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ABSTRACT
Political and social scientists monitor, analyze and predict political
unrest and violence, preventing (or mitigating) harm, and promot-
ing the management of global con�ict. They do so using event
coder systems, which extract structured representations from news
articles to design forecast models and event-driven continuous
monitoring systems. Existing methods rely on expensive manual
annotated dictionaries and do not support multilingual settings.
To advance the global con�ict management, we propose a novel
model,Multi-CoPED (MultilingualMulti-Task Learning BERT
for Coding Political Event Data), by exploiting multi-task learning
and state-of-the-art language models for coding multilingual politi-
cal events. This eliminates the need for expensive dictionaries by
leveraging BERT models’ contextual knowledge through transfer
learning. The multilingual experiments demonstrate the superiority
of Multi-CoPED over existing event coders, improving the absolute
macro-averaged F1-scores by 23.3% and 30.7% for coding events
in English and Spanish corpus, respectively. We believe that such
expressive performance improvements can help to reduce harms to
people at risk of violence.

CCS CONCEPTS
•Applied computing! Computing in government; Military; •
Computing methodologies! Information extraction; Multi-
task learning.
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1 INTRODUCTION
Extracting political events from news articles is a crucial task in
political science. Traditionally, con�ict scholars rely on such data
to analyze interactions among political entities across the globe
and forecast events of political instability, such as civil con�icts and
violence (e.g., rebellions, insurgencies, ethno-religious violence),
domestic and international political con�icts, military operations,
political cooperation and diplomatic a�airs. Government agencies
in the security sector and policy makers can use these predictions
and �ndings to aid humanitarian and political crises.

Computerized event-coding systems are key components in the
global violencemanagement process, generating political event data
to support modeling and analytics. State-of-the-art systems like
PETRARCH [7], PETRARCH2 [47] and Universal PETRARCH [43]
are utilized to identify, extract, and categorize con�ict interactions
from unstructured text and convert them to the form of a who-did-
what-to-whom template.

Despite the large number of applications and research based
upon automated coders, the technical methods employed have re-
mained unchanged for more than two decades. These coding sys-
tems implement a pattern-matching approach, using external knowl-
edge bases (KBs) to identify the presence of certain lexico-syntactic
patterns in a sentence, indicating a particular semantic relationship
between political entities. However, the complexity of an unstruc-
tured text generally exceeds the capacity of these dictionary-based
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coders, often producing low performance results (low recall and
accuracy). Updating and expanding these handcrafted pattern repos-
itories is often too costly and time-consuming, rendering them ob-
solete in the context of rapidly changing con�ict processes. Lastly,
despite the e�orts of coding event data in non-English languages
[50–52], to the best of our knowledge, the systems and ontologies
used in political science do not support coding event data on multi-
lingual corpora, imposing severe limitations and bias on con�ict
analysis covering distinct areas in the globe.

Given the challenges and peculiarities inherent in coding po-
litical event data, traditional information extraction (IE) [15, 19–
21, 63] and NLP approaches, such as semantic role labeling (SRL)
[29, 72, 76, 95] cannot address the task (as discussed in Section 3).
This prevents the usage of o�-the-shelf approaches to generate
political event data.

Recent advances in natural language processing (NLP) tech-
niques open new possibilities to solve some of the core challenges
of traditional event-coding approaches. In particular, transformer-
based pre-trained language models [81], such as BERT [16], intro-
duced a new approach to obtain state-of-the-art results on a wide
range of NLP tasks [33, 35, 61, 83].

Our new automated event-coding system combines transfer
learning and multi-task learning techniques to code event data
from domain-speci�c multilingual corpora in a who-did-what-to-
whom template. We explore transfer learning by leveraging multi-
lingual pre-trained language models, providing promising results
even when the training dataset is small.

We demonstrate the superiority of our approach through con-
ducting extensive experiments on a corpus based on CAMEO
(Con�ict and Mediation Event Ontology) [25]. Apart from the
performance superiority, our proposed models favor a more com-
prehensive analysis in global level (throughmultilingual processing)
and move beyond the biases introduced from existing computerized
event-coding systems (see Subsection 2.4).

