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Abstract

Hypoxia, or dissolved oxygen (DO) at low enough levels to impair organisms, is a
particularly useful indicator of the health of freshwater ecosystems. However, due to limited
sampling in headwater networks, the degree, distribution, and timing of hypoxia events are
not known across the vast majority of most river networks. We thus sought to clarify the
extent of hypoxia in headwater networks through three years of instrumentation of 78 sites
across eight temperate, agricultural watersheds. We observed broadly distributed hypoxia,
occurring 4% of the time across 51 of the 78 sites over 20 months. The hypoxia was driven by
three mechanisms: storm events, drying, and rewetting, with drying as the most common
driver of hypoxia (55% of all hypoxic event types). Drying induced hypoxia was most severe
in smaller streams (Strahler orders < 3), whereas storm events preferentially induced hypoxia
in the larger streams (Strahler orders 3-5). A large diversity in DO trajectories towards
hypoxia depended on hydrologic event type, with subsequent expected differences in
mortality profiles of a sensitive species. Predictive models showed the most vulnerable sites
to hypoxia were small streams with low slope, particularly during hot, low discharge periods.
Despite variation among hypoxic events, there was remarkable similarity in the rate of DO
drawdown during hypoxia events (ca. 1 mg Oz L'! d'!). This drawdown similarity may be a
useful rule-of-thumb for managers, and we hypothesize that it is a signal of increasing
downstream network-scale oxygen demand. Overall, we posit that hypoxia is likely a
common feature of most headwater networks that often goes undetected. Headwater hypoxia
may become more common under increasingly dry conditions associated with climate and
water resource management changes, with important implications for biological communities
and biogeochemical processes.

keywords: drought, hypoxic, drying, storms, rewetting, dissolved oxygen, temperature
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Introduction

Low oxygen concentrations in fresh and salt waters are common and increasing in both
spatial and temporal extent around the world (Breitburg et al., 2018; Jenny et al., 2016). While
mechanisms driving low oxygen concentrations, or hypoxia, are well documented in lakes and
coastal areas, it is less well documented or understood in river networks that are often assumed
to be oxic. Hypoxia is known to lead to mortality (Rabalais et al., 2010 and references therein),
mobilize chemically reduced contaminants into the water column (Saup et al., 2017), and
exacerbate greenhouse gas emissions (Bastviken et al., 2004). Sparked both by these growing
environmental concerns and by a proliferation of rather inexpensive, accurate, and rugged
dissolved oxygen sensor technology (Rode et al., 2016), interest is mounting to understand the
spatiotemporal distributions of hypoxia in river waters (Dutton et al., 2018; Garvey et al., 2007).
Yet, of these river systems, headwater stream hypoxia dynamics are still the least understood
(Blaszczak et al., 2019; Carter et al., 2021; Gomez-Gener et al., 2020; Pardo and Garcia, 2016).

Hypoxia in river systems can arise from a number of interacting processes linked to high
levels of respiratory or reductive processes somewhere in the hydrologic network. Broadly
speaking, we can define five underlying drivers of hypoxia, each of which is associated with
amplified respiratory processes. In no particular order, there are: 1) excess N and P input leading
to eutrophication, particularly in lakes/estuaries (Breitburg et al., 2018; Smith and Schindler,
2009), 2) point source pollution (Mallin et al., 2006; McConnell, 1980), 3) storms, which can
bring in low O2 groundwater (Carter et al., 2021) or oxygen demanding substances (Dutton et al.,
2018; Kerr et al., 2013; Whitworth et al., 2012), 4) drying (Pardo and Garcia, 2016; Tramer,
1977), and 5) rewetting, which may stimulate microbial activity (Acufia et al., 2005). These
varied drivers, in particular storms, drying, and rewetting, may have distinct hypoxic signatures

that are important for the survival of biota.
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The low primary productivity relative to respiratory processes (Diamond et al., 2021;
Vannote et al., 1980) and increased likelihood for drying of headwater streams (Godsey and
Kirchner, 2014) suggests their trends towards longer and more frequent hypoxia events. Still,
most studies on stream hypoxia focus on humid climate streams and rivers larger than Strahler
order 2; less is known regarding the smaller order streams of headwater networks (Bishop et al.,
2008) that typically experience greater flow intermittence (Gomez-Gener et al., 2020). These
headwaters are the network capillaries connecting land to the river network and they physically
dominate total stream length and benthic area of river networks (Benstead and Leigh, 2012;
Strahler, 1957). By not studying this dominant portion of river networks, there may be a large
underestimation of the total extent of freshwater hypoxia.

Hypoxic episodes may become more common in headwaters under increased climate-
driven drought frequency and intensity (Dai, 2013; Samaniego et al., 2018), especially in
agricultural areas already experiencing irrigation-induced water deficits (Elliott et al., 2014). The
link between hydrologic extremes and hypoxia further suggests that headwaters may exhibit
disproportionately more hypoxia than downstream reaches, as they typically have greater
hydrologic responses to climate and land use change. Moreover, small stream drying patterns
typically lead to the formation of pools and hydrologic disconnection, i.e., “pooling” (Godsey
and Kirchner, 2014; Stanley et al., 1997) with understudied effects on subsequent heterogeneity
in oxygen and community physiological effects.

