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Abstract

Linear Mixed-Effects (LME) models are a fundamental tool for modeling correlated data,
including cohort studies, longitudinal data analysis, and meta-analysis. Design and analysis of
variable selection methods for LMEs is more difficult than for linear regression because LME
models are nonlinear. In this work we propose a novel optimization strategy that enables a wide
range of variable selection methods for LMEs using both convex and nonconvex regularizers,
including ¢1, Adaptive-¢1, SCAD, and ¢y. The computational framework only requires the
proximal operator for each regularizer to be readily computable, and the implementation is
available in an open source python package pysr3, consistent with the sklearn standard.
The numerical results on simulated data sets indicate that the proposed strategy improves on
the state of the art for both accuracy and compute time. The variable selection techniques are

also validated on a real example using a data set on bullying victimization.

Keywords: Mixed effects models, feature selection, nonconvex optimization

1 Introduction

Linear mixed-effects (LME) models use covariates to explain the variability of target variables in
a grouped data setting. For each group, the relationship between covariates and observations is
modeled using group-specific coefficients that are linked by a common prior distribution across
all groups, allowing LMEs to borrow strength across groups in order to estimate statistics for the
common prior. LMEs are used in settings with insufficient data to resolve each group independently,
making them fundamental tools for regression analysis in population health sciences (Reiner et al.
(2020); Murray et al. (2020)), meta-analysis (DerSimonian and Laird (1986); Zheng et al. (2021)),
life sciences, and as well as in many others domains (Zuur et al. (2009)).

Variable selection is a fundamental problem in all regression settings. In linear regression,

the LASSO method (Tibshirani, 1996a) and related extensions have been widely used. However,
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variable selection for LMEs is complicated by the nonlinear structure and relative sparsity of the
within-group data. While standard methods and software are available for linear regression (see
e.g. glmnet Friedman et al. (2010)), there are few open source libraries for variable selection
for LMEs. Many covariates selection algorithms for LMEs have been proposed over the last 20
years (see the survey Buscemi and Plaia (2019)), but comparison of these strategies and practical
application remains difficult. Approaches vary by choice of likelihood (e.g. marginal, restricted,
or h- likelihood), regularizer (e.g. ¢; (Bondell et al., 2010) or SCAD Ibrahim et al. (2011a)), and
information criteria (Vaida and Blanchard, 2005; Ibrahim et al., 2011b). Implementations vary as
well, typically using regularizer-specific local quadratic approximations to apply solution methods
for smooth problems (Newton-Raphson, EM, sequential least squares) to fit the original nonsmooth
model. All of these decisions make it difficult to compare and evaluate performance of available
variable selection strategies and to determine which method is best suited for a given task. This
challenge is exacerbated by the absence of standardized datasets and open source libraries for
each method. Our main practical goal to fill this gap by developing a unified methodological
framework that accommodates a wide variety of variable selection strategies based on a set of
easily implementable regularizers, and made available in an open source library, pysr3! that is
easy to use and to compare different methods. All experiments in the paper can be reproduced
using pysr3 and code in the reproducibility guide?.

In this work we introduce a regularization-agnostic covariate selection strategy that (1) is fast
and simple to implement, (2) provides robust models, and (3) is flexible enough to support most
regularizers currently used in variable selection across different domains. The baseline approach
uses the proximal gradient descent (PGD) method, which has been studied by the optimization
community for over 40 years, but has not been widely used in LME covariate selection. In our initial
numerical experiments, using a naive PGD approach indicated that, at best, the method yields
only a marginal improvement over the equally unsatisfactory alternative methods in accurately

determining the correct variables in our variable selection test problems. We conjecture that

Thttps://github.com/aksholokhov /pysr3
Zhttps://github.com/aksholokhov/msr3-paper
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Figure 1: Selection of fixed and random effects for LME likelihoods £ using ‘regularization-agnostic’
framework and its SR3 extension using four regularizers. SR3 relaxation accelerates algorithmic
converge (middle panel), and gives better robustness and improved performance on synthetic
problems across regularizers (right panel)

the weakness of the naive PGD is a result of the first-order likelihood approximation used in
PGD. To overcome this problem, we propose an alternative likelihood approximation with the
goal of incorporating global variational properties of the likelihood. For this purpose, we extend
the sparse relaxed regularized regression (SR3) framework (Zheng et al. (2019)) to the LME
setting. This idea is supported by the success of SR3 in the context of linear regression where
it accelerates and improves the performance of regularization strategies. This extension and its
mathematical foundations in Aravkin et al. (2022) constitute the major innovations of this work.
Here we introduce the modeling framework and its relaxation, discuss the resulting algorithms
and their implementation details, and validate the method on both simulated and real data sets,
while the mathematical foundations are presented in Aravkin et al. (2022). The SR3 framework
introduces auxiliary variables x and w to decouple the likelihood £ and sparsity regularizer R
which are tied together by adding a multiple of the norm squared difference 7 ||z — w||® to the
objective. Then, fixing the variables w dedicated to the nonsmooth regularizer R, the smooth

function L(z) + 7 ||z — w|)? is globally optimized over the variables # to obtain an optimal value



function u,(w). We then show that u,(w) is smooth. This opens the door to the application of the
PGD algorithm to minimizing u, + R where now u,, contains global variational information on the
likelihood function £. The main obstacle in the application of this approach is the evaluation of u,,
and its gradient. In Section 3.2 we present a method for overcoming this difficulty using variable
metric techniques and interior point technology.

All new methods are implemented in an open-source library called pysr3, which fills a gap
for python mixed-models selection tools in Python (Buscemi and Plaia (2019), Table 3). Our
algorithms are 1-2 orders of magnitude faster than available LASSO-based libraries for mixed effects
selection in R, see Table 3. pysr3 enables a standardized comparison of different methods in the
LME setting, and makes both the PGD framework and its SR3 extension available to practitioners
working with LME models.

We begin in Section 2 by giving a precise description of the LME model and set the notation
for the remainder of the paper. This is followed by a brief discussion of prior work on LMEs. In
Section 3 we present our algorithms for the LME model starting with the naive PGD algorithm.
This is followed by a description of the variable splitting technique used in Zheng et al. (2019)
to incorporate global variation information on the likelihood function into the direction finding
subproblem for the PGD algorithm. Next we tackle the problem of how to approximate the resulting
optimal value function u, and its gradient where n > 0 is the decoupling parameter. As noted, this
is done using variable metric techniques and and interior point technology. We conclude Section
3 with a discussion of the MSR3 and MSR3-fast algorithms. In Section 4 we discuss how the
underlying algorithmic parameters are set and test the algorithm on both simulated problems
and a problem with real data. The paper is concluded in Section 5 with a brief discussion of the

contributions.