This paper makes multiple contributions bridging AI and geopol-
itics, and supporting advances in con�ict analysis. First, an inno-
vative model MTL-BERT based on multi-task learning for coding
multilingual political event data is presented. Second, we design
a novel approach Multi-CoPED (Multilingual Multi-Task net-
work for Coding Political Event Data) to address the challenges of
event coding (discussed in Section 3) by integrating CAMEO, MTL-
BERT and our event parsing procedures (discussed in Subsection
4.2). Finally, we conduct multilingual experiments to compare the
empirical results of current coding systems with ours.

2 PRELIMINARIES
2.1 Related Work
Con�ict scholars often are interested in extracting events from text
in a structured format to track con�ict processes and violence using
computational methods. Most previous works for coding event data
are based on pattern matching approaches [47, 51, 52, 57], usually
supported by large KBs or domain-speci�c ontologies.

Other studies have concentrated on political con�ict event detec-
tion, relying on classical machine learning and deep learning (DL)
techniques. Hanna [28] proposed a support vector machine (SVM)-
based framework for coding protest events. Beieler [6] exploited

convolutional neural networks (CNNs) to solely detect political
event types in sentences, while Radford [59] trained a recurrent neu-
ral network (RNN) to identify indicators of protest events. O’Connor
et al. [53] proposed an unsupervised model for extracting events
occurred among major political actors from news corpus. Glavaš
et al. [26] have applied semantic text representations and induced
a joint multilingual semantic vector space to enable supervised
learning (SVM and CNN) for topical coding of sentences from elec-
toral manifestos of political parties in di�erent languages (English,
French, German and Italian). Osorio et al. [52] introduced a logistic
regression-based framework to detect news documents related to
con�ict and use external dictionaries to extract events from text in
Arabic.

Recent works [13, 32, 48, 55] utilize BERT, ELMo, and DistilBERT
to extract representations from political documents that are later
used as input features for traditional machine learning classi�ers.
In particular Parolin et al. [56] design a multi-label BERT-based net-
work to extract events about organized crime. In political science,
other work [49, 60] employs deep neural networks based on trans-
formers for distinct tasks like events clustering and co-referencing.

In a broader view, coding political event data resembles infor-
mation extraction (IE) related tasks in natural language processing
area. Previous works employing deep neural network show promis-
ing results on event extraction by exploring RNNs [46, 93], graph
neural networks [42, 45], and hybrid neural networks [31, 39, 92].
Most recently, transformer-based models have been proposed for
event extraction [18, 37, 38, 40, 44, 82, 90], semantic role labeling
(SRL) [54, 72], named entity recognition (NER) [16], and relation-
ship extraction (RE) [4, 62, 84, 85, 87, 94]. Although these works
have advanced research in standard IE tasks, none of these address
all the key challenges of coding political event data (discussed in
Section 3).

2.2 Ontologies and Current Approaches for
Coding Political Event Data

A dominant ontology for political event data is CAMEO, which in-
corporates a KB of actor dictionaries (containing some 67K entries)
and action-pattern dictionaries (about 14K verb phrases). The for-
mer acts as a data repository for political entities, such as country
actors, international actors, military non-state actors, and general
political agents, while the latter is used to store representations
of political interactions. Overall, CAMEO covers more than 200
event types, each associated with a list of verbal pattern entries in
the action repository. Despite the high granularity of event types
o�ered by CAMEO verb dictionaries, con�ict scholars traditionally
use a higher level of event types, grouping the original types into
�ve classes (otherwise known as pentacodes): Make a Statement
(0), Verbal Cooperation (1), Material Cooperation (2), Verbal Con�ict
(3), and Material Con�ict (4).

CAMEO is a static ontology where the knowledge rests. Auto-
mated coders are systems which are connected with CAMEO for
processing input sentences and running inferences over such KBs.
Current systems syntactically explore input sentences, trying to
�nd matches of verbal patterns and actors in CAMEO repositories.

The PETRARCH family implements automated coder systems
for CAMEO-based political event extraction. The main di�erence
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between the coders in this family is how they syntactically pro-
cess sentences to search for patterns. Whereas PETRARCH and
PETRARCH2 extensively leverage the constituency parse tree of the
input sentence, UPETRARCH implements dependency parse tree
to determine the who-did-what-to-whom event codes and supports
processing sentences in English and Spanish languages.

