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Abstract—To achieve a line rate in the high-speed environment
of modern networks, there is a continuing effort to offload net-
work functions from software to programmable hardware (HW).
Although the offloading effort has led to greater performance,
it brings difficulty in the verification of timing-related network
functions (Time-NFs) as well. Time-NFs use numerical timing
values to perform various network tasks. For example, conges-
tion control algorithm BBR uses round-trip time to improve
throughput. Errors in Time-NFs could cause packet loss and poor
throughput. However, verifying Time-NFs in HW often involves
many clock cycles that can result in an exponentially increasing
number of test cases. Current verification methods either do not
scale or sacrifice soundness for scalability.

In this paper, we propose an invariant-based method to
improve the verification efficiency without losing soundness. Our
method is motivated by an observation that most Time-NFs
follow a few fixed patterns to use timing information. Based on
these patterns, we develop a set of easy-to-validate invariants to
constrain the examination space. According to experiments on
real Time-NFs, our method can speed up verification by 7 times
on average without losing the verification soundness.

Index Terms—Formal Verification, Programmable Hardware,
Network Functions

I. INTRODUCTION

There is an ever-rising trend to offload network functions
from software (SW) to programmable hardware (HW) to cater
for multi-gigabit networks nowadays. The offloading practice
has shown higher throughput and lower latency in current stud-
ies, such as Tonic [1], NetFPGA [2], and Scalable TCP/IP [3].
Therefore, this new HW-based architecture gradually becomes
the backbone of modern clouds, such as Azure SmartNIC [4],
and AWS F1 [5].

Although the HW offloading improves the performance
of network applications, it brings up the difficulty to ver-
ify timing-related network functions (Time-NFs), which are
ubiquitous at different layers of network stacks. Time-NFs
use numerical timing values to carry out tasks. For example,
congestion control algorithm BBR operates on an 8-RTT
cycle [6]. TCP uses RTT to set retransmission time [7].
Pathload uses one-way delays (OWDs) to estimate network
bandwidth [8]. Errors in Time-NFs could degrade throughput
or cause severe packet loss [9], [10]. Therefore, before the
deployment of a new Time-NF, engineers want to fully verify
its correctness. However, the verification of HW-based Time-
NFs is difficult.

The verification difficulty, named the state-explosion issue,
is caused by the combination of the clock-driven feature

of HW and the long duration of Time-NFs. On the one
hand, the variables of a typical HW program are updated
at every clock cycle. Therefore, the space of test cases is
composed of all possible values at each of the tested clock
cycles. Due to this clock-driven feature, more clock cycles
will exponentially increase the number of test cases [11], [12],
and such verification is indeed an NP-complete problem [13].
On the other hand, HW-based Time-NFs often involve many
clock cycles. The reason is that many Time-NFs take from
microseconds to milliseconds (e.g., TCP retransmission [7],
bandwidth estimation [8]), whereas a high-speed HW runs on a
nanosecond-resolution clock [1], [2]. This timing discrepancy
produces 103 ∼ 106 clock cycles to complete a Time-NF and
raises verification complexity as a result.

The verification methods of complex HW programs can be
classified into black-box testing and white-box testing. The
former is simulation-based, which generates different inputs
at different clock cycles either in a regular order [14] or in
a random order [15]. Although they can quickly examine
concrete test cases of interest, they cannot guarantee the
soundness (i.e., the absence of bugs) of verification. Be-
cause the state-explosion issue produces a lot of possible
test cases, it is impractical for them to exhaust them all
within a reasonable amount of time. To recover the verifi-
cation soundness, researchers propose model checking [16],
[17], [18], [19], a white-box testing method. Model checking
converts the program into a first-order logic formula and its
property (i.e., expected behavior of the program) into another
formula. The way it verifies the property is to try to seek
mathematical relations between the program’s formula and the
property’s formula. Because a mathematical relation usually
covers multiple test cases at one time, model checking is an
effective complement to simulation-based methods. However,
model checking still suffers the state-explosion issue. The
main bottleneck is that the size and complexity of formulas
grow quickly with an increasing number of clock cycles. Large
formulas could make model checking run out of memory.

Because the state-explosion issue produces a large number
of scenarios to test, current methods find it difficult to balance
verification efficiency and soundness. Specifically, simulation-
based methods are fast to check concrete test cases, but they
cannot prove the absence of bugs. Model checking can keep
the verification soundness, but they do not scale with a large
number of clock cycles.

Our work: In this paper, we aim to propose a method that



is more efficient than current methods and keeps verification
soundness in the meantime. In our method, we use invari-
ants as constraints and combine them with model checking.
Invariants [20], [21], [22], [23], [24] are a set of relations
among variables of the program under test. We leverage these
invariants to detect and remove invalid test cases in the first
place, thereby constraining the examination space of model
checking. For example, we plan to check whether a variable
x ≥ 1 within 100 clock cycles, which can be expressed as
x[n] ≥ 1, ∀n ∈ [0, 99]. If an invariant claims that x[n] ≥ 0,
then the verification time can be saved by not checking invalid
test cases in which x[n] < 0. We summarize our method
in Figure 1. There are two steps: generate an invariant and
validate the invariant. If the invariant is valid, then we use it
as a constraint.
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Fig. 1: Overview of Our Method: TINV

However, acquiring a proper invariant to accelerate veri-
fication is challenging since invariant validation also takes
time. In terms of invariant generation, most current methods
tend to produce a large number of candidate invariants but
cannot guarantee their correctness, which makes it time-
consuming to validate those invariants. The reason is that most
methods generate invariants either from polynomial templates,
such as Daikon [24] and DIG [22] or from counterexamples,
such as FSIS [23] and SWISS [21]. These general templates
cover a wide range of invariants. For example, the template
for Paxos [21] can produce several millions of candidate
invariants for just six terms. Second, because most methods
cannot guarantee that invariants are inductive, the validation
of invariants may take as many clock cycles as the verification
of properties itself. Although there are automatic methods to
make invariants inductive [23], [21], they need a long sequence
of counterexamples for invariants refinement.

