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Abstract

Linear Mixed-Effects (LME) models are a fundamental tool for modeling correlated data,

including cohort studies, longitudinal data analysis, and meta-analysis. Design and analysis of

variable selection methods for LMEs is more difficult than for linear regression because LME

models are nonlinear. In this work we propose a novel optimization strategy that enables a wide

range of variable selection methods for LMEs using both convex and nonconvex regularizers,

including `1, Adaptive-`1, SCAD, and `0. The computational framework only requires the

proximal operator for each regularizer to be readily computable, and the implementation is

available in an open source python package pysr3, consistent with the sklearn standard.

The numerical results on simulated data sets indicate that the proposed strategy improves on

the state of the art for both accuracy and compute time. The variable selection techniques are

also validated on a real example using a data set on bullying victimization.

Keywords: Mixed effects models, feature selection, nonconvex optimization

1 Introduction

Linear mixed-effects (LME) models use covariates to explain the variability of target variables in

a grouped data setting. For each group, the relationship between covariates and observations is

modeled using group-specific coefficients that are linked by a common prior distribution across

all groups, allowing LMEs to borrow strength across groups in order to estimate statistics for the

common prior. LMEs are used in settings with insufficient data to resolve each group independently,

making them fundamental tools for regression analysis in population health sciences (Reiner et al.

(2020); Murray et al. (2020)), meta-analysis (DerSimonian and Laird (1986); Zheng et al. (2021)),

life sciences, and as well as in many others domains (Zuur et al. (2009)).

Variable selection is a fundamental problem in all regression settings. In linear regression,

the LASSO method (Tibshirani, 1996a) and related extensions have been widely used. However,
∗Bill and Melinda Gates Foundation
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variable selection for LMEs is complicated by the nonlinear structure and relative sparsity of the

within-group data. While standard methods and software are available for linear regression (see

e.g. glmnet Friedman et al. (2010)), there are few open source libraries for variable selection

for LMEs. Many covariates selection algorithms for LMEs have been proposed over the last 20

years (see the survey Buscemi and Plaia (2019)), but comparison of these strategies and practical

application remains difficult. Approaches vary by choice of likelihood (e.g. marginal, restricted,

or h- likelihood), regularizer (e.g. `1 (Bondell et al., 2010) or SCAD Ibrahim et al. (2011a)), and

information criteria (Vaida and Blanchard, 2005; Ibrahim et al., 2011b). Implementations vary as

well, typically using regularizer-specific local quadratic approximations to apply solution methods

for smooth problems (Newton-Raphson, EM, sequential least squares) to fit the original nonsmooth

model. All of these decisions make it difficult to compare and evaluate performance of available

variable selection strategies and to determine which method is best suited for a given task. This

challenge is exacerbated by the absence of standardized datasets and open source libraries for

each method. Our main practical goal to fill this gap by developing a unified methodological

framework that accommodates a wide variety of variable selection strategies based on a set of

easily implementable regularizers, and made available in an open source library, pysr31 that is

easy to use and to compare different methods. All experiments in the paper can be reproduced

using pysr3 and code in the reproducibility guide2.

In this work we introduce a regularization-agnostic covariate selection strategy that (1) is fast

and simple to implement, (2) provides robust models, and (3) is flexible enough to support most

regularizers currently used in variable selection across different domains. The baseline approach

uses the proximal gradient descent (PGD) method, which has been studied by the optimization

community for over 40 years, but has not been widely used in LME covariate selection. In our initial

numerical experiments, using a naive PGD approach indicated that, at best, the method yields

only a marginal improvement over the equally unsatisfactory alternative methods in accurately

determining the correct variables in our variable selection test problems. We conjecture that
1https://github.com/aksholokhov/pysr3
2https://github.com/aksholokhov/msr3-paper
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Figure 1: Selection of fixed and random effects for LME likelihoods L using ‘regularization-agnostic’
framework and its SR3 extension using four regularizers. SR3 relaxation accelerates algorithmic
converge (middle panel), and gives better robustness and improved performance on synthetic
problems across regularizers (right panel)

.

the weakness of the naive PGD is a result of the first-order likelihood approximation used in

PGD. To overcome this problem, we propose an alternative likelihood approximation with the

goal of incorporating global variational properties of the likelihood. For this purpose, we extend

the sparse relaxed regularized regression (SR3) framework (Zheng et al. (2019)) to the LME

setting. This idea is supported by the success of SR3 in the context of linear regression where

it accelerates and improves the performance of regularization strategies. This extension and its

mathematical foundations in Aravkin et al. (2022) constitute the major innovations of this work.

Here we introduce the modeling framework and its relaxation, discuss the resulting algorithms

and their implementation details, and validate the method on both simulated and real data sets,

while the mathematical foundations are presented in Aravkin et al. (2022). The SR3 framework

introduces auxiliary variables x and w to decouple the likelihood L and sparsity regularizer R

which are tied together by adding a multiple of the norm squared difference η
2
‖x− w‖2 to the

objective. Then, fixing the variables w dedicated to the nonsmooth regularizer R, the smooth

function L(x) + η
2
‖x− w‖2 is globally optimized over the variables x to obtain an optimal value
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function uη(w). We then show that uη(w) is smooth. This opens the door to the application of the

PGD algorithm to minimizing uη +R where now uη contains global variational information on the

likelihood function L. The main obstacle in the application of this approach is the evaluation of uη

and its gradient. In Section 3.2 we present a method for overcoming this difficulty using variable

metric techniques and interior point technology.

All new methods are implemented in an open-source library called pysr3, which fills a gap

for python mixed-models selection tools in Python (Buscemi and Plaia (2019), Table 3). Our

algorithms are 1-2 orders of magnitude faster than available LASSO-based libraries for mixed effects

selection in R, see Table 3. pysr3 enables a standardized comparison of different methods in the

LME setting, and makes both the PGD framework and its SR3 extension available to practitioners

working with LME models.

We begin in Section 2 by giving a precise description of the LME model and set the notation

for the remainder of the paper. This is followed by a brief discussion of prior work on LMEs. In

Section 3 we present our algorithms for the LME model starting with the naive PGD algorithm.

This is followed by a description of the variable splitting technique used in Zheng et al. (2019)

to incorporate global variation information on the likelihood function into the direction finding

subproblem for the PGD algorithm. Next we tackle the problem of how to approximate the resulting

optimal value function uη and its gradient where η > 0 is the decoupling parameter. As noted, this

is done using variable metric techniques and and interior point technology. We conclude Section

3 with a discussion of the MSR3 and MSR3-fast algorithms. In Section 4 we discuss how the

underlying algorithmic parameters are set and test the algorithm on both simulated problems

and a problem with real data. The paper is concluded in Section 5 with a brief discussion of the

contributions.
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2 Linear Mixed-Effects Models: Notation and Fundamentals

Mixed-effect models describe the relationship between an outcome variable and its predictors when

the observations are grouped, for example in studies or clusters. To set the notation, consider m

groups of observations indexed by i, with sizes ni, and the total number of observations equal to

n = n1 + n2 + · · · + nm. For each group, we have design matrices for fixed features Xi ∈ Rni×p,

and matrices of random features Zi ∈ Rni×q, along with vectors of outcomes Yi ∈ Rni . Let

X = [XT
1 , X

T
2 , . . . , X

T
m]T and Z = [ZT

1 , Z
T
2 , . . . , Z

T
m]T . Following Patterson and Thompson (1971);

Pinheiro and Bates (2000), we define a Linear Mixed-Effects (LME) model as

Yi = Xiβ + Ziui + εi, i = 1 . . .m

ui ∼ N (0,Γ), Γ ∈ Sq+

εi ∼ N (0,Λi), Λi ∈ Sni++

(1)

where β ∈ Rp is a vector of fixed (mean) covariates, ui ∈ Rq are unobservable random effects

assumed to be distributed normally with zero mean and the unknown covariance matrix Γ, and Sν+

and Sν++ are the sets of real symmetric ν × ν positive semi-definite and positive definite matrices,

respectively. Matrices Zi encode a wide variety of models, including random intercepts (Zi are

columns of 1’s that add ui to all datapoints from the ith study) and random slopes (Zi also scale

ui according to the magnitude of a covariate), see e.g. Pinheiro and Bates (2006). In our study, we

assume that the observation error covariance matrices Λi are given and that the random effects

covariance matrix is an unknown diagonal matrix, i.e., Γ = Diag (γ) , γ ∈ Rs
+. This assumption

corresponds to the meta-analysis and meta-regression branch of mixed effects problems, which is the

primary focus of our applied collaborations (see e.g. Zheng et al. (2022); Lescinsky et al. (2022);

Razo et al. (2022); Stanaway et al. (2022); Dai et al. (2022).) The theoretical developments in this

work allow extensions to other types of repeated measure models, but practical implementation

requires significant additional effort, and we leave these extensions to future work.

