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Abstract. Bandwidth estimation (BWE) is a fundamental functional-
ity in congestion control, load balancing, and many network applications.
Therefore, researchers have conducted numerous BWE evaluations to im-
prove its estimation accuracy. Most current evaluations focus on the algo-
rithmic aspects or network conditions of BWE. However, as the architec-
tural aspects of BWE gradually become the bottleneck in multi-gigabit
networks, many solutions derived from current works fail to provide sat-
isfactory performance. In contrast, this paper focuses on the architec-
tural aspects of BWE in the current trend of programmable hardware
(ProgHW) and software (SW) co-designs. Our work makes several new
findings to improve BWE accuracy from the architectural perspective.
For instance, we show that offloading components that can directly affect
inter-packet delay (IPD) is an effective way to improve BWE accuracy.
In addition, to handle the architectural deployment difficulty not ap-
peared in past studies, we propose a modularization method to increase
evaluation efficiency.

Keywords: Bandwidth Estimation, Programmable Hardware, Evalua-
tion

1 Introduction

Bandwidth estimation (BWE) is an essential functionality used in various net-
work fields ranging from cloud applications to congestion control [3,4,33,27,46].
For example, BWE can improve the performance of Hadoop by optimizing the
bandwidth utilization among a group of virtual machines (VMs) [27]. However,
inaccurate BWE can cause packet loss and degraded throughput [46,24]. There-
fore, how to improve BWE accuracy is an ever-lasting research topic.

While researchers and engineers have conducted many studies and eval-
uations of BWE, most of them focus on either the algorithmic designs and
parameters of BWE [44,48,41,42,34] or the impact of network conditions on
BWE [10,42,22], but the architectural optimizations have not been addressed
adequately. Nevertheless, as networks become faster (e.g., 10Gbps, 100Gbps)
and more complex nowadays, the architectural aspects of BWE become increas-
ingly important [31]. Consider time precision as an example. BWE relies heavily
on packet timing measurement. On faster networks, packet transmission time be-
comes shorter, which makes measurement more sensitive to timing errors caused



by interrupt coalescing [35] or OS scheduling [25] of software-based architectures.
In addition, concurrency issues of software-based architectures can also interfere
with BWE accuracy [14].

In the paper, we aim to fill the gap above by systematically evaluating the
architectural design space of BWE, especially in the trend of programmable hard-
ware (ProgHW)/software (SW) co-designs. The comparison between our work
and related works is shown in Figure 1. Recently, one of the major architectural
upgrades is that pure SW-based network stacks have gradually been replaced by
ProgHW/SW co-designs, such as Azure SmartNIC [18], Microsoft Catapult [36]
or AWS F1 [43]. This new ProgHW/SW paradigm can provide a group of de-
sign choices unavailable in the past to improve BWE accuracy in high-speed
networks. Although a few works have used ProgHW to improve timing mea-
surement accuracy [46,19,20], some important questions have not been studied
carefully, and we aim to answer them in the paper. For example, compared with
BWE optimization techniques, what are the gains and costs of ProgHW-based
designs? Considering the variety of BWE components, what are the trade-offs
and cost-efficiencies of different ProgHW/SW combinations?
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Fig. 1: Comparison between Related Works and Our Work

The main cause for the inadequate architectural evaluation is that the evalu-
ation of the ProgHW/SW space is more laborious and challenging than evalua-
tions carried out on pure SW. There are two reasons. First, the evaluation period
of ProgHW/SW often takes much longer time than that of pure SW. Compared
with SW-level compilation, ProgHW-level compilation or ProgHW offloading has
many extra steps, such as netlist synthesis, place and route, and timing, power,
and area constraints. These extra steps are time-consuming. Second, ProgH-
W/SW space provides more combinations than pure SW, which increases the
workload of the architectural comparison. Specifically, for one endpoint, a dif-
ferent BWE algorithm may have different components, and each component can
choose to stay at either ProgHW or SW to make up a different architecture. For
two endpoints, a sender and a receiver can use different architectures to execute
BWE. These diverse combinations increase the number of evaluation cases.

We deal with the ProgHW/SW evaluation challenges by leveraging an insight:
most factors that impact BWE performance can be attributed to a single factor:
inter-packet delay (IPD), and architectures of different BWE algorithms have



many common components related to IPD. Therefore, we classify and study dif-
ferent ProgHW/SW architectures based on how they impact IPD. IPD describes
the difference among packet latencies, which differentiates our classification from
other works that focus on the absolute values of packet latencies [47,21]. In ad-
dition, we modularize the BWE components that process and transmit IPD
information and reuse those modules in different architectures, thereby saving
time from ProgHW-level compilation and reducing evaluation difficulty.

Our contributions are summarized as follows:

– In terms of the evaluation object, we build an IPD-based classification to
systematically evaluate different ProgHW/SW architectures of BWE. Fur-
thermore, we study topics that have not been addressed well, such as hetero-
geneous combinations and the comparison between SW-level and ProgHW-
level optimization techniques. In addition, we make several new findings as
follows:
• If the limited supply of cloud ProgHW only allows one end (sender or

receiver) to be deployed with a new BWE ProgHW/SW configuration,
then deployment on the receiver alone can achieve a similar effect to the
two-end configuration and can only consume half the ProgHW resources
at the same time.

• Although ProgHW/SW designs and pure SW designs have comparable
performance in low-speed networks, the former show much better per-
formance in high-speed networks. Specifically, in a 100Gbps network,
ProgHW/SW designs can improve average IPD accuracy by 45% (max:
64%) and average BWE accuracy by 20% (max: 35%).

• Although offloading modules from SW to ProgHW can have better tim-
ing accuracy, offloading more does not necessarily achieve better per-
formance in BWE. We find that the offloading of modules that directly
update IPD can maximize BWE accuracy.

– In terms of the evaluation methodology, we propose an IPD-modular method
that improves the evaluation efficiency by multiple times.

– We implement BWE modules in ProgHW and make them meet the require-
ments of BWE evaluations and be portable across different architectures.