To address those challenges, we propose a method named
invariants for Time-NFs (TINV) in this paper. To deal with the
challenge of invariant generation, we try to reduce the space

of candidate invariants. Specifically, we build invariants by
using the domain-specific information of Time-NFs instead of
using polynomial templates or counterexamples. Our method
is based on an insight that even though there are various Time-
NFs, most of them share a few common patterns to process
timing information. We identify those implementation patterns
and use them as the basis to build invariant templates. Further-
more, to deal with the long-duration challenge of invariants
validation, we make our invariant templates inductive so that
they can be validated quickly by mathematical induction.

We make the following contributions in this paper.
• We propose a hypothesis that most Time-NFs share three

patterns to process timing information. We build three
invariant templates based on these patterns, and they are
linear-update, bound, and timing-classification templates.
In addition, we make our invariant templates inductive so
that they can be validated efficiently.

• We present TINV, a methodology using invariants as
constraints to efficiently verify HW-based Time-NFs. In
the meantime, our method can preserve the soundness of
verification.

• We evaluate our hypothesis and our method TINV on
a set of 11 real-world Time-NFs of different network
layers. First, we find that all 11 Time-NFs satisfy at least
one of our templates. Second, TINV is 7 times faster on
average than current model checking and invariant-based
methods.

The paper is organized as follows: Section II presents the
background and challenges of HW-based Time-NFs verifi-
cation. Section III presents the proposed method TINV in
which we introduce our three invariant templates and prove
that they are inductive. Section IV analyzes the soundness
and efficiency of our method. Section V reports experimental
results. Section VI summarizes related work, and Section VII
concludes the paper.

II. BACKGROUND AND VERIFICATION CHALLENGES

Time-NFs are widely used at different network layers and
over a variety of time scales. For example, traffic shaping
and rate limiting at network interfaces take microseconds to
control transmission rate. TCP retransmission and precision
time protocol (PTP) take from milliseconds to seconds to im-
prove transmission efficiency and accuracy. However, because
of the high-resolution timing and clock-driven features of HW,
verification of Time-NFs is challenging. The main difficulty
is that the number of test cases exponentially grows with an
increasing number of clock cycles (i.e., the state-explosion
issue).
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Fig. 2: A Black-box View of Rate Limiter



//n-1: previous clock cycle
//n: current clock cycle
always@(posedge clock) begin

case(state[n-1])
wait_pkt: begin
if(pktStart[n-1]==1) begin

state[n]<=snd_pkt;
pktTime[n]<=1;
startCnt[n]<=startCnt[n-1]+1;

end
end

snd_pkt: begin
if(pktEnd[n-1]==1) begin

endCnt[n]<=endCnt[n-1]+1;
if(pktTime[n-1]<Spec-1) begin

delay[n]<=Spec-2-pktTime[n-1];
state[n]<=pkt_delay;

end
else begin

state[n]<=wait_pkt;
if(pktTime[n-1]>Spec-1)

error[n]<=error[n-1]+1;
end

end
else

pktTime[n]<=pktTime[n-1]+1;
end

pkt_delay: begin
if(delay[n-1]==0)

state[n]<=wait_pkt;
else

delay[n]<=delay[n-1]-1;
end

endcase
end

Fig. 3: A White-box View of Rate Limiter (i.e., a source
code snippet of rate limiter written in Verilog). There are
three states: wait pkt denotes the state of waiting for a new
packet, snd pkt denotes the state of sending a packet, and
pkt delay denotes the state of setting the interval between
the current packet and the next packet. In addition, positive
inputs: pktStart and pktEnd denote the start and end of packet
transmission, respectively.

A. Example: Rate Limiter

We use a common Time-NF: rate limiter [25] to detail the
verification challenges. A rate limiter is invented to reduce
burstiness by specifying the inter-packet delay (IPD) between
any two consecutive packets in transmission. Figure 2 presents
a black-box view of a rate limiter where the input is a sequence
of IPDs of incoming packets, and the output is a sequence of
the specified IPDs.

Figure 3 shows the source code or the white-box view of the
rate limiter. If packet transmission time measured by pktT ime
is less than the specified interval Spec, then the program will
delay a packet for some time before sending it out. If pktT ime
exceeds Spec, then the rate limiter is unable to keep IPD to
Spec and increments variable error. In addition, variables
startCnt (endCnt, resp) count the number of packet start
(packet end, resp) in transmission.

Consider a case where N + 1 packets are transmitted, and

there are N IPDs. A correct rate limiter should behave in
this way if startCnt becomes 1 at the ns-th clock cycle,
then it will become N + 1 after N ∗ Spec clock cycles.
Formally, we express this expected behavior or property as
follows (L denotes the total number of clock cycles for which
we run the program. In this example, L = ns + N ∗ Spec):

P : if(startCnt[ns] = 1 ∧ error[L] = 0){startCnt[L] = N + 1}

B. Concepts and Notations

We define concepts and notations below to make our fol-
lowing discussion precise. A HW program can be expressed
as a transition system S : (X, INIT, TR). X denotes the
set of variables in the program. INIT and TR are first-order
logic formulas describing the initial conditions and allowed
transitions, respectively. A state of the system under a certain
clock cycle is an assignment of values to all variables X.
Specifically, an assignment at the n-th clock cycle can be
denoted as x[n]. For example, X and a possible assignment
x[n] can be expressed as follows in the rate limiter program:

X = {state, pktStart, pktT ime, startCnt, pktEnd, delay, endCnt, error}
x[n] = {state[n] = wait pkt, pktStart[n] = 0, pktT ime[n] = 1, pktEnd[n] = 0

startCnt[n] = 0, delay[n] = 0, endCnt[n] = 0, error[n] = 0}

All possible assignments make up an assignment space
(denoted as ASpace). If the total number of clock cycles in a
program execution is L, we have ∀n ∈ [0, L],x[n] ∈ ASpace.

