \int_T \nabla w \cdot \nabla v \, dx + \sum_{e \in \mathcal{E}_h} \int_e \left(\{\!\!\{ \partial w / \partial n \}\!\!\} [\![v]\!] + \{\!\!\{ \partial v / \partial n \}\!\!\} [\![w]\!] \right) ds + \sigma \sum_{e \in \mathcal{E}_h} \frac{1}{|e|} \int_e [\![w]\!] [\![v]\!] ds. \quad (1.3)$$

Here \mathcal{E}_h is the set of the edges of \mathcal{T}_h , |e| is the length of the edge e and σ is a positive penalty parameter. On each $e \in \mathcal{E}_h^i$ (the set of the interior edges of \mathcal{T}_h) shared by two triangles T_e^{\pm} , we define the average of

^{*}Corresponding author: Susanne C. Brenner, Louisiana State University, Department of Mathematics and Center for Computation and Technology, Baton Rouge, LA 70803, USA, e-mail: brenner@math.lsu.edu

Li-Yeng Sung, Louisiana State University, Department of Mathematics and Center for Computation and Technology, Baton Rouge, LA 70803, USA, e-mail: sung@math.lsu.edu

the normal derivative of v across e by

$$\{\!\!\{ \partial v/\partial n \}\!\!\} = \frac{\partial v_e^-}{\partial n_e} + \frac{\partial v_e^+}{\partial n_e}, \tag{1.4}$$

where $v_e^{\pm} = v\big|_{T_e^{\pm}}$ and n_e is a unit vector normal to e pointing from T_e^- to T_e^+ . The jump $[\![v]\!]$ of v across e is defined by

$$[v] = v_e^+ - v_e^-.$$
 (1.5)

On an edge $e \in \mathcal{E}_h^b$ (the set of the boundary edges of \mathcal{T}_h) that is an edge of $\mathcal{T}_e \in \mathcal{T}_h$, we define

$$[\![\partial v/\partial n]\!] = \frac{\partial v_e}{\partial n_e} \quad \text{and} \quad [\![v]\!] = -v_e, \tag{1.6}$$

where $v_e = v|_T$ and n_e is the unit vector normal to e pointing towards the outside of Ω .

We assume that the penalty parameter σ is sufficiently large so that the discrete problem is uniquely solvable (cf. [24]). We also assume that \mathcal{T}_h is properly graded around the reentrant corners of Ω (cf. [2, 5, 17]) to ensure the optimal convergence of finite element methods.

Let K be a compact subset of the open subset D of Ω such that $D \subseteq \Omega$ (i.e., \bar{D} is a compact subset of Ω). Our goal is to give a self-contained derivation of the following estimate:

$$||u - u_h||_{L^{\infty}(K)} \le C(||u - \Pi_h u||_{L^{\infty}(D)} + h(1 + |\ln h|)||u - \Pi_h u||_{W_h^{1,\infty}(D)} + ||u - u_h||_{L^2(D)} + h||u - \Pi_h u||_{W_h^{1,2}(\Omega)})$$

$$(1.7)$$

asymptotically as $h \downarrow 0$, where Π_h is the nodal interpolation operator for the \mathbb{P}_k Lagrange finite element space $H_0^1(\Omega) \cap V_h$ and the positive constant C is independent of h.

The mesh-dependent (semi-) norms in (1.7) are defined as follows. Let G be a subset of Ω . We take

$$\mathcal{T}_h(G) = \{ T \in \mathcal{T}_h : T \cap G \neq \emptyset \}, \tag{1.8}$$

and define the (semi-) norms $\|\cdot\|_{W^{1,2}_{\iota}(G)}$ and $\|\cdot\|_{W^{1,\infty}_{\iota}(G)}$ by

$$||v||_{W_h^{1,2}(G)}^2 = \sum_{T \in \mathcal{T}_h(G)} \left[||\nabla v||_{L^2(T)}^2 + \sum_{e \subset \partial T} \left(|e|| \{ \partial v / \partial n \} ||_{L^2(e)}^2 + |e|^{-1} || [v]||_{L^2(e)}^2 \right) \right], \tag{1.9}$$

$$||v||_{W_h^{1,\infty}(G)} = \max_{T \in \mathcal{T}_h(G)} \left[||\nabla v||_{L^{\infty}(T)} + \max_{e \in \partial T} \left(||\{\partial v/\partial n\}||_{L^{\infty}(e)} + |e|^{-1} ||[v]||_{L^{\infty}(e)} \right) \right]. \tag{1.10}$$

Interior maximum norm (or pointwise) error estimates for classical finite element methods (cf. [27, 32] and the references therein) were extended to the two dimensional SIP method (with k = 1) in [22] under a global H^2 regularity assumption that is valid only for convex domains. Pointwise error estimates for the SIP method in arbitrary dimensions were established in [12] in terms of the global weighted norms from [25] that are in some sense localized. The results in [12] were extended in [20] to other two dimensional discontinuous Galerkin methods. The theory in both of the papers [12, 20] requires the domain Ω to be smooth. Other related work can be found in [10, 11, 23].

However the true interior pointwise error estimate in [26] (that improved the results in [27]) has not yet been extended to discontinuous Galerkin methods. We believe this is due to the fact that the derivations in [26, 27] require Galerkin approximations for an auxiliary Neumann problem on a local disc around the point under consideration. But it is not clear how Galerkin approximations for the Neumann problem can be obtained by using discontinuous finite element functions on a mesh that does not fit the disc exactly.

We obtain the estimate (1.7) by avoiding the local Neumann problem, at the expense of involving a nonlocal term (the fourth term on the right-hand side). Nevertheless, under our assumption on \mathcal{T}_h , the estimate

$$||u - u_h||_{L_{\infty}(K)} \le Ch^2(1 + |\ln h|)$$
 (1.11)

follows immediately from (1.7) (cf. (2.3), (2.10), (2.11) and (2.13)) provided that $u \in W_{loc}^{2,\infty}(\Omega)$, which is valid for example if f is locally Hölder continuous (cf. [18]).

Remark 1.2. The estimate (1.11) is optimal for k = 1 (cf. [21]). For $k \ge 2$, we expect the term $1 + |\ln h|$ can be removed after additional (nontrivial) efforts (cf. [27, 29]).

Remark 1.3. The Green's function for the boundary value problem (1.1) plays a role in the analysis in [12, 20], which is behind the smooth domain assumption in these papers. In our approach we use instead the fundamental solution in the free space and therefore we do not need to assume that the domain is smooth.

The rest of the paper is organized as follows. We recall some preliminary results concerning the SIP method in Section 2 and obtain a discrete Caccioppoli estimate in Section 3 that is crucial for the local energy norm error estimate in Section 4. We then use the result in Section 4 to derive an interior $W^{1,1}$ error estimate in Section 5, which provides the final tool for establishing the interior maximum norm error estimate in Section 6. We end with some concluding remarks in Section 7.

Throughout the paper we use C (with or without subscripts) to denote a generic positive constant that is independent of h. (The dependence of C on other parameters will be mentioned in context.) We also use the notation $A \lesssim B$ to represent the statement that $A \leq (\text{constant})B$, where the hidden positive constant is independent of h. The notation $A \approx B$ is equivalent to $A \lesssim B$ and $B \lesssim A$.

We will frequently use the following elementary scaling estimates, where h_T denotes the diameter of the triangle T.

Discrete Estimates

$$\|\nabla v\|_{L^2(T)} \le Ch_T^{-1}\|v\|_{L^2(T)} \qquad \forall v \in \mathbb{P}_k,$$
 (1.12)

$$||v||_{L^{2}(\partial T)} \le Ch_{T}^{-1/2}||v||_{L^{2}(T)} \qquad \forall v \in \mathbb{P}_{k}.$$
(1.13)

Trace Inequality

$$h_T^{-1} \|v\|_{L^2(\partial T)}^2 \le C \left(h_T^{-2} \|v\|_{L^2(T)}^2 + \|\nabla v\|_{L^2(T)}^2 \right) \qquad \forall v \in H^1(T). \tag{1.14}$$

Finally we record the following useful inequality.