The paper is organized as follows: Section 2 introduces our motivation and
the background of BWE. Section 3 presents our IPD-based classification of ar-
chitectures. Section 4 presents the implementation details of our modularization.
Section 5 evaluates ProgHW/SW architectural space for BWE. Section 6 sum-
marizes related works and Section 7 concludes the paper.

2 Motivation and Background

In this section, we first present our motivation to evaluate the ProgHW/SW
architectural space of BWE and then introduce the working principles of different
BWE types, in which we show that most BWE algorithms have a close
relation with IPD, which bases our classification and modularization
of ProgHW/SW architectures.



2.1 Motivation

Our motivation to do the ProgHW/SW architectural evaluation can be summa-
rized into three points:

1) As network speed keeps growing, algorithmic optimizations alone do not
meet BWE accuracy requirements anymore, and architectural factors have an
increasing impact. For example, the work [23] suggests a technique of increasing
measurement samples to improve BWE accuracy based on the law of large num-
bers. However, the study [25] shows that this technique can only keep timing
error within a few microseconds in typical Linux architectures, which is not ac-
ceptable in current multi-gigabit speed where packet gaps are at sub-microsecond
level.

2) The prevalence of ProgHW brings up a set of new architectural optimiza-
tions infeasible in the past, such as TCP/IP offloading, or BWE functions of-
floading, but existing evaluations lack a systematic comparison among those new
architectures. For example, Emmerich et al. [17] only analyze kernel-bypass ar-
chitectures. Besides, most evaluations also miss a comparison between ProgHW
designs and traditional BWE optimizations, such as BASS [48].

3) Several topics of ProgHW designs have not been addressed sufficiently
in existing works. First, although a few works leverage ProgHW to improve
packet transmission accuracy [46,19,20], the costs of such practice are inade-
quately discussed. Balancing benefits and costs has practical value at the cur-
rent stage. Compared with SW, developing and deploying BWE algorithms on
ProgHW/SW often take much longer time. For example, we find that compiling
a typical BWE algorithm pathload [23] only takes a few seconds on SW, but
it takes 8-9 hours on a ProgHW/SW architecture to complete. The reason is
that ProgHW compilation does not only need to translate a high-level language
to a netlist but also needs to guarantee the closure of timing, power, and area.
Second, heterogeneous combinations are less-studied where the sender and the
receiver have different architectures. This topic is important because high-end
ProgHW is limited and expensive at the current time [30], and there might not
be enough ProgHWs for both endpoints.

2.2 Bandwidth Estimation Background

Network bandwidth is an attribute of a network path, and it specifies how fast
a user can send data through this path. Bandwidth is useful information, but
it is often hard to obtain from routers due to technical and privacy issues, so
people develop various BWE algorithms that can estimate this information from
endpoints.

This part presents the working principles and classification of major BWE
algorithms. Please refer to Table 1 for definitions of symbols. There are three
metrics for bandwidth: capacity (bw-capa), available bandwidth (avai-bw), and
achievable throughput [24]. Capacity is the maximum rate that a network path
can support. In a real network path, some portion of capacity may be occupied
by cross traffic, then the rest capacity for our usage is called available bandwidth.



Format
Symbol(i)l i denotes the i-th packet and l denotes any of four locations:

sSW (sender’s SW), rSW (receiver’s SW), sHW (sender’s NIC port), and
rHW (receiver’s NIC port)

∆Symbol(i)l Symbol(i+ 1)l − Symbol(i)l
Symbol
t(i)l Measured timepoint of i-th packet at location l
t(i)Rl Real timepoint of i-th packet at location l
tdr(i)l Clock drift at l: t(i)l − t(i)Rl
d(i)SW Measured delay of i-th packet from sender to receiver by SW: t(i)rSW −

t(i)sSW

d(i)HW Measured delay of i-th packet from sender to receiver by HW: t(i)rHW −
t(i)sHW

d(i)R Real delay: t(i)RrHW − t(i)RsHW

IPD(i)l IPD(i)l = ∆t(i)l = t(i+ 1)l − t(i)l
ΘIPD(i)SW IPD(i)rSW − IPD(i)sSW

ΘIPD(i)HW IPD(i)rHW − IPD(i)sHW

n(i)Rs Real delay from SW to ProgHW on sender
n(i)Rr Real delay from ProgHW to SW on receiver

Table 1: Symbols and Notations

While the first two metrics only consider network speed, the achievable through-
put also considers an endpoint’s processing speed and protocols. In a nutshell,
achievable throughput indicates the maximum throughput that a system can
achieve under a given protocol, network speed, and processing speed.

From the perspective of working principles, BWE algorithms can be classified
into the packet-pair type and the packet-train type as shown in Figure 2. The
details of each algorithm in Figure 2 can be found in [25]. The two types differ
in timing features but share a basic idea: a sender sends out a set of packets
with a pre-defined timing feature. If the sending rate exceeds the bandwidth, a
receiver will detect a change in the timing feature when those packets arrive.
BWE algorithms iteratively adjust sending rates to find the turning point where
the change occurs, and the turning point is the estimated bandwidth value.

We first define IPD as follows. Examples of IPD such as IPD(i)sSW and
IPD(i)rSW are shown in Figure 2.

Definition 1. Inter-packet Delay (IPD) is the timing delay between any two
consecutive packets.