A trace τ of the system S is a sequence of assignments
{x[0],x[1],x[2], . . . }. The length of a trace equals L+1. The
trace τ either satisfies a formula F , denoted F (τ), or falsifies
it, denoted ¬F (τ). In addition, F only takes the assignments
of τ that it needs. For example, INIT (x[0]) means that x[0]
is one of the initial conditions. TR(x[n−1],x[n]) means that
there is a legitimate transition from the assignment x[n − 1]
to x[n] in the system. A trace can be either valid or invalid. A
valid trace satisfies that INIT (x[0]) and for each adjacent pair
(x[n− 1],x[n]) in the trace, we have TR(x[n− 1],x[n]). All
valid and invalid traces make up a trace space TraceSpace.
Specifically, the trace space can be expressed below:

TraceSpace[L] = ASpace× . . .×ASpace︸ ︷︷ ︸
L+1

A system formula SF is a conjunction of INIT and TR.
For example, if we run the rate limiter program with a trace
τ ={x[0],x[1], . . . ,x[L]}, the formula can be expressed as
follows. If SF (τ) is true, then τ is valid.

SF (τ) : INIT (x[0]) ∧ TR(x[0],x[1]) ∧ . . . ∧ TR(x[L− 1],x[L])

Properties P are the expected behaviors that a system
should conform to. To prove that the properties of a system
are valid, we need to check if the condition below is satisfied:

∀τ ∈ TraceSpace[L], SF (τ) → P (τ) (1)

If a trace violates the condition above, then the trace is
called a counterexample, and the properties are invalid.

If a formula F is inductive, it should satisfy the
induction step below. If F is proved valid by mathematical



induction, it should satisfy both conditions below.

InitialStep : ∀x[0] ∈ ASpace, INIT (x[0]) → F (x[0])

InductionStep : ∀n ∈ [1, L], ∀(x[n− 1]× x[n]) ∈ ASpace×ASpace,

F (x[n− 1]) ∧ TR(x[n− 1],x[n]) → F (x[n])

C. Verification Challenges

We apply black-box and white-box verification methods to
the rate limiter and explain the verification challenges.

1) Simulation-based Methods: The simulation procedure
treats the system under test as a black box and stimulates
different input signals to check the property. As shown in
Figure 2, different input signals are different sequences of
IPDs. If there are N incoming IPDs, and each IPD is in the
range [Low,High] (Low < High < Spec), the number of
possible scenarios to check is (High−Low)N . For example,
consider a typical bandwidth estimation scenario where the
bandwidth is between 10Mbps and 1Gbps, the default packet
size is 100 bytes, and N is 100 [8]. Then the range of each IPD
is between 0.8µs and 80µs. If the HW clock period is 10ns,
High−Low is around 8000 ((80µs− 0.8µs)/10ns ≈ 8000).
Thus, the number of all possible test cases can be as large
as 8000100. However, current studies show that checking 1
test case takes 1 micro-second on average in modern simula-
tors [26]. Therefore, covering all cases of the rate limiter can
take years to complete.

2) Model Checking: Model checking treats the system
under test as a white box and analyzes its source code.
This method aims to find mathematical relations or contra-
dictions between the program and its expected behaviors.
As shown in Formula (1), model checking aims to find a
counterexample among all possible traces. If no such trace
exists, then the property P holds. However, it still suffers
the state-explosion issue. The size of TraceSpace grows
exponentially with the number of clock cycles. Unfortunately,
Time-NFs often involve a large number of clock cycles. Follow
the bandwidth example above, even if each IPD takes the
smallest value: 0.8µs, the total number of clock cycles is 8000
(100 IPDs×0.8µs/10ns = 8000), which is larger than most
hardware verification benchmarks [19].

D. Use Invariants as Constraints

Although model checking has the state-explosion issue,
it is generally faster than simulation-based methods due to
highly efficient SMT solvers [27], [28], [29], and it can keep
verification soundness. Because of those advantages, we aim
to improve model checking by applying invariants.

The idea is to use invariants as constraints. Specifically, we
generate a set of invariants I from the program under test.
These invariants can differentiate between valid traces and
invalid traces. Those invalid traces are removed in advance
so that verification speed can be improved:

∀τ ∈ I ∩ TraceSpace[L], SF (τ) → P (τ)

However, it is time-consuming for current methods to
generate invariants as constraints. There are two reasons.

First, the space of candidate invariants is large, and the
candidates’ correctness is not guaranteed. Second, most
methods cannot guarantee that invariants are inductive, so
validating invariants themselves could be as difficult as
verifying properties. As an example, we apply a common
invariant-based method: FSIS algorithm [23] to the rate limiter
program. An invariant of FSIS is a claim that an assignment
is unreachable for all valid traces, such as I1 shown below:

I1 : ∀n ∈ [0, L],¬(delay[n] = Spec∧, . . . ,∧error[n] = 0)

Because any assignment could be set to unreachable,
the size of the invariant candidate space is size(ASpace) =∏

v∈X |valueRange(v)|, and valueRange(v) is the set of all
possible values that v can get. In addition, I1 is non-inductive,
so it requires as many clock cycles as the verification of
properties:

∀τ ∈ TraceSpace[L], SF (τ) → I1(τ)

Therefore, in this paper, we aim to address the difficulties of
invariant-based methods and make them more efficient and
applicable to the verification of Time-NFs.