Defining group-specific error terms ωi = Ziui + εi, we get a compact formulation that recasts (1)
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as a correlated noise model:

Yi = Xiβ + ωi, ωi ∼ N (0,Ωi(Γ)), Ωi(Γ) = ZiΓZ
T
i + Λi. (2)

For brevity, we refer to Ωi(Γ) as just Ωi. The reformulation (2) yields the following marginalized

negative log-likelihood function of a linear mixed-effects model (Patterson and Thompson, 1971):

LML(β,Γ) :=
m∑
i=1

1

2
(yi −Xiβ)TΩ−1

i (yi −Xiβ) +
1

2
ln det Ωi. (3)

Maximum likelihood estimates for β and Γ are obtained by solving the optimization problem

min
β,Γ
LML(β,Γ) s.t. Γ ∈ Sq+ . (4)

In the discussion below, make use of basic concepts from Rockafellar and Wets (2009), defined in

the Appendix.

The negative log likelihood (4) is nonlinear and nonconvex, and requires an iterative numerical

solver. However, it is convex with respect to β, and weakly convex with respect to γ, with a weak

convexity constant η computed in (Aravkin et al., 2022, Section 5.1) . The expected value of the

posterior mode β given Γ has the closed form representation

β(Γ) = argmin
β
L(β,Γ) =

(
m∑
i=1

XT
i Ω−1

i Xi

)−1 m∑
i=1

XT
i Ω−1

i yi.

By using the simplification Γ = Diag (γ), we obtain the problem

min
β∈Rp,γ∈Rq+

L(β, γ) := LML(β,Diag (γ)) . (5)

In this setting, when an entry γj takes the value 0 the corresponding coordinates of all random

effects uij are identically 0 for all i.
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Verification of the existence to solutions to (5) and, more generally, (4) follows from the work of

Zheng et al. (2021). Standalone proofs for the existence of minimizers are developed in (Aravkin

et al., 2022, Theorem 1), and extended to the presence of regularizers in (Aravkin et al., 2022,

Theorem 2).

This paper focuses the case where Γ is diagonal, (often referred to as the diagonal setup) and

all Λi are known (see (5)), following the meta-analysis use-case (Zheng et al., 2021) that is widely

employed in epidemiological studies Murray et al. (2020). While the proposed approach can be

extended to the non-diagonal case, we leave it for future work, save for a brief discussion in Section 4.

2.1 Prior Work on Feature Selection for Mixed-Effects Models

Variable (feature) selection models seeks to select or rank the most important predictors in a dataset

in order to get a parsimonious model at a minimal cost to prediction quality. Feature selection may

be performed both on β, to find the sparse set of covariates that best explains the mean, and on γ,

to find the sparse set of covariates that best accounts for variation between groups. Both types of

selection have been studied in the literature, and both are accessible using the methods developed

here. If the desired number of coefficients k is given, then the feature selection problem can be

formulated as the minimization of a loss function f(θ) (e.g. the negative log-likelihood) subject to

a zero-norm constraint:

min
θ
f(θ) s.t. ‖θ‖0 ≤ k (6)

where ‖θ‖0 denotes the number of nonzero entries in θ, see panel (c) of Figure 2.

The constraint in (6) is combinatorial, and a common workaround is to relax it to a one-norm

constraint, with ‖θ‖1 equal to the sum of absolute values of the entries of θ. The best-known

example of this approach is the least absolute square shrinkage operator (LASSO) studied by

Tibshirani (1996b) for linear regression, see panel (a) of Figure 2.

Feature selection for LMEs is more difficult than for linear regression models. In linear regression
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Figure 2: Common convex and non-convex regularizers used for feature selection.

the observations are independent, whereas in mixed-effects setup they are generally correlated. In

addition, LMEs have both mean effect variables β as well as random variance variables Γ. The

shrinkage operator approach for linear regression (Tibshirani, 1996b) was first adapted to the

problem of feature selection for the fixed effects in mixed-effect models by Lan (2006). The removal

of a random effect from the model requires the elimination of an entire row and column from

Γ. To make the problem more tractable, Chen and Dunson (2003) reparamtrized Γ through a

modified Cholesky decomposition Γ(D,L) := DLLTD, where D is a diagonal matrix and L is a

lower-triangular matrix with ones on the main diagonal, and focused on selecting elements of D.

Based on this idea, Bondell et al. (2010) extended the Adaptive LASSO regularizer (Lan (2006); Xu

et al. (2015)) to mixed-effects setting using the objective L(β,Γ(D,L))+λ
(∑p

i=1

∣∣∣βi
β̂i

∣∣∣+
∑q

j=1
Dii
D̂ii

)
,

where β̂ and D̂ are the solution of a non-penalized maximum likelihood problem and λ is a tuning

parameter for the weighted regularizer and is called the regularization parameter. Ibrahim et al.

(2011b) use a similar approach, penalizing non-zero elements Γij directly. Other methods that use

Adaptive LASSO for simultaneous selection of fixed and random effects are Lin et al. (2013a); Fan

et al. (2014); Pan and Shang (2018). Adaptive LASSO is available to practitioners via R packages

glmmLasso3 (Groll and Tutz (2014)) and lmmLasso4(Schelldorfer et al. (2011)).

A popular nonconvex regularizer used for feature selection is smoothed clipped absolute deviation

(SCAD) Fan and Li (2001). The adaptation of the SCAD penalty to select both fixed and random

features in linear mixed models was developed by Fan and Li (2012). SCAD was also used by
3https://rdrr.io/cran/glmmLasso/man/glmmLasso.html
4https://rdrr.io/cran/lmmlasso/
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Chen et al. (2015) for selecting fixed effects and establishing the existence of random effects

in ANOVA-type models. Finally, Ghosh and Thoresen (2018) studied SCAD regularization for

selecting mean effects in high-dimensional genomics problems.

To better compare methods, we need to consider the tuning of the regularization parameter

λ. The output of a shrinkage model critically depends on the tuning parameter λ. The entire

range of λ values is captured by the notion of a “λ-path in the model space”, with the best

parameter and the final model chosen using information criteria. According to Müller et al. (2013),

the most widely used information criterion is the marginal AIC criterion (Vaida and Blanchard

(2005)), AIC := 2L(θ̂) + 2αn(p + q), where θ̂ includes all the estimated parameters (β,Γ), and

αn := n(n − p − q − 1) for the finite sample case (Sugiura (1978)). Alternatively, LASSO-type

methods (Bondell et al. (2010); Ibrahim et al. (2011b)) use a BIC-type information criterion,

BIC := 2L(θ̂) + log(n)(p + q). BIC performs well in practice, but does not have theoretical

guarantees (Schelldorfer et al. (2011)).