We addressed these research gaps by studying the oxygen regimes in agricultural
headwater rivers to assess the environmental conditions leading to headwater hypoxia, and the
subsequent degree of hypoxia throughout the networks. We hypothesized that hypoxic events

would arise under drying, storm, and rewetting conditions, but that hypoxia would be greatest
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and most common in the smallest streams due to their increased risk for drying and pooling. We
further evaluated the potential impact of hypoxia on aquatic animal communities using the
modeled mortality response of the amphipod Gammarus fossarum, a sentinel organism of water
quality in stream ecosystems (Chaumot et al., 2015; Kunz et al., 2010) known for its sensitivity
to dissolved oxygen (Hervant and Mathieu, 1995; Maltby, 1995; Meijering, 1991). We
hypothesized that the model organisms would exhibit a mortality threshold response to lower
DO, which we could use as a way to set an ecologically relevant definition of hypoxia in our
stream networks.

Methods

Study area

We instrumented 78 sites, spanning Strahler orders 1-5 across eight catchments in
France: 1) Coise, 2) Loise, 3) Toranche, 4) Mare, 5) Lignon, 6) Ardi¢res, 7) Vauxonne, and 8)
Yzeron (Figure 1, Table 1). These catchments were monitored for hypoxia between 3 July 2019
to 15 October 2021 (except winters from November 1-February 28) The first five catchments
(Coise—Lignon) are primarily agricultural headwater catchments of the Loire River basin, and
were instrumented from July 2019—October 2020, with 4, 11, 16, 8, and 3 sites in orders 1-5,
respectively. In these catchments, granite and gneiss lithology at upper catchment boundaries
gradually gives way to thick alluvium with clay and sand at catchment outlets in a flat basin
known as the Forez plain. The geology in the upper reaches prevents substantial aquifer storage
leading to regular drying. Topography is characterised by rolling hills with successions of
plateaus separated by steep slopes. Climate in these catchments is continental, with mean annual
temperature of 11°C (range during measurement period = 0.0-34.3°C) and mean annual

precipitation of 800 mm.
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The Ardiéres and Vauxonne catchments are adjacent, but just across the regional
drainage divide and are tributaries of the Sdone River, which itself is a tributary of the Rhone
River. From 8 March 2021 to 14 October 2021, we instrumented 2, 6, 8, and 3 sites of Strahler
order 2, 3, 4, and 5 respectively. These two catchments drain a hilly landscape of vineyards (32%
land cover) exposed to pesticides (Montuelle et al., 2010). Soil is sandy loam on a shallow
Hercynian crystalline bedrock. Climate is temperate with a mean annual air temperature of
17.1°C (-2.1-35.2°C) and mean annual precipitation is 940 mm, with intense summer
thunderstorms. The combination of climate, soil and steep slopes (up to >30%) is conducive to
infiltration and sub-surface lateral flow (Gouy et al., 2021).

The last catchment, the Yzeron is a direct tributary of the Rhone River, draining a steep
agricultural and forested landscape composed of magmatic and metamorphic (granite, gneiss,
schist) bedrock that leads downstream to a semi-urban/urban zone with Quaternary fluvio-glacial
and glacial deposits. From 08 March 2021 to 15 October 2021, we instrumented 2, 3, 6, 6, and 1
sites from Strahler orders 1-5, respectively. The climate is a mix of continental/Mediterranean
with mean annual temperature 13.8°C (-5.5-28.1°C) and mean annual rainfall 800 mm
(Gnouma, 2006), which predominately occurs in spring and autumn. The hydrological regime is
pluvial with low flows in summer and floods in autumn and spring. Road and storm sewages
designed for flood mitigation allow rapid transport of urban runoff to downstream channels of
the Yzeron.

Table 1. Characteristics of the Loire and Rhone tributaries’ catchments and summary of their hydrochemistry
from grab samples, meantsd (n).

Variable Loire Rhone
Coise Loise Toranche Mare Lignon Ardiéres Vauxonne Yzeron
N sites 11 20 3 4 4 15 3 18

Area (km?)  6.1-350 0.8-132  54.7-76.1 61.9-233 62.1-664 | 3.6-142 6.646.0 0.8-59.4

Alt." (m) 344-619  337-627 338377 352422  330-360 | 199-389  227-228 197-731

Q' (m*s™h) 0.17 0.13 0.06 0.34 1.11 0.59 0.19 0.10
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pH 7.8+£0.2 7.5£0.4 7.7£0.4 7.8+£0.2 7.6+0.3 7.5+0.1 7.8+0.1 7.6+0.3
(40) (123) 27) (3%5) (43) 91) a7 (107)
SpC™ 296+129 3154255 320482 193+79 13657 145+45 238+59 3224124
(uS ecm™) (71) (156) (33) (49) (59) (166) (32) (195)
DOCTt 4.6+1.1 4.3+1.6 7.0+1.4 7.0£1.6 5.1+1.6 3.3+0.9 ND 6.742.9
(mg LY (24) (73) (13) (20) (26) (125) (78)
NOs—N 2.3+1.9 22421 24£23 1.2+0.6 0.9+0.6 2.2+1.8 2.0£1.6 2.1£1.3
(mg L) (24) (73) (13) (20) (26) (88) 17) (78)
PO/ -P 0.12+0.12 0.07+0.07 0.11£0.1  0.08+0.05 0.08+0.06 | 0.1£0.1* ND 0.08+0.07
(mg L™ 24 (73) (13) (20) (26) (45) (78)

faltitude in meters above NGF IGN69 datum

“interannual median at the outlet during sampling period

**specific conductance at 25°C
fdissolved organic carbon

festimated from Montuelle et al. (2010)
ND = no data
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Figure 1. Map of instrumented study sites with points indicating sensor placement and

monitoring duration.