III. THE PROPOSED VERIFICATION METHOD

Because current methods are hard to balance verification
efficiency and soundness in the verification of Time-NFs, we
aim to propose a method named TINV to achieve both, and
this section presents the details.

A. Overview

The main idea of our method is to use invariants to constrain
the trace space by removing invalid traces so that model
checking can take less time to complete. Invariants are a set of
relations among variables of programs under test. The traces
against those invariants are regarded as invalid traces, and our
method can remove them first before verifying properties.

To deal with the difficulties of current invariant-based meth-
ods discussed in Section II-D, we make two improvements in
our method. First, we explore a smaller invariant space for
Time-NFs verification. Specifically, we exploit the domain-
specific information of Time-NFs. The key insight in our
method is that although there are lots of Time-NFs in different
layers of network stacks, most of them share a few imple-
mentation patterns to process numerical timing information.
We convert those patterns into several invariant templates
and make them become a subset of templates generated by
current methods such as DIG [22], or FSIS [23], so our
space of candidate invariants is smaller. Second, we make our
invariant templates inductive under the condition that those im-
plementation patterns are met so that the invariants generated
by our templates can be validated quickly by mathematical
induction. The definition of an inductive formula is presented
in Section II-B. Below, we first define basic notions and then
elaborate on our method.

Definition III.1. Timing Variable: Timing variables cover
three types of variables. First, a variable counts the number



of occurrences of key timepoints. Second, a variable records a
duration. Third, a variable counts the number of occurrences
that variables of the first two types meet a certain condition.
We use T to denote the set of timing variables of a program.

Example: As shown in Figure 3, endCnt is the first type,
pktT ime is the second type, and error is the third type.

Definition III.2. Timing-Dependent Variable: A variable
whose value can be impacted by a timing variable is called
this timing variable’s dependent variable. In addition, a timing
variable itself is one of its timing-dependent variables.

Example: As shown in Figure 3, error is a timing-
dependent variable of pktT ime.

Our method TINV is presented in Algorithm 1. First, TINV
collects all timing-dependent variables of program S and
stores them in HashMap Tmap. The keys of Tmap are timing
variables T provided by a user, and the values of each key are
the key’s set of timing-dependent variables. Users providing
variables is a common step in invariant-based methods. We use
Slice function [30] to generate Tmap. Next, if any variable of
properties P can be impacted by any timing variable of T ,
TINV stores such timing variable in array Tp. Last, TINV
uses InvGen function to generate invariants and InvV alid
function to validate those invariants. If those invariants are
correct, then TINV uses them as constraints to accelerate
model checking. Otherwise, InvGen function will try another
set of timing variables to generate invariants.

Algorithm 1: TINV Function
// L:total number of clock cycles, P:property
// S:program under test, T:timing variables
Function TINV(L, S, P, T):

Tmap ⇐ Slice(S, T )
Tp ⇐ [ ]
foreach v ∈ getV ar(P ) do

foreach t ∈ Tmap.keys() do
if v ∈ Tmap[t] ∧ t /∈ Tp then

Tp.append(t)

I ⇐ [ ]
while I == [ ] do

// step1: invariant generation
InvGen(Tp, S, I)
if I == [ ] then

break

// step2: invariant validation
InvV alid(L, S, I)

Imerger ⇐ True
foreach Inv ∈ I do

Imerger ⇐ Imerger ∧ Inv

// apply model checking
SF ⇐ get the formula of S for L cycles
return result ⇐
∀τ ∈ TraceSpace[L], SF (τ) ∧ Imerger(τ) → P (τ)

B. Background of Hardware Transitions

This part presents implementation details of TR in HW,
which are the basis for our three implementation patterns and
invariant templates in the next section.

If size(X) denotes the total number of variables in program
S, we can expand TR as a conjunction of each variable’s
transition as follows (∀n ∈ [1, L], ∀i ∈ [1, size(X)], vi ∈ X):

TR(x[n− 1],x[n]) = tr(v1[n− 1], v1[n]) ∧ · · · ∧
tr(vsize(X)[n− 1], vsize(X)[n])

The implementation of vi’s transition: tr(vi[n − 1], vi[n])
or trvi

for short is shown below. It is a set of conditional
functions (denoted as func) within a clock-driven loop [11].
We use size(trvi

) to denote the number of functions in
trvi . These functions are used to update the value of
vi during the transition once their associated conditions
(denoted as cond) are met. We assume that each func
does not equal others, and we use cond(func) to
get the condition of func in our following discussion.

always@(clock edge) begin

cond1 : vi[n] ⇐ func1(v1[n− 1], . . . , vsize(X)[n− 1])

. . .

condsize(trvi
) : vi[n] ⇐ funcsize(trvi

)(v1[n− 1], . . . , vsize(X)[n− 1])

end

trvi
has two features in a HW program. First, there exists

one and only one condition within {cond1, . . . , condsize(trvi )}
that becomes true at a clock cycle. Second, if there is no
change, which is condz : vi[n] ⇐ vi[n − 1] + 0, we have
condz =

∧size(trvi )

k=1(k ̸=z) ¬condk.