3 Algorithms for Feature Selection

We approach feature selection by adding a regularizer to model (5):

min
x
L(x) +R(x) + δC(x), (7)

where x = (β, γ), C := Rp×Rq
+, R : RP ×Rq

+ → R+ := R+ ∪{+∞} is a lower semi-continuous (lsc)

regularization term, and δC is the convex indicator function, where δC(x) := 0 for x ∈ C and +∞

otherwise. By (Aravkin et al., 2022, Theorem 2), solutions to (7) always exist when R has compact

lower level sets. The most common regularizers are separable taking the form

R(x) =

p∑
i=1

ri(xi), (8)
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with typical choices for the component functions ri given in Table 1.

3.1 Variable Selection via Proximal Gradient Descent

Since L is differentiable on its domain and proximal operator for αR + δC is computationally

tractable, the Proximal Gradient Descent (PGD) Algorithm (e.g. see Beck (2017)) offers a simple

numerical strategy for estimating first-order stationary points for (7). The proximal operator for

αR + δC is defined as the mapping proxαR+δC
(z) := argminy∈C R(y) + 1

2α
‖y − z‖2

2, and the PGD

iteration is given by x+ = proxαR+δC
(x − α∇L(x)), where α is a stepsize. When R(x) has the

form given in (8), we have proxR(z) = (proxr(z1), . . . , proxr(zq)). Table 1 provides closed form

expressions for the proximal operators of commonly used regularizers. For all of these cases, the

following theorem gives closed form expressions for proxαR+δC
(z).

Regularizer r(x), x ∈ R proxαr(z)

LASSO (`1) |x| sign(z)(|z| − α)+

A-LASSO w̄|x|, w̄ ≥ 0 sign(z)(|z| − αw̄)+

SCAD



σ|x|, |x| ≤ σ

−x2+2ρσx−σ2

2(ρ−1) , σ < |x| < ρσ

σ2(ρ+1)
2 , |x| > ρσ



sign(z)(|z| − σα)+, |z| ≤ σ(1 + α)

(ρ−1)z−sign(z)ρσα
ρ−1−α , σ(1 + α) < |z| ≤ ρσ

z, |z| > max(ρ, 1 + α)σ

δ‖x‖0≤k

(`0 ball)


0, #{|xi| 6= 0} ≤ k

∞, otherwise
keep k largest |xi|, set the rest to 0

Table 1: Proximal operators for commonly used sparsity-promoting regularizers.

Theorem 1 (prox for bounded γ). We consider modified regularizers r(γ) from the Table 1 that

include an additional constraint on γ of the form 0 ≤ γ ≤ γ̄, for γ̄ ∈ [0,+∞]. We have the following

results.
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1. For SCAD, we have for all i that prox(αr+δ[0,γ̄])
(γi) =


proxαr(γi), 0 ≤ γi < γ̄

γ̄, γi ≥ γ̄

0, otherwise

.

2. For LASSO, A-LASSO we have for all i that prox(αr+δ[0,γ̄])
(γi) =


proxαr(γi), 0 ≤ γi < γ̄ + α

γ̄, γi ≥ γ̄ + α

0, otherwise

.

3. For R(·) = δlev‖·‖0 (k) the proxαR+δC
(γ) can be evaluated by taking k largest coordinates of γ

such that 0 ≤ γi ≤ γ̄, and setting the remainder to 0.

The proof of the Theorem 1 is provided in Appendix B.2. The PGD algorithm is detailed in

Algorithm 1. The algorithm’s step-size α depends on the Lipschitz constant; an upper-bound is

given in Appendix B.3. In practice, α is computed using a line-search, since the available estimate

for L is very conservative.

1 x = x0, α < 1
L
, where L is L-Lipschitz

2 while not converged do

3 x+ = proxαR+δC
(x− α∇L(x));

4 end

Algorithm 1: Proximal Gradient Descent for Linear Mixed-Effect Models

The main advantages of Algorithm 1 are its simplicity and flexibility. The main loop needs only

the gradient and prox operator, and the structure of the algorithm is independent of the choice of

R. Algorithm 1 locates first-order stationary points under weak assumptions, in particular neither

the objective nor the regularizer need be convex (Beck, 2017; Attouch et al., 2013).

3.2 Variable Selection via MSR3

To develop an approach that is both more efficient and accurate, we extend the SR3 regularization

of Zheng et al. (2019) to LMEs. We call the extension MSR3, since we are focusing on mixed effects
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models. Starting with the regularized likelihood (7) we introduce auxiliary parameters designed to

discover the fixed and random features:

min
x,w
L(x) +R(w) + δC(x) + κη(x− w), (9)

where κη penalizes deviations between x = (β, γ) and w = (β̂, γ̂), and also guarantees that the

objective is convex with respect to the γ components of x for sufficiently large η:

κη(x − w) = η
2
‖x − w‖2 = η

2
‖β − β̂‖2 + η

2
‖γ − γ̂‖2 with η ≥ η̄ where η̄ is the weak convexity

constant computed in (Aravkin et al., 2022, Section 5.1). As η ↑ ∞, the extended objective (9)

converges in an epigraphical sense to the original objective (7). However, feature selection accuracy

does not require this continuation, indeed, we show that a fixed modest value such as η = 1 can be

used (Zheng et al., 2019).

To understand the algorithm and logic behind the objective (9), we define an optimal value

function uη(w) and the solution set Sη(w):

uη(w) = min
x
L(x) + δC(x) + κη(x− w)

Sη(w) = argmin
x
L(x) + δC(x) + κη(x− w).

(10)

Substituting (10) into (9) transforms (9) into

min
w
uη(w) +R(w) (11)

Here we have transformed the original regularized likelihood (7) through relaxation and partial

minimization to obtain an equivalent problem (11) for w with the same regularizer. The value

function uη encapsulates global variational information on the function L(x) + δC(x) relative to w.

In the case of linear regression, the function uη has a closed form solution Zheng et al. (2019).

However, in both the linear regression context of Zheng et al. (2019) and in the LME context

studied here, we need only compute Sη(w) in order to optimize (11). Indeed, in (Aravkin et al.,

13



2022, Section 5) it is shown that there exists a computable η̄ > 0, which we have called the weak

convexity constant, such that L+δC + κη(· − w) is strongly convex for all η > η̄ regardless of the

choice of w. This allows us to show that uη is well-defined, differentiable, and Lipschitz continuous,

with

∇uη(w) = ∇wkη(x− w)|x=Sη(w) = η(w − Sη(w)). (12)

Our empirical studies indicate that (11) has advantages over (7) from an optimization perspective

since uη typically has nearly spherical level-sets while keeping the position of minima close to

those of L(x). This effect is extensively studied and validated for a quadratic loss function in

the original work of Zheng et al. (2019). In the center panel of Figure 1, we plot the level-sets of

L(x) + ‖x‖1 (left column) and uη + ‖ · ‖1 (right column) for the same mixed-effect problem. The

more spherical geometry of the latter allows the Algorithm 2 (described below) to converge in 21

iterations, whereas Algorithm 1 takes 1284 iterations. The difference is most pronounced when

the minimum sits on the boundary of the feasible set, which is always the case for the variable

selection problems with sparse support.

We apply PGD to optimize the regularized value function uη which yields the iteration

w+ = proxα−1R(w − α∇uη(w)) (13)

The results in Aravkin et al. (2022) show that all components of the iteration (13) are well-defined.

The equivalence of Algorithm 2 and (13) is established in the following lemma, which extends the

relationship studied by Zheng et al. (2019) to the case of x = (β, γ).

Lemma 2 (Equivalence of Algorithms). Algorithm 2 is equivalent to (13).

Proof. Substituting (12) into (13), we see that the iteration (13) is equivalent to the alternating

minimization scheme outlined in the Algorithm 2.