For the packet-pair type, a pair of packets are sent out back-to-back or in a
pre-defined IPD value. Then, a receiver captures the receiving IPD and compares
it with the pre-defined IPD to infer bw-capa or avai-bw. The formal expression
is as follows:

Definition 2. A packet-pair BWE algorithm is a function of the difference be-
tween the receiving and sending IPDs. Assume there are n pairs of packets (i.e.,
2×n packets) in transmission, the estimated value BW is as follows:
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Fig. 2: Bandwidth Estimation Classification

BW = f(ΘIPD(1)SW , ΘIPD(3)SW , · · · , ΘIPD(2n− 1)SW )

For the packet-train type, a sequence of packets are transmitted from a
sender to a receiver. For the i-th packet, the difference between its receiving
timepoint t(i)rSW and sending timepoint t(i)sSW is called its delay d(i)SW .
The packet-train type analyzes the change in each packet’s delay to estimate the
bandwidth. This type includes different patterns of probing rate such as constant
rate [23] or exponential rate [38]. The formal expression is as follows:

Definition 3. A packet-train BWE algorithm is a function of changes in packet
delays from the sender to the receiver. Assume there are n packets in transmis-
sion, the estimated value BW is as follows:

BW = f(∆d(1)SW , ∆d(2)SW , · · · , ∆d(n− 1)SW )

where ∀i ∈ [1, n), ∆d(i)SW = IPD(i)rSW − IPD(i)sSW

We observe that the delay change ∆d(i)SW of the i-th packet can be expressed
by the difference between the receiver’s IPD and the sender’s IPD: IPD(i)rSW −
IPD(i)sSW . We can derive this expression by using timepoints as follows:

∆d(i)SW = (t(i+ 1)rSW − t(i)rSW )− (t(i+ 1)sSW − t(i)sSW )

= IPD(i)rSW − IPD(i)sSW

As shown above, there is an important observation that most BWE algorithms
rely on relative timing or changes in timing rather than absolute timing. Fur-
thermore, the relative timing features of both BWE types can be converted into



a unified form: IPD, which motivates our ProgHW/SW architectural evaluation
to focus on IPD rather than absolute timing quantities.

3 Our Classification of Bandwidth Estimation
Architectures

In this section, we first present our IPD-based classification of ProgHW/SW
architectures for BWE. Meanwhile, we explain the functionality of each module
in those architectures. The implementation details of those modules are shown
in Section 4. Then, we analyze the timing context of ProgHW/SW architectures
and explain how to keep IPD accuracy in such context.

According to our investigation of different types of BWE, we have an impor-
tant insight that the factors that impact BWE performance can be attributed to
a single factor: IPD, and architectures of different BWE types share many com-
ponents in common to process and transmit IPD. Therefore, we study different
architectures based on how they impact IPD, and we modularize those common
components to reduce the evaluation difficulty caused by the time-consuming
ProgHW-level compilation. The insight is further discussed in Section 3.2.

3.1 IPD-based Architectural Classification

We identify and modularize common BWE components that process and trans-
mit IPD information, and our classification of different ProgHW/SW archi-
tectures is based on different allocations of those modules. Specifically, there
are three modules for the sender: packet generator, IPD modulator, and IPD
transceiver, and three modules for the receiver: IPD gauge, IPD transceiver, and
IPD processor. In a BWE process, a sender uses an IPD modulator to set pre-
defined timing features, and a receiver uses an IPD gauge and an IPD processor
to measure and analyze the change in those timing features. We will illustrate
those modules by using the traditional SW architecture of type 1.

Type 1 (No IPD Optimization) This type does not involve any specialized
optimization to improve IPD accuracy. One feature of type 1 is that most BWE
modules locate in user space. The traditional SW architecture is a representative
of this type, whose architecture is shown in Figure 3. There are several steps in
a complete procedure of BWE. On a sender, the packet generator generates a
sequence of packets. Then, the sender’s IPD modulator specifies the IPD infor-
mation of packets through a system timer. Next, these packets pass through the
IPD transceiver whose major component is the TCP/IP stack, and they reach
the MAC (Ethernet) TX port. After being transmitted through the network
path, these packets reach a receiver. On the receiver, the IPD transceiver up-
loads IPD information, and then the IPD gauge module measures the IPD of
packets. Lastly, the measured IPD is used by the IPD processor to infer network
bandwidth.
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Type 1 architecture finds it difficult to keep IPD accuracy because of many
timing-noise factors. For the system timer, there is a timestamp counter (TSC)
in the kernel space, which is accessed by timing operations such as the system
call function gettimeofday. On the sender, after sending one packet, the process
keeps polling TSC to wait for a specified IPD. Once that IPD is reached, the
sender timestamps and sends the next packet. On the receiver, once the packet
arrives, the process gets the arrival time by reading the current value of TSC.
The TSC access operation on both ends generates about 1–2 µs timing noise [25].
The IPD transceiver may generate timing noise of several microseconds, and it
covers the TCP/IP stack, PCIe switching, and other transceiving services. The
BWE functions or other daemon services may also disturb the accuracy of the
timing [37]. Because of these inaccuracy factors, it becomes increasingly difficult
for the traditional SW architecture to measure IPD accurately with the trend of
faster network speed and shorter IPD.

Type 2 (IPD Noise Mitigation) The feature of this type is that both IPD
modulator and IPD gauge are still in user space as type 1, but architectures are
improved to mitigate timing noise. There are several choices to do the mitigation:
TCP/IP stack offloading, kernel bypass, or BWE functions offloading as shown
in Figure 4. Both TCP/IP stack offloading and kernel bypass aim to reduce
the number of data copies in packet transmission so that timing is more stable,
and performance is better. The difference between these two is that TCP/IP
offloading moves TCP/IP stack down to ProgHW while kernel bypass moves it
up to user space. TCP/IP offloading has several related works [7,39].

BWE functions offloading, to the best of our knowledge, has rarely been
studied, so we implement our custom version of this architecture by offloading
the packet generator and IPD processor modules down to ProgHW. The im-
plementation details are presented in Section 4. BWE functions offloading is
based on TCP/IP offloading, which means that TCP/IP stack is also offloaded
to ProgHW in the BWE functions offloading architecture.
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Type 3 (IPD HW Modulation) The feature of this type is that both the IPD
modulator and IPD gauge are placed close to NIC port. The purpose of such
placement is to restore IPD information tampered by the timing noise of the
ProgHW-SW transmission path. Specifically, both the IPD modulator and IPD
gauge modules adopt a HW timer rather than a SW timer to improve timing
stability. On the sender, ProgHW modulates the IPD of packets according to
the IPD specification of SW. On the receiver, ProgHW records receiving IPD
and sends the IPD information to SW.