Young's Inequality

$$ab \le \frac{\epsilon}{2}a^2 + \frac{1}{2\epsilon}b^2 \qquad \forall \epsilon > 0.$$
 (1.15)

2 Preliminaries

2.1 Energy Space

The energy space for the Dirichlet boundary value problem (1.1) is

$$\mathring{E}(\Delta; L^2(\Omega)) = \{ v \in H_0^1(\Omega) : \Delta v \in L^2(\Omega) \},$$

where Δv is understood in the sense of distributions.

It is well-known (cf. [14, 19]) that $\mathring{E}(\Delta; L^2(\Omega)) \subset H^{1+\alpha}(\Omega)$ for some $\alpha \in (1/2, 1]$. Therefore functions in $\mathring{E}(\Delta; L^2(\Omega))$ are continuous by the Sobolev inequality (cf. [1]) and Lagrange interpolations are well-defined on $\mathring{E}(\Delta; L^2(\Omega))$. If Ω is convex, then $\alpha = 1$ and $\mathring{E}(\Delta; L^2(\Omega))$ coincides with the space $H^2(\Omega) \cap H^1_0(\Omega)$.

Note that

$$\mathring{E}(\Delta; L^2(\Omega)) \subset H^2_{loc}(\Omega) \tag{2.1}$$

by interior elliptic regularity (cf. [16]).

We can include both $\mathring{E}(\Delta; L^2(\Omega))$ and V_h in the space

$$H^{1+\alpha}(\Omega;\mathcal{T}_h) = \{v \in L^2(\Omega): \, v_{\scriptscriptstyle T} = v \big|_T \in H^{1+\alpha}(T) \qquad \forall \, T \in \mathcal{T}_h\},$$

and (1.3)–(1.6) are well-defined for functions in $H^{1+\alpha}(\Omega; \mathcal{T}_h)$.

2.2 Interpolation Errors

Let Π_T be the nodal interpolation operator for the \mathbb{P}_k Lagrange finite element on the triangle T. We have the following standard error estimates (cf. [8, 13]):

$$\|\zeta - \Pi_T \zeta\|_{L^2(T)} + h_T |\zeta - \Pi_T \zeta|_{H^1(T)} + h_T^2 |\zeta - \Pi_h \zeta|_{H^2(T)} \le C h_T^2 |\zeta|_{H^2(T)} \quad \forall \zeta \in H^2(T), \tag{2.2}$$

and

$$\|\zeta - \Pi_T \zeta\|_{L^{\infty}(T)} + h_T |\zeta - \Pi_T \zeta|_{W^{1,\infty}(T)} \le Ch_T^2 |\zeta|_{W^{2,\infty}(T)} \qquad \forall \zeta \in W^{2,\infty}(T). \tag{2.3}$$

Moreover, the estimates (1.14) and (2.2) imply

$$\|\zeta - \Pi_T \zeta\|_{L^2(\partial T)} \le C h_T^{3/2} |\zeta|_{H^2(T)} \qquad \forall \zeta \in H^2(T).$$
 (2.4)

2.3 Results for the SIP Method

It follows from (1.3), (1.9) and the Cauchy-Schwarz inequality that

$$a_h(w,v) \le C \|w\|_{W_h^{1,2}(\Omega)} \|v\|_{W_h^{1,2}(\Omega)} \qquad \forall v, w \in H^{1+\alpha}(\Omega; \mathcal{T}_h),$$
 (2.5)

and for a sufficiently large σ , we also have (cf. [24])

$$a_h(v,v) \ge C \|v\|_{W^{1,2}(\Omega)}^2 \qquad \forall v \in V_h.$$
 (2.6)

In view of (2.5) and (2.6), we can define the Riesz projection operator $P_h: H^{1+\alpha}(\Omega; \mathcal{T}_h) \longrightarrow V_h$ by

$$a_h(P_h\zeta, v) = a_h(\zeta, v) \qquad \forall v \in V_h.$$
 (2.7)

It follows from (2.5)–(2.7) that

$$||P_h\zeta||_{W_h^{1,2}(\Omega)} \le C||\zeta||_{W_h^{1,2}(\Omega)} \qquad \forall \zeta \in H^{1+\alpha}(\Omega; \mathcal{T}_h).$$
 (2.8)

The SIP method is consistent (cf. [24]) in the sense that

$$a_h(\zeta, v) = \int_{\Omega} (-\Delta \zeta) v \, dx \qquad \forall \, \zeta \in \mathring{E}(\Delta; L^2(\Omega)), \, v \in V_h, \tag{2.9}$$

which together with (1.1) and (1.2) implies

$$u_h = P_h u. (2.10)$$

Remark 2.1. The relation (2.9), which comes from integration by parts, is also valid for $\zeta \in H^2(\Omega)$ and $v \in H^{1+\alpha}(\Omega; \mathcal{T}_h)$ as long as supp $v \in \Omega$.

Under the assumption that \mathcal{T}_h is properly graded around the reentrant corners, we have (cf. [7])

$$\|\zeta - \Pi_h \zeta\|_{W_h^{1,2}(\Omega)} \lesssim h \|\Delta \zeta\|_{L^2(\Omega)} \qquad \forall \zeta \in \mathring{E}(\Delta; L^2(\Omega)). \tag{2.11}$$

Combining (2.5), (2.6), (2.9) and (2.11), we see that (cf. [24])

$$\|\zeta - P_h \zeta\|_{W_h^{1,2}(\Omega)} \le Ch \|\Delta \zeta\|_{L^2(\Omega)} \qquad \forall \, \zeta \in \mathring{E}(\Delta; L^2(\Omega)), \tag{2.12}$$

and then a standard duality argument and (2.12) yield the estimate

$$\|\zeta - P_h \zeta\|_{L^2(\Omega)} \le Ch\|\zeta - P_h \zeta\|_{W_h^{1,2}(\Omega)} \le Ch^2 \|\Delta \zeta\|_{L^2(\Omega)} \qquad \forall \zeta \in \mathring{E}(\Delta; L^2(\Omega)). \tag{2.13}$$

2.4 Mesh-Dependent Norms

Besides the mesh-dependent (semi-) norms defined in (1.9) and (1.10), we will also use the norm $\|\cdot\|_{W^{1,1}_h(G)}$ defined by

$$||v||_{W_h^{1,1}(G)} = \sum_{T \in \mathcal{T}_h(G)} \left[||\nabla v||_{L^1(T)} + \sum_{e \subset \partial T} \left(|e|| \{ \partial v / \partial n \} ||_{L^1(e)} + ||[v]||_{L^1(e)} \right) \right]. \tag{2.14}$$

We can bound $||v||_{W_h^{1,1}(G)}$ by $||v||_{W_h^{1,2}(G)}$, as indicated by the following lemma.

Lemma 2.2. We have

$$||v||_{W_h^{1,1}(G)} \le C \left(\sum_{T \in \mathcal{T}_h(G)} |T| \right)^{\frac{1}{2}} ||v||_{W_h^{1,2}(G)} \qquad \forall v \in \mathring{E}(\Delta; L^2(\Omega)). \tag{2.15}$$

Proof. It follows from (2.14) and the Cauchy-Schwarz inequality for integrals that

$$\begin{split} \|v\|_{W_h^{1,1}(G)} & \leq \sum_{T \in \mathcal{T}_h(G)} \left[|T|^{\frac{1}{2}} \|\nabla v\|_{L^2(T)} + \sum_{e \subset \partial T} \left(|e|^{\frac{3}{2}} \| \{\!\!\{ \partial v/\partial n \}\!\!\} \|_{L^2(e)} + |e|^{\frac{1}{2}} \| \|v\| \|_{L^2(e)} \right) \right] \\ & \lesssim \sum_{T \in \mathcal{T}_h(G)} \left[|T|^{\frac{1}{2}} \|\nabla v\|_{L^2(T)} + \sum_{e \subset \partial T} |T|^{\frac{1}{2}} \left(|e|^{\frac{1}{2}} \| \{\!\!\{ \partial v/\partial n \}\!\!\} \|_{L^2(e)} + |e|^{-\frac{1}{2}} \| \|v\| \|_{L^2(e)}^2 \right) \right], \end{split}$$

which together with (1.9) and the discrete Cauchy-Schwarz inequality yields (2.15).