Data collection and processing

We monitored the sites for dissolved oxygen (DO; mg L") and stream temperature (°C)

for variable periods between July 2019 and October 2021, but not during winter (November—

February; Figure 1). At each site, DO and stream temperature were measured every 15 minutes

with an in-situ sensor (HOBO U26-001, Onset Computer Corporation, Massachusetts, USA)

8
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instrumented with a copper anti-biofouling guard. At 12 sites in 2020 and 18 sites in 2021, we
installed conductivity sensors (HOBO U24-001, Onset Computer Corporation, Massachusetts,
USA). We cleaned DO and conductivity sensors with a toothbrush every two weeks to remove
biofouling. Prior to deployment, we lab-calibrated DO sensors with both 100% water-saturated
air and with sodium sulphite for 0% saturation. Conductivity sensors were calibrated based on
field measurements obtained with a calibrated handheld probe (Pro Plus, YSI Inc., Ohio, USA) at
the beginning and end of each two-week measurement period per manufacturer instructions. We
also measured DO and temperature with the calibrated handheld probe at each field visit to check
for sensor drift and develop corrections as needed. We placed sensors in the middle of the water
column, and as close to the thalweg as possible. As streams began to dry, we vertically
repositioned sensors to keep them submerged and continuously capture stream DO and prevent
loss of data.

Across all sites, we measured DO and stream temperature at 15-minute intervals for a
total of 1,687,776 measurements. The quality controls applied to all DO data prior to analysis are
described in detail in Diamond et al. (2021). Briefly, we 1) averaged 15-minute data to hourly
resolution to reduce file sizes and processing time, 2) removed data that were extremely noisy,
collected in dry conditions, or otherwise of suspect quality, and 3) corrected for minimal sensor
drift. For data that passed quality control (npo=380,161), we calculated hourly DO saturation
(DOsat) and specific conductance.

Storm, drying, and rewetting events

We observed three environmental events conducive to hypoxia across our sites: 1)
storms, 2) drying, and 3) rewetting. Each of these environmental events were identified
according to the following definitions. First, we classified storm events as a doubling of baseflow

(Carter et al., 2021), with storms at least 24 hours apart counting as separate events. We used the

9
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functions high.spells and baseflow (based on a Lyne-Hollick recurvise digital filter) from the
hydrostats R package (Bond, 2022) to determine these events. Through sensitivity analyses, we
determined these criteria to accurately and reproducibly capture each distinct event in the
observed discharge time series. To determine storm effects on DO, we examined the three days
before the storm peak flow and the week following the peak flow (Carter et al., 2021).

Second, to classify distinct drying events, we relied on a combination of sensor data, field
observations, and discharge data. Ideally, accurate local discharge or stage data should
characterize these events, but the large number of sites precluded continuous measurement at
each location, and there is a well-known problem with low-flow accuracy from local stream
network gages (Zimmer et al., 2020). Hence, to indicate dry periods, we used the observation
that DO sensors read near-saturation and experience air-temperature-like fluctuations when they
are out of the water. These dry-period DO sensor observations are directly supported by 1)
concurrent conductivity measurements (reading near 0 uS cm™), 2) field observations of dry
stream beds, and 3) near-zero or zero-flow measurements of discharge at local discharge stations.
Therefore, these moments (i.e., when sensors are out-of-water) represent the end-points of our
drying periods. We then determined the beginning points of our drying periods by extending the
end-point backwards in time to a point when specific discharge measurements exceeded the 10%
percentile, using the low.spell.lengths tunction from hydrostats.

Third, rewetting events were demarcated by typically rapid and large reductions in
temperature, and increases in conductivity of stream water after dry periods. These moments
were also associated with measured rainfall events and concomitant discharge responses, so we
have high confidence in the start time of rewetting events. The length of a rewetting event lasted

either until the stream dried again (see above), or until discharge exceeded the 10% percentile.
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To avoid over-counting drying events, we did not consider the drying after rewetting to be a
drying event as defined above unless the discharge exceeded the 10% percentile before re-drying
after rewetting.

Hypoxia evaluation

In this study, we defined instantaneous hypoxia conditions to occur in the stream water
when DO is less than 3 mg Oz L'!. This instantaneous hypoxia level was selected for three
primary reasons: 1) it is national threshold value for “bad” ecological potential of water quality
in France (Ministére chargé de 1’écologie, 2019), 2) it appears to be a threshold for mortality in
the biological indicator species, Gammarus fossarum (Fig. S1), and 3) measurements of DO
concentrations are less uncertain and require fewer assumptions than estimates of DO percentage
saturation, although this metric is still commonly used (e.g. 50%, Carter et al., 2021). Some
regulatory agencies define coastal hypoxia as <2 mg L' (NSTC, 2003) though evidence
suggests freshwater biota experience chronic toxicity below 5 mg L (Saari et al., 2018).
Overall, there is no single definition for hypoxia, and different numeric thresholds may be
appropriate for the regulation or study of specific impacts (in mg L™ or % saturation).

As there is no single assessment of hypoxia and its impacts, we evaluated the degree of
hypoxia in several ways. Apart from simply calculating total hours and percentage of hypoxia
within and across sites, we also delineated continuous hypoxic events (with up to a 2-hour gap of
DO > 3 mg L"), taking into account their lengths, and periodicity, and the diel distributions of
hypoxia. We further calculated rates of DO drawdown leading to hypoxia during storm, drying,
and rewetting events by fitting linear regressions through daily minima (Carter et al. 2020).
Finally, we attempted to identify simple predictors of hourly hypoxia (i.e., binary: hypoxic or
oxic) with logistic regression and classification trees (R package rpart; Therneau and Atkinson,

2022). Potential predictors of DO conditions measured included stream habitat of the DO sensor
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(pool, riffle, or run; visually assessed), hourly stream temperature, daily specific discharge of the
catchment, reach slope, Strahler order, distance from the source, and altitude. Data were highly
skewed towards oxic conditions, so we balanced the data with combined over- and under-
sampling using the R package ROSE (Lunardon et al., 2014). We split the dataset into training
(70%) and testing (30%) data for model building and validation, respectively.