This type uses the combination of stream control signals and the timer of
ProgHW to achieve accurate IPD modulation and gauge [20,16]. Specifically, on
the sender, a HW timer is used to measure the delay of packet transmission.
Then, the delay is compared with a specified IPD. If the delay is smaller, stream
control signals block the following packets until the specified IPD is reached. On
the receiver, a look-up table is dedicated to storing IPD information of packets.
The receiving IPD information is then uploaded to the IPD processor.

3.2 ProgHW/SW Timing Context Analysis

In this part, we analyze the timing context of ProgHW/SW architectures and
provide a criterion to keep IPD accuracy. We first build up a model to summarize
timing-noise factors and then explain how our criterion addresses those factors.

As shown in Figure 6, we use an example of transmitting packets from
sender to receiver to illustrate the ProgHW/SW timing context. Please refer to
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Table 1 for definitions of symbols. Because of timing-noise factors in ProgH-
W/SW, timing measurement is sometimes inaccurate. If a SW-based design
aims to measure delay d(i)R of packets transmission from sender to receiver,
its measured value d(i)SW may differ from the real value d(i)R. Specifically, a
packet is first transmitted from SW to ProgHW and experiences timing noise
n(i)Rs . Then, the sender’s ProgHW sends the packet out and the receiver’s
ProgHW captures it. Lastly, the packet is uploaded to the receiver’s SW and
experiences receiving timing noise n(i)Rr . The difference between the measured
value and real value (i.e., measured error): d(i)SW − d(i)R can be expanded as
(n(i)Rs +n(i)Rr )+ (tdr(i)sSW + tdr(i)rSW ), where n(i)Rs and n(i)Rs are generated
by timing-noise factors such as system scheduling, data copy, and many oth-
ers [32,25]. One thing worth noting is that both n(i)Rs and n(i)Rs are variables,
so they may vary for different packets.

Clock Drift: Another timing-noise factor comes from clock drift such as
tdr(i)sSW or tdr(i)rSW . Because of imperfections and accessing noise in a real-
world timer, there might be a difference between a real-world timer and an ideal
reference timer [15]. In the ProgHW/SW timing context, there are four timers
(a sender’s SW and ProgHW, and a receiver’s SW and ProgHW) and they
usually have different frequencies and accessing manners. Therefore, clock drift
will happen if the four timers are not synchronized with each other. However, it
is difficult to achieve synchronization by traditional methods such as NTP. The
reason is that packet transmission time is nanosecond-level while NTP takes
milliseconds.

Because of timing-noise factors shown in Figure 6, SW timing could differ
from real timing in packet transmission, and it is difficult to make those two the
same. Fortunately, it is unnecessary to keep absolute timing accurate. According
to Definition 2 and 3, major BWE algorithms depend on relative timing values
rather than absolute timing values to carry out estimation. Therefore, the timing
accuracy requirements of both the packet-pair and the packet-train BWE types
are based on relative timing values. Specifically, their requirements shown below
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state that the specified or measured relative timing values are equal to the real
values.

Definition 4. Packet-pair timing accuracy requirement: Assume there are n
pairs of packets (2×n packets) in transmission, the requirement is shown below.

∀i ∈ [1, n], k = 2i− 1 ΘIPD(k)SW = ΘIPD(k)R

Definition 5. Packet-train timing accuracy requirement: Assume there are n
packets in transmission, the requirement is shown below.

∀i ∈ [1, n), ∆d(i)SW = ∆d(i)R

Furthermore, we observe that the timing accuracy requirements of both types
can be converted into a unified form: the accuracy of IPD. For the packet-pair
type, its relative timing value is already IPD. For the packet-train type, its
relative timing value: delay ∆d(i) can be expanded to a function of IPD. This
expansion is shown in Theorem 2. In a nutshell, our IPD-based criterion states
that a ProgHW/SW architecture can meet the timing accuracy requirements of
both types by synchronizing IPD between ProgHW and SW on both sender and
receiver. We formalize our criterion with two theorems shown below.

Assumption 31. The clock jitter in ProgHW is negligible for IPD measure-
ment. Formally, if there are n packets in transmission, then we have

∀i ∈ [1, n− 1], tdr(i+ 1)sHW − tdr(i)sHW = 0

tdr(i+ 1)rHW − tdr(i)rHW = 0

Note that clock jitter is different from clock drift. Clock jitter means temporal
timing variation while clock drift means spatial timing variation. According to
the past study [11], the clock jitter of ProgHW is around several picoseconds,
which accounts for less than 0.1% of IPD measurement.

Theorem 1. ∀i ∈ [1, n], k = 2i− 1, if IPD(k)sSW = IPD(k)sHW and
IPD(k)rSW=IPD(k)rHW , then the Packet-pair timing accuracy requirement
(Definition 4) can be satisfied.



Proof. To satisfy the requirement, we need to prove that ΘIPD(k)SW =
ΘIPD(k)R for all pairs of probing packets. We first expand ΘIPD(k)SW and
ΘIPD(k)R as follows.

ΘIPD(k)SW = IPD(k)rSW − IPD(k)sSW

ΘIPD(k)R = IPD(k)rHW − IPD(k)sHW

+∆tdr(k)sHW −∆tdr(k)rHW

According to Assumption 31, the values of ∆tdr(k)sHW and ∆tdr(k)rHW can
be both zero. Therefore, If IPD(k)sSW = IPD(k)sHW and IPD(k)rSW =
IPD(k)rHW , then ΘIPD(k)SW = ΘIPD(k)R.

Theorem 2. ∀i ∈ [1, n), if IPD(i)sSW = IPD(i)sHW and IPD(i)rSW =
IPD(i)rHW , then the Packet-train timing accuracy requirement (Definition 5)
can be satisfied.

Proof. To satisfy the requirement, we need to prove that ∆d(i)SW = ∆d(i)R for
all probing packets. We first expand ∆d(i)SW and ∆d(i)R as follows.