14



1 w = w0

2 while not converged do

3 x+ = arg minx L(x) + δC(x) + κη(x− w)

4 w+ = proxα−1R(x+)

5 end

Algorithm 2: Proximal Gradient Descent for Value Function
In (Aravkin et al., 2022, Theorem 6), it is shown that for any sequence ηk ↑ ∞ the associated

optimal solutions (xk, wk) to (11) satisfy L(xk)+R(wk) ↑ infx∈Rp×Rq+ L(x)+R(x) with ‖xk − wk‖ →

0. In particular, every cluster point of the sequences {xk} and {wk} are solutions to (5), where

such cluster points exist whenever the function R is coercive, i.e. lim‖x‖↑∞R(x) = +∞. Just how

close wk is to a solution to (5) remains an open question, however, our numerical studies in Section

4 show that η can be chosen surprisingly small. Indeed, we typically take η = 1.

In the linear regression setting of Zheng et al. (2019), Algorithm 2 can be implemented exactly.

In the nonlinear case, evaluating x+ requires an iterative algorithm. For this we use an interior

point method which replaces the indicator function δC by a smooth log-barrier term. This allows us

to approximate both uη and its gradient where the degree of the approximation is controlled by the

convergence criteria of the interior point algorithm.

An Interior Point Method for Approximating uη. In order to solve for the x+ update in

line 2 of Algorithm 2, we must optimize a convex loss with linear inequality constraints, that is, for

a fixed w = (β̂, γ̂), we need to solve

min
β,γ
L(β, γ) + κη(β − β̂, γ − γ̂) s.t. 0 ≤ γ. (14)

This problem is well suited for an interior point approach (Kojima et al., 1991; Nesterov and

Nemirovskii, 1994; Wright, 1997; Vanderbei and Shanno, 1999). First, the constraint 0 ≤ γ is
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relaxed using a log-barrier penalty, obtaining a minimization problem for a relaxed objective Lµ,η:

min
β,γ

{
Lµ,η(β, γ) := L(β, γ) + κη(β − β̂, γ − γ̂)− µ

q∑
i=1

ln(γi)

}
. (15)

Here the log-barrier penalty approximates the indicator function to the positive orthant as µ

decreases; indeed, the function γ 7→ µ ln(γ) epi-converges to the indicator function δRn+(γ) as µ ↓ 0

(Rockafellar and Wets (2009)). The penalty (homotopy) parameter µ is progressively decreased to

0 as the algorithm proceeds as described below. The existence of solutions for the problem (15) for

any positive µ is shown in (Aravkin et al., 2022, Theorem 5), and the convergence of solutions to

the MSR3 solution as µ ↓ 0 is shown in (Aravkin et al., 2022, Theorem 7). Finally, (Aravkin et al.,

2022, Theorem 6) shows that the MSR3 relaxation is consistent with respect to the barrier, so that

as the MSR3 parameter η ↑ ∞, limit points of global solutions to the former are global solutions to

the latter. However, in the applications considered here, the empirical studies in Sections 3.3 and

4.2 indicate that one does not need to make η particularly large in order to accurately identify the

correct sparsity pattern.

For γ > 0, the necessary optimality conditions for Lµ,η in γ give us the relation

∇γLµ,η(β, γ) = ∇γ L(β, γ) + η(γ − γ̂)− µDiag (γ)−1 1 = 0, (16)

where 1 is the vector of all ones of the appropriate dimension. By setting v = ∇γLµ,η(β, γ)+η(γ−γ̂),

we can rewrite this equation as

v � γ − µ1 = 0, (17)

where 1 is the vector of all ones of the appropriate dimension and “�” denotes the Hadamard

(or simply element-wise) product. The complete set of optimality conditions for (15) can now be
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written as

Gµ,η(v, β, γ) :=


v � γ − µ1

∇β L(β, γ) + η(β − β̂)

∇γ L(β, γ) + η(γ − γ̂)− v

 = 0. (18)

We then apply Newton’s method to (18), that is, in each iteration the search direction [∆v,∆β,∆γ]

solves the linear system

∇Gµ,η(v, β, γ)


∆v

∆β

∆γ

 = −Gµ,η(v, β, γ), ∇Gµ,η(v, β, γ) =


Diag (γ) 0 Diag (v)

0 ∇2
ββ L+ηI ∇2

βγ L

−I ∇2
γβ L ∇2

γγ L+(η + λ)I


and we have used the fact that v � γ = Diag (v) γ = Diag (γ) v. The exact formulae for the

derivatives of L are provided in the Appendix B.1.

The general structure of the algorithm is as follows. Given a search direction [∆v(k),∆β(k),∆γ(k)],

choose a step of size αk > 0 so that the update

(
v(k+1) β(k+1) γ(k+1)

)
=

(
v(k) β(k) γ(k)

)
+ αk

(
∆v(k) ∆β(k) ∆γ(k)

)

satisfies the conditions

Positivity: γ(k+1) > 0, v(k+1) > 0

Sufficient Descent: ‖Gη,µ(v(k+1), β(k+1), γ(k+1))‖ ≤ 0.99‖Gη,µ(v(k), β(k), γ(k))‖,

where the parameter 0.99 is used to bias toward the acceptance of a full Newton step. At each

iteration the relaxation parameter µ is updated by the formula µ(k+1) = v(k)Tγ(k)/q, where v(k)Tγ(k)
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is the duality gap at iteration k. The algorithm terminates when the criteria

‖Gµ,η(v
(k+1), β(k+1), γ(k+1))‖ ≤ tol

µ ≤ tol

are both satisfied, so the interior point problem is nearly stationary, and closely approximates the

original problem (14). MSR3 is summarized in Algorithm 3, which approximates Algorithm 2 as

the tolerance goes to 0. In the numerical experiments, we use tol = 10−5, and accuracy does not

change as the tolerance parameter decreases.

1 w = w0

2 while not converged do

3 x+ satisfies ‖Gµ,η(v
+, x+)‖ ≤ tol, µ ≤ tol

4 w+ = proxα−1R(x+)

5 end

Algorithm 3: MSR3

Positive Approximation of the Hessian For many datasets the weak convexity constant

η can be extremely large and difficult to compute. However, if η is too small ∇2
γγ Lµ,η(β, γ) is

negative-(semi)definite. Negative definite Hessians can hamper the convergence of second-order

methods (e.g., see Nocedal and Wright (2006)). Therefore, one must take care in selecting η. For

this, we recall from (Aravkin et al., 2022, Lemma 3) that

∇2 L (β, γ) =
m∑
i=1

STi

 XT
i

−ZT
i

Ωi(γ)−1

[
Xi −Zi

]
Si −

0 0

0 1
2
(ZT

i Ωi(γ)−1Zi)
◦2

 .
This implies that negative eigenvalues for the Hessian must arise from the Hessian with respect to γ,

∇2
γγ L(β, γ), and more specifically, the term (ZT

i Ωi(γ)−1Zi)
◦2. A positive semidefinite approximation

to the Hessian is obtained by simply dropping this term.
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3.3 Relaxation and Efficient Algorithms: MSR3 and MSR3-Fast

While algorithm (2) is modular, it requires solving a nonlinear optimization problem in x = (β, γ)

for each single update of w = (β̂, γ̂). To make the implementation as efficient as possible, we

designed a more balanced updating scheme, that alternates Newton iterations as described in

the interior point algorithm with w updates. We update w whenever we are sufficiently close to

the ‘central path’ in the interior point method, a condition that can be checked rigorously using

optimality conditions. This scheme is detailed in Algorithm 4.

In designing Algorithm 4, we chose a particular central path parameter, τ = 0.5 in line 8, that

controls how far the interior point method needs to proceed before we take a proximal gradient

step. We explored the effect of this parameter on performance and timing in Appendix C, and

found that it did not have any effect on either for values between 0.1 and 0.9. MSR3-fast was

competitive with respect to time compared to PGD and PGD with line search (also as reported in

Appendix C) for problems up to 1000 features.