C. Invariant Generation

This section explains the function for invariant generation
InvGen. This function is based on our observation that most
Time-NFs follow three implementation patterns to process
timing information, and we derive three invariant templates
from these patterns. We use “pattern(template)” to denote
the pattern that deducts the template. As shown in Algo-
rithm 2, InvGen leverages three templates (LT, BT, and CT)
to generate invariants. Specifically, users select a collection
of timing variables from Tp for a certain implementation
pattern and put them into the pattern’s corresponding template.
Then, the template will generate an invariant. In the following
discussion, we first show an implementation pattern and then
present its associated invariant template. Lastly, we prove that
these templates are inductive if their associated patterns exist
in program S. For easy reading, the patterns and the templates
share symbols, and we omit the always loop sign in trvi

.

Definition III.3. Linear-Update Pattern (pattern(LT)): In
this pattern, a timing variable is updated periodically by
a linear combination of another set of timing variables.
Specifically, for ty, t1, . . . , tk ∈ T , ∀n ∈ [1, L], we



Algorithm 2: InvGen Function
// tplt stands for template
Function InvGen(Tp, S, I):

foreach tplt ∈ [LT,BT,CT ] do
// If the subset has been used for tplt

previously, select another one
varSet ⇐ Users select a subset of Tp for

Pattern(tplt) in S
if varSet ̸= ∅ then

// replace template variables with
varSet

Inv ⇐ tplt(varSet)
I.append(Inv)

express the pattern below (c1, . . . , ck, b are parameters):

trty =


∀i ∈ [1, size(trty )](i ̸= y), (bi ≤ 0),

condi : ty[n] ⇐ ty[n− 1] + bi

condy : ty[n] ⇐ c1 · t1[n− 1] + · · ·+ ck · tk[n− 1] + b

Definition III.4. Linear-Update Invariant Template (LT):

ty[n] ≤ max(c1 · t1[n− 1] + · · ·+ ck · tk[n− 1] + b, ty[n− 1])

Example: As shown in Figure 3, delay is up-
dated by pktT ime in a negative relation. We put
those two variables in the template, and we can get

delay[n] ≤ max(−pktT ime[n− 1] + Spec− 2, delay[n− 1])

Definition III.5. Bound Pattern (pattern(BT)): In this
pattern, there are two linear combinations of timing
variables. And the first one’s change is a bound of
the second one’s change. Specifically, for t1, . . . , tk,
t′1, . . . , t

′
j ∈ T , ∀n ∈ [1, L], we express the pattern below

(c1, . . . , ck, b, c′1, . . . , c
′
j , b

′ are non-negative parameters):

∀cht ∈ {funct − t[n− 1]|funct ∈ trt}, t ∈ [t1, . . . , tk]

∀cht′ ∈ {funct′ − t′[n− 1]|funct′ ∈ trt′}, t′ ∈ [t′1, . . . , t
′
j ]

If(cond(funct1) ∧ · · · ∧ cond(functk)

∧ cond(funct′1) ∧ · · · ∧ cond(funct′j ) = True) :

c1 · cht1 + · · ·+ ck · chtk + b ≥ c′1 · cht′1
+ · · ·+ c′j · cht′j

+ b′

Definition III.6. Bound Invariant Template (BT): The left-
hand combination is an upper bound of the right-hand combi-
nation.

c1 · t1[n] + · · ·+ ck · tk[n] + b ≥ c′1 · t′1[n] + · · ·+ c′j · t′j [n] + b′

Regarding parameters instantiation, users can choose either
to directly assign values to parameters or to solve a system
of equations: {c1 · t1[n] + · · · + ck · tk[n] + b = c′1 · t′1[n] +
· · · + c′j · t′j [n] + b′}. Specifically, we select k + j + 2 pairs
of clock cycles (denoted as (ni − 1, ni), i ∈ [1, k + j + 2])
when we run the program. At any of these pairs, at least one
timing variable should change its value. We sample the values
of timing variables at these k+ j + 2 pairs of clock cycles to
instantiate the parameters. In addition, the selection of clock
cycles should make a unique solution exist in the system of

equations.
Example: As shown in Figure 3, Spec−2 is an upper bound

of delay, so an invariant can be Spec− 2 ≥ delay[n].

Definition III.7. Classification Pattern (pattern(CT)): In this
pattern, the value of a timing variable is sampled periodically,
and these samples are classified into different groups. A set of
timing variables are used to count the number of samples of
each group. Specifically, for cntY, t1, . . . , tk ∈ T , the variable
cntY is used to count the total number of samples, and ti, (i ∈
[1, k]) is used to count the number of samples belonging to
the i-th group. ∀n ∈ [1, L], we express the pattern below:

trcntY =

{
condy : cntY [n] ⇐ cntY [n− 1] + 1

¬condy : cntY [n] ⇐ cntY [n− 1]

trti =

{
condi : ti[n] ⇐ ti[n− 1] + 1

¬condi : ti[n] ⇐ ti[n− 1]

∀i ∈ [1, k], condi → condy

Definition III.8. Classification Invariant Template (CT):

∀i ∈ [1, k], ti[n] ≤ cntY [n]

Example: As shown in Figure 3, endCnt counts the
total number of finished transmission, and error counts
the number of certain transmission in which transmission
time is larger than or equal to Spec, so an invariant can be
error[n] ≤ endCnt[n].

Next, we prove that our three templates are inductive.

Theorem III.1. If pattern(LT) exists, LT is inductive.

Proof. First, if condy = True, then we have ty[n] = c1 ·t1[n−
1] + · · ·+ ck · tk[n− 1] + b ≤ max(c1 · t1[n− 1] + · · ·+ ck ·
tk[n − 1] + b, ty[n − 1]), so LT is true. Second, if condy =
False, then ∃i ∈ [1, size(trty )](i ̸= y), condi = True. Thus,
ty[n] = ty[n− 1] + bi. Because ty[n− 1] + bi ≤ ty[n− 1] ≤
max(c1 · t1[n− 1] + · · ·+ ck · tk[n− 1] + b, ty[n− 1]), LT is
true.