∆d(i)SW = d(i+ 1)SW − d(i)SW

∆d(i)R = d(i+ 1)R − d(i)R

The One-way delays d(i + 1)SW and d(i)SW can be expressed in the form of
timepoints:

d(i+ 1)SW = t(i+ 1)rSW − t(i+ 1)sSW

d(i)SW = t(i)rSW − t(i)sSW

Therefore, their difference can also be expressed in the form of timepoints:

∆d(i)SW = (t(i+ 1)rSW − t(i)rSW )− (t(i+ 1)sSW − t(i)sSW )

= IPD(i)rSW − IPD(i)sSW

Following the similar deduction procedure and considering Assumption 31, we
can get

∆d(i)R = IPD(i)rHW − IPD(i)sHW

Therefore, If IPD(i)sSW = IPD(i)sHW and IPD(i)rSW = IPD(i)rHW , then
∆d(i)SW = ∆d(i)R.

As shown above, synchronizing IPD between ProgHW and SW is critical to
achieving timing accuracy for different BWE algorithms because of the relative
timing feature of BWE. Architectures of type 3 satisfy the criterion, but type 1
and 2 do not strictly follow the criterion.



4 Implementation of Modules

According to Section 3, different architectures share many modules in common
to process and transmit IPD information, and this section introduces our imple-
mentation details of those modules. We have two requirements for those modules:
(1) they are portable across different architectures, and (2) they are suitable for
BWE evaluations. The IPD transceiver module [7,8] and packet generator [16,40]
of existing works satisfy those requirements, but the IPD modulator, IPD gauge,
and IPD processor do not, so we focus on the last three. We use our IPD pro-
cessor to make up the architecture of BWE functions offloading (type 2), and
we use our IPD modulator and IPD gauge to make up the architecture of IPD
HW modulation (type 3).

4.1 Preliminaries of FPGA

To better understand the implementation details, we present an introduction of
two ProgHWs used in our work: NetFPGA-SUME [50] and Alveo U280 FPGA [2].
FPGA is a widely used ProgHW. NetFPGA-SUME and Alveo U280 are network-
oriented FPGAs for high-speed networking development.

The layouts of NetFPGA and Alveo are presented in Figure 7. Both FP-
GAs use a group of modules to build up specified functionalities. For NetFPGA,
the MAC RX and MAC TX modules transfer packets between a network and a
FPGA while the DMA RX and DMA TX modules transfer packets between a
FPGA and a host computer. Besides, the MAC RX and MAC TX modules have
four copies. The User Data Path module serves as a flexible packet buffer where
users can design their custom functionalities. For Alveo U280, TCP/IP is often
implemented on the Network Kernel module. The CMAC and GT kernels coop-
erate to achieve 100Gbps network speed and they usually operate at 200MHz or
more. The User Kernel module is open for users to create custom designs such
as BWE algorithms.

FPGA designs have two types of communication: the communication be-
tween a host computer and a FPGA, and the communication among modules
on a FPGA. The former uses peripheral component interconnect express (PCIe)
interface while the latter uses Advanced Extensible Interface (AXI). AXI has two
types: AXI-Lite and AXI-Stream. AXI-Lite is used to configure the registers of
each module and AXI-Stream is used to control the transmission of packets (i.e.,
data). The AXI-Lite master module in Figure 7 serves as an arbiter for differ-
ent AXI-Lite signals. For more details on AXI, please refer to [1]. Packets are
buffered in a data structure called first-in&first-out buffer (FIFO), whose control
signals are often combined with AXI-Stream to regulate the start and end of a
new packet.

There are two types of memory resources that are widely used in packet
transmission. The first one is on-chip memory named Block RAM (BRAM),
and the other is external memory resources including high bandwidth memory
(HBM) and Double Data Rate (DDR) memory.
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4.2 Implementation Details

To make modules portable across different architectures, all of these modules
follow a unified interface: AXI. Specifically, we use AXI-Stream to control the
transmission of packets, and AXI-Lite to set parameters, such as sending rate or
packet count.

The IPD processor module has rarely been studied in the context of ProgHW,
and we implement a key BWE function, named pair-wise comparison test (PCT)
to build this module. PCT is used to examine if the BWE sending rate saturates
the available bandwidth of a network path. Specifically, if the ratio approaches
a threshold between the number of receiving IPDs that are larger than sending
IPDs and the total of receiving IPDs, the sending rate is considered to be larger
than the available bandwidth, and a BWE algorithm will begin turning down its
sending rate to avoid network congestion. In addition, we design two counters
on the receiver side. One is used to count the total number of receiving IPDs,
and the other is used to count the number of receiving IPDs larger than sending
IPDs. We compare two counters to check if the PCT condition is satisfied. Fur-
thermore, we use the direct access mechanism in PCIe for IPD transfer between
the host memory and the FPGA board. This way consumes fewer memory re-
sources than creating a dedicated global memory for transfer. Then, we build
up the architecture of BWE functions offloading (type 2) by combining our IPD
processor with the IPD transceiver from the design [7] for NetFPGA-SUME and
from the design [8] for Alveo U280.

For the IPD modulator and IPD gauge, we refer to the design: Combov [20],
and we make two changes to suit BWE evaluations. First, we enlarge the packet



FIFO size of these modules. The default size is 8 packets × 64 bytes, which is not
large enough to hold hundreds of packets in some packet-train BWE algorithms,
such as pathload [23]. Thus, we resize the FIFO to 1000 packets × 1500 bytes
which are larger than the maximum value of most BWE algorithms. Second, to
avoid overflow, we set a proper bit width for both sender’s and receiver’s IPD
arrays. These arrays are used to store sending and receiving IPDs. According to
our study, both the packet-train and the packet-pair types spend less than 30
minutes doing estimation and the default timing precision of two FPGA boards
is 8ns [2,50], which means that the width should be at least 38 bits to store
IPDs (30mins × 60 × 109/8ns < 238). In addition, for the IPD modulator, we
use the read-valid signal of AXI-Stream to make sure that packet transmission
follows the specified IPD. For the IPD gauge, we use the transmission-last signal
of AXI-Stream to record the arrival time of a new packet. We use our imple-
mentation of IPD modulator and IPD gauge to build the IPD HW modulation
architecture (type 3). Besides, we use BRAM to implement packet FIFOs for
packet transmission among FPGA modules.