2 Linear Mixed-Effects Models: Notation and Fundamentals

Mixed-effect models describe the relationship between an outcome variable and its predictors when
the observations are grouped, for example in studies or clusters. To set the notation, consider m
groups of observations indexed by 4, with sizes n;, and the total number of observations equal to
n=mny+ng+---+mn,. For each group, we have design matrices for fixed features X; € R"*?,
and matrices of random features Z; € R™*? along with vectors of outcomes Y; € R"™. Let
X=X, XT, ..., X )" and Z = [Z],ZT, ..., ZT]T. Following Patterson and Thompson (1971);
Pinheiro and Bates (2000), we define a Linear Mixed-Effects (LME) model as

u; ~N(0,T), Tes! (1)

E; N(O,Az), A; € STJF

where 5 € R? is a vector of fixed (mean) covariates, u; € R? are unobservable random effects
assumed to be distributed normally with zero mean and the unknown covariance matrix I'; and S
and S’ | are the sets of real symmetric v x v positive semi-definite and positive definite matrices,
respectively. Matrices Z; encode a wide variety of models, including random intercepts (Z; are
columns of 1’s that add u; to all datapoints from the ith study) and random slopes (Z; also scale
u; according to the magnitude of a covariate), see e.g. Pinheiro and Bates (2006). In our study, we
assume that the observation error covariance matrices A; are given and that the random effects
covariance matrix is an unknown diagonal matrix, i.e., I' = Diag (v), v € RY. This assumption
corresponds to the meta-analysis and meta-regression branch of mixed effects problems, which is the
primary focus of our applied collaborations (see e.g. Zheng et al. (2022); Lescinsky et al. (2022);
Razo et al. (2022); Stanaway et al. (2022); Dai et al. (2022).) The theoretical developments in this
work allow extensions to other types of repeated measure models, but practical implementation
requires significant additional effort, and we leave these extensions to future work.

Defining group-specific error terms w; = Z;u; + &;, we get a compact formulation that recasts (1)



as a correlated noise model:

For brevity, we refer to ;(T") as just ;. The reformulation (2) yields the following marginalized

negative log-likelihood function of a linear mixed-effects model (Patterson and Thompson, 1971):

m

Lyi(B,T) = Z %(yi — X' (ys — XiB3) + %ln det ;. (3)

=1

Maximum likelihood estimates for 5 and I' are obtained by solving the optimization problem
rglirn EML(ﬁ,F) st. I'e S[-]i- (4)

In the discussion below, make use of basic concepts from Rockafellar and Wets (2009), defined in
the Appendix.

The negative log likelihood (4) is nonlinear and nonconvex, and requires an iterative numerical
solver. However, it is convex with respect to [, and weakly convex with respect to v, with a weak
convexity constant 77 computed in (Aravkin et al., 2022, Section 5.1) . The expected value of the

posterior mode 3 given I' has the closed form representation

m -1 m
B(I') = argmin L(3,T') = (Z XiTQi_le) ZXiTQi_lyi.

B

By using the simplification T' = Diag (), we obtain the problem

min  L(f,7) := Laur(B, Diag (7)) ()

q
BERP yeRY

In this setting, when an entry «; takes the value 0 the corresponding coordinates of all random

effects u;; are identically 0 for all 1.



Verification of the existence to solutions to (5) and, more generally, (4) follows from the work of
Zheng et al. (2021). Standalone proofs for the existence of minimizers are developed in (Aravkin
et al., 2022, Theorem 1), and extended to the presence of regularizers in (Aravkin et al., 2022,
Theorem 2).

This paper focuses the case where I" is diagonal, (often referred to as the diagonal setup) and
all A; are known (see (5)), following the meta-analysis use-case (Zheng et al., 2021) that is widely
employed in epidemiological studies Murray et al. (2020). While the proposed approach can be

extended to the non-diagonal case, we leave it for future work, save for a brief discussion in Section 4.

2.1 Prior Work on Feature Selection for Mixed-Effects Models

Variable (feature) selection models seeks to select or rank the most important predictors in a dataset
in order to get a parsimonious model at a minimal cost to prediction quality. Feature selection may
be performed both on [, to find the sparse set of covariates that best explains the mean, and on 7,
to find the sparse set of covariates that best accounts for variation between groups. Both types of
selection have been studied in the literature, and both are accessible using the methods developed
here. If the desired number of coefficients k is given, then the feature selection problem can be
formulated as the minimization of a loss function f() (e.g. the negative log-likelihood) subject to

a zero-norm constraint:
min f(6) st [l <k (6)

where ||0]]o denotes the number of nonzero entries in 6, see panel (c) of Figure 2.

The constraint in (6) is combinatorial, and a common workaround is to relax it to a one-norm
constraint, with ||f||; equal to the sum of absolute values of the entries of #. The best-known
example of this approach is the least absolute square shrinkage operator (LASSO) studied by
Tibshirani (1996b) for linear regression, see panel (a) of Figure 2.

Feature selection for LMEs is more difficult than for linear regression models. In linear regression
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Figure 2: Common convex and non-convex regularizers used for feature selection.

the observations are independent, whereas in mixed-effects setup they are generally correlated. In
addition, LMEs have both mean effect variables g as well as random variance variables I'. The
shrinkage operator approach for linear regression (Tibshirani, 1996b) was first adapted to the
problem of feature selection for the fixed effects in mixed-effect models by Lan (2006). The removal
of a random effect from the model requires the elimination of an entire row and column from
I'. To make the problem more tractable, Chen and Dunson (2003) reparamtrized I" through a
modified Cholesky decomposition I'(D, L) := DLLT D, where D is a diagonal matrix and L is a
lower-triangular matrix with ones on the main diagonal, and focused on selecting elements of D.
Based on this idea, Bondell et al. (2010) extended the Adaptive LASSO regularizer (Lan (2006); Xu

et al. (2015)) to mixed-effects setting using the objective L£(5,T(D, L))+ A ( b

Bi
ﬁA

q9 Dy
_|_ . #)
} Z]_l Di; )

where B and D are the solution of a non-penalized maximum likelihood problem and A is a tuning

parameter for the weighted regularizer and is called the regularization parameter. Ibrahim et al.
(2011b) use a similar approach, penalizing non-zero elements I';; directly. Other methods that use
Adaptive LASSO for simultaneous selection of fixed and random effects are Lin et al. (2013a); Fan
et al. (2014); Pan and Shang (2018). Adaptive LASSO is available to practitioners via R packages
glmmLasso?® (Groll and Tutz (2014)) and lmmLasso?(Schelldorfer et al. (2011)).

A popular nonconvex regularizer used for feature selection is smoothed clipped absolute deviation
(SCAD) Fan and Li (2001). The adaptation of the SCAD penalty to select both fixed and random

features in linear mixed models was developed by Fan and Li (2012). SCAD was also used by

3https://rdrr.io/cran /glmmLasso/man /glmmLasso.html
4https://rdrr.io/cran /Immlasso/
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Chen et al. (2015) for selecting fixed effects and establishing the existence of random effects
in ANOVA-type models. Finally, Ghosh and Thoresen (2018) studied SCAD regularization for
selecting mean effects in high-dimensional genomics problems.

To better compare methods, we need to consider the tuning of the regularization parameter
A. The output of a shrinkage model critically depends on the tuning parameter A\. The entire
range of A\ values is captured by the notion of a “A-path in the model space”’, with the best
parameter and the final model chosen using information criteria. According to Miiller et al. (2013),
the most widely used information criterion is the marginal AIC criterion (Vaida and Blanchard
(2005)), AIC := 2 L(0) + 20, (p + q), where 0 includes all the estimated parameters (8,T'), and
ay, :=n(n —p—q— 1) for the finite sample case (Sugiura (1978)). Alternatively, LASSO-type
methods (Bondell et al. (2010); Ibrahim et al. (2011b)) use a BIC-type information criterion,

BIC = 2L(0) + log(n)(p + q). BIC performs well in practice, but does not have theoretical

guarantees (Schelldorfer et al. (2011)).