Suppose we have the following sentence as input to the event
coder:
Obama said he would not provide support to Israel.

The event coder should output the following codes:
WHO: USAGOV TO-WHOM: ISR

DID-WHAT: 3- VERBAL CONFLICT

Coding systems process data in sentence level and usually take
the news publish date as additional input for retrieving the correct
political role from repositories. In the example shown above, if
the news publish date is Feb 2013, the system outputs USAGOV
once it identi�es Obama as the US President on that date. On the
other hand, if the date is May 2021, the system outputs USAELI,
recognizing Obama as part of US elite (former government o�cials,
celebrities, etc). CAMEO maps 26 distinct political roles, which can
be linked to an entity given a date interval.

2.3 Applications of Political Event Data
In practical applications, the structured event data provided by the
automated coders (e.g., PETRARCH) serve as input for con�ict and
mediation studies. Previous work focused on designing forecasting
models and early warning systems to predict inter- and intra-state
political con�icts in many regions across the globe, such as Asian
countries [66], the Cross-Straits [9, 10], the Balkans [65], between
Israel and Palestine [68, 70], Southern Lebanon [64], theMiddle East
[67], and other regions [11, 12]. Other research and applications
utilize such structured event data to analyze theories about the
international mediation process [25, 69], monitor civil con�icts
[3, 71], and even studying the e�ects and consequences of domestic
con�icts [91].

2.4 Ethical Considerations on Political Event
Data Research

Event data generation is a crucial process for understanding and
managing inter- and intra-state con�ict and violence. Scientists rely
on such structured data to monitor, explain and forecast events of
political instability, while policy makers leverage such �ndings on
decision-making process for social and political crisis management.

However, studying political violence is a potentially controver-
sial and sensitive topic. Language models such as those used here
have been shown to encode biases from the training data (as dis-
cussed in previous work [1, 17, 24, 27, 58, 79, 80]). We follow stan-
dard social science practices to select corpora and training data
to mitigate these issues [5]. Further we work to move beyond the
biases introduced from dictionary-based methods (e.g., PETRARCH
coders) by using deep learning and statistical methods, in line with
the literature [86]. This is also part of the de-biasing of using multi-
ple coders for the training data. Stundal et al. [78] show that using
the machine coded event data seen here closely matches that coded
by human rights experts in highly contested regions like Colombia.

Finally, there are application speci�c sensitivities to studying
things like international relations and even political violence. That
is why we bring together scholars and researchers from these do-
mains and the NLP and computer science communities here to best
inform how to derive and use this information from large corpora,
recognizing that this is no substitute for deep ethnographic and
�eld research.

3 CODING POLITICAL EVENT DATA AND
CHALLENGES

The problem addressed in this paper is commonly known in social
science studies as event coding, and it aims at extracting events in
who-did-what-to-whom (otherwise known as source-action-target)
template from sentence-level texts in domain-speci�c multilingual
corpus. Following, we elaborate on the main challenges inherent
to event coding task.

Multi-Source/Target Events: Conforming to political science ap-
plications, we assume that there is only one event type per sentence,
yet multiple events of the same type can occur in the same sentence.
To put the issue into perspective, considering the sentence:

Obama and Putin said they will attack Iraq.

we should have the following events as output:
WHO: USAGOV TO-WHOM: IRQ

DID-WHAT: 0- MAKE A STATEMENT

WHO: RUSGOV TO-WHOM: IRQ

DID-WHAT: 0- MAKE A STATEMENT

Note that in this example, there exist two coded events of the same
type (Make a Statement), both of which have the same target (Iraq)
but two di�erent sources (USA and Russian government entities).

Reciprocal Events: Another type of sentences that generates mul-
tiple coded events as output are the ones involving reciprocal rela-
tions. For instance, in the sentence

French National Assembly president Laurent

Fabius held talks with leaders of Romania�s

new government.

there will be two events of type Verbal Cooperation: the �rst will
code French National Assembly president (FRAGOV) as source and
Romania’s new government (ROUGOV) as target; while the second
will code the same event type in opposite direction (ROUGOV as
source and FRAGOV as target).