It is also convenient to introduce the semi-norm

$$|z|_{W_h^{2,2}(G)} = \left(\sum_{T \in \mathcal{T}_h(G)} |z|_{W^{2,2}(T)}^2\right)^{\frac{1}{2}}.$$
(2.16)

2.5 Mesh-Subdomains

A subdomain D of Ω is a mesh-subdomain of \mathcal{T}_h if (cf. (1.8))

$$\bar{D} = \bigcup_{T \in \mathcal{T}_h(D)} \bar{T}.$$

Let D be a mesh-subdomain. We define the bilinear form $a_{h,D}(\cdot,\cdot)$ by

$$a_{h,D}(w,v) = \sum_{T \subset D} \left(\int_{T} \nabla w \cdot \nabla v \, dx + \sum_{e \subset \partial T} \mu_{e} \left[\int_{e} \left(\{ \partial w / \partial n \} [v] + \{ \partial v / \partial n \} [w] \right) ds + \frac{\sigma}{|e|} \int_{e} [w] [v] ds \right] \right), \tag{2.17}$$

where

$$\mu_e = \begin{cases} \frac{1}{2} & \text{if } e \in \mathcal{E}_h^i \\ 1 & \text{if } e \in \mathcal{E}_h^b \end{cases}$$

Then we have, by (1.3) and (2.17),

$$a_h(w,v) = a_{h,D}(w,v) + a_{h,\Omega \setminus D}(w,v) \qquad \forall v, w \in H^{1+\alpha}(\Omega; \mathcal{T}_h).$$
(2.18)

Remark 2.3. The two bilinear forms $a_h(\cdot,\cdot)$ and $a_{h,\Omega}(\cdot,\cdot)$ are identical on $H^{1+\alpha}(\Omega;\mathcal{T}_h)$.

It follows from (1.9), (1.10), (2.14) and Hölder's inequality that

$$\left| a_{h,D}(w,v) \right| \le C \|w\|_{W_h^{1,2}(D)} \|v\|_{W_h^{1,2}(D)} \qquad \forall v, w \in H^{1+\alpha}(\Omega; \mathcal{T}_h),$$
 (2.19)

$$\left| a_{h,D}(w,v) \right| \le C \|w\|_{W_h^{1,\infty}(D)} \|v\|_{W_h^{1,1}(D)} \qquad \forall v, w \in H^{1+\alpha}(\Omega; \mathcal{T}_h). \tag{2.20}$$

2.6 A Commutation Formula

The following lemma provides a useful relation for moving a smooth function inside the bilinear form $a_h(\cdot,\cdot)$. A more general form of this relation can be found in [12, displays (4.6) and (4.7)].

Lemma 2.4. Let $\omega \in C^{\infty}(\mathbb{R}^2)$. We have

$$a_{h}(\omega v, z) = a_{h}(v, \omega z) + \sum_{T \in \mathcal{T}_{h}} \int_{T} v \left[\nabla \omega \cdot \nabla z + \nabla \cdot (z \nabla \omega) \right] dx$$

$$+ 2 \sum_{e \in \mathcal{E}_{h}} \int_{e} (\partial \omega / \partial n) \{v\} [z] ds \qquad \forall v, z \in H^{1+\alpha}(\Omega; \mathcal{T}_{h}),$$

$$(2.21)$$

where $\{v\}$ is the average of the values of v from the two triangles that share the edge e as a common edge if $e \in \mathcal{E}_h^i$, and $\{v\} = v$ if $e \in \mathcal{E}_h^b$.

Proof. First it follows from (1.3)–(1.6), the smoothness of ω and the product rule that

$$a_{h}(\omega v, z) = \sum_{T \in \mathcal{T}_{h}} \int_{\Omega} v(\nabla \omega \cdot \nabla z) dx - \sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla v \cdot (z \nabla \omega) dx + \sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla v \cdot \nabla (\omega z) dx$$

$$+ \sum_{e \in \mathcal{E}_{h}} \int_{e} \left(\{\!\!\{ \partial v / \partial n \}\!\!\} [\!\![\omega z]\!\!] + (\partial \omega / \partial n) \{\!\!\{ v \}\!\!\} [\!\![z]\!\!] + \omega \{\!\!\{ \partial z / \partial n \}\!\!\} [\!\![v]\!\!] \right) ds$$

$$+ \sigma \sum_{e \in \mathcal{E}_{h}} \frac{1}{|e|} \int_{e} [\!\![v]\!\!] [\!\![\omega z]\!\!] ds. \tag{2.22}$$

Secondly, it follows from integration by parts that

$$-\sum_{T\in\mathcal{T}_h} \int_{T} \nabla v \cdot (z\nabla\omega) dx = \sum_{T\in\mathcal{T}_h} \int_{T} v \,\nabla \cdot (z\nabla\omega) dx + \sum_{e\in\mathcal{E}_h} \int_{e} \llbracket v \rrbracket \, \llbracket z \rrbracket \, (\partial\omega/\partial n) ds$$
$$+ \sum_{e\in\mathcal{E}_h} \int_{e} \llbracket v \rrbracket \, \llbracket z \rrbracket \, (\partial\omega/\partial n) ds. \tag{2.23}$$

The relation (2.21) is obtained by substituting (2.23) into (2.22).

3 A Discrete Caccioppoli Estimate

First we recall a superapproximation result. Let T be a triangle, d be a positive parameter and ρ be a smooth function on \mathbb{R}^2 that satisfies

$$|\rho|_{W^{\ell,\infty}(\mathbb{R}^2)} \le C_{\dagger} d^{-\ell} \quad \text{for } \ell = 0, 1, 2, \dots$$
 (3.1)

We have (cf. [6, 15, 20])

$$|\rho^{2}\chi - \Pi_{T}(\rho^{2}\chi)|_{H^{1}(T)} + h_{T}|\rho^{2}\chi - \Pi_{T}(\rho^{2}\chi)|_{H^{2}(T)} \le Ch_{T}d^{-2}(\|\chi\|_{L^{2}(T)} + d|\rho\chi|_{H^{1}(T)})$$
(3.2)

for all $\chi \in \mathbb{P}_k$, where Π_T is the nodal interpolation operator for the \mathbb{P}_k Lagrange finite element on T, and the positive constant C depends on C_{\dagger} , k and the shape of T.

Let Ω_0 be an open subset of Ω and $\chi_h \in V_h$ satisfy

$$a_h(\chi_h, v) = 0 \qquad \forall v \in V_h, \ v = 0 \text{ on } \Omega \setminus \Omega_d,$$
 (3.3)

where

$$\Omega_d = \{ x \in \Omega : \operatorname{dist}(x, \Omega_0) < d \}. \tag{3.4}$$

Let $\rho \in C^{\infty}(\mathbb{R}^2)$ satisfy (3.1) and

$$\rho = \begin{cases}
1 & \text{on } \Omega_0 \\
0 & \text{on } \Omega \setminus \Omega_\delta
\end{cases},$$
(3.5)

where

$$c_1 \le (\delta/d) \le c_2$$
 for some $c_1, c_2 \in (0, 1)$. (3.6)

The following result is a discrete analog of the Caccioppoli estimate for second order elliptic partial differential equations (cf. [9]).

Lemma 3.1. We have

$$\|\rho\chi_h\|_{W_{\bullet}^{1,2}(\Omega)} \le Cd^{-1}\|\chi_h\|_{L^2(\Omega_d)}$$
(3.7)

provided that (h/d) is sufficiently small.