Prediction of gammarid mortality during hypoxic events

To connect observed hypoxia events with hypoxia physiological response for stream
biota, we modeled Gammarus fossarum (“gammarid”) mortality using measured DO
concentrations from contrasting hypoxic event types as input to a General Unified Threshold
model of Survival (GUTS) (Jager et al., 2011). The GUTS toxicokinetic-toxicodynamic model,
based on bioassay survival data, is regularly used in prospective hazard assessment of pesticides
and fluctuating concentrations of toxic chemicals (Ockleford et al., 2018). GUTS quantifies
mortality rate evolution based on the internal concentrations of hazardous compounds in
organisms, which are controlled both by uptake rates and internal contaminant elimination rates
(Baudrot et al., 2018). We adapted GUTS to include hypoxic stress instead of toxic stress by
considering the DO deficit below an arbitrary value of 12 mg L' as the stressor input metric
(instead of contaminant concentration). Using the web-interface MOSAIC (https://mosaic.univ-
lyonl.fr/guts) (Charles et al., 2018), we calibrated the GUTS model with an experimental dataset
of gammarid mortality in laboratory conditions under different constant levels of DO deficit
(Recoura-Massaquant et al., 2022). We used the reduced individual tolerance version of the
model (GUTS-RED-IT), which assumes a log-logistic distribution of sensitivity threshold among
individuals. The calibration experiment consisted of monitoring mortality over a five-day
laboratory exposure of 300 male organisms of homogenous body size (~10 mm) to 10 constant

nominal DO concentration conditions (8, 6, 5, 4, 3.5, 3,2.5,2, 1.5 and 1 mg L'}, respectively),

12
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with three replicates of 10 individuals per concentration condition (Fig. S1). DO deficits were
obtained by bubbling N2 gas through water columns. All detailed experimental data are available
from the open access data repository Recherche Data Gouv (Recoura-Massaquant et al. 2022).
We then used the calibrated GUTS-RED-IT model to estimate potential mortality responses
under observed hypoxic scenarios from three storm events and five drying events.

Results

Degree of hypoxia across sites

Overall, we observed 16,781 hours of hypoxia (DO < 3 mg L), an average of 4.4% of all
site hourly measurements from 2019-2021. Hypoxia occurred at 51 of 78 sites for at least one
hour of hypoxia, and at 37 sites for at least 1% of the time. The greatest degree of hypoxia was in
2019, accounting for 9.2% of all measurements that year, followed by 2020 with 6.2%, and 2021
with 1.3%. Note that in 2021, in addition to being a wetter year (Fig 2b), the sites changed from
the Loire to the Rhone basin (Fig. 1). Among catchments, the Toranche experienced the most
hypoxia (12.9% or 2,335 hours), and the Vauxonne the least (0.3% or 57 hours; Table S1). In
general, hypoxia was spatially heterogeneous, but drying tended to synchronize hypoxia within
catchments. For example, in late July 20, when most sites in the Loise catchment were almost
dry, sites ranging 4.2-31.4 km? (7 out of 16 sites) exhibited hypoxia at the same time before
drying.

Across our sites, we observed correlations between the degree of monthly hypoxia and
stream temperature (Fig. 2a) and specific discharge (Fig. 2b). Hence, hypoxia was greatest in
summer months (Fig. 2d) when temperatures were greatest and discharge was lowest. There
were negligible differences in hypoxia rates between night and day, although solar noon was the
least likely time to observe hypoxia (Fig. 2¢). Mean hypoxic duration was 10 hours, and while

this did not vary over time (Fig. 2d), there was two orders of magnitude variation across events
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253  (range=1-210 hours). In general, differences in degree of hypoxia among Strahler orders were
254  marginal (Table 2), and did not correspond to downstream trends (p > 0.05 for all linear fits).

255  Still, Strahler order 1 exhibited the lowest degree of hypoxia for all metrics.
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257  Figure 2. Time series of hypoxia metrics. a) Monthly percentage of measurements that were

258  hypoxic (bars) with mean monthly across-site stream temperature (red) for 2019-2021 (columns
259  for a and b). b) Mean monthly number of unique hypoxic events aross sites (black, vertical bars
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Table 2. Hypoxia summary statistics by Strahler order, mean+sd when given.

Percentage of Unique Event Night
Strahler  Total hypoxia time hypoxic” hypoxia length® Time between hypoxia?
order (hours) (%) events™ (n) (hours) events't (days) (%)
1 786 3.1 34 8+6 3.0+11.3 51%
2 3180 4.9 44 9+11 5.5+18.8 49%
3 7778 5.1 73 10£13 9.3+43.1 48%
4 3015 3.0 37 10£10 13.7445 49%
5 2022 5.6 27 14+17 9.9+31.5 50%

"Total hours of hypoxia divided by total hours of DO measurements x 100

** Event defined as at least one hour of DO < 3 mg L''; events continue with up to 2-hour gap in hypoxia
"Event length begins at time of first hypoxia and continues until hypoxia ends, with up to 2-hour gap in hypoxia
"The time between hypoxic events

¥The percentage of total hypoxia that was measured at night, where night is defined as <200 umol m? s PAR

Storm events

We recorded 152 storm events across the 13 discharge gages with an average storm pulse
length of 2.64+4.2 days (mean+sd; range = 1 hour—22.1 days), leading to 776 site-events. Of those
site-events, 107 resulted in at least one hour of hypoxia. For 131 of the 669 site-events without
hypoxia, there was no change in DO mean or variance after the storm peak (ANOVA and t-tests
of 5 days before and after; p>0.01), whereas 414 of them exhibited an increase in DO, but no
change in DO diel range. Storm events resulting in hypoxia occurred predominately in higher
order sites, with 87% in orders 3-5, and 62% in orders 4-5.