3 Algorithms for Feature Selection

We approach feature selection by adding a regularizer to model (5):

mxin L(x)+ R(z) + dc(x), (7)

where 7 = (3,7), C:=RP xR%, R: R” x RL — R, := R, U{+00} is a lower semi-continuous (lsc)
regularization term, and dc is the convex indicator function, where d¢(z) := 0 for x € C and +oo
otherwise. By (Aravkin et al., 2022, Theorem 2), solutions to (7) always exist when R has compact

lower level sets. The most common regularizers are separable taking the form

10



with typical choices for the component functions r; given in Table 1.

3.1 Variable Selection via Proximal Gradient Descent

Since L is differentiable on its domain and proximal operator for aR + d¢ is computationally
tractable, the Proximal Gradient Descent (PGD) Algorithm (e.g. see Beck (2017)) offers a simple
numerical strategy for estimating first-order stationary points for (7). The proximal operator for
aR + d¢ is defined as the mapping prox,g,s.(2) := argmin .. R(y) + 3|y — 2|3, and the PGD
iteration is given by % = prox,z,;.(z — aV L(x)), where « is a stepsize. When R(z) has the
form given in (8), we have proxyp(z) = (prox,(z1),...,prox,(z,)). Table 1 provides closed form
expressions for the proximal operators of commonly used regularizers. For all of these cases, the

following theorem gives closed form expressions for prox,p s, ().

Regularizer r(x),x € R prox,,.(z)
LASSO (¢1) || sign(z)(|z| — o)+
A-LASSO wl|z|, w >0 sign(z)(|z| — aw)+
( (
olzl, 7] <o sign(z)(|z| —oa)y, [2] <o(1+a)
SCAD SR, o <a <po | | EPEEEEY o(14a) <[z < po
\@, |z| > po z, |z| > max(p,1 + a)o
0, #{lzil #0} <k
O||z)lo<k keep k largest |x;|, set the rest to 0
(4o ball) oo, otherwise

Table 1: Proximal operators for commonly used sparsity-promoting regularizers.

Theorem 1 (prox for bounded v). We consider modified regularizers r(7) from the Table 1 that
include an additional constraint on ~y of the form 0 <~y <7, for ¥ € [0, +oc]|. We have the following

results.

11



1. For SCAD, we have for all i that prox(a,s, ﬂ)(%) =197, N> A

0, otherwise

prOXar(fyi% 0 < Vi < ’7 +

2. For LASSO, A-LASSO we have for alli that prox s, s, ﬂ)(%) =197, v > A+

0, otherwise
\

3. For R(-) = Olev (k) the proxgp.s.(y) can be evaluated by taking k largest coordinates of

such that 0 < v; <7, and setting the remainder to 0.

The proof of the Theorem 1 is provided in Appendix B.2. The PGD algorithm is detailed in
Algorithm 1. The algorithm’s step-size o depends on the Lipschitz constant; an upper-bound is
given in Appendix B.3. In practice, o is computed using a line-search, since the available estimate

for L is very conservative.

12 =2mx a< %, where L is L-Lipschitz

2 while not converged do

3 Tt = proxX,pys.(r — aV L(x));

4 end

Algorithm 1: Proximal Gradient Descent for Linear Mixed-Effect Models

The main advantages of Algorithm 1 are its simplicity and flexibility. The main loop needs only
the gradient and prox operator, and the structure of the algorithm is independent of the choice of
R. Algorithm 1 locates first-order stationary points under weak assumptions, in particular neither

the objective nor the regularizer need be convex (Beck, 2017; Attouch et al., 2013).

3.2 Variable Selection via MSR3

To develop an approach that is both more efficient and accurate, we extend the SR3 regularization

of Zheng et al. (2019) to LMEs. We call the extension MSR3, since we are focusing on mixed effects

12



models. Starting with the regularized likelihood (7) we introduce auxiliary parameters designed to

discover the fixed and random features:

Iil%un L(z) + R(w) + o¢c(z) + ky(z — w), 9)
where k, penalizes deviations between x = (f,7) and w = (B ,%), and also guarantees that the
objective is convex with respect to the v components of x for sufficiently large 7:
fig(z —w) = o —w|? = 2B — BII> + 2|y — 4|]> with n > 7 where 7 is the weak convexity
constant computed in (Aravkin et al., 2022, Section 5.1). As n T oo, the extended objective (9)
converges in an epigraphical sense to the original objective (7). However, feature selection accuracy
does not require this continuation, indeed, we show that a fixed modest value such as 7 =1 can be
used (Zheng et al., 2019).

To understand the algorithm and logic behind the objective (9), we define an optimal value

function w,(w) and the solution set .S, (w):

Up(w) = mxin L(x) + de(x) + Ky(r — w)

(10)
Sy(w) = argmin £(z) + o¢(z) + k,(z — w).
Substituting (10) into (9) transforms (9) into
min u,(w) + R(w) (11)

Here we have transformed the original regularized likelihood (7) through relaxation and partial
minimization to obtain an equivalent problem (11) for w with the same regularizer. The value
function u, encapsulates global variational information on the function L(x) + dc(x) relative to w.

In the case of linear regression, the function w, has a closed form solution Zheng et al. (2019).
However, in both the linear regression context of Zheng et al. (2019) and in the LME context

studied here, we need only compute S, (w) in order to optimize (11). Indeed, in (Aravkin et al.,

13



2022, Section 5) it is shown that there exists a computable 77 > 0, which we have called the weak
convexity constant, such that £ +d¢ + &, (- — w) is strongly convex for all n > 77 regardless of the
choice of w. This allows us to show that w,, is well-defined, differentiable, and Lipschitz continuous,
with

Vg (w) = Viky(& = w)|a=s, @) = n(w = Sy(w)). (12)

Our empirical studies indicate that (11) has advantages over (7) from an optimization perspective
since u, typically has nearly spherical level-sets while keeping the position of minima close to
those of L£(x). This effect is extensively studied and validated for a quadratic loss function in
the original work of Zheng et al. (2019). In the center panel of Figure 1, we plot the level-sets of
L(z) + ||z]/1 (left column) and w, + | - ||1 (right column) for the same mixed-effect problem. The
more spherical geometry of the latter allows the Algorithm 2 (described below) to converge in 21
iterations, whereas Algorithm 1 takes 1284 iterations. The difference is most pronounced when
the minimum sits on the boundary of the feasible set, which is always the case for the variable
selection problems with sparse support.

We apply PGD to optimize the regularized value function w, which yields the iteration

w = prox,-1p(w — aVu,(w)) (13)
The results in Aravkin et al. (2022) show that all components of the iteration (13) are well-defined.
The equivalence of Algorithm 2 and (13) is established in the following lemma, which extends the

relationship studied by Zheng et al. (2019) to the case of = = (3,7).
Lemma 2 (Equivalence of Algorithms). Algorithm 2 is equivalent to (13).

Proof. Substituting (12) into (13), we see that the iteration (13) is equivalent to the alternating

minimization scheme outlined in the Algorithm 2. m

14



1 W= wy

2 while not converged do

3 T = argmin, L£(z) + d¢(z) + ky(z — w)
4 | wt =prox,-1z(zt)

5 end

Algorithm 2: Proximal Gradient Descent for Value Function

In (Aravkin et al., 2022, Theorem 6), it is shown that for any sequence 7 1 oo the associated
optimal solutions (z*, w*) to (11) satisfy £(z*)+R(w*) 1 inf,cprxre, L£(x)+R(x) with [|zF — wk| —
0. In particular, every cluster point of the sequences {z*} and {w*} are solutions to (5), where
such cluster points exist whenever the function R is coercive, i.e. limz1o0 R(2) = +00. Just how
close w” is to a solution to (5) remains an open question, however, our numerical studies in Section
4 show that n can be chosen surprisingly small. Indeed, we typically take n = 1.