Proof. Let $\rho_I \in H_0^1(\Omega)$ be the nodal interpolant of ρ in the \mathbb{P}_1 conforming finite element space associated with \mathcal{T}_h . It follows from (1.9), (3.1) and standard interpolation error estimates (cf. [8, 13]) that

$$\begin{split} &\|(\rho - \rho_{I})\chi_{h}\|_{W_{h}^{1,2}(\Omega)}^{2} \\ &\lesssim \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \left(\|\chi_{h} \nabla (\rho - \rho_{I})\|_{L^{2}(T)}^{2} + \|(\rho - \rho_{I}) \nabla \chi_{h}\|_{L^{2}(T)}^{2} \right) \\ &+ \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \sum_{e \subset \partial T} |e| \left(\|\{\chi_{h}(\partial (\rho - \rho_{I})/\partial n)\}\|_{L^{2}(e)}^{2} + \|(\rho - \rho_{I})\{\{\partial \chi_{h}/\partial n\}\|_{L^{2}(e)}^{2} \right) \\ &+ \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \sum_{e \subset \partial T} |e|^{-1} \|(\rho - \rho_{I})[\chi_{h}]\|_{L^{2}(e)}^{2} \\ &\lesssim \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \left[(h_{T}/d^{2})^{2} \|\chi_{h}\|_{L^{2}(T)}^{2} + (h_{T}/d)^{2} \|\nabla \chi_{h}\|_{L^{2}(T)}^{2} \right] \\ &+ \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \sum_{e \subset \partial T} |e| \left[(|e|/d^{2})^{2} \|\{|\chi_{h}|\}\|_{L^{2}(e)}^{2} + (|e|/d)^{2} \|\{\partial \chi_{h}/\partial n\}\|_{L^{2}(e)}^{2} \right] \\ &+ \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \sum_{e \subset \partial T} |e|^{-1} (|e|/d)^{2} \|[\chi_{h}]\|_{L^{2}(e)}^{2}, \end{split}$$

which together with (1.12), (1.13), (3.6) and $(h/d) \ll 1$ implies

$$\|(\rho - \rho_I)\chi_h\|_{W_h^{1,2}(\Omega)} \lesssim d^{-1}\|\chi_h\|_{L^2(\Omega_d)}.$$
 (3.8)

Using (2.6) and (3.8), we find

$$\|\rho\chi_h\|_{W_h^{1,2}(\Omega)}^2 \lesssim \|\rho_I\chi_h\|_{W_h^{1,2}(\Omega)}^2 + \|(\rho - \rho_I)\chi_h\|_{W_h^{1,2}(\Omega)}^2 \lesssim a_h(\rho_I\chi_h, \rho_I\chi_h) + d^{-2}\|\chi_h\|_{L^2(\Omega_d)}^2, \tag{3.9}$$

and, in view of (2.5),

$$a_{h}(\rho_{I}\chi_{h},\rho_{I}\chi_{h}) = a_{h}(\rho\chi_{h},\rho\chi_{h}) - 2a_{h}\left((\rho-\rho_{I})\chi_{h},\rho\chi_{h}\right) + a_{h}\left((\rho-\rho_{I})\chi_{h},(\rho-\rho_{I})\chi_{h}\right)$$

$$\lesssim a_{h}(\rho\chi_{h},\rho\chi_{h}) + \|(\rho-\rho_{I})\chi_{h}\|_{W_{h}^{1,2}(\Omega)} \|\rho\chi_{h}\|_{W_{h}^{1,2}(\Omega)} + \|(\rho-\rho_{I})\chi_{h}\|_{W_{h}^{1,2}(\Omega)}^{2}$$

$$\lesssim a_{h}(\rho\chi_{h},\rho\chi_{h}) + d^{-1}\|\chi_{h}\|_{L^{2}(\Omega_{d})} \|\rho\chi_{h}\|_{W_{h}^{1,2}(\Omega)} + d^{-2}\|\chi_{h}\|_{L^{2}(\Omega_{d})}^{2}. \tag{3.10}$$

It then follows from (1.15), (3.9) and (3.10) that

$$\|\rho\chi_h\|_{W_h^{1,2}(\Omega)}^2 \lesssim a_h(\rho\chi_h, \rho\chi_h) + d^{-2}\|\chi_h\|_{L^2(\Omega_\delta)}^2, \tag{3.11}$$

and it only remains to estimate the first term on the right-hand side of (3.11).

According to Lemma 2.4, we can write

$$a_h(\rho\chi_h,\rho\chi_h) = a_h(\chi_h,\rho^2\chi_h) + R \tag{3.12}$$

where

$$R = \sum_{T \in \mathcal{T}_h} \int_T \chi_h \left[\nabla \rho \cdot \nabla (\rho \chi_h) + \nabla \cdot (\rho \chi_h \nabla \rho) \right] dx + 2 \sum_{e \in \mathcal{E}_h} \int_e (\partial \rho / \partial n) \{\!\!\{ \chi_h \}\!\!\} [\!\![\rho \chi_h]\!\!] ds,$$

and we have, by (1.9), (1.12), (1.13), (3.1), (3.4)–(3.6) and the Cauchy-Schwarz inequality,

$$|R| \lesssim \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \|\chi_{h}\|_{L^{2}(T)} \left[d^{-1} |\rho \chi_{h}|_{H^{1}(T)} + d^{-2} \|\chi_{h}\|_{L^{2}(T)} \right]$$

$$+ d^{-1} \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \sum_{e \subset \partial T} \left(|e|^{\frac{1}{2}} \| \{\!\!\{\chi_{h}\}\!\!\} \|_{L^{2}(e)} \right) \left(|e|^{-1/2} \| [\!\![\rho \chi_{h}]\!\!] \|_{L^{2}(e)} \right)$$

$$\lesssim d^{-1} \|\chi_{h}\|_{L^{2}(\Omega_{d})} \|\rho \chi_{h}\|_{W_{s}^{1,2}(\Omega)} + d^{-2} \|\chi_{h}\|_{L^{2}(\Omega_{d})}^{2}.$$

$$(3.13)$$

Now we use (3.3), (3.5) and $(h/d) \ll 1$ to write

$$a_h(\chi_h, \rho^2 \chi_h) = a_h \left(\chi_h, \rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \right), \tag{3.14}$$

and it follows from (1.3), (1.9), (3.5) and the Cauchy-Schwarz inequality that

$$\begin{split} a_h \Big(\chi_h, \rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \Big) \\ &= \sum_{T \in \mathcal{T}_h} \int_T \nabla \chi_h \cdot \nabla \Big(\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \Big) dx \\ &+ \sum_{e \in \mathcal{E}_h} \int_e \Big[\big\{ \!\! \big\{ \partial \chi_h / \partial n \big\} \big\} \big[\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \big] \big] + \big\{ \!\! \big\{ \partial \big(\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \big) / \partial n \big\} \big[\!\! \big[\chi_h \big] \big] \Big] ds \\ &+ \sigma \sum_{e \in \mathcal{E}_h} |e|^{-1} \int_e \big[\!\! \big[\chi_h \big] \big] \big[\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \big] \big] ds \\ &\lesssim \sum_{T \in \mathcal{T}_h(\Omega_\delta)} |\chi_h|_{H^1(T)} |\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h)|_{H^1(T)} \\ &+ \sum_{T \in \mathcal{T}_h(\Omega_\delta)} \sum_{e \in \partial T} (|e|^{\frac{3}{2}} \| \big\{ \!\! \big\{ \partial \chi_h / \partial n \big\} \big\} \|_{L^2(e)}) (|e|^{-\frac{3}{2}} \| \big[\!\! \big[\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h) \big] \big] \|_{L^2(e)}) \\ &+ \sum_{T \in \mathcal{T}_h(\Omega_\delta)} \sum_{e \in \partial T} (|e|^{-\frac{1}{2}} \| \big\{ \!\! \big\{ \partial (\rho^2 \chi_h - \Pi_h(\rho^2 \chi_h)) / \partial n \big\} \big\} \|_{L^2(e)}) (|e|^{\frac{1}{2}} \| \big[\!\! \big[\chi_h \big] \big] \|_{L^2(e)}) , \end{split}$$

which together with (1.12)–(1.14), (2.4), (3.2) and (3.4)–(3.6) gives the estimate

$$a_{h}(\chi_{h}, \rho^{2}\chi_{h} - \Pi_{h}(\rho^{2}\chi_{h})) \lesssim \sum_{T \in \mathcal{T}_{h}(\Omega_{\delta})} \|\chi_{h}\|_{L^{2}(T)} (d^{-2}\|\chi_{h}\|_{L^{2}(T)} + d^{-1}|\rho\chi_{h}|_{H^{1}(T)})$$

$$\lesssim d^{-2}\|\chi_{h}\|_{L^{2}(\Omega_{d})}^{2} + d^{-1}\|\chi_{h}\|_{L^{2}(\Omega_{d})} \|\rho\chi_{h}\|_{W_{h}^{1,2}(\Omega)}.$$
(3.15)

Putting (3.11)–(3.15) together, we arrive at the estimate

$$\|\rho\chi_h\|_{W_h^{1,2}(\Omega)}^2 \lesssim d^{-2}\|\chi_h\|_{L^2(\Omega_d)} + d^{-1}\|\chi_h\|_{L^2(\Omega_d)}\|\rho\chi_h\|_{W_h^{1,2}(\Omega)},$$

which implies (3.7) through (1.15).