Theorem III.2. If pattern(BT) exists, BT is inductive:

Proof. Assume that c1 · t1[n− 1] + · · ·+ ck · tk[n− 1] + b ≥
c′1·t′1[n−1]+· · ·+c′j ·t′j [n−1]+b′. Because pattern(BT) exists,
the following inequality is true under all valid conditions: c1 ·
(funct1 − t1[n− 1]) + · · ·+ ck · (functk − tk[n− 1]) + b ≥
c′1 · (funct′1 − t′1[n− 1])+ · · ·+ c′j · (funct′j − t′j [n− 1])+ b′.
The parameter-wise sum of these two inequalities is BT, so
BT is true.

Theorem III.3. If pattern(CT) exists, CT is inductive:

Proof. Assume that ∀i ∈ [1, k], ti[n − 1] ≤ cntY [n − 1]. If
condx = True, then ti[n] = ti[n − 1] + 1, and cntY [n] =
cntY [n− 1]+ 1, so ti[n] ≤ cntY [n]. If condx = False, then
ti[n] = ti[n− 1], and cntY [n] could be either cntY [n− 1] or
cntY [n− 1] + 1. In both cases, ti[n] ≤ cntY [n].



Algorithm 3: InvValid Function
Function InvValid(L, S, I):

Ireturn ⇐ [ ]
foreach Inv ∈ I do

error ⇐ Check(L, S, Inv)
if error == 0 then

Ireturn.append(Inv)

I ⇐ Ireturn

SubFunction Check(L, S, Inv):
[X, INIT, TR] ⇐ S
InitialStep ⇐
∀x[0] ∈ ASpace, INIT (x[0]) → Inv(x[0])
InductionStep ⇐
∀n ∈ [1, L], ∀(x[n− 1],x[n]) ∈ ASpace×ASpace,
Inv(x[n− 1]) ∧ TR(x[n− 1],x[n]) → Inv(x[n])
if InitialStep ∧ InductionStep then

return 0

else
return 1

D. Invariant Validation

To efficiently validate the correctness of invariants, we use
a method named mathematical induction instead of examin-
ing all clock cycles. As shown in Section II-B, a typical
HW program has two parts: initial condition (INIT ) and
transition condition (TR). The initial condition describes the
program state before the first clock cycle, and the transition
condition describes state transitions between two consecutive
clock cycles. Valid invariants should satisfy two conditions in
mathematical induction: 1. Invariants are correct in the initial
condition. 2. If invariants are correct at the previous clock
cycle, then they should still be correct at the current clock
cycle. These conditions are presented in Check subfunction
of Algorithm 3. The advantage of this induction method is that
it only needs to examine two conditions instead of traversing
all clock cycles, which can avoid the state-explosion issue.
However, only inductive invariants can be validated by this
method, but many invariants generated by current methods
are non-inductive. In contrast, TINV can generate inductive
invariants if those three patterns exist in the program.

IV. ANALYSIS OF OUR METHOD

In this section, we first prove the soundness of our method,
then we compare the efficiency of our method with pure model
checking and related invariant-based methods.

A. Soundness Analysis

We prove the theorem below that if our method TINV
reports that a property P holds in a system formula SF , then
P actually holds in SF .

Theorem IV.1. If ∀τ ∈ TraceSpace[L], SF (τ) → I(τ) and
I(τ) ∧ SF (τ) → P (τ), we have SF (τ) → P (τ).

Proof. We apply logic conversion below:

set Pre = (SF (τ) → I(τ)) ∧ (I(τ) ∧ SF (τ) → P (τ))

∵ SF (τ) → I(τ) = I(τ) ∨ ¬SF (τ)

∵ I(τ) ∧ SF (τ) → P (τ) = ¬I(τ) ∨ (¬SF (τ) ∨ P (τ))

∴ Pre = (I(τ) ∨ ¬SF (τ)) ∧ (¬I(τ) ∨ (¬SF (τ) ∨ P (τ)))

= (¬SF (τ) ∨ P (τ)) ∨ (¬I(τ) ∧ ¬SF (τ))

set Post = SF (τ) → P (τ) = ¬SF (τ) ∨ P (τ)

if I(τ) = True : Pre = (¬SF (τ) ∨ P (τ)) → Post

else : Pre = (¬SF (τ) ∨ P (τ)) → Post

B. Efficiency Analysis

We first compare our invariant-based method TINV with
non-constraint model checking, then we compare TINV with
related invariant-based methods.

Theorem IV.2. Using invariants as constraints is more effi-
cient than non-constraint model checking.

Proof. Both methods aim to prove the absence of bugs, which
means that they need to examine all traces. Because using
invariants can reduce the trace space, it is more efficient.
Specifically, if we run a system S for L clock cycles, the trace
space of non-constraint model checking is TraceSpace[L].
If we use a set of invariants I , the trace space is I ∩
TraceSpace[L] ⊆ TraceSpace[L].

We compare our method TINV with the polynomial-
template method [22] and the counterexample-template
method [23]. Our method is more efficient from two aspects.
First, our invariant space is smaller, which is better in the
worst case that all candidate invariants are examined before a
valid one is found. Second, our method can make invariants
inductive, which makes invariant validation scalable with an
increasing number of clock cycles. We present the first aspect
here, and the second aspect is detailed in Section III-C.