In the linear regression setting of Zheng et al. (2019), Algorithm 2 can be implemented exactly.
In the nonlinear case, evaluating 21 requires an iterative algorithm. For this we use an interior
point method which replaces the indicator function dc by a smooth log-barrier term. This allows us
to approximate both wu, and its gradient where the degree of the approximation is controlled by the

convergence criteria of the interior point algorithm.

An Interior Point Method for Approximating u,. In order to solve for the % update in
line 2 of Algorithm 2, we must optimize a convex loss with linear inequality constraints, that is, for

a fixed w = (B, ), we need to solve

~

min £(8,7) + 5y(8 = By —4) st 07, (14)

Byy

This problem is well suited for an interior point approach (Kojima et al., 1991; Nesterov and

Nemirovskii, 1994; Wright, 1997; Vanderbei and Shanno, 1999). First, the constraint 0 < 7 is

15



relaxed using a log-barrier penalty, obtaining a minimization problem for a relaxed objective L,

)

min {ﬁu,n(ﬂ, 7) = L(B,7) + ry(B = B,7 = 4) = MZ ln(%)} : (15)

Here the log-barrier penalty approximates the indicator function to the positive orthant as pu
decreases; indeed, the function v + pIn(y) epi-converges to the indicator function dgn (v) as p ] 0
(Rockafellar and Wets (2009)). The penalty (homotopy) parameter p is progressively decreased to
0 as the algorithm proceeds as described below. The existence of solutions for the problem (15) for
any positive y is shown in (Aravkin et al., 2022, Theorem 5), and the convergence of solutions to
the MSR3 solution as x| 0 is shown in (Aravkin et al., 2022, Theorem 7). Finally, (Aravkin et al.,
2022, Theorem 6) shows that the MSR3 relaxation is consistent with respect to the barrier, so that
as the MSR3 parameter 1 1 oo, limit points of global solutions to the former are global solutions to
the latter. However, in the applications considered here, the empirical studies in Sections 3.3 and
4.2 indicate that one does not need to make n particularly large in order to accurately identify the
correct, sparsity pattern.

For v > 0, the necessary optimality conditions for £, ,, in 7 give us the relation

VoLyn(B,7) =V, L(B,7) +n(y —4) — uDiag () "' 1 =0, (16)

where 1 is the vector of all ones of the appropriate dimension. By setting v = VL, ,(5,7)+n(y—7),

we can rewrite this equation as

vOy—pul =0, (17)

where 1 is the vector of all ones of the appropriate dimension and “®” denotes the Hadamard

(or simply element-wise) product. The complete set of optimality conditions for (15) can now be

16



written as

vEOy—pl
Gun(v,8,7) == | Vs L(8,7)+n(B-B) | =0 (18)

VL L(B,y) +n(y—7F) —v

We then apply Newton’s method to (18), that is, in each iteration the search direction [Av, AS, Ay

solves the linear system

Av Diag () 0 Diag (v)
VGun(v,8,7) |AB| = =Gun(v.8,7),  VGuy(v,B8,7) = 0 V%5 L+nl V%V L
Ay -1 Vi L V2 L+ + N1

and we have used the fact that v ® v = Diag (v)y = Diag(y)v. The exact formulae for the
derivatives of L are provided in the Appendix B.1.
The general structure of the algorithm is as follows. Given a search direction [Av®), AB®) An®)],

choose a step of size o, > 0 so that the update

<U<k+1> Blk+D) 7<k+1)>:(v<k) 3®) 7<k>>+0{,€ (Av(k) AB®) M(k))
satisfies the conditions

Positivity: A 5 0, D >

Sufficient Descent: ||Gn,u(v(k+1), Blk+1), 7(k+1))|| < O.99||Gn,#(v(k), Bk y(k))H,

where the parameter 0.99 is used to bias toward the acceptance of a full Newton step. At each

iteration the relaxation parameter y is updated by the formula p**+1) = U(k)T'y(k)/q, where v(k)T'y(k)
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is the duality gap at iteration k. The algorithm terminates when the criteria

HGMW(U(H—l)v5(k+1)77(k+1))’| < tol

n < tol

are both satisfied, so the interior point problem is nearly stationary, and closely approximates the
original problem (14). MSR3 is summarized in Algorithm 3, which approximates Algorithm 2 as
the tolerance goes to 0. In the numerical experiments, we use tol = 1075, and accuracy does not

change as the tolerance parameter decreases.

1w =wy

2 while not converged do

3 | a7t satisfies ||G,,(vT,27)] < tol, p < tol

+

4 | wt =prox,-1z(x")

5 end

Algorithm 3: MSR3

Positive Approximation of the Hessian For many datasets the weak convexity constant
7 can be extremely large and difficult to compute. However, if n is too small V%W L,n(B,7) is
negative-(semi)definite. Negative definite Hessians can hamper the convergence of second-order
methods (e.g., see Nocedal and Wright (2006)). Therefore, one must take care in selecting 1. For

this, we recall from (Aravkin et al., 2022, Lemma 3) that

) m - XiT . 0 0
VIL(5) =) 5 u(7) {Xi _zz} 5 —
i=1 ~zr 0 %(ZiTQi(’Y)_IZi)OQ

This implies that negative eigenvalues for the Hessian must arise from the Hessian with respect to 7,
2 . T _l 02 o . . . . .
V2, L(B,7), and more specifically, the term (Z; Q;(v)™'Z;)°*. A positive semidefinite approximation

to the Hessian is obtained by simply dropping this term.
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3.3 Relaxation and Efficient Algorithms: MSR3 and MSR3-Fast

While algorithm (2) is modular, it requires solving a nonlinear optimization problem in z = (5,7)
for each single update of w = (5’, 7). To make the implementation as efficient as possible, we
designed a more balanced updating scheme, that alternates Newton iterations as described in
the interior point algorithm with w updates. We update w whenever we are sufficiently close to
the ‘central path’ in the interior point method, a condition that can be checked rigorously using
optimality conditions. This scheme is detailed in Algorithm 4.

In designing Algorithm 4, we chose a particular central path parameter, 7 = 0.5 in line 8, that
controls how far the interior point method needs to proceed before we take a proximal gradient
step. We explored the effect of this parameter on performance and timing in Appendix C, and
found that it did not have any effect on either for values between 0.1 and 0.9. MSR3-fast was
competitive with respect to time compared to PGD and PGD with line search (also as reported in

Appendix C) for problems up to 1000 features.