A Local Energy Norm Error Estimate

We derive a local energy norm error estimate that is needed in Section 5 and Section 6. A similar result can also be found in [12, Section 4].

We will use the notation Ω_0 and Ω_d introduced in Section 3.

Lemma 4.1. We have

$$\|\zeta - P_h \zeta\|_{W_h^{1,2}(\Omega_0)} \le C \left(\inf_{v \in V_h} \left[\|\zeta - v\|_{W_h^{1,2}(\Omega_d)} + d^{-1} \|\zeta - v\|_{L^2(\Omega_d)} \right] + d^{-1} \|\zeta - P_h \zeta\|_{L^2(\Omega_d)} \right)$$
(4.1)

for all $\zeta \in \mathring{E}(\Delta; L^2(\Omega))$, provided that (h/d) is sufficiently small.

Proof. Let ω be a smooth function defined on \mathbb{R}^2 such that

$$\omega = \begin{cases} 1 & \text{on } \Omega_{d/3} \\ 0 & \text{on } \Omega \setminus \Omega_{2d/3} \end{cases}$$
(4.2)

and

$$\|\nabla \omega\|_{L^{\infty}(\Omega)} \le Cd^{-1}. \tag{4.3}$$

We have

$$\|\zeta - P_h \zeta\|_{W_{L}^{1,2}(\Omega_0)} = \|\omega \zeta - P_h \zeta\|_{W_{L}^{1,2}(\Omega_0)}$$
(4.4)

by (1.9), (4.2) and $(h/d) \ll 1$, and we can write

$$\omega \zeta - P_h \zeta = [\omega \zeta - P_h(\omega \zeta)] + [P_h(\omega \zeta) - P_h \zeta]. \tag{4.5}$$

There is also a straightforward estimate

$$\|\omega\zeta - P_{h}(\omega\zeta)\|_{W_{h}^{1,2}(\Omega_{0})}^{2} \leq \|\omega\zeta - P_{h}(\omega\zeta)\|_{W_{h}^{1,2}(\Omega)}^{2}$$

$$\lesssim \|\omega\zeta\|_{W_{h}^{1,2}(\Omega)}^{2}$$

$$\lesssim \sum_{T \in \mathcal{T}_{h}(\Omega_{2d/3})} \left(\|\nabla(\omega\zeta)\|_{L^{2}(T)}^{2} + \sum_{e \subset \partial T} |e| \| \{\partial(\omega\zeta)/\partial n\} \|_{L^{2}(e)}^{2} \right)$$

$$\lesssim \sum_{T \in \mathcal{T}_{h}(\Omega_{2d/3})} \left(d^{-2} \|\zeta\|_{L^{2}(T)}^{2} + \|\nabla\zeta\|_{L^{2}(T)}^{2} \right)$$

$$+ \sum_{T \in \mathcal{T}_{h}(\Omega_{2d/3})} \sum_{e \subset \partial T} |e| \left(d^{-2} \|\{\zeta\} \|_{L^{2}(e)}^{2} + \|\{\partial\zeta/\partial n\} \|_{L^{2}(e)}^{2} \right)$$

$$\lesssim \|\zeta\|_{W_{h}^{1,2}(\Omega_{d})}^{2} + d^{-2} \|\zeta\|_{L^{2}(\Omega_{d})}^{2}$$

$$(4.6)$$

that follows from (1.9), (1.13), (2.8), (4.2), (4.3) and $(h/d) \ll 1$.

Note also that

$$\|\omega\zeta - P_h(\omega\zeta)\|_{L^2(\Omega)} \lesssim h\|\omega\zeta - P_h(\omega\zeta)\|_{W_h^{1,2}(\Omega)} \lesssim h(\|\zeta\|_{W_h^{1,2}(\Omega_d)} + d^{-1}\|\zeta\|_{L^2(\Omega_d)})$$
(4.7)

by (2.13) and (4.6).

It only remains to estimate the function $\chi_h = P_h(\omega\zeta) - P_h\zeta \in V_h$ that satisfies

$$a_h(\chi_h, v) = 0 \qquad \forall v \in V_h, \ v = 0 \text{ on } \Omega \setminus \Omega_{d/3}$$
 (4.8)

because of (2.7) and (4.2).

Let ρ be a smooth function on \mathbb{R}^2 such that

$$\rho = \begin{cases}
1 & \text{on } \Omega_0 \\
0 & \text{on } \Omega \setminus \Omega_{d/4}
\end{cases}$$
(4.9)

and

$$\|\rho\|_{W^{\ell,\infty}(\mathbb{R}^2)} \le Cd^{-\ell}$$
 for $\ell = 0, 1, 2, \dots$

In view of Lemma 3.1 and (4.8), we have

$$\|\rho\chi_h\|_{W^{1,2}(\Omega)} \lesssim d^{-1}\|\chi_h\|_{L^2(\Omega_{d/3})}.$$
 (4.10)

Combining (4.2), (4.4)–(4.7), (4.9)–(4.10) and $(h/d) \ll 1$, we find

$$\begin{split} \|\zeta - P_h \zeta\|_{W_h^{1,2}(\Omega_0)} &\leq \|\omega \zeta - P_h(\omega \zeta)\|_{W_h^{1,2}(\Omega_0)} + \|\rho \chi_h\|_{W_h^{1,2}(\Omega_0)} \\ &\lesssim \|\zeta\|_{W_h^{1,2}(\Omega_d)} + d^{-1} \|\zeta\|_{L^2(\Omega_d)} + d^{-1} \|\chi_h\|_{L^2(\Omega_{d/3})} \\ &\lesssim \|\zeta\|_{W_h^{1,2}(\Omega_d)} + d^{-1} \|\zeta\|_{L^2(\Omega_d)} \\ &\qquad \qquad + d^{-1} \big(\|\omega \zeta - P_h(\omega \zeta)\|_{L^2(\Omega_{d/3})} + \|\omega \zeta - P_h \zeta\|_{L^2(\Omega_{d/3})} \big) \\ &\lesssim \|\zeta\|_{W_h^{1,2}(\Omega_d)} + d^{-1} \|\zeta\|_{L^2(\Omega_d)} + d^{-1} \|\zeta - P_h \zeta\|_{L^2(\Omega_d)}, \end{split}$$

which implies (4.1) if we replace ζ by $\zeta - v$ for an arbitrary $v \in V_h$.

Corollary 4.2. In the case where $\Omega_0 \subseteq \Omega$, we have

$$\|\zeta - P_h \zeta\|_{W_h^{1,2}(\Omega_0)} \le C \left(h|\zeta|_{W_h^{2,2}(\Omega_d)} + d^{-1} \|\zeta - P_h \zeta\|_{L^2(\Omega_d)} \right)$$

for all $\zeta \in \mathring{E}(\Delta; L^2(\Omega))$, provided that (h/d) is sufficiently small.