Definition IV.1. Invariant Space of Polynomial Template:
We use Te to denote the set of terms over X that
can appear in polynomials with maximum degree d
(d ≥ 1). Because variables can appear either in the
form of the previous clock cycle: x[n − 1] or the form
of the current clock cycle: x[n], the total number of
terms in Te, denoted as size(Te), is

(
2·size(X)+d

d

)
[22].

The expression of the space is shown below:

∀i ∈ [1, size(Te)], tei ∈ Te, c1 · te1 + · · ·+ csize(Te) · tesize(Te) ≥ 0

Theorem IV.3. The invariant space of TINV is smaller than
that of polynomial template.

Proof. TINV reduces the invariant space of polynomial tem-
plate from three aspects. First, TINV constructs invariants
from T , and T ⊆ X. Second, TINV sets the degree d = 1.
Third, each variable in TINV only appears in the form
of one clock cycle. Therefore, the term space of TINV is(
1·size(T)+1

1

)
, which is smaller than

(
2·size(X)+d

d

)
.



Definition IV.2. Invariant Space of Counterexample Tem-
plate: A candidate invariant of the counterexample template
is a claim that an assignment is unreachable for all valid
traces. Because any assignment could be set to unreach-
able, the size of the invariant space is size(ASpace) =∏

v∈X |valueRange(v)|. We use valueRange(v) to denote
the set of all possible values that can be assigned to the
variable v.

Theorem IV.4. The invariant space of TINV is not larger than
that of counterexample template.

Proof. TINV only uses T to construct invariants, so the size
of the invariant space of TINV is

∏
t∈T |valueRange(t)|.

Because T ⊆ X, the size of the invariant space of TINV
is not larger than

∏
v∈X |valueRange(v)|.

V. EVALUATION

In this section, we aim to compare TINV to current veri-
fication methods and examine whether real-world Time-NFs
match our templates.

A. Experimental Setup

Test Suite. To evaluate TINV, we apply it to a test suite
of HW-based Time-NFs from four sources: our implemen-
tation of a bandwidth estimation function (bwe) based on
Pathload [31], TCP/IP Stack developed by Sidler et al. [3],
Limago 100-GbE network stack [25], and a comprehensive
collection of multi-gigabit NFs organized by Forencich et
al. [32]. The reason to choose these four sources is that they
can cover different layers of TCP/IP stack. Specifically, the
first three sources cover the application and transport layers,
and the last one covers the Ethernet and physical layers. The
source code of TINV is also in [31].

Setup. All experiments are conducted on a 16-core machine
with Intel Xeon-E5 CPU processors at 3.70GHz, with 64GB of
memory, and running Ubuntu 2020.4 LTS with the Linux ker-
nel 5.4. For simulation, we use ModelSim version 21.1.1 [33].
For model checking, we use Yosys [34] to compile programs
into SMT formulas, and we use a mainstream solver: Yices
version 2.2.1 [28] to process those formulas. We compare
TINV with a counterexample-based method: FSIS [23] and a
polynomial-based method: DIG [22] in terms of performance.
TINV and DIG require a user to provide a group of variables,
and FSIS selects all variables by default.

B. Comparison with Prior Work

Table I summarizes the results of running TINV on the test
suite and its performance comparison with current verification
methods. The invariant-based methods (FSIS, DIG, and TINV)
perform verification in three steps: invariant generation (step
1), invariant validation (step 2), and model checking with
invariants (step 3). The sum of the time of these three steps
is the total verification time of invariant-based methods, and a
good invariant-based method should make the sum less than
the time of model checking without invariants (baseline). In
our experiments, step 1 of these three methods takes less than

five seconds, which is negligible compared to the other two,
so we omit step 1 and only record the time of the other two
steps in the format “step 3|step 2”. Furthermore, our important
findings are presented below.

Invariants as Constraints. First, using invariants as con-
straints can effectively reduce the verification complexity. In
the experiments, we use the number of boolean propagations
(“Propa”) of solvers to indicate the verification complexity,
since the number has a positive correlation with the number
of traces in the verification. The “Propa” entries shown in three
invariant-based methods (i.e., FSIS, DIG, and TINV) represent
the number of boolean propagations of step 3. By comparing
the “Propa” entries between model checking without invariants
and the other three invariant-based methods, we find that the
latter ones have fewer propagations and less verification time.
For bwe as an example, TINV reduces “Propa” by 30 times
and makes verification 60 times faster.

Inductive Invariants. Second, one of the main advantages
of TINV is that it can generate inductive invariants so that
the validation of these invariants is fast. This advantage is
useful when TINV’s invariants are less efficient than that of
other methods. For example, in the experiments of close-
timer, although DIG spends less time on step 3 than TINV,
DIG needs much longer time to validate its invariant (step 2)
because the invariant is not inductive. FSIS has a refinement
procedure to make its invariants inductive, but it needs long
time to analyze a sequence of counterexamples. Therefore,
this advantage makes TINV stand out in the competition of
the total time.

Efficiency. Third, although TINV can improve the verifi-
cation efficiency of model checking, the variance of the im-
provement is large. For example, TINV makes the verification
of bwe 60 times faster compared to model checking without
invariants, and TINV only improves the verification efficiency
of close-timer by 3 times. The efficiency improvement may
depend on many factors, such as the relations between prop-
erties and invariants, and the program size. Further research
is needed.

C. Distribution of Templates

We check how many programs in the test suite match
our templates. The distribution of our three templates among
these 11 programs is shown in Figure 4. We find that all
programs satisfy at least one of our templates. We also find
that BT spreads over Time-NFs of all different layers, LT
often appears in Time-NFs that focus on packet transmission,
and CT appears in Time-NFs that classify different actions
under different conditions. For the details of invariants and
properties, please refer to [31].