1 progress < True; iter = 0;
~ - +T_+
BB« Bor v AT vt 1EeRY e s
3 while iter < max_iter and |G,.(8",7",v")| > tol and progress

do
a | BB et Beph <At
5 [dv, dB,dy] < VG, ,.((8,7,v),(8,9) Gy u((B,7,v),(8,7)) // Newton Iteration
6 ae0.99xmin<1,—% Vi : d%<0>

N

dvi?
7 BT« B+adB; ~T=v+ady; v+ v+ adv
8 | if [yt out —¢ 'yt ot > 0.5¢ vt 4t then

\ continue // Keep doing Newton iterations
10 end
11 else
~ T
12 ‘ Bt = prox,z(87); ’~y+:pr0XaR+5R+('y+); ,u:11—0”+q7+ // Near central path
13 end

1 | progress — (|8+ — 8] > tol or |+ — || > tol or |3 — | > tol or [|§+ — 7] > tol)
15 iter += 1
16 end

17 return S+, 3+
Algorithm 4: MSR3-fast (Optimized Proximal Gradient Descent for the Value function)
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Model PGD MSR3 MSR3-fast
Regularizer Metric

LO Accuracy 0.89 0.92  0.92
Time 47.47 109.86 0.36
L1 Accuracy 0.73 0.89  0.88
Time 43.02 13.74 0.35
ALASSO Accuracy 0.88 0.91 0.91
Time 38.68 81.52 0.45
SCAD Accuracy 0.71  0.92  0.92
Time 87.24 104.20 0.45

Table 2: Comparison of performance of algorithms measured as accuracy of selecting the correct
covariates and run-time. The LO strategy stands out over other standard regularizers. MSR3
improves performance significantly for all regularizers, while MSR3-fast improves convergence speed
while preserving the accuracy of MSR3. More detailed results are in the Table 4 of Appendix C.1.

4 Verifications

4.1 MSR3 for Covariate Selection

In this section we compare the feature selection accuracy and the numerical efficiency of Algorithms
1 and 4 when using the LASSO, A-LASSO, SCAD, and L0 sparsity regularizers. We begin by
describing how the data is generated for our numerical simulations followed by a description of how
the regularization parameter A and the coupling parameter n were chosen. Our experiments on real

data are presented in Section 4.2.

Experimental Setup. The number of fixed effects p and random effects ¢ are set at 20 with

B=v= [%, %, %, c %, 0,0,0,...,0], i.e. the first 10 covariates are increasingly important and the

last 10 covariates are not. The data is generated as

Xiv N0, D), Zi = X,

u; ~ N(0, Diag (7)),
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Figure 3: Feature selection accuracy and execution time in seconds for PGD (Algorithm 1), MSR3
(Algorithm 2), and MSR3-fast (Algorithm 4) with various regularizers. MSR3-Fast has the same
accuracy as MSR3 and significantly decreases computation time.

with 9 groups of sizes [10, 15,4, 8,3,5,18,9,6]. The data generation is repeated 100 times in order

A eter Sl oA YR FeRtatins ot parheter X A TRIRE R e A E B g DA s
'u%gs%})lgﬁ%g]t%éeg%&feg&s %ggvtvieoe% Ia%tsfy)) and (j3,7) are chosen to maximize a classic BIC criterion
from Jones (2011). We set a log-uniform grid of 20 candidate values for the parameter n € [1073,102].
For each value of i, the BIC is optimized using a golden search in A € [0,10°]. The final values of 7
and A are chosen to maximize the BIC criterion.

Figure 4 shows the dependence of accuracy on the values of n for the first data set generated in
our test set. There are three distinct regions, corresponding to loose, moderate, and tight levels of
coupling. When 7 is small the coupling term does not have sufficient strength and the training
does not progress far from the initial point (a fully dense vector 1 in this case). When the coupling
is tight, the level-sets and minimizers are closer to those of the the original problem. For the values
in between, the coupling significantly improves the model’s accuracy. These results are consistent

with experiments in the sparse linear regression setting Zheng et al. (2019).
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Sensitivity of MSR3 to the relaxation parameter n
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Figure 4: Dependence of model performance on the relaxation n for a sample problem.

Results. The experimental results are presented in the Table 2 and Figure 3. MSR3 improves the
selection accuracy of most regularization techniques described in Table 1, showing a near-perfect

performance, while converging two orders of magnitude faster in wall-clock time.

Comparison to glmmLasso and lmmLasso. We used (Buscemi and Plaia, 2019, Table 3) as
a reference for feature selection libraries. Of the 17 entries mentioned, the four libraries that
successfully ran on our synthetic data described above were packages glmmLasso® (Groll and
Tutz (2014)), ImmLasso®(Schelldorfer et al. (2011)), fence” (Jiang et al. (2008)) and PCO (Lin
et al. (2013b)) libraries. fence caused a memory overflow on the experimental system during the
performance evaluation on the datasets described above. We could not evaluate PCO because it
did not support datasets where the total number of random effects mq exceeded the total number
of observations n. We compare performance of MSR3 (available through the open source pysr3

library) to the performance of the R packages glmmLasso® (Groll and Tutz (2014)) and lmmLasso?

Shttps://rdrr.io/cran/glmmLasso/man /glmmLasso.html
Shttps://rdrr.io/cran/Immlasso/
Thttps://rdrr.io/cran /fence/

8https://rdrr.io/cran /glmmLasso/man /glmmILasso.html
9https://rdrr.io/cran /Immlasso/
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(Schelldorfer et al. (2011)) which are the functionally closest libraries available online. As of
this writing, glmmlasso does not allow the user to specify [' as a diagonal matrix. Since the
diagonal specification simplifies the problem, this puts glmmlasso package at a disadvantage in
our numerical comparison. We evaluate all algorithms’ performance on the same set of problems
as described above. We tuned the hyperparameters of glmmLasso and lmmLasso by minimizing
the BIC scores provided by the libraries over A € [0,10°]. The results are presented in Table 3.
Overall, MSR3 executes, on average, 5 times faster in wall-clock time than glmmLasso and 60
times faster than ImmLasso and shows much higher accuracy in selecting correct fixed and random
effects simultaneously. The accuracy of glmmLasso is lower relative to the other libraries’ scores
likely due to its BIC selection criterion choosing dense models. The package lmmLasso supports
the diagonal specification of I', thus allowing a direct comparison with the scores from pysr3.
ImmLasso yields a competitive accuracy of selecting random effects but ImmLasso provides dense

solutions for fixed effects  for chosen values of A.

Algorithm Units (perc. / 100 runs) MSR3-Fast (¢;) glmmLasso ImmULasso
Accuracy % (5%-95%) 88 (72-98) 48 (42-55) 66 (55-73)
FE Accuracy % (5%-95%) 86 (64-100) 52 (40-66) 47 (45-55)
RE Accuracy % (5%-95%) 91 (74-100) 45 (45-45) (55 100)
F1 % (5%-95%) 89 (73-97) 63 (60-66) 65 (0-77)
FE F1 % (5%-95%) 88 (69-100) 64 (57-70) 57 (0-64)
RE F1 % (5%-95%) 90 (73-100) 62 (62-62) 78 (0-100)
Time sec. (5%-95%) 0.19 (0.14-0.24) 1.37 (0 78-1.89) 11.51 (5.35-23.66)
Iterations num. (5%-95%) 34 (28-45) 50 (33-77) -

Table 3: Comparison of performance of MSR3-Fast for ¢; regularizer vs glmmLasso. MSR3-Fast
executes b times faster in wall time and has higher accuracy of selecting correct covariates.