5 Evaluation

This section presents evaluations of both our IPD-modular evaluation method
and the ProgHW/SW architectural space of BWE. Our ProgHW/SW source
code of the experiments is available at [9]. This work does not raise any ethical
issues.

5.1 Evaluation Environments

We use Alveo U280 FPGA [2] and NetFPGA-SUME [50] to examine different
ProgHW/SW architectures. Alveo U280 FPGA is used for 100Gbps experiments
in Open Cloud Testbed (OCT) [30]) while NetFPGA-SUME is used for less than
or equal to 10Gbps experiments in our local testbed built with mininet version
2.2.2. Specifically, we deploy two Alveo U280 FPGA boards on two VMs of
OCT and each is equipped with 32 Virtual CPU cores and 64GB RAM. We
deploy NetFPGA-SUME on a Dell Precision 3630 machine with Intel Xeon-E5
16 Cores and 64GB RAM. The network topology of NetFPGA-SUME is shown in
Figure 8 where two nodes on the top generate cross traffic and two nodes on the
bottom run BWE algorithms and optionally run other concurrent applications.
The testbed for Alveo U280 is similar to Figure 8 with two differences. First, the
bottleneck link is a Dell Z9100 100G switch. Second, because a user can create
no more than two nodes in OCT, there are no cross-traffic nodes (i.e., no Node2
and Node3 in Figure 8). The Operating system is Ubuntu 2020.4 LTS with the
Linux kernel 5.4. To compile ProgHW source code, we use Xilinx Vivado Design
Suite v2020.1. We choose two representative BWE algorithms: bprobe [13] of the
packet-pair type and pathload [23] of the packet-train type for our experiments.
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5.2 Evaluation of IPD-Modular Method

In this section, we compare the efficiency of our modular evaluation method
against the dedicated evaluation method of past works [42,34]. The dedicated
evaluation method means that we compile every design for every new study
case. In contrast with that, our method converts common components of dif-
ferent BWE algorithms into several modules that can be reusable in different
ProgHW/SW architectures. In this way, if modules of two architectures overlap,
we only need to compile those common modules once and reuse them for the
other architecture. For example, as shown in Section 3, the architectures of BWE
functions offloading and TCP/IP offloading share ProgHW-based TCP/IP stack,
so we only need to compile ProgHW-based TCP/IP once. The compilation time
(hrs: hours) comparison is shown in Table 2. The compilation of IPD modula-
tor and IPD gauge in Combov takes 2 hours. In addition, the main difference
between the packet-pair and the packet-train types is on packet generator and
IPD processor modules, so we spent another 2 hours recompiling these two for
the packet-train type after finishing the packet-pair type.

Summary: The IPD-modular method greatly reduces total compilation time.
Spotting and reusing common components among different BWE designs can
save time from ProgHW recompilation. As the number of studied algorithms
and architectures goes up, the advantage of the IPD-modular evaluation method
can become bigger.

5.3 Evaluation of ProgHW/SW Architectures

Group1 - IPD Accuracy and Cost Effectiveness of Different Architec-
tures: In this group, we evaluate how well different ProgHW/SW architectures
keep IPD accuracy. We use the hardware timestamp functionality in FPGAs to
specify IPD values and set the clock cycle to 8 ns in this experiment. Results



BWE Type Arch Dedicated Eval IPD-Mod Eval

Packet-pair
(bprobe)

BWE Func
Offloading 9 hrs 9 hrs

TCP/IP
Offloading 8 hrs /

Combov 8 hrs 2 hrs

Packet-train
(pathload)

BWE Func
Offloading 9 hrs 2 hrs

TCP/IP
Offloading 8 hrs /

Combov 8 hrs /

Total 50 hrs 13 hrs

(Note: “/" means no need to do recompilation)
Table 2: Evaluation Efficiency Comparison

are shown in Figure 9. We use the formula below to define the IPD measurement
error (IPDerr) where #IPD is the number of measured IPD samples. For each
experiment set, we collect 40 samples. Furthermore, we check the cost efficiency
of each architecture by metrics of offloading workload and ProgHW resources
consumption. ProgHW resources are described by three key metrics: the num-
ber of Look-up Tables (LUTs), Flip-flops (FFs), and BRAMs. The results are
shown in Table 3.

IPDerr =

√√√√ 1

#IPD
·
#IPD∑
i=1

(IPD[i]− IPDactual)2

For both sender and receiver, according to Figure 9, IPD noise mitigation
(type 2) and IPD HW modulation (type 3) have better IPD accuracy than the
pure SW architecture, especially in short IPD (e.g., 120ns). The advantage of
type 2 comes from the kernel-bypass effect, which requires less data copy from
SW to ProgHW. However, this effect cannot completely remove the IPD noise
of systems. Type 3 shows better IPD accuracy than type 2, and the former
can keep IPD error within 1%. The main reason is that accessing the ProgHW
timer is more stable than accessing the SW timer. From the experiment, we find
that IPD restoration is more effective than noise mitigation, and this result is
consistent with our analysis in Section 3.2. In addition, we also find that type 3
does not completely remove IPD measurement errors. This is because the type
3 design needs 1 clock cycle to read the measured IPD to a register. In terms
of cost effectiveness, we find that more offloading does not necessarily lead to
better performance in ProgHW/SW designs. As shown in Table 3, although
Combov uses 70% fewer resources than BWE functions offloading architecture,
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Fig. 9: IPD Measurement Error of Different Architectures

it can achieve 20% more accurate IPD than BWE functions offloading. Thus,
we suggest engineers prioritize offloading modules that can directly update or
recover IPD.

Group1 - Summary: In terms of IPD accuracy, type 3>type 2>type 1. In
addition, more offloading does not necessarily have better performance. Specifi-
cally, although TCP/IP offloading and BWE functions offloading consume nearly
10 times more ProgHW resources than Combov, the former architectures are less
accurate than the latter.