DO trajectories following storm events were highly variable (Fig. S2). Of the storms that
induced hypoxia, it took a median of 41 hours (53+48 hours) after peak discharge to become
hypoxic, ignoring sites that were hypoxic prior to the storm. This is the amount of time for DO to
drop between 8.0 and 3.3 mg L' when using the median and mean rates of DO decrease (Fig.

3b). Sites stayed hypoxic for a median of 7 hours (20+32 hours) after first becoming hypoxic.
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There were 48 events where peak discharge rapidly induced oxic conditions to previously

hypoxic sites, but oxic conditions rarely lasted for more than a few days (Fig. 3a). These event

types were spread across 25 sites and every Strahler order and habitat. There were few obvious

predictors of the effect of a particular storm event on changes to DO, with time since last storm

event, baseflow before storm event, and storm pulse magnitude having no predictive power (Fig.

3¢).
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Figure 3. Summary of storm event effects on DO. A) three different storm events for each

of three different habitat types (pool, riffle, run) with colors indicating whether DO increased

(blue) or decreased (black) after the storm event. Dashed line indicates hypoxia and vertical line
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events that led to a decrease in DO. C) Comparison of change in DO (colors as in A) as a
function of time since the last storm, with the point size indicating the magnitude of the storm

pulse. LOESS lines with 95% confidence intervals are shown.

Drying
Across all 13 stream gages in the study area, dry conditions were recorded 86 times with

a mean dry duration of 6.7£11.2 days (range = 8 hours — 86 days). Flow was lowest in 2019 and
2020 (Fig. 2b). In the Loire basin, the Loise, Coise, and Toranche catchments experienced zero-
flow for 2%, 2%, and 24% of days in 2019, and 11%, 11%, 29% in 2020. Average dry durations
for those catchments were 1, 1, and 4.5 days in 2019, and 1, 1, and 80 days in 2020. In the Rhone
basin, sites in the Yzeron catchment in 2021 also experienced drying 1.5-4.6% of the time, with
average site dry durations of 4.9—11.8 days. Using our criteria to determine if a sampling site was
dry, we estimate that 23 of 78 sites became dry at least once. Within those 23 sites, we observed
60 distinct drying events (2.6£1.5 events per site). The remaining results refer to these hypoxic
drying events (Fig. 2a).

Drying was the most common hydrologic driver of hypoxia, accounting for 55% of all
hypoxic events. The mean hypoxia duration during drying was 6.2 hours (range = 1-55 hours);
the greatest durations occurred in Strahler order 2 (mean = 9.3£9.5 hours). The smaller Strahler
orders (1-3) were twice as likely to become hypoxic during drying than to remain oxic, and for
Strahler order 1 drying events always resulted in hypoxia. The mean decrease in daily DO
minima was 1.3 mg L' d"! (Fig. 4b), with relatively little variation (IQR = 0.6-1.5 mg L' d'!).
This decrease in DO was not concomitant with increases in stream temperature, which did not
exhibit increasing trends with drying (p>0.05). Once drying began, it took 3.8+2.9 days for sites
to become hypoxic (IQR = 1.8—4.8 days). We observed increases (p < 0.05) in DO diel ranges
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312 over drying periods in 12 instances (18% of hypoxic drying events), with a mean increase of
313 0.740.5 mg L' d"'. Apart from Strahler order (Fig. 4c), there were no clear predictors of a site to

314 become hypoxic during drying or on how long it would stay hypoxic.
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316  Figure 4. Summary of drying hypoxia events. A) Three-to-four different drying events for
317  each of three different habitat types (pool, riffle, run) with colors indicating Strahler order;

318 dashed line indicates hypoxia. B) Distribution of DO decreases across all events. C) Length of

319  consecutive hypoxia (colors as in A) as a function of Strahler order.
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Rewetting

There were 314 rewetting events according to our criteria with 46 of these events leading
to at least one hour of hypoxia. These events occurred across 27 of 78 sampling sites. There was
a mean duration of 613 days of dry conditions before rewetting, and sites went through an
average of 4.9+4.7 drying and rewetting cycles. Rewetting led to more decreases than increases
in DO (Fig. 5b). When only considering negative changes, the mean decrease in DO was -1.0+1
mg L' d! (median = -0.7 mg L' d"!). Apart from the fact that there were no riffle rewetting
events that led to hypoxia (Fig. 5a), there were no other obvious controls on DO changes after

rewetting, e.g. dry period duration or previous number of dry periods before rewetting (Fig. 5c¢).
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Figure S. Summary of rewetting event effects to DO. A) Different rewetting events leading
to hypoxia for each of two different habitat types (pool and run; riffles did not experience
rewetting hypoxia) with colors indicating Strahler order; dashed line indicates hypoxia. B)
Distribution of DO changes across all events, vertical line indicates median. C) DO change after
rewetting as a function of the number of dry periods before rewetting and the dry period duration
(colors).