VI. RELATED WORK

For network verification, there is a rich body of work for
verifying stateless and stateful networks. Veriflow [35] and
header space analysis [36] verify forwarding behaviors of
stateless networks. More recent work such as NetSMC [37]
and VMN [38] target the verification of stateful NFs. Because



Source Program Sim Model Check (Baseline) FSIS [23] DIG [22] TINV
Time(s) Time(s) Propa Time(s) Propa Time(s) Propa Time(s) Propa

[31] bwe ⟳ 7493 2.88 · 1010 5692|6358 2.14 · 1010 121 | 12 8.38 · 108 125 | <1 9.82 · 108

[3]

iperf-udp ⟳ 5965 2.18 · 1010 5153|5364 2.11 · 1010 2316|5074 1.12 · 1010 1307 | <1 9.2 · 109

retran-timer ⟳ 4412 2.07 · 1010 4182|4220 2.04 · 1010 2106|4212 1.05 · 1010 882 | <1 6.4 · 109

probe-timer ⟳ 4097 2.03 · 1010 3552|3871 1.74 · 1010 2102|3856 1.05 · 1010 543 | <1 3.4 · 109

close-timer ⟳ 4932 2.1 · 1010 4890|4902 2.1 · 1010 1457|4287 9.33 · 109 1644 | <1 9.7 · 109

[25] rate-limiter ⟳ 4837 2.09 · 1010 4621|4922 2.08 · 1010 3003|4765 1.61 · 1010 819 | <1 6.21 · 109

bw-debug ⟳ 2071 1.04 · 1010 1784|1921 9.89 · 109 230| <1 1.57 · 109 230| <1 1.57 · 109

[32]

xgmii-tx ⟳ 2466 1.22 · 1010 2075|2187 1.04 · 1010 730|2261 5.20 · 109 817 | <1 6.21 · 109

rgmii-phy ⟳ 4261 2.05 · 1010 3919|4066 1.99 · 1010 2132|4171 1.09 · 1010 1014 | <1 6.72 · 109

ptp-perout ⟳ ⟳ / ⟳ | ⟳ / 4107 | ⟳ 2.03 · 1010 3832 | <1 1.89 · 1010

ptp-clock ⟳ 10422 8.16 · 1010 9380|10131 7.91 · 1010 2541|9782 1.27 · 1010 2176 | <1 1.09 · 1010

Note: The verification time of FSIS, DIG, and TINV are expressed in the format ‘step 3|step 2’ in their time entries, and “Propa” stands for boolean
propagation of step 3. The meaning of step 2 and step 3 are explained in Section V-B. FSIS and DIG finish running after finding the first valid invariant, and
TINV finishes running after finding a valid invariant generated by any of these three templates: LT, BT, and CT. The symbol ⟳ indicates that the method did
not finish in 4 hours. We set the number of clock cycles in model checking to 1000 for all experiments.

TABLE I: Performance Comparison of Different Methods

4

11

5

LT BT CT

rgmii-phy,

bwe,

probe-timer,

rate-limiter,

close-timer

xgmii-tx,  

rate-limiter,

iperf-udp,

retran-timer

ptp-perout,  ptp-clock,  

rgmii-phy,  rate-limiter,

bw-debug, iperf-udp, retran-

timer, bwe

close-timer, probe-timer, 

retran-timer

Fig. 4: Distribution of Templates

such verification is undecidable, NetSMC considers only one
packet at every state, and VMN abstracts away the order of
packets to recover the decidability. In addition, the work [36],
[39] target the safety properties of networks, such as reach-
ability, and loop-freedom, and some other work [40], [41]
target the liveness properties, such as whitelists of firewalls.
However, most recent work focus on the verification of high-
level network designs, while our work focuses on the low-level
hardware implementation of Time-NFs.

For hardware verification, simulation-based methods [14],
[15] can quickly examine concrete cases but cannot keep
soundness, so recent efforts advance the development of model
checking [16], [17], [18], [19] to fix the unsoundness issue.
Besides the work listed in Section I, there are optimization
techniques trying to improve model checking. One of the ma-
jor optimization types is abstraction [16], [42], which converts
many low-level states into a few high-level abstract states.
However, abstracting numerical values is not proper for Time-
NFs, since the verification of Time-NFs involves numerical
timing values, and abstraction can easily cause a false alarm.
Another optimization technique is to detect variables that stay
constant for most of the time and replace them with constant
values. This technique can reduce examination space [43],

[44]. In addition, the work [11] applies software verification
methods on hardware.

For invariant generation, Daikon [24] uses preset mathemat-
ical templates to generate invariants, and DIG [22] combines
dynamic running traces. One of the advantages of DIG is
that it can generate polynomial invariants and array invariants.
FSIS [23] uses counterexamples to infer inductive invariants
for hardware verification. The work [45] applies interval coun-
terexamples to automatically infer loop invariants. In the field
of distributed systems, SWISS [21] automatically searches for
inductive invariants to prove safety properties, and it uses
counterexamples to speed up invariant searching. Ivy [46]
uses partial invariants provided by users as a starting point.
I4 [20] analyzes invariants on a small number of instances
and generalizes those invariants to an arbitrary number of
instances.

VII. CONCLUSION

This paper describes a method called TINV that uses
invariants as constraints to accelerate model checking. TINV
leverages three timing templates: LT, BT, and CT to build easy-
to-validate invariants. According to our experiments on real-
world Time-NFs, our method can accelerate the verification by
seven times on average and keep the verification soundness in
the meantime. The authors have provided public access to their
code and/or data at [31].
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