4.2 Experiments on Real Data

In this section we validate the MSR3-empowered {y-regularized mixed-effect model (R(z) = 6)qjo<k

from Table 1) by using it to identify the most important covariates in real data on relative risk
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Figure 5: Validation of Random Feature Selection for Bullying Data from GBD 2020. The panel
evaluates each algorithm’s choice against expert knowledge. The algorithm picks seven historically
significant covariates and two historically insignificant, for the model selected using the BIC criteria.
See the Appendix C.3 for covariates description and assessment of significance.
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of anxiety and depressive disorders depending on the exposure to bullying in young age'®. This
research has been a part of Global Burden of Diseases (GBD) study for the last several years.
The end goal is to estimate the burden through disability adjusted life years (DALYs) (Murray
and Acharya, 1997) of major depressive disorder (MDD) and anxiety disorders that are caused by
bullying. For this risk factor, the exposure is primarily concentrated in childhood and adolescents,
but the risk for MDD and anxiety disorders is anticipated to continue well into adulthood. This
elevated risk is, however, expected to decrease with time as other risk factors come into play in
adulthood (unemployment, relationship issues, etc.). To accommodate this, the research team uses
the models which estimate the relative risk (RR) of MDD and anxiety disorders among persons
exposed to bullying depending on how many years it has been since the first exposure. Studies
informing the model were sourced from a systematic review and consist of longitudinal cohort
studies. They measure exposure to bullying at baseline, and then follow up years later and assess

them for MDD or anxiety disorders. The detailed description of the covariates can be found in

WTnstitute for Health Metrics and Evaluation (IHME). Bullying Victimization Relative Risk Bundle GBD 2020.
Seattle, United States of America (USA), 2021.
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Appendix C.3.

The feature selection process is illustrated on Figure 5. Here, the BIC criterion from Jones
(2011) was used to select k, which suggests k = 9. The selected covariates (intercept, time,
cv_low_bullying, cv_multi_reg cv_b_parent_only, cv_anx, percent_female) are known
as important and were used in the analysis in previous years of GBD. The algorithm also selects
cv_baseline_adjust and cv_or, which were not used before. The cv_or variable describes
whether the estimate is a relative risk or odds ratio; the selection of this variable suggests a closer
look at the data reporting mechanisms across studies. For example, there is an active literature on

converting estimates between relative risks and odds ratios Grant (2014); Wang (2013).

4.3 Software Implementation

To ensure reproducibility of this research, all new algorithms have been implemented as a part
of the pysr3!! library. This library implements functionality for fitting linear mixed models and
selecting covariates. The user interface was designed to be fully compliant with the standards!? of

sklearn library to minimize learning time.

5 Discussion

In this paper, we developed and implemented a variable selection framework for LMEs based on
the PGD algorithm applied to an optimal value function associated with the likelihood function
L which uses second-order information on £. The method has the ability to handle both convex
and nonconvex regularizers. Our numerical studies show that the MSR3 relaxation (11) improves
the covariates selection accuracy of a wide group of popular sparsity-promoting regularizers. We
introduce a modification of MSR3, MSR3-fast, to improve numerical efficiency while maintaining
the improved accuracy of MSR3. As in Zheng et al. (2019), we found that SR3 formulations yield

more accurate results than the original problem that the SR3 relaxes, likely because the auxiliary

1 Available at https://github.com/aksholokhov/pysr3
2https:/ /scikit-learn.org /stable/developers /develop.html
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variables w help to estimate the sparse support. The experiments in this paper show that the
phenomenon extends to LME models, and deserves further study.

Since the LME relaxation does not have a closed form, we used an interior method to evaluate
the requisite value function. The more efficient version of the algorithm (MSR3-fast) interleaves
the interior point iterations with updates of the auxiliary variables, and this method was chosen
for the open source library pysr3. Numerical experiments on synthetic data showed that the
MSR3 approach for variable selection extends regions of hyper-parameter values where the highest
accuracy is achieved, making it easier for information criteria to select the best model. The variable
selection library for the accelerated method MSR3-fast is much faster than currently available
software, and allows the MSR3 approach to be easily applied to a range of regularizers that have
computationally efficient prox operators.

The main analytic limitations of the proposed method stem from a lack of an analytical
representation of the value function in the MSR3 relaxation for LMEs (11). However, the MSR3
framework (Algorithm 2) incorporates global variational information about the likelihood £ into
the PGD algorithm whereas the standard application of the PGD algorithm (Algorithm 1) only
uses a local linear approximation to £ at each iteration. This difference reveals itself in both the
increased speed and accuracy of the MSR3 approach on this class of problems. In contrast to SR3
in linear regression settings, where the Conjugate Gradient (CG) method can be efficiently used
to evaluate the value function (see e.g. Baraldi et al. (2019)), the nonlinear optimization problem
required for LMEs is more difficult. Although the use of Hessian information makes each iteration
computationally efficient, it limits the size of the problems to which the method can be applied.
On the other hand, switching to first-order methods for the inner problem inside the relaxation
may be prohibitively slow. A potential path to balance these limitations is to develop efficient
upper-bounding models for the value function that can be evaluated more efficiently.

The suggested methodology can be expanded to a wider class of models. In particular, one can
extend MSR3 to the setting of non-linear mixed-effect models or generalized linear mixed models,

which are known to be challenging setups for covariate selection tasks. Both of these problem
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classes require optimizing highly nonlinear objective functions that arise when we consider marginal
likelihoods. The SR3 approach may allow new avenues for more efficient strategies, analogous to

what was done here for LMEs.
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A Definitions

Definition 1 (Epigraph and level sets). The epigraph of a function f : R"™ — RU{oo} is defined as

epi f = {(z,) : f(z) < a}. For a given «, the a-level set of f is defined as levy f = {z : f(z) < a}.

Definition 2 (Lower semicontinuity and level-boundedness). A function f : R" — R U {oo} is
lower semicontinous (lsc) when epi f is closed, and level-bounded when all level sets lev,f are

bounded.

Definition 3 (Convexity). A function f: R" — R U {oo} is convex when epi f is a convex set.

Equivalently,

fOz+ (1 =Ny) <Af(z)+ (A=A f(y) Va,yedomf, Ae (0,1),

where dom f := {zx € R" | f(z) < +00}.

Definition 4 (Weak convexity). A function f : R"™ — R U {co} is n-weakly convex f(-)+ 2| - ||* is

convex.
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B Additional derivations

B.1 Derivatives of Marginalized Log-likelihood for Linear Mixed Models

For conciseness, let us define the mismatch & = Y; — X;5. The loss function (3) takes the form
1, 1
L) =D 58 (7)) 76 + 5 log det (4 (7).

i=1

The derivative of the objective w.r.t 7;, the j'th diagonal element of the matrix I' is

ar

oero e K@&?Qﬁ@) o0

—Tr | (= TN 2,227 = (2712,
or; 9, 8Fjj] r[< ) Z} SR

Similarly,

JlogdetQ; T [(8log det QZ) 0Q;

=T [Qflz?z.ﬂ ] =770 7.
8F]J an aF]J:| g ! v ! ! !