Predicting hypoxia

A classification tree was able to predict instances of hypoxia across a training dataset
with an accuracy of 81% (c-statistic = 0.79, sensitivity = 0.67, specificity = 0.82). Notably, the
resulting 10-node tree predicted hypoxic events with probability = 0.79 for periods with stream
temperature > 11°C, specific discharge < 0.014 mm d! (ca. 1-10 L s™! for these catchments), and
Strahler order < 3 (Fig. S3). The highest probability of hypoxia (p=0.86) was observed for the
same temperature conditions, but for discharge > 0.014 mm d!, and reach slopes 0.042-0.054 m
m™!. The lowest probabilities for hypoxia were under cold-water conditions (temperature < 11
°C) and high slope conditions (slope > 0.054 m m™!). The variable importance for the
classification tree were temperature = 34, slope = 32, specific discharge = 18, Strahler = 10, and
habitat = 6. Similar variable importance was observed for a regression tree on DO (Fig. S4).

Given that discharge and temperature were the most important continuous variables in
predicting hypoxia and DO at our sites, we used them as predictors in a logistic regression for
hypoxia. The model (Table 3) performed relatively poorly (Fig. S5) with a pseudo R?>=0.10
(McFadden, 1987) and accuracy 63% (c-statistic = 0.66, sensitivity = 0.69, and specificity
=0.63), especially when compared with the classification tree. Holding temperature constant, the
odds of hypoxia decreased by 15% for each unit increase in In(q), whereas by holding discharge

constant, the odds of hypoxia increased by 19% for each °C increase.
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Table 3. Logistic regression results for probability of hypoxia

Coefficients Estimate SE z-value p-value
Intercept -3.0  0.02 -151 <0.0001
In(q)™ -0.16  0.00 -71 <0.0001
temperature 0.17 0.00 -131 <0.0001
*a exp(bo+byIn(q)+bytemp) log p(hypoxia)

exp(1+bg+bqIn(q)+bytemp) -
“*daily specific discharge [mm d']

1-p(hypoxia)

Gammarid mortality patterns

The laboratory experiments revealed a gammarid mortality threshold response to DO at 3
mg L' (Fig. S1). The predictions of the calibrated GUTS model based on our field data for storm
and drying events thus follow this threshold, with mortality occurring when DO <3 mg L' (Fig.
6). There was a clear difference in mortality profiles between drying and storm hypoxic events,
with a staircase shape for the drying, and a more continuous and abrupt shape for storms. The
staircase mortality under drying is due to the marked diel DO oscillations that allow oxic
recovery periods during the day. Hence, the time between the start of hypoxia and the quasi-
extinction of the population of individuals (e.g. 95% dead) is much shorter for storms than for
drying events. Specifically, storm events achieved quasi-extinction in less than two days for the
three storm events considered, whereas it took at least three days for the drying events, with one
drying event not crossing 50% mortality (Fig. 6b).

During drying, successive mortality events were triggered for successively lower DO
thresholds. This is explained by the Individual Tolerance assumption in GUTS model, where the
population loses the most sensitive individuals first, but only the most tolerant ones when the
stress conditions worsen. This is most apparent for the longer drying event (blue line on Fig. 6b)

with a first large event of mortality at day 9 when DO concentrations reach 3 mg L', followed
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by a phase without mortality between days 10—15 while DO still fluctuates in the same

concentration range. A second event of mortality occurs only when DO <2 mg L.
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Figure 6. Summary of GUTS model results for gammarid survival under hypoxia driven by

drying and storms. A) Time series of DO concentrations for eight different hypoxic events (five
drying and three storms), colored by individual event. B) Time series of gammarid survival
(1=100% population survives, 0 = complete mortality) with 95% confidence intervals in shade.
Dashed lines indicate hypoxia and 50% mortality in A and B, respectively. Note different x-axis
lengths for storms and drying.

Discussion

Hypoxia is abundant in space and time in headwaters

Hypoxia was temporally common over the growing season across our study area, with a

surprisingly even spatial distribution across watersheds and Strahler orders. This ran counter to
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our hypothesis that hypoxia would occur preferentially in the smallest streams (e.g., Strahler
order < 3), and there was moreover little difference in degree of hypoxia among sites (Table 2).
Equally surprising was that there were marginal differences between night and day hypoxia at
the study- or Strahler order-level (Fig. 1, Table 2; cf. Carter et al. 2021), suggesting that when it
occurs, it spans full night and day periods. Still, hypoxia was slightly more common in the early
evening, suggesting most grab-sample monitoring approaches are underestimating its extent.
Spatially, although we sampled Strahler order 3 (n=29) at twice the rate of order 2 (n=14) and
five times the rate of order 1 (n=6), normalized hypoxia metrics (Table 2) still indicate parity
among these smallest orders with the larger orders 4 (n=21) and 5 (n=8). Although common
across Strahler orders, hypoxia occurrence was spatially stochastic and created patches of oxic
and hypoxic areas that were separated as a function of local characteristics unquantified here
(Fig. S3, Table 3). This is an important nuance to consider when modeling at larger scales: e.g.,
drying does not uniformly induce hypoxia.

The unexpected commonality of hypoxic conditions in this study supports growing
observations of apparent non-eutrophication related hypoxia across watersheds of varying size,
climate, geology, and land use (Blaszczak et al., 2019; Carter et al., 2021; Goémez-Gener et al.,
2020). Thus, hypoxia may be an overlooked aspect of catchment hydrochemistry, with
implications for nutrient processing and community dynamics (Pardo and Garcia, 2016).