Proof. First we note that we can adjust the value of d in (4.1) so that

$$\|\zeta - P_h \zeta\|_{W_h^{1,2}(\Omega_0)} \lesssim \|\zeta - \Pi_h \zeta\|_{W_h^{1,2}(\Omega_{d/2})} + d^{-1} \|\zeta - \Pi_h \zeta\|_{L^2(\Omega_{d/2})} + d^{-1} \|\zeta - P_h \zeta\|_{\Omega_{d/2}}.$$

Next, in view of (1.9), (1.14), (2.1), (2.2) and (2.16), we have

$$\begin{split} \|\zeta - \Pi_h \zeta\|_{W_h^{1,2}(\Omega_{d/2})}^2 &= \sum_{T \in \mathcal{T}_h(\Omega_{d/2})} \left[\|\nabla(\zeta - \Pi_h \zeta)\|_{L^2(T)}^2 + \sum_{e \subset \partial T} |e| \| \{ \partial(\zeta - \Pi_h \zeta) / \partial n \} \|_{L^2(e)}^2 \right] \\ &\lesssim \sum_{T \in \mathcal{T}_h(\Omega_{d/2})} h_T^2 |\zeta|_{H^2(T)}^2 + \sum_{T \in \mathcal{T}_h(\Omega_d)} \left(|\zeta - \Pi_h \zeta|_{H^1(T)}^2 + h_T^2 |\zeta - \Pi_h \zeta|_{H^2(T)}^2 \right) \\ &\lesssim \sum_{T \in \mathcal{T}_h(\Omega_d)} h_T^2 |\zeta|_{H^2(T)}^2 \\ &\leq h^2 |\zeta|_{W_h^{2,2}(\Omega_d)} \end{split}$$

and

$$d^{-2}\|\zeta - \Pi_h \zeta\|_{L^2(\Omega_{d/2})}^2 \le d^{-2} \sum_{T \in \mathcal{T}_h(\Omega_d)} \|\zeta - \Pi_h \zeta\|_{L^2(T)}^2 \lesssim d^{-2} \sum_{T \in \mathcal{T}_h(\Omega_d)} h_T^4 |\zeta|_{H^2(T)}^2 \le h^2 |\zeta|_{W_h^{2,2}(\Omega_d)}^2.$$

5 An Interior $W^{1,1}$ Error Estimate

Let $T_* \in \mathcal{T}_h$ such that \overline{T}_* is a compact subset of the open set $D \in \Omega$, $\phi_* \in C_c^{\infty}(T_*)$ and the function ζ be the Newtonian potential with density ϕ_* defined by

$$\zeta(x) = \int_{T} N(x - y)\phi_*(y)dy, \tag{5.1}$$

where

$$N(x) = -\frac{1}{2\pi} \ln|x| \tag{5.2}$$

is the fundamental solution for $-\Delta$ in the free space \mathbb{R}^2 .

Then ζ belongs to $C^{\infty}(\mathbb{R}^2)$,

$$-\Delta \zeta = \phi_*, \tag{5.3}$$

and direct calculations produce the following estimates:

$$|\zeta(x)| \le C[1 + |\ln \operatorname{dist}(x, T_*)|] \|\phi_*\|_{L^1(T_*)} \quad \forall x \in \mathbb{R}^2,$$
 (5.4a)

$$\|\nabla \zeta(x)\| \le C[\operatorname{dist}(x, T_*)]^{-1} \|\phi_*\|_{L^1(T_*)} \qquad \forall x \in \mathbb{R}^2,$$
 (5.4b)

$$\|\nabla^2 \zeta(x)\| \le C[\operatorname{dist}(x, T_*)]^{-2} \|\phi_*\|_{L^1(T_*)} \qquad \forall x \in \mathbb{R}^2.$$
 (5.4c)

Lemma 5.1. Let ζ be defined by (5.1). Given any $\omega \in C_c^{\infty}(\Omega)$ such that

$$\omega = 1 \quad on \ D, \tag{5.5}$$

we have

$$\|\omega\zeta - P_h(\omega\zeta)\|_{W_{L}^{1,1}(D)} \le Ch^2(1 + |\ln h|)\|\phi_*\|_{L^2(T_*)},\tag{5.6}$$

where the positive constant C is independent of h but increases as $dist(T_*, \Omega \setminus D)$ decreases.

Proof. Observe that $\omega \zeta \in C_c^{\infty}(\Omega)$ and

$$\|\Delta(\omega\zeta)\|_{L^2(\Omega)} \lesssim \|\phi_*\|_{L^2(T_*)} \tag{5.7}$$

by (5.3)–(5.5), where the hidden constant increases as $\operatorname{dist}(T_*, \Omega \setminus D)$ decreases.

We follow the approach in [27] to employ a dyadic decomposition

$$A_j = \{x \in \Omega : 2^{-j-1}d < \operatorname{dist}(x, T_*) < 2^{-j}d\},\$$

where

$$d = \max_{x \in \partial D} \operatorname{dist}(x, T_*).$$

Let J be the largest integer such that

$$2^{-J}d \ge mh \tag{5.8}$$

for a sufficiently large positive integer m (independent of h), $\Omega_h = D \setminus \bigcup_{j=0}^J A_j$ and $A_{-1} = \{x \in \Omega : d < \text{dist}(x, T_*) < d + \frac{1}{2} \text{dist}(D, \mathbb{R}^2 \setminus \Omega) \}$. Note that $|A_j| \approx 2^{-j}d$ for $0 \le j \le J$ and (5.8) implies $|\Omega_h| \approx h^2$.

We have

$$\|\omega\zeta - P_h(\omega\zeta)\|_{W_h^{1,1}(D)} \le \|\omega\zeta - P_h(\omega\zeta)\|_{W_h^{1,1}(\Omega_h)} + \sum_{j=0}^{J} \|\omega\zeta - P_h(\omega\zeta)\|_{W_h^{1,1}(A_j)}$$
(5.9)

and

$$\|\omega\zeta - P_{h}(\omega\zeta)\|_{W_{h}^{1,1}(\Omega_{h})} \lesssim h\|\omega\zeta - P_{h}(\omega\zeta)\|_{W_{h}^{1,2}(\Omega_{h})}$$

$$\leq h\|\omega\zeta - P_{h}(\omega\zeta)\|_{W_{h}^{1,2}(\Omega)} \lesssim h^{2}\|\Delta(\omega\zeta)\|_{L^{2}(\Omega)} \lesssim h^{2}\|\phi_{*}\|_{L^{2}(T_{*})}$$
(5.10)

by (2.12), Lemma 2.2 and (5.7).

For $j = 0, \ldots, J$ and $d_j = 2^{-j}d$, we have

$$\|\omega\zeta - P_h(\omega\zeta)\|_{W_h^{1,1}(A_j)} \lesssim d_j \|\omega\zeta - P_h(\omega\zeta)\|_{W^{1,2}(A_j)}$$

$$\lesssim d_j \left(h|\omega\zeta|_{W_h^{2,2}(A_{j-1}\cup A_j\cup A_{j+1})} + d_j^{-1} \|\omega\zeta - P_h(\omega\zeta)\|_{L^2(A_{j-1}\cup A_j\cup A_{j+1})}\right)$$
(5.11)

by Lemma 2.2, Corollary 4.2 (with $\Omega_0 = A_i$ and $d \approx d_i$), and

$$|\omega\zeta|_{W_h^{2,2}(A_{j-1}\cup A_j\cup A_{j+1})} \lesssim d_j^{-1} \|\phi_*\|_{L^1(T_*)} \lesssim d_j^{-1} h \|\phi_*\|_{L^2(T_*)}$$
(5.12)

by (5.4) and the Cauchy-Schwarz inequality.

It follows from (2.13), (5.7), (5.8), (5.11) and (5.12) that

$$\sum_{j=0}^{J} \|\omega\zeta - P_h(\omega\zeta)\|_{W_h^{1,1}(A_j)} \lesssim \sum_{j=0}^{J} h^2 \|\phi_*\|_{L^2(T_*)} + \sum_{j=0}^{J} \|\omega\zeta - P_h(\omega\zeta)\|_{L^2(\Omega)}$$
$$\lesssim h^2 (1 + |\ln h|) \|\phi_*\|_{L^2(T_*)},$$

which together with (5.9) and (5.10) implies (5.6).