Using the symmetry of €2;, we have
L(B,y) = diag ("' Z)) — (Z70;'6), (19)
i=1

where o denotes the Hadamard (element-wise) product and diag (-) takes a square matrix to its
diagonal. Using the Cholesky decomposition §; = L;LI we can calculate (19) using only one

triangular matrix inversion:
m

VL LB =YY (L7 2) - (L7 Z) T (L76)]

i=1 Lrows

33



Notice, that the loss function (3) and the optimal § can also be effectively computed using Cholesky:

1= 358 @)+ g losder(@) =3 176 - Zlog

i=1
m -1y
Br1 = afgéﬂiﬂ L(B, ) = (Z XiTQilXi> > XTIy =
-~ izl_l - =1
= (Z(L;lXi)TLi‘lXi> > (LX) Ly
=1 =1

The Hessian w.r.t. « is derived below:

071 Q1 z7 09,
09, oL

071" Q7 90,

T
o0, oty |

62 E(B?W) - 3T ~—
o2 > 24 0le)T

J =1

I

22 o) (o7 Zle o 2 2| - (7 o Z)y

=Y oz ez o 2T 7)) — (2 0z,

=1
LB, < T 021 07, 99 0710171 90,
S =N (2 Q) Ty | T Ty | T
8%-8% ; ( ¢ ¢ é) an 8Pkk T aQZ 8Fkk

=Yz o) T |07 ZeTon 2k 2| - (2o 2y =

=S oozl zl 0 (2 07te) — (2707 22, andso

3

2L(B,y) = % > (2707 Z;) + 2Diag (27 Q'4) (27" Z:)Diag (¢/'Q7' Z:) =
i=1

1
=50 (2072 + 22T 07 ) 20T 0 (2797 Z),

i=1
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B.2 Derivation of Selected Proximal Operators from Table 1

SCAD For a scalar variable z € R, SCAD-regularizer is defined as

(
olxl, 7| <o
r(z) = %, o< |z| < po
2etl), ] > po

\

To evaluate the prox,, operator we need to solve the following minimization problem:

mxin r(x) + %(x —2)?

For o = 1, the solution was derived by Fan (1997). Here we extend it for an arbitrary a. To

identify the set of stationary points {2*} of a non-smooth function f(z), we the optimality condition
0€ 0, f(z")
where 0, f(x) denotes a sub-differential set of f at the point z. For the prox problem, we get
1 *
0€ —(2% —2) + Or(x) ey
a

Since r(z) is piece-wise defined the precise value of Or(z),—,+ will depend on z*:
1. Let 0 < 2* < o, then we have Or(z),—, = {z*} and so v = z — 0, 2 € [0, 0 + 0al.

2. Let —oa < z* < 0, then we have Or(z),—,» = {—2*} and so z = z + o, 2z € [—0 — oa, —0al].

3. Let 2* = 0, then Or(x),—,« = [—1, 1], which yields +(z* — 2) € —0[—1,1] = z € [~0a,00].
4. Let 0 < x* < po, then r(),—p = %, which gives us < (z* — z) = %. To ensure
that the stationary point is indeed a minimizer, we need to ensure that é—/ﬁ >0=a<p—1.

. —1)z—Apo
Rearranging the terms we get z* = % = 2 € [0 + a0, po].
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z*+po

5. Let —po < z* < —o, then, similarly to the previous case, we get é(az* —z) = pat

(p—1)z+Apo

Rearranging the terms to express x in terms of z we get: z* = e T 2E [—0—ao, —0o].

6. Finally, when |z*| > op we have Or(z),—,- = {0} and so z* = z,|z| > op. Bundling all six

cases together, we have

/

sign(z)(|z] —oa)y, [z <o(l+a)

prox,,(2) = (p_l)i)__slifrgz)pm, o(1+a) < |z] <max(p, 1+ «a)o (20)

z, |z] > max(p, 1+ a)o

\

The middle branch is active only when p > 1 + a. One special case of this is when a =1,

and then (20) recovers the classic result by Fan and Li (2001).

To get prox,, on, (z) from prox,,(z) we only need to notice that (1) the minimizer x* of
nr(0) + s, + (2’
min r(z R + (@ —2
can never be negative, and that (2) when the minimizer x* is exactly zero we get:

é(:c* —2) € =0(1(x)|p=a* + Or, (¥)|p=0+) = 2 €[—00,00]

A-LASSO A-LASSO regularizer is defined as r(x) = w|z| where w = 1/|Z| with & the solution
of a non-regularized problem (Zou (2006)). The derivation of the proximal operator of A-LASSO
nearly matches the steps 1, 2, and 3 that of SCAD above. We wish to evaluate min, w|z|+ 5= (z —z)?

as a function of z. The sub-differential optimality criterion yields 0 € L (z* — z) + wd|z|.
1. Let 0 < z*, then we have Or(z),—,~ = {z*} and so z* = z — aw, z > aw.
2. Let 2* < 0, then we have Or(x),—,+ = {—2*} and so z* = z + aw, z < —aw.

3. Let 2* = 0, then Or(x),—,» = [—1,1], which yields < (z* — 2) € [~w,w] = 2z € [—aw, aw].
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Combining all cases together we get prox,,(z) = sign(z)(|z| — aw),. Finally, prox,, ,s.(2) can be
derived by noticing that, in this case, (1) z* > 0, and (2) when x* = 0 the sub-differential changes

due to the presence of the delta-function:

which gives us the condition z* = 2z, z € [—00, aw].
LASSO LASSO is a particular case of A-LASSO above when w = 1.

ly-regularizer Comparing to its counterparts above, the regularizer R(z) = §jq<k() is non-

separable. However, the proximal operator of it can still be evaluated analytically:

)

] Zi, 1 €1,
3

1
[prox,s(2)], = |argmin o~z — z|*
|e||<k <& .
0, otherwise

where 7}, is a set of k largest in their absolute value coordinates of z. To get prox,p on, W replace

T\ with a set of k largest positive coordinates of z, and set the rest of the coordinates to 0.

B.3 Lipschitz-constant for Likelihood of a Linear Mixed-Effects Model

Recall that a function £(z) is called L-Lipschitz smooth when |V L(x) — V L(y)|l2 < L]z — yl|2.
To find the Lipschitz-constant of the function Ly, (3) we will use the fact that £(z) is L-Lipschitz
if and only if |V2 L(z)|| < L for any x. Hence, to upper-bound L we need to upper-bound the

norms of Hessians. Assume that ||y; — X;5]| < n where n > 0. We get

37



IV? £(x)

HQ =

m lIX113 1 X:ll211Z: 113
L(B,7) L(B,7) <Z Al A
4 1 Xll2]1 Zill3 [1Z: ]
L(B,7) L(3,7) =k HAjH? ’ 71\&\\32 (21)
- 1X:l5 nllXill2ll Zill5 nll Xillal| Zill5 77HZ¢H§)
S max( bl b ) :L
; | Aill2 [ Aq|? | Aq]|? A3

C Description of Datasets and Experiments

Table 4 below provides a more detailed overview of the relative performance of the algorithms from

Table 2 in the main body.

C.1 Detailed Results from Simulation from Table 2

Regularizer LO L1 ALASSO SCAD
Model Metric
PGD Accuracy 9 (75-95) 73 (68-82) 8 (72-98) 1 (62-78)

FE Accuracy 88 (70-95) 56 (45-70) 4 (65-100) 3 (45-65)

RE Accuracy 90 (75-100) 91 (80-100) 92 (80-100) 9 (75-100)

F1 8 (74-95) 77 (71-83) 8 (74-97) 5 (68-80)

FE F1 7 (72-95) 67 (62-75) 5 (70-100) 6 (62-72)

RE F1 89 (74-100) 1 (78-100) 1 (78-100) 88 (74-100)

Time 47.47 (20.22-78.43)  43.02 (23.02-67.01)  38.68 (20.52-58.26)  87.24 (40.73-160.34)

Iterations 29662 (20985-43234) 31693 (22361-45603) 28912 (20915-39210) 41724 (26911-69881)
MSR3 Accuracy 92 (75-98) 89 (72-100) 91 (75-98) 92 (75-100)

FE Accuracy 92 (70-100) 5 (60-100) 1 (70-100) 93 (70-100)

RE Accuracy 91 (78-95) 2 (75-100) 1 (75-100) 92 (80-100)

F1 1 (76-97) 89 (73-100) 1 (76-98) 92 (76-100)