Hydrologic events induce variable hypoxia trajectories

Hypoxia events exhibited distinct characteristics—from initiation to recovery—that
depended on hydrologic event type. The most rapid hypoxia trajectories evolved under storm
events (Fig. 3a) and rewetting (Fig. 5a). Both storm and rewetting events exhibited dynamic DO
changes (Fig. 3b, Fig. S2, Fig. 4b), which were not explained by several common sense factors
such as size of the storm pulse, time since last storm or last rewetting cycle (Fig. 3c, Fig. 4c¢),
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stream habitat, or Strahler order. However, we note that pools were generally slower to reach
hypoxia than runs under rewetting events (Fig. 4a), likely due to their greater water volume and
oxygen mass. Overall, we noted the emergence of several archetypal storm pulse DO behaviors,
including no changes, immediate drops, slow drops, and a peak of high DO aligning with the
storm peak followed by gradual drawdown to hypoxia. Point source inflows of low DO or high
oxygen-demanding substances may explain the rapid DO drop storm archetype observed here
(Dutton et al., 2018). The latter archetype of a DO peak followed by drawdown was the most
commonly observed in a low-gradient, humid catchment with an order of magnitude higher
discharge (Carter et al., 2021), hinting at a common driver. We suggest this could be a
hydrologic mechanism.

Storm peaks likely drive high gas exchange, leading to rapid oxygenation, but afterwards
we hypothesize that increased soil respiration after storm events (Lee et al., 2004; Sponseller,
2007) entails low DO water to the stream after the storm peak. Soil respiratory processes may
reduce the DO in hillslope or nearby riparian groundwater, especially as rising groundwater
intercepts greater proportions of soil carbon (Li et al., 2021; McGuire and McDonnell, 2010) as
noted in dissolved organic carbon export patterns (e.g., Diamond and Cohen, 2018; Zarnetske et
al., 2018). Such soil respiration pulses typically last less than 48 hours (Lee et al., 2004) and
would likely arrive in baseflow after the peak, roughly aligning with the timeframe of our
observations. Thus, the slower DO drawdown archetype may be explained by mobilization of
“old” water lateral inflows during storm events that push low DO water into the stream channel
at a volume that replaces any pre-storm in-channel DO (Brown et al., 1999; Buttle, 1994; Klaus

and McDonnell, 2013).
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In contrast to storms and rewetting, drying events consistently exhibited a gradual DO
drawdown towards hypoxia. These drawdowns were often associated with large diel swings in
DO, particularly for pools and runs (Fig. 3a). Such swings would often lead to temporary relief
from hypoxia during daylight hours, unless primary productivity and gas exchange were too low
to match respiratory demand. It was during drying periods that the stream network as a whole
was the most likely to undergo synchronous hypoxia (cf. Diamond et al. 2022), although
individual site trajectories towards hypoxia were highly heterogeneous. Dry periods thus
compound hydrologic stress on organisms with low oxygen stress, and likely represent critical
periods for metacommunity development (Sarremejane et al., 2017).

Hypoxia induced potential mortality of an indicator species

The combination of hypoxia mode, magnitude, and temporal characteristics controlled
the extent of organismal mortality or survival. Storm (or rewetting) events induced classic pulse
disturbances with rapid mortality, whereas drying was more akin to a stress disturbance with
gradual mortality (Fig. 6) (Bender et al., 1984). As such, drying press disturbances may leave
possibilities for gammarids to find modes of survival during daytime hypoxia alleviations due to
DO increases from primary productivity. This is in contrast to storms, which cause more intense
and rapid crashes in DO. Hence, it is not just the presence of hypoxia, but the trajectory into and
out of it that likely matters to biota.

We note here that the coupling of seasonal population phenology and hypoxia is likely a
strong control of subsequent drops in gammarid densities. For instance, we observed most
hypoxia during summer, but population models demonstrate that this is the least sensitive period
of gammarid adult mortality (Coulaud et al., 2014), suggesting some inherent population-level

resilience. Conversely, while there is limited evidence on embryo or egg response to hypoxia, it
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seems plausible that these life phases may be more sensitive than the adults tested here, implying
major demographic consequences in summer (Geffard et al 2010; Coulaud et al 2014).

Despite our findings of a clear risk of hypoxia-induced mortality events for the gammarid
populations, these modeled outcomes need to be supported by empirical studies. For example,
additional lab manipulations with variable DO concentrations, and in-situ exposure studies will
allow more nuanced study of how DO dynamics affect populations. Moreover, such studies
would permit direct testing of the Individual Tolerance approach used in this work. Our choice
for using the Individual Tolerance model, which assumes that there are differences in sensitivity
among individuals, derives purely from its better fit with the lab data. The hypothesis of the
existence of tolerant and sensitive individuals could be tested in the lab by applying, for
example, two successive hypoxia events to evaluate if the mortality levels shift at the second
event. The likely existence of less sensitive individuals would imply inheritance of genetic
fortitude against hypoxia such that future generations may be more tolerant of increasingly lower
levels of DO.

Difficulty predicting hypoxia

We did not find a simple, robust way to predict hypoxic events based on site level habitat,
geomorphic, hydrologic, or thermal conditions. These are all relatively easy to measure attributes
of streams that are often incorporated as fundamental parts of many stream ecosystem and
hydrological models, so seeing no strong predictive power in them presents a challenge for easy
modeling of hypoxia in headwaters. Our best model suggests that hypoxia tends to occur under
high temperature, low slope, low discharge, and small Strahler order conditions, but this model
still had very limited predictive success (67% true positive rate). These best predictors tend to
align with other stream DO work, particularly the small slope (Carter et al., 2021) and low

discharge-small Strahler order conditions (Gomez-Gener et al., 2020). Within these conditions,
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and under storm event conditions, we did not observe clear predictors of the degree of hypoxia
(e.g., hypoxia duration)-we could only assess the likelihood for some level of hypoxia to occur.
Hence, there are missing fundamental controls in our array of predictors that can distinguish
these hypoxic events. Perhaps the lack of geomorphologic complexity across sites limited the
gradient of predictors able to explain the variance in hypoxia, but the diversity of hypoxic
trajectories and responses even within a narrow range geographic area suggests the need for
alternative hypotheses on hypoxia controls. We surmise that local hydrology—especially lateral
inflows, point sources, and hyporheic exchange, which were poorly constrained here—is likely a
strong predictor of hypoxia dynamics at the scale of small headwater streams.