6 An Interior Maximum Norm Error Estimate

Let $T_* \in \mathcal{T}_h$ and $x_* \in \bar{T}_*$. We follow [28, 29] to introduce a smoothed Dirac delta function $\phi_* \in C_c^{\infty}(T)$ such that

$$\int_{T_*} p\phi_* dx = p(x_*) \qquad \forall \, p \in \mathbb{P}_k. \tag{6.1}$$

More precisely, we start with the construction in the reference simplex \hat{T} with vertices (0,0), (1,0) and (0,1). Let λ be a nonnegative function in $C_c^{\infty}(\hat{T})$ such that

$$\int_{\hat{T}} \lambda \, dx = 1.$$

The formula

$$((p,q)) = \int_{\hat{T}} pq\lambda \, dx$$

defines an inner product on \mathbb{P}_k and there exists $q \in \mathbb{P}_k$ such that

$$((p,q)) = p(\hat{x}_*) \qquad \forall p \in \mathbb{P}_k,$$

where \hat{x}_* is the point in the closure of \hat{T} corresponding to $x_* \in \bar{T}_*$ under an orientation preserving affine transformation A_* that maps \hat{T} to T_* . We have

$$\int_{\hat{T}} p\hat{\phi}_* dx = p(\hat{x}_*) \qquad \forall \, p \in \mathbb{P}_k,$$

where $\hat{\phi}_* = q\lambda \in C_c^{\infty}(\hat{T})$. We then take ϕ_* to be the function $(2|T|)^{-1}(\hat{\phi}_* \circ A_*^{-1})$. In particular we have

$$h_{T_*} \|\phi_*\|_{L^2(T_*)} + \|\phi_*\|_{L^1(T_*)} \approx 1.$$
 (6.2)

Theorem 6.1. Let K be a compact subset of the open subset $D \in \Omega$. We have

$$||u - u_h||_{L^{\infty}(K)} \le C(||u - \Pi_h u||_{L^{\infty}(D)} + h(1 + |\ln h|)||u - \Pi_h u||_{W_h^{1,\infty}(D)} + ||u - u_h||_{L^2(D)} + h||u - \Pi_h u||_{W_h^{1,2}(\Omega)})$$

asymptotically as $h \downarrow 0$, where the positive constant C is independent of h.

Proof. We may take D to be a mesh-subdomain of \mathcal{T}_h without loss of generality in the following arguments. (Otherwise we replace D by a mesh-subdomain that is a subset of D, which is possible because $h \downarrow 0$.)

Let $T_* \in \mathcal{T}_h(K)$, $x_* \in \overline{T}_*$ be one of the nodes for the \mathbb{P}_k Lagrange element, and $\phi_* \in C_c^{\infty}(T_*)$ satisfy (6.1) and (6.2). We can assume that h is sufficiently small so that $\operatorname{dist}(T_*, \Omega \setminus D) \geq \frac{1}{2} \operatorname{dist}(K, \Omega \setminus D)$.

Let $\omega \in C_c^{\infty}(\Omega)$ satisfy (5.5). We have, by (6.1) and (5.5),

$$u(x_*) - u_h(x_*) = (\Pi_h u)(x_*) - u_h(x_*)$$

$$= \int_{\Omega} \omega(\Pi_h u - u_h) \phi_* dx = \int_{\Omega} \omega(\Pi_h u - u) \phi_* dx + \int_{\Omega} \omega(u - u_h) \phi_* dx, \qquad (6.3)$$

and, in view of (5.5) and (6.2),

$$\left| \int_{\Omega} \omega(\Pi_h u - u) \phi_* dx \right| \le \|\Pi_h u - u\|_{L^{\infty}(D)} \|\phi_*\|_{L^1(T_*)} \lesssim \|\Pi_h u - u\|_{L^{\infty}(D)}. \tag{6.4}$$

Let N(x) be the fundamental solution of $-\Delta$ in (5.2) and

$$g(x) = \int_{T} N(x - y)\phi_{*}(y)dy$$

be the Newtonian potential with density ϕ_* .

We have $g \in C^{\infty}(\mathbb{R}^2)$,

$$-\Delta g = \phi_*, \tag{6.5}$$

and

$$||g||_{W^{2,\infty}(\Omega\setminus \tilde{D})} \lesssim ||\phi_*||_{L^1(T_*)} \approx 1,$$
 (6.6)

where \tilde{D} is a mesh-subdomain of \mathcal{T}_h such that $K \subset \tilde{D} \in D$ and that $\operatorname{dist}(\tilde{D}, \Omega \setminus D) \approx \frac{1}{2} \operatorname{dist}(K, \Omega \setminus D)$.

The estimate

$$\|\Delta(\omega g)\|_{L^2(\Omega)} \lesssim h^{-1} \tag{6.7}$$

is then a simple consequence of (5.5), (6.2), (6.5) and (6.6).

It follows from Remark 2.1, Lemma 2.4 and (6.5) that

$$\int_{\Omega} \omega(u - u_h)\phi_* dx = a_h(\omega(u - u_h), g) = a_h(u - u_h, \omega g) + I,$$
(6.8)

where

$$I = \sum_{T \in \mathcal{T}_h} \int_T (u - u_h) \left[\nabla \omega \cdot \nabla g + \nabla \cdot (g \nabla \omega) \right] dx$$

satisfies

$$|I| \lesssim ||u - u_h||_{L^2(D)}$$
 (6.9)

because of (5.5) and (6.6).

Next we use (2.7), (2.10) and (2.18) to write

$$a_h(u - u_h, \omega g) = a_h \left(u - \Pi_h u, \omega g - P_h(\omega g) \right)$$

= $a_{h,D} \left(u - \Pi_h u, \omega g - P_h(\omega g) \right) + a_{h,\Omega \setminus D} \left(u - \Pi_h u, \omega g - P_h(\omega g) \right),$ (6.10)

and we find, by (2.19) and (2.20),

$$\left| a_{h,D} \left(u - \Pi_h u, \omega g - P_h(\omega g) \right) \right| \lesssim \| u - \Pi_h u \|_{W_h^{1,\infty}(D)} \| \omega g - P_h(\omega g) \|_{W_h^{1,1}(D)}, \tag{6.11}$$

$$\left| a_{h,\Omega \setminus D} \left(u - \Pi_h u, \omega g - P_h(\omega g) \right) \right| \lesssim \| u - \Pi_h u \|_{W_h^{1,2}(\Omega \setminus D)} \| \omega g - P_h(\omega g) \|_{W_h^{1,2}(\Omega \setminus D)}. \tag{6.12}$$

It only remains to estimate the two terms $\|\omega g - P_h(\omega g)\|_{W_h^{1,1}(D)}$ and $\|\omega g - P_h(\omega g)\|_{W_h^{1,2}(\Omega \setminus D)}$.

First we take $\Omega_0 = \Omega \setminus D$ and $d = \frac{1}{2} \operatorname{dist}(\tilde{D}, \Omega \setminus D)$ in Lemma 4.1 to obtain

$$\|\omega g - P_h(\omega g)\|_{W_h^{1,2}(\Omega \setminus D)} = \|\omega g - P_h(\omega g)\|_{W_h^{1,2}(\Omega_0)}$$

$$\lesssim \|\omega g - \Pi_h(\omega g)\|_{W_h^{1,2}(\Omega_d)} + \|\omega g - P_h(\omega g)\|_{L^2(\Omega)}.$$
(6.13)

From (1.14), (2.2), (6.6) and the same calculation in the proof of Corollary 4.2, we have

$$\|\omega g - \Pi_h(\omega g)\|_{W_L^{1,2}(\Omega_d)} \lesssim h,\tag{6.14}$$

and, from (2.13) and (6.7),

$$\|\omega g - P_h(\omega g)\|_{L^2(\Omega)} \lesssim h. \tag{6.15}$$

Combining (6.13)–(6.15), we see that

$$\|\omega g - P_h(\omega g)\|_{W^{1,2}(\Omega \setminus D)} \lesssim h,$$

which together with (6.12) gives

$$\left| a_{h,\Omega \setminus D} \left(u - \Pi_h u, \omega g - P_h(\omega g) \right) \right| \lesssim h \| u - \Pi_h u \|_{W_h^{1,2}(\Omega)}. \tag{6.16}$$