Multilingual: A crucial aspect that di�erentiates the problem in-
troduced in this paper is themultilingual factor. Semantically equiv-
alent sentences written in di�erent languages should produce the
same output codes. Considering our previous “Obama and Putin”
example, we should obtain the same codes given the equivalent sen-
tences in any language, such as Spanish or Portuguese (respectively
exempli�ed below):

Obama y Putin dijeron que atacarán a Irak.

Obama e Putin disseram que vão atacar o Iraque.

Traditional IE models do not su�ce: Although our problem is
restricted to labeling only two roles (source and target), there are
certain challenges that di�erentiate coding event data from similar
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traditional IE tasks, such as SRL (the closest to our problem de�ni-
tion). We examine these challenges and illustrate some examples
in Fig. 1 to support our discussion.

First, source’s and target’s roles are not semantically �xed and
may vary depending on the event type. Therefore, sources and
targets are not necessarily associated with agent and theme in the
context of semantic relations, as they can be represented by people,
organizations, locations, nationalities, and religious or political
groups depending on the event type.

(a) Deep Learning-based model for SRL captures the target
“the militant group Hamas” but does not capture the source “Israel’s
Cabinet” as an argument.

(b) SRL model captures the source “Zambia” but does not capture
target “Britain”.

Figure 1: Exampleswhere SOTASRLmodel [72] is not capable
of correctly detecting sources and targets.

Second, sources and targets are not necessarily arguments which
are associated with the same verb eventually triggering an event.
For example, in the sentence expressed in Fig. 1a, traditional SRL ap-
proaches would retrieve the ground truth target “the group Hamas”
as one of the arguments for the verb “allow” but would not retrieve
the ground truth source “Israel’s Cabinet”. Eventually, there will be
cases where sources and targets are not even part of any argument
in any triggering verb (e.g., ground truth target “Britain” in Fig. 1b).

Finally, SRL models traditionally output arguments for each
verb in an input sentence. Deciding which are the verbs to be
triggered, analyzed and associated to each pentacode requires an
extra complex task on the top of the SRL model.

Although the challenges aforementioned provide theoretical
arguments making the usage of SRL (and general IE application)
impractical for our problem, we empirically demonstrate it in Sec-
tion 5.4 by taking a state-of-the-art SRL [72] implementation as one
of our baselines.

4 MODEL DESCRIPTION
In this section we introduce our approach for coding con�ict and
mediation event data from multilingual corpus, addressing the chal-
lenges introduced in Section 3. Subsection 4.1 introduces the de-
sign for our Multi-Task Learning BERT model (MTL-BERT), which
works as the basis of our framework; while Subsection 4.2 details

our Multilingual Multi-Task network for Coding Political Event
Data (Multi-CoPED), as our end-to-end CAMEO-based event coder.

4.1 Multi-Task Learning BERT (MTL-BERT)
In order to address event coding problem, we design our model to
handle two tasks: (1) �nd the spans of texts that denote sources and
targets; (2) detect the con�ict action (pentacode) expressed in the
sentences.

We formulate the �rst task as sequence labeling, in which each
word in the sentence is assigned to a tag showing the type of that
word for our purposes. We consider the following tags: S (Source),
T (Target), R (Reciprocal), and O (Other). A word with a certain tag
shows that it has occurred in the text span with the corresponding
type. A word with tag R denotes that it is in a span that is both
a source and a target (this can happen in reciprocal relations as
discussed in Section 3).

The second task is formulated as classi�cation, which detects
the pentacode corresponding to the main con�ict action expressed
in the sentence, with �ve possible labels each showing the corre-
sponding pentacode: 0 (Make a Statement), 1 (Verbal Cooperation), 2
(Material Cooperation), 3 (Verbal Con�ict), and 4 (Material Con�ict).

Our model, Multi-Task Learning BERT (MTL-BERT), consists
of three components (as depicted in Fig. 2a) introduced in the fol-
lowing paragraphs.