Consistent oxygen drawdown under various conditions

Despite the fact that we observed a range of hypoxic trajectories under storms, drying,
and rewetting events, the median rate of drawdown leading to hypoxia was remarkably similar
across events and sites—approximately 1 mg Oz L'! d"!. We suggest that this may imply an
increasing downstream network-scale oxygen demand (i.e., “ecosystem respiration” [g O2 m? d-
11). For this pattern to emerge, oxygen demand should increase downstream at roughly the same
rate as depth increases (e.g., in proportion to d = Q%3; Raymond et al. 2012). This is because
depth increases the volume of water and thus the mass of oxygen at a given concentration: mass
flux must therefore increase to reduce the concentration by a consistent magnitude at increasing
volumes. This downstream increase in demand may only become apparent when the balancing
DO controls of primary production and gas exchange are minimal. Indeed, under storm and
recession conditions, primary production is often reset to zero due to scouring and turbidity
(O’Donnell and Hotchkiss, 2022; Uehlinger, 2000; Uehlinger and Naegeli, 1998) leading to
respiration dominance. Under drying conditions, pool formation and low flow reduce gas

exchange (Stanley et al., 1997) and reduced replenishment of upstream nutrients for primary
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production, lead to respiration dominance of the DO signal. Interestingly, previous efforts
observed weak-to-no longitudinal pattern of ecosystem respiration in this region, although DO
proxies for ecosystem respiration revealed strong downstream increases (Diamond et al., 2021).

The observation of similar DO drawdown under varying conditions is at the very least
useful as a rule-of-thumb for managers when wanting to estimate time-until-hypoxia. For
instance, assuming typical summer conditions with daily DO minima around 7 mg L', one could
expect the first instances of hypoxia in about four days under drought conditions. Moreover, we
observed similar durations of hypoxia (ca. 7-hours) among drying and storm events, implying an
additional rule-of-thumb when estimating or modeling hypoxia-induced mortality of sensitive
species. Importantly, drying-induced hypoxia is likely to be exacerbated upon rewetting,
suggesting a compounded effect of drought on DO quality. Also useful to managers and
researchers is that our results demonstrate that low Strahler order streams, despite being
historically overlooked for hypoxia, will be the most likely to undergo hypoxia in drought
conditions. In other words, these river network capillaries should be hotspots for future
investigation of hypoxia and its biological effects.

Conclusions

We observed regular hypoxic conditions across eight temperature agricultural networks
with varying land use, geology, and hydrology. Although common, hypoxia occurrence was
spatially stochastic and created patches of oxic and hypoxic reaches. Hypoxia across 78 sites
spanning Strahler orders 1-5 was driven by storms, drying, and rewetting, with drying being the
dominant mechanism. Models based on our field data indicated that storms and drying events are
pulse- and press-disturbances, respectively, whose distinct hypoxia signals induce corresponding
mortality profiles in sensitive species. We conclude that the DO trajectory into and out of

hypoxia drives mortality patterns with implications for metacommunity structure and
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development. Despite difficulty in predicting the degree and specific occurrences of hypoxia, we
showed that hypoxia is most likely to occur in small, low slope streams, under high temperature
and low discharge conditions, but that storm-induced hypoxia is preponderant to higher order
streams. Regardless of the hydrologic driver of hypoxia, we observed a remarkably consistent
daily drawdown in DO of 1 mg L', suggesting a downstream increase in oxygen demand, and a
useful rule-of-thumb for managers. Overall, we conclude that hypoxia is a regular and
increasingly common occurrence in headwater networks with the potential to be a strong control
on biogeochemistry and biological communities, meriting its continued study.
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768  survival threshold at approximately 3 mg L' (dashed vertical line). Experimental dataset:

769  doi.org/10.57745/KP9POS

770

35


https://doi.org/10.57745/KP9PO5

771
772

773

774

124 [ |
. , Ly

of | ime P W e
5.0

6 2.5 8
0.0

31 -2.5

0- ——

124 [ |

YA

S|P

unl

0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0
specific discharge (mm d'1)

Figure S2. Hysteresis paths of DO versus q for the events shown in Figure 3 by unique storm
events (columns) and geomorphic habitat setting (rows) with color indicating the time relative to

peak storm discharge (days). Note the highly variable paths that DO takes across storm events.

Table S1. Hypoxia summary statistics by catchment, mean+sd when given.

Catchment Hypoxia (hours) Hypoxia (%) Hypoxia (events) Event length (hours)

Ardiéres 1844 2.5 31 18428
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Figure S3.  Classification tree for hypoxia (n = 266,079 from a balanced dataset). Each node
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Figure S4.  Regression tree for DO (n = 266,080 training data; 70%). Each node shows from

top to bottom: the predicted DO value (mg L") and the percentage of total observations in the
node. Model details: based on testing data (n = 114032, 30%) RMSE = 1.8 mg L', R?=0.41,
MAE = 1.2 mg L', bias = 0.0. Variable importances are temperature = 71, specific discharge =

21, slope = 7, Strahler order = 1, and light = 1.
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