1 progress← True; iter = 0;
2 β+, β̃+ ← β0; γ+, γ̃+ ← γ0; v+ ← 1 ∈ Rq; µ← v+T γ+

10q

3 while iter < max_iter and ‖Gη,µ(β+, γ+, v+)‖ > tol and progress
do

4 β ← β+; γ ← γ+; β̃ ← β̃+; γ̃ ← γ̃+

5 [dv, dβ, dγ]← ∇Gη,µ((β, γ, v), (β̃, γ̃))−1Gη,µ((β, γ, v), (β̃, γ̃)) // Newton Iteration

6 α← 0.99×min
(

1,− γi
dγi
,∀i : dγi < 0

)
7 β+ ← β + αdβ; γ+ = γ + αdγ; v+ ← v + αdv

8 if ‖γ+ � v+ − q−1γ+Tv+1‖ > 0.5q−1v+Tγ+ then
9 continue // Keep doing Newton iterations

10 end
11 else
12 β̃+ = proxαR(β+); γ̃+ = proxαR+δR+

(γ+); µ = 1
10
v+T γ+

q
// Near central path

13 end
14 progress = (‖β+ − β‖ ≥ tol or ‖γ+ − γ‖ ≥ tol or ‖β̃+ − β̃‖ ≥ tol or ‖γ̃+ − γ̃‖ ≥ tol)
15 iter += 1
16 end
17 return β̃+, γ̃+

Algorithm 4: MSR3-fast (Optimized Proximal Gradient Descent for the Value function)

19



Model PGD MSR3 MSR3-fast
Regularizer Metric

L0 Accuracy 0.89 0.92 0.92
Time 47.47 109.86 0.36

L1 Accuracy 0.73 0.89 0.88
Time 43.02 13.74 0.35

ALASSO Accuracy 0.88 0.91 0.91
Time 38.68 81.52 0.45

SCAD Accuracy 0.71 0.92 0.92
Time 87.24 104.20 0.45

Table 2: Comparison of performance of algorithms measured as accuracy of selecting the correct
covariates and run-time. The L0 strategy stands out over other standard regularizers. MSR3
improves performance significantly for all regularizers, while MSR3-fast improves convergence speed
while preserving the accuracy of MSR3. More detailed results are in the Table 4 of Appendix C.1.

4 Verifications

4.1 MSR3 for Covariate Selection

In this section we compare the feature selection accuracy and the numerical efficiency of Algorithms

1 and 4 when using the LASSO, A-LASSO, SCAD, and L0 sparsity regularizers. We begin by

describing how the data is generated for our numerical simulations followed by a description of how

the regularization parameter λ and the coupling parameter η were chosen. Our experiments on real

data are presented in Section 4.2.

Experimental Setup. The number of fixed effects p and random effects q are set at 20 with

β = γ = [1
2
, 2

2
, 3

2
, . . . , 10

2
, 0, 0, 0, . . . , 0], i.e. the first 10 covariates are increasingly important and the

last 10 covariates are not. The data is generated as

yi = Xiβ + Ziui + εi, εi ∼ N (0, 0.32I)

Xi ∼ N (0, I)p, Zi = Xi

ui ∼ N (0,Diag (γ)),
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Figure 3: Feature selection accuracy and execution time in seconds for PGD (Algorithm 1), MSR3
(Algorithm 2), and MSR3-fast (Algorithm 4) with various regularizers. MSR3-Fast has the same
accuracy as MSR3 and significantly decreases computation time.

with 9 groups of sizes [10, 15, 4, 8, 3, 5, 18, 9, 6]. The data generation is repeated 100 times in order

to estimate the uncertainty bounds. The smallest non-zero components in the generated signals are

just above the level of observation noise.
Parameter Selection. The regularization parameter λmultiplying R and the coupling parameter

η restricting the difference between (β, γ) and (β̃, γ̃) are chosen to maximize a classic BIC criterion

from Jones (2011). We set a log-uniform grid of 20 candidate values for the parameter η ∈ [10−3, 102].

For each value of η, the BIC is optimized using a golden search in λ ∈ [0, 105]. The final values of η

and λ are chosen to maximize the BIC criterion.

Figure 4 shows the dependence of accuracy on the values of η for the first data set generated in

our test set. There are three distinct regions, corresponding to loose, moderate, and tight levels of

coupling. When η is small the coupling term does not have sufficient strength and the training

does not progress far from the initial point (a fully dense vector 1 in this case). When the coupling

is tight, the level-sets and minimizers are closer to those of the the original problem. For the values

in between, the coupling significantly improves the model’s accuracy. These results are consistent

with experiments in the sparse linear regression setting Zheng et al. (2019).
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Figure 4: Dependence of model performance on the relaxation η for a sample problem.

Results. The experimental results are presented in the Table 2 and Figure 3. MSR3 improves the

selection accuracy of most regularization techniques described in Table 1, showing a near-perfect

performance, while converging two orders of magnitude faster in wall-clock time.

Comparison to glmmLasso and lmmLasso. We used (Buscemi and Plaia, 2019, Table 3) as

a reference for feature selection libraries. Of the 17 entries mentioned, the four libraries that

successfully ran on our synthetic data described above were packages glmmLasso5 (Groll and

Tutz (2014)), lmmLasso6(Schelldorfer et al. (2011)), fence7 (Jiang et al. (2008)) and PCO (Lin

et al. (2013b)) libraries. fence caused a memory overflow on the experimental system during the

performance evaluation on the datasets described above. We could not evaluate PCO because it

did not support datasets where the total number of random effects mq exceeded the total number

of observations n. We compare performance of MSR3 (available through the open source pysr3

library) to the performance of the R packages glmmLasso8 (Groll and Tutz (2014)) and lmmLasso9

5https://rdrr.io/cran/glmmLasso/man/glmmLasso.html
6https://rdrr.io/cran/lmmlasso/
7https://rdrr.io/cran/fence/
8https://rdrr.io/cran/glmmLasso/man/glmmLasso.html
9https://rdrr.io/cran/lmmlasso/
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(Schelldorfer et al. (2011)) which are the functionally closest libraries available online. As of

this writing, glmmlasso does not allow the user to specify Γ as a diagonal matrix. Since the

diagonal specification simplifies the problem, this puts glmmlasso package at a disadvantage in

our numerical comparison. We evaluate all algorithms’ performance on the same set of problems

as described above. We tuned the hyperparameters of glmmLasso and lmmLasso by minimizing

the BIC scores provided by the libraries over λ ∈ [0, 105]. The results are presented in Table 3.

Overall, MSR3 executes, on average, 5 times faster in wall-clock time than glmmLasso and 60

times faster than lmmLasso and shows much higher accuracy in selecting correct fixed and random

effects simultaneously. The accuracy of glmmLasso is lower relative to the other libraries’ scores

likely due to its BIC selection criterion choosing dense models. The package lmmLasso supports

the diagonal specification of Γ, thus allowing a direct comparison with the scores from pysr3.

lmmLasso yields a competitive accuracy of selecting random effects but lmmLasso provides dense

solutions for fixed effects β for chosen values of λ.

Algorithm Units (perc. / 100 runs) MSR3-Fast (`1) glmmLasso lmmLasso

Accuracy % (5%-95%) 88 (72-98) 48 (42-55) 66 (55-73)
FE Accuracy % (5%-95%) 86 (64-100) 52 (40-66) 47 (45-55)
RE Accuracy % (5%-95%) 91 (74-100) 45 (45-45) 84 (55-100)
F1 % (5%-95%) 89 (73-97) 63 (60-66) 65 (0-77)
FE F1 % (5%-95%) 88 (69-100) 64 (57-70) 57 (0-64)
RE F1 % (5%-95%) 90 (73-100) 62 (62-62) 78 (0-100)
Time sec. (5%-95%) 0.19 (0.14-0.24) 1.37 (0.78-1.89) 11.51 (5.35-23.66)
Iterations num. (5%-95%) 34 (28-45) 50 (33-77) -

Table 3: Comparison of performance of MSR3-Fast for `1 regularizer vs glmmLasso. MSR3-Fast
executes 5 times faster in wall time and has higher accuracy of selecting correct covariates.