(i) Contextualized Word Embeddings Extractor using BERT:
In this component, we utilize BERT [16] to e�ectively capture the
contextualized semantic features of input sentences and their words.
Given an input sentence ( composed of a sequence of words (B1, B2,
. . . , B |( | ), we �rst tokenize it to# tokens usingWordPiece tokenizer
[88] and add BERT’s special tokens [CLS] and [SEP] to the begin-
ning and end of the said tokens.We then feed these" = #+2 tokens
(C0, C1, . . . , C#+1) into BERT, which maps the embedding vectors of
the mentioned tokens (⇢ [⇠!( ] , ⇢1, . . . , ⇢# , ⇢ [(⇢% ] ) to their corre-
sponding contextualized embedding vectors) = ()[⇠!( ] ,)1, . . . ,)# ,
)[(⇢% ] ).

We feed the above-mentioned contextual representations ) 2
IR"⇥⌘ to both Source and Target Detector and Action Detector
heads. Note that ⌘ denotes the dimension of the contextualized
word embeddings.

(ii) Source and Target Detector: This module deals with the
sequence labeling task and is essentially composed of" identical
linear layers (i.e., with tied parameters), each getting its input from
one of the contextualized word embeddings. The core linear layer
is represented by the parameter matrix ,C06 2 IR |! |⇥⌘ , where
! = {(,) ,',$, [⇠!(], [(⇢%]} is the set of possible tags. Thus, for
each token C8 , Source and Target Detector returns a tag)068 2 ! as
follows:

)068 = 0A6<0G B> 5 C<0G (,C06 ·)8 ) (1)

where argmax outputs the tag in ! corresponding to the maximum
element’s index in softmax’s output.

(iii) Action Detector: This component attends to the classi�ca-
tion task and consists of one linear layer expressed by the matrix
,?4=C0 2 IR |⇠ |⇥⌘ , where ⇠ = {0, 1, 2, 3, 4} corresponds to the set of
pentacodes. As a result, for each input sentence ( , Action Detector
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(a) MTL-BERT implements two heads over the same BERT network:
One dedicated to action detection (classi�cation) and another to
actors detection (seq. labeling).

(b) Multi-CoPED extends MTL-BERT by integrating it with CAMEO
actor repositories to work as an end-to-end CAMEO-based event
coder.

Figure 2: Design of the proposed models MTL-BERT and Multi-CoPED.

returns a pentacode 2( according to the following equation:

2( = 0A6<0G B> 5 C<0G (,?4=C0 ·)[⇠!( ] ) (2)

where)[⇠!( ] carries the semantic representation of sentence ( , and
argmax functions similar to its counterpart in Eq. 1.

For training our model in a multi-task fashion, we use AdaMax
[34] algorithm and update the model weights once per task in each
epoch.

Finally, to address the multilingual aspect of our event coding
problem, we utilize BERT multilingual pre-trained model as initial
weights of MTL-BERT.

4.2 Multilingual Multi-Task BERT for Coding
Political Event Data (Multi-CoPED)

In this subsection, we introduce Multi-CoPED as our end-to-end
CAMEO-based event coder, shown in Fig. 2b. The design of our
framework rests on extending MTL-BERT by connecting it with
CAMEO’s actor dictionaries through the procedure described in
Algorithm 1.

Algorithm 1: The Multi-CoPED Framework
input :Sentence sent, publish date pub_date, MTL-BERT

model bert
output :List of CAMEO-coded events in triplet format

triplets

1 C06B , ?4=C0⇠>34  14AC(B4=C)
2 B?0=B  C>:4=B2B?0=B(C06B)
3 (B?0=B , )B?0=B , 'B?0=B  03 9DBC)06B(B?0=B)

4 if not 4<?C~('B?0=B) then
5 '2>34B  A4CA84E4('B?0=B , ?D1_30C4)
6 return ?4A<('2>34B , ?4=C0⇠>34) // see (iv)

7 else
8 (2>34B  A4CA84E4((B?0=B , ?D1_30C4)
9 )2>34B  A4CA84E4()B?0=B , ?D1_30C4)

10 return 2A>BB((2>34B , )2>34B , ?4=C0⇠>34) // see (iv)

Note that Multi-CoPED does not utilize CAMEO’s action reposi-
tories: it simply relies on MTL-BERT to detect actions (pentacodes),

instead of resorting to the lexico-syntactic patterns from CAMEO
(like PETRARCH coders do). As a result, Multi-CoPED improves
the performance on event coding task, reduces (or eliminates) the
costs associated to repository maintenance/extension and allows
language-agnostic application.