FE F1 2 (75-100) 7 (69-100) 2 (75-100) 93 (75-100)

RE F1 0 (74-94) 1 (74-100) 90 (73-100) 91 (75-100)

Time 109.86 (5.49-335.01)  13.74 (3.12-31.69) 81.52 (5.94-232.98) 104.20 (6.46-308.19)

Iterations 1135 (27-3148) 126 (41-314) 895 (81-2262) 1182 (47-3146)
MSR3-fast Accuracy 92 (75-100) 88 (68-100) 91 (75-98) 92 (75-100)

FE Accuracy 92 (65-100) 85 (60-100) 91 (70-100) 4 (75-100)

RE Accuracy 93 (85-100) 91 (75-100) 92 (75-100) 1 (70-100)

F1 2 (76-100) 88 (71-100) 91 (75-97) 2 (74-100)

FE F1 2 (72-100) 87 (69-100) 91 (75-100) 4 (78-100)

RE F1 92 (82-100) 90 (74-100) 90 (74-100) 0 (71-100)

Time 0.36 (0.15-0.57) 0.35 (0.15-0.56) 0.45 (0.18-0.55) 0.45 (0.16-0.77)

Iterations 86 (41-119) 87 (43-123) 115 (45-119) 102 (49-145)

Table 4: Comparison of performance of algorithms
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C.2 Scalability and Sensitivity Analysis
C.2.1 Scalability

We tested the scalability of the new approach (MSR3-fast) compared to proximal gradient descent
and proximal gradient descent with line search. To do this, chose an initially small problem
and we scaled the number of features in the data from 100 to 1000, while scaling the number of
observations proportionally, and tested the time to completion of these three methods, averaged
over 100 replicates. To get the problems of different sizes we assigned A to be 1, 2, 5, 10, 20, 50,
and 100, and for each choice of A we generated 100 random problems. Each problem had 8 groups
of 10A observations each, 8 and v had 20A features equally split between 0 and 1. Since MSR3-fast
has a relaxation parameter n, we evaluated MSR3-fast across different n values to also test the
effect of  on timing. For each experiment, we also computed the accuracy of the feature selection,
to make sure that there was no degradation in performance. The results are presented in Tables 5
and 6. In terms of timing, we see a superlinear increase in computational complexity with respect
to the number of features. Nonetheless, MSR3-fast is competitive with the alternatives across
the experiments, and the results are far more accurate. Larger problems could likely significantly

benefit from iterated solvers within the interior point framework.

Algorithm || MSR3-Fast PGD PGD-LineSearch
n 0.01 0.05 0.10 0.50 1.00 5.00 10.00 ‘

# Features

100 Om 7s Om 7s Om 7s Om 6s Om 7s Om &8s Om 10s 2m 44s 4m 44s

200 Om 36s Om39s Om 36s Om39s Om 39s Om 49s 1m 8s Tm 43s 11m 28s

400 5m 2s 4m 51s  4m 34s  4m 26s  5m 16s  Tm 33s 10m 38s | 47m 46s | 12m 36s

1000 59m 10s 57m 12s 60m 30s 69m 57s 68m 55s 111m 31s 139m 47s | 469m 16s | 55m 8s

Table 5: Execution time for feature selection problems of varying sizes. Each cell shows total time,
including grid-search with respect to the sparsity parameter \. Each cell shows averaged value over
100 randomly-generated problems.
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Algorithm || MSR3-Fast PGD | PGD-LineSearch
n 0.01 0.05 0.10 0.50 1.00 5.00 10.00 ‘

# Features

100 094 094 095 094 091 086 084 | 0.77 0.77
200 0.99 099 099 098 098 097 095 | 0.78 0.82
400 0.99 099 099 099 0.99 1.00 1.00 | 0.80 0.84
1000 0.99 098 098 098 0.98 1.00 1.00 | 0.83 0.87

Table 6: Accuracy of feature selection problems of varying sizes. Each cell shows averaged value
over 100 randomly-generated problems.

C.2.2 Closeness to the Central Path for IP

The 7 parameter of MSR3-fast controls how close the interior point method gets to the central
path before taking a prox-gradient step. This is a heuristic parameter in the algorithm, and to
understand its impact we tested the sensitivity of the execution time and accuracy for a problem
with 200 features for four selections of relaxation parameter 1. The problems were identical to
those from the second row of Table 5. The results are reported in Tables 7 and 8. Neither time nor

accuracy were affected by 7 across the levels of 7.

Algorithm || MSR3-Fast

i 0.01 0.10 1.00 10.00
-

0.1 Om 41s Om 40s Om 41s 1m 12s
0.3 Om 35s Om 36s Om 38s 1m 1s
0.5 Om 34s Om 35s Om 36s Om 57s
0.7 Om 33s Om 33s Om 35s Om 59s
0.9 Om 33s Om 33s Om 35s Om 52s

Table 7: Execution time of MSR3-fast for different values of 7 - a parameter that controls how
close the IP needs to be to the central path before doing a projection step. Each cell shows total
time, including grid-search with respect to the sparsity parameter A\. Each cell shows averaged
value over 100 randomly-generated problems.
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Algorithm || MSR3-Fast

n 0.01 0.10 1.00 10.00
-

0.1 099 099 0.99 0.95
0.3 099 0.99 098 0.95
0.5 099 0.99 098 0.95
0.7 0.99 0.99 098 0.95
0.9 0.99 0.99 0.98 0.95

Table 8: Accuracy of MSR3-fast for different values of 7 - a parameter that controls how close the
IP needs to be to the central path before doing a projection step. Each cell shows averaged value
over 100 randomly-generated problems.

C.3 GBD Bullying Data
1. cv_symptoms

e 0 = study assesses participants for MDD or anxiety disorders via a diagnostic interview

to determine whether they have a diagnosis.

e 1 = study uses a symptom scale (e.g., Beck Depression Inventory) and uses an established

cut-off on that scale to determine caseness.
2. cv_unadjusted

e 0 = RR is adjusted for potential confounders (e.g., SES, etc.)

e 1 = RR is not adjusted for potential confounders
3. cv_b_parent_only

e 0 = Child is involved in reporting their own exposure to bullying.

e 1 = Only parent is involved in reporting the child’s exposure to bullying
4. cv_or

e () — estimate is a RR

e 1 = estimate is an odds ratio (OR)
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D.

10.

cv_multi_reg

e 0 = RR is the ratio of the rate of the outcome in persons exposed vs all persons unexposed

(including persons exposed to low-threshold bullying victimization)

e 1 = RRs are estimated via a logistic regression where exposure represented by 3 categories:
1) No exposure, 2) Occasional exposure, 3) Frequent exposure. The RR for occasional
exposure will exclude participants with frequent exposure, and the RR for frequent

exposure will exclude participants with occasional exposure.
cv_low_threshold_bullying

e 0 = uses a ‘frequent’ exposure threshold for classing someone as exposed to bullying.

e 1 = uses an ‘occasional” exposure threshold for classing someone as exposed to bullying.
cv_anx

e ( = estimate represents risk for MDD

e 1 = estimate represents risk for anxiety disorders
cv_selection_bias

e 0 = < 15% attrition at followup

e 1 = > 15% attrition at followup
Percent_female

e Indicates % of sample in estimate that are female.
cv_child_baseline

e Indicates whether mid-age of sample is above or below 13.

Covariates 2, 3, 5, 6, 8 have been statistically significant in past models.
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