4.2 Experiments on Real Data

In this section we validate the MSR3-empowered `0-regularized mixed-effect model (R(x) = δ‖x‖0≤k

from Table 1) by using it to identify the most important covariates in real data on relative risk
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Figure 5: Validation of Random Feature Selection for Bullying Data from GBD 2020. The panel
evaluates each algorithm’s choice against expert knowledge. The algorithm picks seven historically
significant covariates and two historically insignificant, for the model selected using the BIC criteria.
See the Appendix C.3 for covariates description and assessment of significance.
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of anxiety and depressive disorders depending on the exposure to bullying in young age10. This

research has been a part of Global Burden of Diseases (GBD) study for the last several years.

The end goal is to estimate the burden through disability adjusted life years (DALYs) (Murray

and Acharya, 1997) of major depressive disorder (MDD) and anxiety disorders that are caused by

bullying. For this risk factor, the exposure is primarily concentrated in childhood and adolescents,

but the risk for MDD and anxiety disorders is anticipated to continue well into adulthood. This

elevated risk is, however, expected to decrease with time as other risk factors come into play in

adulthood (unemployment, relationship issues, etc.). To accommodate this, the research team uses

the models which estimate the relative risk (RR) of MDD and anxiety disorders among persons

exposed to bullying depending on how many years it has been since the first exposure. Studies

informing the model were sourced from a systematic review and consist of longitudinal cohort

studies. They measure exposure to bullying at baseline, and then follow up years later and assess

them for MDD or anxiety disorders. The detailed description of the covariates can be found in
10Institute for Health Metrics and Evaluation (IHME). Bullying Victimization Relative Risk Bundle GBD 2020.

Seattle, United States of America (USA), 2021.
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Appendix C.3.

The feature selection process is illustrated on Figure 5. Here, the BIC criterion from Jones

(2011) was used to select k, which suggests k = 9. The selected covariates (intercept, time,

cv_low_bullying, cv_multi_reg cv_b_parent_only, cv_anx, percent_female) are known

as important and were used in the analysis in previous years of GBD. The algorithm also selects

cv_baseline_adjust and cv_or, which were not used before. The cv_or variable describes

whether the estimate is a relative risk or odds ratio; the selection of this variable suggests a closer

look at the data reporting mechanisms across studies. For example, there is an active literature on

converting estimates between relative risks and odds ratios Grant (2014); Wang (2013).

4.3 Software Implementation

To ensure reproducibility of this research, all new algorithms have been implemented as a part

of the pysr311 library. This library implements functionality for fitting linear mixed models and

selecting covariates. The user interface was designed to be fully compliant with the standards12 of

sklearn library to minimize learning time.

5 Discussion

In this paper, we developed and implemented a variable selection framework for LMEs based on

the PGD algorithm applied to an optimal value function associated with the likelihood function

L which uses second-order information on L. The method has the ability to handle both convex

and nonconvex regularizers. Our numerical studies show that the MSR3 relaxation (11) improves

the covariates selection accuracy of a wide group of popular sparsity-promoting regularizers. We

introduce a modification of MSR3, MSR3-fast, to improve numerical efficiency while maintaining

the improved accuracy of MSR3. As in Zheng et al. (2019), we found that SR3 formulations yield

more accurate results than the original problem that the SR3 relaxes, likely because the auxiliary
11Available at https://github.com/aksholokhov/pysr3
12https://scikit-learn.org/stable/developers/develop.html
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variables w help to estimate the sparse support. The experiments in this paper show that the

phenomenon extends to LME models, and deserves further study.

Since the LME relaxation does not have a closed form, we used an interior method to evaluate

the requisite value function. The more efficient version of the algorithm (MSR3-fast) interleaves

the interior point iterations with updates of the auxiliary variables, and this method was chosen

for the open source library pysr3. Numerical experiments on synthetic data showed that the

MSR3 approach for variable selection extends regions of hyper-parameter values where the highest

accuracy is achieved, making it easier for information criteria to select the best model. The variable

selection library for the accelerated method MSR3-fast is much faster than currently available

software, and allows the MSR3 approach to be easily applied to a range of regularizers that have

computationally efficient prox operators.

The main analytic limitations of the proposed method stem from a lack of an analytical

representation of the value function in the MSR3 relaxation for LMEs (11). However, the MSR3

framework (Algorithm 2) incorporates global variational information about the likelihood L into

the PGD algorithm whereas the standard application of the PGD algorithm (Algorithm 1) only

uses a local linear approximation to L at each iteration. This difference reveals itself in both the

increased speed and accuracy of the MSR3 approach on this class of problems. In contrast to SR3

in linear regression settings, where the Conjugate Gradient (CG) method can be efficiently used

to evaluate the value function (see e.g. Baraldi et al. (2019)), the nonlinear optimization problem

required for LMEs is more difficult. Although the use of Hessian information makes each iteration

computationally efficient, it limits the size of the problems to which the method can be applied.

On the other hand, switching to first-order methods for the inner problem inside the relaxation

may be prohibitively slow. A potential path to balance these limitations is to develop efficient

upper-bounding models for the value function that can be evaluated more efficiently.

The suggested methodology can be expanded to a wider class of models. In particular, one can

extend MSR3 to the setting of non-linear mixed-effect models or generalized linear mixed models,

which are known to be challenging setups for covariate selection tasks. Both of these problem
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classes require optimizing highly nonlinear objective functions that arise when we consider marginal

likelihoods. The SR3 approach may allow new avenues for more efficient strategies, analogous to

what was done here for LMEs.
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A Definitions

Definition 1 (Epigraph and level sets). The epigraph of a function f : Rn → R∪{∞} is defined as

epi f = {(x, α) : f(x) ≤ α}. For a given α, the α-level set of f is defined as levαf = {x : f(x) ≤ α}.

Definition 2 (Lower semicontinuity and level-boundedness). A function f : Rn → R ∪ {∞} is

lower semicontinous (lsc) when epi f is closed, and level-bounded when all level sets levαf are

bounded.

Definition 3 (Convexity). A function f : Rn → R ∪ {∞} is convex when epi f is a convex set.

Equivalently,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ dom f, λ ∈ (0, 1),

where dom f := {x ∈ Rn | f(x) < +∞}.

Definition 4 (Weak convexity). A function f : Rn → R∪ {∞} is η-weakly convex f(·) + η
2
‖ · ‖2 is

convex.
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B Additional derivations

B.1 Derivatives of Marginalized Log-likelihood for Linear Mixed Models

For conciseness, let us define the mismatch ξi = Yi −Xiβ. The loss function (3) takes the form

L(γ) =
m∑
i=1

1

2
ξTi (Ωi(γ))−1ξi +

1

2
log det(Ωi(γ)).

The derivative of the objective w.r.t γj, the j’th diagonal element of the matrix Γ is

∂ξTi Ω−1
i ξi

∂Γjj
= Tr

[(
∂ξTi Ω−1

i ξi
∂Ωi

)
∂Ω

∂Γjj

]
= Tr

[(
−Ω−1

i ξiξ
T
i Ω−1

i

)T
Zi

∂Γ

∂Γjj
ZT
i

]
= −(Zj

i

T
Ω−1
i ξi)

2.

Similarly,

∂ log det Ωi

∂Γjj
= Tr

[(
∂ log det Ωi

∂Ωi
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∂Ωi

∂Γjj

]
= Tr

[
Ω−1
i Zj

iZ
j
i

T
]

= Zj
i

T
Ω−1
i Zj

i .