Group2 - BWE accuracy of Different Architectures: In this group,
we check if the IPD accuracy improvement of ProgHW/SW architectures can
benefit BWE performance. We evaluate both the packet-pair and the packet-
train types. This group of experiments do not involve concurrent applications.
Influences of cross traffic and concurrent applications will be discussed in the
following experiment groups. Besides, the actual available bandwidth equals the
capacity of the bottleneck link. In addition, we include DPDK [5], one of the most
widely used kernel-bypass frameworks as a reference in this group. The size of the
packets is 1408 bytes, and the data width of AXI-Stream is 512 bits. Figure 10a
and 10b show the BWE performance of different ProgHW/SW architectures.
The x-axis represents the actual available bandwidth, and the y-axis represents
the estimation value.

From Figure 10a and 10b, we find that higher IPD accuracy can lead to
higher BWE accuracy on both the packet-pair and the packet-train types. In the
100Gbps network, Combov of type 3 can even improve bprobe accuracy by 35%
from pure SW architecture. In addition, we find that type 2 and type 3 can reduce
BWE estimation variance. For example, in the 1Gbps network, Combov of type 3
can keep the variance from the specified value within 60Mbps while the variance



Combov
(Mod &
Gauge
Offloading)

TCP/IP
Offloading

BWE Func
Offloading

Offloading
Code
Lines

100 1500 1800

LUTs 14013 137286 146493

FFs 53623 222838 233761

BRAMs 26 468 480

Table 3: Resources Consumption and Offloading Workload Comparison

of pure SW reaches 200Mbps. This is because of the timing-stability feature of
ProgHW. We also find that relocating TCP/IP alone (e.g., TCP/IP offloading
or DPDK) is not enough to achieve the best BWE accuracy. The reason is
that relocating TCP/IP cannot completely remove timing noise in user space.
However, the main advantage of DPDK is that it generally requires less time
for development and deployment since it is a SW-based solution. Furthermore,
we find that the packet-pair type gets more performance improvement than the
packet-train type in type 2 and 3. This is probably because the packet-pair
type only uses a single IPD sample rather than multiple samples to estimate
bandwidth, so the packet-pair type is more sensitive to timing noise compared
with the packet-train type.

Group2 - Summary: In terms of BWE accuracy, type 3 achieves the best
performance for both the packet-pair and the packet-train types, and the advan-
tage of ProgHW-based architectures becomes bigger as networks become faster.
In addition, although DPDK has comparable average performance to TCP/IP
offloading, the latter can achieve a smaller estimation variance.

Group3 - Heterogeneous Combinations: This group studies the BWE
performance of heterogeneous combinations where the sender and receiver have
different architectures. This study is important for users to save costs and effec-
tively use ProgHW resources. At the current stage, high-end ProgHW is expen-
sive, and its supply is limited [30], so there might be a situation where not every
endpoint can be equipped with an expected ProgHW/SW configuration.

We use Combov (type 3) in this group. Experiment results are shown in
Figure 11. We use the formula below to define the BWE measurement accu-
racy (BWEacc) where #BWE is the number of measured BWE samples. For
each experiment set, we collect 20 samples. According to Figure 11, the hetero-
geneous combination of SW sender and Combov receiver can achieve at least
80% performance of the architecture where both endpoints are equipped with
Combov.
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Fig. 10: Bandwidth Estimation Experiment Results

BWEacc = 1−BWEerr

BWEerr =

√√√√ 1

#BWE
·
#BWE∑

i=1

(BWEi −BWEactual)2

One possible explanation for this phenomenon is that the duty of the sender
and the receiver is different. The sender aims to saturate avai-bw by continuously
increasing the rate to transmit packets. The receiver uses IPD information to
calculate bandwidth. The SW-based sender uses interrupt coalescing [35] and the
Combov sender uses packet buffering. Both those techniques can achieve fast rate
to saturate avai-bw, so the sender replacement does not have a significant dif-
ference. However, interrupt coalescing on the receiver can damage each packet’s
timing information, which reduces BWE accuracy. If limited ProgHW resources
only allow one endpoint to use ProgHW, then deployment on the receiver may
achieve better performance than on the sender.

Group3 - Summary: The receiver side has a larger impact on BWE per-
formance than the sender side in terms of ProgHW/SW configurations. This
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finding is useful to save costs. Specifically, we can assign ProgHW/SW configu-
rations to the receiver alone to achieve comparable performance to the two-end
configurations.

Group4 - Impact of Concurrent Applications: BWE programs some-
times inevitably share CPU and memory resources with other applications on
the same machine. In this group, we evaluate how different ProgHW/SW archi-
tectures perform with the existence of concurrent applications. We use Look-
Busy [6] to simulate both CPU-intensive and I/O-intensive applications. We set
50% CPU load and 10% memory load for a CPU-intensive application and 10%
CPU load and 50% memory load for an I/O-intensive application. The results
are shown in Figure 10c.

We find that type 3 can greatly resist the influence of either CPU-intensive
or memory-intensive applications compared with the other two types. One pos-
sible reason is that its IPD restoration mechanism can correct timing errors
caused by concurrent applications in SW. Type 2 can also resist the influence
to some extent. Type 2 offloads components down to ProgHW, so it becomes
less dependent on CPU for network-related operations. In addition, we find that
memory-intensive applications are more impactful than CPU-intensive applica-
tions on SW. Specifically, the former degrades SW performance by 26% while
the latter degrades it by 16%.

Group4 - Summary: Type 3 can resist the influence of concurrent appli-
cations while DPDK and TCP/IP offloading of type 2 have degraded accuracy
in such influence.

Group5 - Impact of Cross Traffic: A real-world network path is usually
shared among many network applications which can generate cross traffic to
interfere with BWE traffic. In this group, we study how different ProgHW/SW
architectures perform with the existence of cross traffic. We use D-ITG 2.8.1
to generate cross traffic with a constant rate, and the packet size is 500 bytes.
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Fig. 12: Comparison with BWE Optimizations

We set the transmission rate of cross traffic to be 100Mbps and 200Mbps. The
results are shown in Figure 10d.