Finally, using Lemma 5.1 and (6.2), we obtain

$$\|\omega g - P_h(\omega g)\|_{W_h^{1,1}(D)} \lesssim h^2(1 + |\ln h|) \|\phi_*\|_{L^2(T_*)} \lesssim h(1 + |\ln h|),$$

which, in view of (6.11), implies

$$\left| a_{h,D} \left(u - \Pi_h u, \omega g - P_h(\omega g) \right) \right| \lesssim h(1 + |\ln h|) \|u - \Pi_h u\|_{W_h^{1,\infty}(D)}.$$
 (6.17)

Putting (6.3), (6.4), (6.8)–(6.10), (6.16) and (6.17) together, we arrive at the estimate

$$|u(x_*) - u_h(x_*)| \lesssim ||u - \Pi_h u||_{L^{\infty}(D)} + h(1 + |\ln h|) ||u - \Pi_h u||_{W_h^{1,\infty}(D)} + ||u - u_h||_{L^2(D)} + h||u - \Pi_h u||_{W_{\cdot}^{1,2}(\Omega)}.$$
(6.18)

On the other hand, we have, by scaling,

$$\|\Pi_h u - u_h\|_{L^{\infty}(T)} \lesssim \sum_{i=1}^{N_k} |(\Pi_h u - u_h)(x_i)|,$$
 (6.19)

where $x_1, \ldots, x_{N_k} \in \bar{T}$ are the nodes for the \mathbb{P}_k Lagrange finite element.

It then follows from (6.18) and (6.19) that

$$||u - u_h||_{L^{\infty}(T)} \lesssim ||u - \Pi_h u||_{L^{\infty}(D)} + h(1 + |\ln h|)||u - \Pi_h u||_{W_h^{1,\infty}(D)}$$
$$+ ||u - u_h||_{L^2(D)} + h||u - \Pi_h u||_{W_h^{1,2}(\Omega)} \qquad \forall T \in \mathcal{T}_h(K).$$

7 Concluding Remarks

We have established an interior maximum norm error estimate for the SIP method for a simple model problem in two dimensions. The derivation is self-contained (up to the standard results for the SIP method and the superapproximation result in (3.2)). The results in this paper can be extended along the lines in [20] to other discontinuous Galerkin methods in [4].

Our approach can also be applied to elliptic problems with variable coefficients where $-\Delta$ is replaced by an elliptic operator p(x,D) in divergence form. One only has to replace the Newtonian potential $\int_{T_*} N(x-y)\phi_*(y)dy$ by $q(x,D)\phi_*$, where the pseudo-differential operator q(x,D) of order -2 is a parametrix for p(x,D) in the free space (cf. [31, Theorem 3.1.3 and Lemma 12.3.1] and [30, Section 6.4]).

Note that the approach in this paper does not work properly in three dimensions because in that case the estimate (6.2) takes the form

$$h^{3/2} \|\phi_*\|_{L^2(T_*)} + \|\phi_*\|_{L^1(T_*)} \approx 1,$$

so that

$$\|\omega g - P_h(\omega g)\|_{L^2(\Omega)} \lesssim h^{\frac{1}{2}}.$$

Consequently the estimate (6.16) now reads

$$\left| a_{h,\Omega \setminus D} \left(u - \Pi_h u, \omega g - \Pi_h(\omega g) \right) \right| \lesssim h^{\frac{1}{2}} \| u - \Pi_h u \|_{W_h^{1,2}(\Omega)},$$

and the fourth term that appears on the right-hand side of (1.7) becomes $h^{\frac{1}{2}} \|u - \Pi_h u\|_{W_h^{1,2}(\Omega)}$, which is sub-optimal.

We believe interior pointwise error estimates in three dimensions can still be established without using a local Neumann problem. However the correct order of convergence can only be achieved if no global term appears on the right-hand side of the estimate, which means more of the techniques in [27] would have to be adopted.

Funding: This work was supported in part by the National Science Foundation under Grant No. DMS-19-13035 and Grant No. DMS-22-08404.

References

- [1] R.A. Adams and J.J.F. Fournier. Sobolev Spaces (Second Edition). Academic Press, Amsterdam, 2003.
- [2] T. Apel, A.-M. Sändig, and J.R. Whiteman. Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci., 19:63-85, 1996.
- [3] D.N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742-760, 1982.
- [4] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749-1779, 2001/02.
- [5] I. Babuška. Finite element method for domains with corners. Computing, 6:264-273, 1970.
- [6] S.C. Brenner. A general superapproximation result. Comput. Methods Appl. Math., 20:763-767, 2020.
- [7] S.C. Brenner, J. Cui, and L.-Y. Sung. Multigrid methods for the symmetric interior penalty method on graded meshes. Numer. Linear Algebra Appl., 16:481-501, 2009.
- S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods (Third Edition). Springer-Verlag, New York, 2008.
- [9] R. Caccioppoli. Limitazioni integrali per le soluzioni di un'equazione lineare ellitica a derivate parziali. Giorn. Mat. Battaglini (4), 4(80):186-212, 1951.
- [10] G. Chen, P.B. Monk, and Y. Zhang. L^{∞} norm error estimates for HDG methods applied to the Poisson equation with an application to the Dirichlet boundary control problem. SIAM J. Numer. Anal., 59:720-745, 2021.
- [11] H. Chen. Pointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem. Math. Comp., 74:1097-1116 (electronic), 2005.
- [12] Z. Chen and H. Chen. Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal., 42:1146-1166, 2004.
- [13] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
- [14] M. Dauge. Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341. Springer-Verlag, Berlin-Heidelberg, 1988.
- [15] A. Demlow, J. Guzmán, and A.H. Schatz. Local energy estimates for the finite element method on sharply varying grids. Math. Comp., 80:1-9, 2011.
- [16] L.C. Evans. Partial Differential Equations (Second Edition). American Mathematical Society, Providence, RI, 2010.
- [17] R. Fritzsch and P. Oswald. Zur optimalen Gitterwahl bei Finite-Elemente-Approximationen. Wiss. Z. Tech. Univ. Dresden, 37:155-158, 1988.
- [18] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
- [19] P. Grisvard. Elliptic Problems in Non Smooth Domains. Pitman, Boston, 1985.
- [20] J. Guzmán. Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems. Math. Comp., 75:1067-1085, 2006.
- [21] R. Haverkamp. Eine Aussage zur L_∞ -Stabilität und zur genauen Konvergenzordnung der H_0^1 -Projektionen. Numer. Math., 44:393-405, 1984,

- [22] G. Kanschat and R. Rannacher. Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems. J. Numer. Math., 10:249-274, 2002.
- [23] D. Leykekhman. Pointwise error estimates for C^0 interior penalty approximation of biharmonic problems. *Math. Comp.*, 90:41-63, 2021.
- [24] B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.
- [25] A. Schatz. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global Estimates. Math. Comp., 67:877-899, 1998.
- [26] A. Schatz. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part II. Interior estimates. SIAM J. Numer. Anal., 38:1269-1293, 2000.
- [27] A.H. Schatz and L.B. Wahlbin. Interior maximum norm estimates for finite element methods. Math. Comp., 31:414-442, 1977.
- [28] R. Scott. Finite element convergence for singular data. Numer. Math., 21:317-327, 1973/74.
- [29] R. Scott. Optimal L_{∞} estimates for the finite element method on iregular grids. Math. Comp., 30:681–697, 1976.
- [30] E.M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993.
- [31] M.E. Taylor. Pseudodifferential Operators. Princeton University Press, Princeton, N.J., 1981.
- [32] L.B. Wahlbin. Local Behavior in Finite Element Methods. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, II, pages 353-522. North-Holland, Amsterdam, 1991.
- [33] M.F. Wheeler. An elliptic collocation-finite-element method with interior penalties. SIAM J. Numer. Anal., 15:152-161, 1978.