Using the symmetry of Ωi, we have

∇γ L(β, γ) =
m∑
i=1

diag
(
(Zi

TΩ−1
i Zi)

)
− (Zi

TΩ−1
i ξi)

◦2, (19)

where ◦ denotes the Hadamard (element-wise) product and diag (·) takes a square matrix to its

diagonal. Using the Cholesky decomposition Ωi = LiL
T
i we can calculate (19) using only one

triangular matrix inversion:

∇γ L(β, γ) =
m∑
i=1

[∑
rows

(
L−1
i Zi

)◦2 − [(L−1
i Zi)

T (L−1
i ξi)]

◦2

]
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Notice, that the loss function (3) and the optimal β can also be effectively computed using Cholesky:

L(γ) =
m∑
i=1

1

2
ξTi (Ωi(γ))−1ξi +

1

2
log det(Ωi(γ)) =

m∑
i=1

1

2
‖L−1

i ξi‖2 −
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j=1

log [L−1
i ]jj

βk+1 = argmin
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The Hessian w.r.t. γ is derived below:
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B.2 Derivation of Selected Proximal Operators from Table 1

SCAD For a scalar variable x ∈ R, SCAD-regularizer is defined as

r(x) =


σ|x|, |x| ≤ σ

−x2+2ρσ|x|−σ2

2(ρ−1)
, σ < |x| < ρσ

σ2(ρ+1)
2

, |x| > ρσ

To evaluate the proxαr operator we need to solve the following minimization problem:

min
x
r(x) +

1

2α
(x− z)2

For α = 1, the solution was derived by Fan (1997). Here we extend it for an arbitrary α. To

identify the set of stationary points {x∗} of a non-smooth function f(x), we the optimality condition

0 ∈ ∂xf(x∗)

where ∂xf(x) denotes a sub-differential set of f at the point x. For the prox problem, we get

0 ∈ 1

α
(x∗ − z) + ∂r(x)x=x∗

Since r(x) is piece-wise defined the precise value of ∂r(x)x=x∗ will depend on x∗:

1. Let 0 < x∗ ≤ σ, then we have ∂r(x)x=x∗ = {x∗} and so x = z − σα, z ∈ [σα, σ + σα].

2. Let −σα ≤ x∗ < 0, then we have ∂r(x)x=x∗ = {−x∗} and so x = z+σα, z ∈ [−σ−σα,−σα].

3. Let x∗ = 0, then ∂r(x)x=x∗ = [−1, 1], which yields 1
α

(x∗ − z) ∈ −σ[−1, 1]⇒ z ∈ [−σα, σα].

4. Let σ < x∗ < ρσ, then r(x)x=x∗ = −x∗2+2ρσx∗−σ2

2(ρ−1)
, which gives us 1

α
(x∗− z) = x∗−ρσ

ρ−1
. To ensure

that the stationary point is indeed a minimizer, we need to ensure that 1
α
− 1
ρ−1

> 0⇒ α < ρ−1.

Rearranging the terms we get x∗ = (ρ−1)z−λρσ
ρ−1−α ⇒ z ∈ [σ + ασ, ρσ].
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5. Let −ρσ < x∗ < −σ, then, similarly to the previous case, we get 1
α

(x∗ − z) = x∗+ρσ
ρ−1

.

Rearranging the terms to express x in terms of z we get: x∗ = (ρ−1)z+λρσ
ρ−1−α ⇒ z ∈ [−σ−ασ,−σ].

6. Finally, when |x∗| ≥ σρ we have ∂r(x)x=x∗ = {0} and so x∗ = z, |z| ≥ σρ. Bundling all six

cases together, we have

proxαr(z) =


sign(z)(|z| − σα)+, |z| ≤ σ(1 + α)

(ρ−1)z−sign(z)ρσα
ρ−1−α , σ(1 + α) < |z| ≤ max(ρ, 1 + α)σ

z, |z| > max(ρ, 1 + α)σ

(20)

The middle branch is active only when ρ > 1 + α. One special case of this is when α = 1,

and then (20) recovers the classic result by Fan and Li (2001).

To get proxαr+δR+
(z) from proxαr(z) we only need to notice that (1) the minimizer x∗ of

min
x
r(x) + δR+ +

1

α
(x− z)2

can never be negative, and that (2) when the minimizer x∗ is exactly zero we get:

1

α
(x∗ − z) ∈ −∂(r(x)|x=x∗ + δR+(x)|x=x∗) ⇒ z ∈ [−∞, σα]

A-LASSO A-LASSO regularizer is defined as r(x) = w|x| where w = 1/|x̂| with x̂ the solution

of a non-regularized problem (Zou (2006)). The derivation of the proximal operator of A-LASSO

nearly matches the steps 1, 2, and 3 that of SCAD above. We wish to evaluate minxw|x|+ 1
2α

(x−z)2

as a function of z. The sub-differential optimality criterion yields 0 ∈ 1
α

(x∗ − z) + w∂|x|.

1. Let 0 < x∗, then we have ∂r(x)x=x∗ = {x∗} and so x∗ = z − αw, z > αw.

2. Let x∗ < 0, then we have ∂r(x)x=x∗ = {−x∗} and so x∗ = z + αw, z < −αw.

3. Let x∗ = 0, then ∂r(x)x=x∗ = [−1, 1], which yields 1
α

(x∗ − z) ∈ [−w,w]⇒ z ∈ [−αw, αw].
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Combining all cases together we get proxαr(z) = sign(z)(|z| − αw)+. Finally, proxαr+δR(z) can be

derived by noticing that, in this case, (1) x∗ ≥ 0, and (2) when x∗ = 0 the sub-differential changes

due to the presence of the delta-function:

x∗ = 0 =⇒ 1

α
(x∗ − z) ∈ −([−αw, αw] + [−∞, 0]) = [−αw,+∞],

which gives us the condition x∗ = z, z ∈ [−∞, αw].

LASSO LASSO is a particular case of A-LASSO above when w = 1.

`0-regularizer Comparing to its counterparts above, the regularizer R(x) = δ‖x‖≤k(x) is non-

separable. However, the proximal operator of it can still be evaluated analytically:

[proxαR(z)]i =

[
argmin
‖x‖≤k

1

2α
‖x− z‖2

]
i

=


zi, i ∈ Ik

0, otherwise
,

where Ik is a set of k largest in their absolute value coordinates of z. To get proxαR+δR+
we replace

Ik with a set of k largest positive coordinates of z, and set the rest of the coordinates to 0.

B.3 Lipschitz-constant for Likelihood of a Linear Mixed-Effects Model

Recall that a function L(x) is called L-Lipschitz smooth when ‖∇L(x)−∇L(y)‖2 ≤ L‖x− y‖2.

To find the Lipschitz-constant of the function LML (3) we will use the fact that L(x) is L-Lipschitz

if and only if ‖∇2 L(x)‖ ≤ L for any x. Hence, to upper-bound L we need to upper-bound the

norms of Hessians. Assume that ‖yi −Xiβ‖ ≤ η where η > 0. We get
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∥∥∇2 L(x)
∥∥

2
=

∥∥∥∥∥∥∥
∇2

ββ L(β, γ) ∇2
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∇2
γβ L(β, γ) ∇2

γγ L(β, γ)
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∥∥∥∥∥∥∥ ≤
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∥∥∥∥∥∥∥
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i=1
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2
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2

‖Λi‖2
,
η‖Zi‖4

2

‖Λi‖3
2

)
= L

(21)

C Description of Datasets and Experiments

Table 4 below provides a more detailed overview of the relative performance of the algorithms from

Table 2 in the main body.