We find that the introduction of cross traffic degrades BWE performance
for all three types, but type 2 and 3 still show better performance than type 1.
Furthermore, according to Figure 10d, we find that BWE performs poorly when
the transmission rate of cross traffic is comparable to available bandwidth. For
example, if available bandwidth is 200 Mbps, and cross traffic is 200 Mbps, more
than 40% estimation error is produced. One possible reason is that the irregular
insertion of cross packets into probing packets can interfere with BWE.

Group5 - Summary: Type 2 and 3 show better BWE accuracy than type
1 under the influence of cross traffic.

Group6 - Comparison with BWE Optimizations: In this group, we
compare two common optimizations of BWE with the ProgHW-based architec-
ture: Combov. The first optimization is to increase packet count (denoted by
PktCnt) [23]. The idea is that more samples can reduce measurement variance
based on the law of large numbers. The second optimization, named BASS [48],
is to smooth measurement spikes. These spikes are outliers in measurement, and
they may disturb bandwidth calculation. We use SU to denote the index of spike
detection and SD to denote the index of spike confirmation.

According to the results shown in Figure 12, more packets can reduce mea-
surement variance, but they only have a small improvement (around 6%) to the
BWE accuracy. For the spikes smoothing optimization: BASS, it shows better
BWE accuracy than Combov in networks with less than 1Gbps speed, but it is
not as good as Combov if the network speed goes above 1Gbps. Nevertheless,
those two optimizations are SW-based, and their deployments are easier than
ProgHW deployments.

Group6 - Summary: Compared with the ProgHW-based solution, in low-
speed networks (<1Gbps), two SW-level optimizations can achieve similar or



even better BWE accuracy, but they show poorer accuracy in high-speed net-
works (≥1Gbps).

6 Related Work

6.1 Related Evaluations of Bandwidth Estimation

Researchers and engineers have conducted many evaluations to improve BWE
accuracy, and these works have three classes.

The first class evaluates different algorithmic mechanisms and parameters.
For example, Strauss et al. [45] evaluate the performance of pathload, IGI, and
spruce under 100Mb/s bandwidth. They find that spruce is more accurate than
the other two. Yin et al. [48] propose a spike smoothing strategy to improve
BWE accuracy on 10Gbps networks. Alok Shriram et al. [42] and Xiliang Liu
et al. [34] study BWE performance under different parameter settings such as
different measurement timescales and flow sizes. To reduce the architectural bias
of BWE, Alok Shriram et al. [41] establish a generic implementation framework.
Their experiments focus on how different sampling intensities affect the perfor-
mance of BWE algorithms. They observe that 50ms measurement timescale can
significantly improve performance.

The second class focuses on how BWE performs under different network
conditions. For example, Aceto et al. [10] propose a unified architecture to tackle
inaccuracy issues caused by heterogeneous network environments. Shriram et
al. [42] evaluate different BWE methods in both high-speed datacenter and OC-
48 networks. Hu et al. [22] investigate network paths with less than 100 Mbps
bottleneck links.

The third class analyzes the influence of architectural components of BWE.
For example, Jin et al. [25] conclude that major BWE algorithms cannot accu-
rately estimate the high-speed bandwidth (>1Gb/s) because of the limited ca-
pabilities of traditional SW systems. Their work also gives a detailed breakdown
analysis of system factors such as the interrupt rate, the system timer accuracy,
or the PCI bandwidth. Liao et al. [32] and Larsen et al. [28] provide an in-depth
discussion of the influence of PCI switching, driver, and DMA engine. They find
that the driver and buffer release can produce up to 54% overhead. Kagami et
al. [26] propose a passive BWE method for the data plane in Software-Defined
Network (SDN). This method improves the BWE accuracy by 10%. Further-
more, a few works leverage ProgHW to improve BWE, such as minProbe [46],
Caliper [19], and Combov [20], but most of them only discuss limited design
types like traffic synthesizers.

In addition, some other works try to improve the evaluation accuracy and
fidelity instead of directly studying BWE algorithms. To mitigate the timing
noise of the host system, Strauss et al. [45] collect measurements from multiple
probe streams and use OS kernels to improve the timestamp accuracy. To reduce
the bias of testing scenarios, Hui Zhou et al. [49] test BWE under more com-
prehensive internet paths to reveal the difficulties of major BWE algorithms.
Kagami et al. [26] offload BWE to the data plane to improve evaluation quality.



6.2 Programmable Hardware Designs

There are some ProgHW/SW designs for traffic generation, but few of them are
dedicated to BWE. In terms of the methods of controlling timing, ProgHW/SW
designs can be classified into two types: HW-timing type and packet-insertion
type. HW-timing type means that the hardware timer is used to either set the
IPD of sending packets or record the receiving time of each packet. In contrast
with the sub-millisecond timing accuracy of SW design [12], one of the main
advantages of this type is that it supports nanosecond-level timing accuracy. For
example, Netthread [40] and SPG [16] can accurately replay pre-recorded traffic.
However, some designs of this type are not suitable for high-speed BWE. For
example, the HW timing module of NIC-based designs [17] can only control the
average bit rate, which is unsuitable for the varying-IPD BWE algorithms such as
pathchirp [38]. As for the packet-insertion type, the sending IPD is determined by
inserting an extra packet between two valid packets. MoonGen [17], SoNIC [29],
and minProbe [46] belong to this type, which balances well between the timing
accuracy and design flexibility. But the main problem of this type is that the
specified IPD may get disturbed by interrupt coalescing. If the extra packets and
valid packets appear in different interrupt batches, the pre-defined IPD will not
hold anymore.

7 Conclusion

In the paper, we provide an IPD-based modular method to systematically clas-
sify and evaluate ProgHW/SW space of BWE. This evaluation method shows
higher efficiency than traditional evaluation methods. Furthermore, we make
some new findings from the architectural evaluation. According to our experi-
ment results, the IPD HW modulation architecture shows the best improvement
in BWE performance. Specifically, it can increase IPD accuracy by 45% and
BWE accuracy by 20-30% in a 100Gbps network. We also find that the receiver
side affects BWE more than the sender side. In the future, we plan to extend
ProgHW/SW space study to more types of BWE algorithms.
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