C.1 Detailed Results from Simulation from Table 2

Regularizer L0 L1 ALASSO SCAD
Model Metric

PGD Accuracy 89 (75-95) 73 (68-82) 88 (72-98) 71 (62-78)
FE Accuracy 88 (70-95) 56 (45-70) 84 (65-100) 53 (45-65)
RE Accuracy 90 (75-100) 91 (80-100) 92 (80-100) 89 (75-100)
F1 88 (74-95) 77 (71-83) 88 (74-97) 75 (68-80)
FE F1 87 (72-95) 67 (62-75) 85 (70-100) 66 (62-72)
RE F1 89 (74-100) 91 (78-100) 91 (78-100) 88 (74-100)
Time 47.47 (20.22-78.43) 43.02 (23.02-67.01) 38.68 (20.52-58.26) 87.24 (40.73-160.34)
Iterations 29662 (20985-43234) 31693 (22361-45603) 28912 (20915-39210) 41724 (26911-69881)

MSR3 Accuracy 92 (75-98) 89 (72-100) 91 (75-98) 92 (75-100)
FE Accuracy 92 (70-100) 85 (60-100) 91 (70-100) 93 (70-100)
RE Accuracy 91 (78-95) 92 (75-100) 91 (75-100) 92 (80-100)
F1 91 (76-97) 89 (73-100) 91 (76-98) 92 (76-100)
FE F1 92 (75-100) 87 (69-100) 92 (75-100) 93 (75-100)
RE F1 90 (74-94) 91 (74-100) 90 (73-100) 91 (75-100)
Time 109.86 (5.49-335.01) 13.74 (3.12-31.69) 81.52 (5.94-232.98) 104.20 (6.46-308.19)
Iterations 1135 (27-3148) 126 (41-314) 895 (81-2262) 1182 (47-3146)

MSR3-fast Accuracy 92 (75-100) 88 (68-100) 91 (75-98) 92 (75-100)
FE Accuracy 92 (65-100) 85 (60-100) 91 (70-100) 94 (75-100)
RE Accuracy 93 (85-100) 91 (75-100) 92 (75-100) 91 (70-100)
F1 92 (76-100) 88 (71-100) 91 (75-97) 92 (74-100)
FE F1 92 (72-100) 87 (69-100) 91 (75-100) 94 (78-100)
RE F1 92 (82-100) 90 (74-100) 90 (74-100) 90 (71-100)
Time 0.36 (0.15-0.57) 0.35 (0.15-0.56) 0.45 (0.18-0.55) 0.45 (0.16-0.77)
Iterations 86 (41-119) 87 (43-123) 115 (45-119) 102 (49-145)

Table 4: Comparison of performance of algorithms
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C.2 Scalability and Sensitivity Analysis

C.2.1 Scalability

We tested the scalability of the new approach (MSR3-fast) compared to proximal gradient descent

and proximal gradient descent with line search. To do this, chose an initially small problem

and we scaled the number of features in the data from 100 to 1000, while scaling the number of

observations proportionally, and tested the time to completion of these three methods, averaged

over 100 replicates. To get the problems of different sizes we assigned A to be 1, 2, 5, 10, 20, 50,

and 100, and for each choice of A we generated 100 random problems. Each problem had 8 groups

of 10A observations each, β and γ had 20A features equally split between 0 and 1. Since MSR3-fast

has a relaxation parameter η, we evaluated MSR3-fast across different η values to also test the

effect of η on timing. For each experiment, we also computed the accuracy of the feature selection,

to make sure that there was no degradation in performance. The results are presented in Tables 5

and 6. In terms of timing, we see a superlinear increase in computational complexity with respect

to the number of features. Nonetheless, MSR3-fast is competitive with the alternatives across

the experiments, and the results are far more accurate. Larger problems could likely significantly

benefit from iterated solvers within the interior point framework.

Algorithm MSR3-Fast PGD PGD-LineSearch
η 0.01 0.05 0.10 0.50 1.00 5.00 10.00
# Features
100 0m 7s 0m 7s 0m 7s 0m 6s 0m 7s 0m 8s 0m 10s 2m 44s 4m 44s
200 0m 36s 0m 39s 0m 36s 0m 39s 0m 39s 0m 49s 1m 8s 7m 43s 11m 28s
400 5m 2s 4m 51s 4m 34s 4m 26s 5m 16s 7m 33s 10m 38s 47m 46s 12m 36s
1000 59m 10s 57m 12s 60m 30s 69m 57s 68m 55s 111m 31s 139m 47s 469m 16s 55m 8s

Table 5: Execution time for feature selection problems of varying sizes. Each cell shows total time,
including grid-search with respect to the sparsity parameter λ. Each cell shows averaged value over
100 randomly-generated problems.
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Algorithm MSR3-Fast PGD PGD-LineSearch
η 0.01 0.05 0.10 0.50 1.00 5.00 10.00
# Features
100 0.94 0.94 0.95 0.94 0.91 0.86 0.84 0.77 0.77
200 0.99 0.99 0.99 0.98 0.98 0.97 0.95 0.78 0.82
400 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.80 0.84
1000 0.99 0.98 0.98 0.98 0.98 1.00 1.00 0.83 0.87

Table 6: Accuracy of feature selection problems of varying sizes. Each cell shows averaged value
over 100 randomly-generated problems.

C.2.2 Closeness to the Central Path for IP

The τ parameter of MSR3-fast controls how close the interior point method gets to the central

path before taking a prox-gradient step. This is a heuristic parameter in the algorithm, and to

understand its impact we tested the sensitivity of the execution time and accuracy for a problem

with 200 features for four selections of relaxation parameter η. The problems were identical to

those from the second row of Table 5. The results are reported in Tables 7 and 8. Neither time nor

accuracy were affected by τ across the levels of η.

Algorithm MSR3-Fast
η 0.01 0.10 1.00 10.00
τ
0.1 0m 41s 0m 40s 0m 41s 1m 12s
0.3 0m 35s 0m 36s 0m 38s 1m 1s
0.5 0m 34s 0m 35s 0m 36s 0m 57s
0.7 0m 33s 0m 33s 0m 35s 0m 59s
0.9 0m 33s 0m 33s 0m 35s 0m 52s

Table 7: Execution time of MSR3-fast for different values of τ - a parameter that controls how
close the IP needs to be to the central path before doing a projection step. Each cell shows total
time, including grid-search with respect to the sparsity parameter λ. Each cell shows averaged
value over 100 randomly-generated problems.
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Algorithm MSR3-Fast
η 0.01 0.10 1.00 10.00
τ
0.1 0.99 0.99 0.99 0.95
0.3 0.99 0.99 0.98 0.95
0.5 0.99 0.99 0.98 0.95
0.7 0.99 0.99 0.98 0.95
0.9 0.99 0.99 0.98 0.95

Table 8: Accuracy of MSR3-fast for different values of τ - a parameter that controls how close the
IP needs to be to the central path before doing a projection step. Each cell shows averaged value
over 100 randomly-generated problems.

C.3 GBD Bullying Data

1. cv_symptoms

• 0 = study assesses participants for MDD or anxiety disorders via a diagnostic interview

to determine whether they have a diagnosis.

• 1 = study uses a symptom scale (e.g., Beck Depression Inventory) and uses an established

cut-off on that scale to determine caseness.

2. cv_unadjusted

• 0 = RR is adjusted for potential confounders (e.g., SES, etc.)

• 1 = RR is not adjusted for potential confounders

3. cv_b_parent_only

• 0 = Child is involved in reporting their own exposure to bullying.

• 1 = Only parent is involved in reporting the child’s exposure to bullying

4. cv_or

• 0 = estimate is a RR

• 1 = estimate is an odds ratio (OR)
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5. cv_multi_reg

• 0 = RR is the ratio of the rate of the outcome in persons exposed vs all persons unexposed

(including persons exposed to low-threshold bullying victimization)

• 1 = RRs are estimated via a logistic regression where exposure represented by 3 categories:

1) No exposure, 2) Occasional exposure, 3) Frequent exposure. The RR for occasional

exposure will exclude participants with frequent exposure, and the RR for frequent

exposure will exclude participants with occasional exposure.

6. cv_low_threshold_bullying

• 0 = uses a ‘frequent’ exposure threshold for classing someone as exposed to bullying.

• 1 = uses an ‘occasional’ exposure threshold for classing someone as exposed to bullying.

7. cv_anx

• 0 = estimate represents risk for MDD

• 1 = estimate represents risk for anxiety disorders

8. cv_selection_bias

• 0 = < 15% attrition at followup

• 1 = > 15% attrition at followup

9. Percent_female

• Indicates % of sample in estimate that are female.

10. cv_child_baseline

• Indicates whether mid-age of sample is above or below 13.

Covariates 2, 3, 5, 6, 8 have been statistically significant in past models.
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