The four components described below summarize the steps per-
formed along Multi-CoPED.

(i) Parsing Tags: We convert the tagged tokens output by MTL-
BERT to text spans tagged with the same actor labels (S, R, or T). In
this step (run in Line 2), we keep the sequence of contiguous tokens
with the same label, say ( , to compose a span assigned with the
said label ( . Note that, in the same sentence, we can have multiple
spans of the same type.

(ii) Adjusting Tags: The existence of label R introduces the pos-
sibility of obtaining inconsistent set of actors as output from step
(i). In this step (run in Line 3), we adjust such inconsistent cases by
applying a simple heuristic, expressed in Table 1.

Table 1: Heuristic rules and examples of adjusted tags.

Inconsistent Tagging (Example) Heusitic Rules Adjusted Tags
[Syria][' ] says it won’t accept
any more refugees. R! S [Syria][( ]

[Obama][' ] , [Puting][' ] and
[Leuthard][) ] met this afternoon. S*, T+, RR+! RR+ [Obama][' ] ,

[Puting][' ] ,
[Leuthard][' ]

[Obama][( ] , [Puting][' ] and
[Leuthard][' ] met this afternoon. S+, T*, RR+! RR+

Russia[' ] closed its southern
borders with Iran[) ]
and Turkey[) ]

T+, R! S, T+
Russia[( ] ,
Iran[) ] ,

Turkey[) ]

[Obama][( ] and [Puting][( ] said
they will attack [Iraq][' ] .

S+, R! S+, T
[Obama][( ] ,
[Puting][( ] ,
[Iraq][) ]

For instance, reciprocal events require at least two entities. In
the case there is only one span labeled ' (�rst example of Table 1),
we convert it to ( . As another example, if there exist two or more
reciprocal spans (''+), zero or more source spans ((⇤) and at least
one target span () +), then we disregard the sources and targets,
keeping only the reciprocal spans (second example of Table 1).
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(iii) Retrieving CAMEO Codes: For each labeled span, we query
CAMEO repositories to retrieve the codes corresponding to the
actors expressed in that span. This search is executed through
querying in the following order: domestic actors, international
actors, military non-state actors and agents repositories. This step
is run in Lines 5, 8, and 9. Moreover, the sentence (news) publish
date must also be given as input to the function A4CA84E4 so that
it returns the code corresponding to the political role of an actor
on that date. In the case no actor is found in CAMEO repositories,
A4CA84E4 returns the text span given as input, guaranteeing no events
will be lost.

(iv) Generating Structured Events (SAT Triplets): In this step
(run in Lines 6 and 10), we combine the retrieved codes from actors
with the provided pentacode in such a way that outputs CAMEO-
based triplets expressing the events in who-did-what-to-whom lay-
out. In practice, at this step, we may have three cases of actors
relationships: usual source-target, multi source/target or reciprocal.
As shown in Fig. 3, depending on the relationship type, we combine
the actors in a di�erent way to output the correct event triplets. For
reciprocal cases we permute the actors (through function ?4A< in
Algorithm 1); otherwise, we apply cross-product over source and
target actors (through function 2A>BB).

(a) Generating reciprocal triplets: we permute the actors into all
possible source-target pairs.

(b) Generating multi source/target triplets (also applied for usual
source-target): we apply cross product over source and target actors.

Figure 3: Generating structured events in Source-Action-
Target (SAT) triplets both for source-target and reciprocal
cases.

5 EXPERIMENTS AND RESULTS
In this section, we describe the datasets, the baselines and the com-
putational setup used in our experiments (subsections 5.1, 5.2 and
5.3 respectively). Lastly, in Subsection 5.4, we present the perfor-
mance for the models proposed in Section 4.

5.1 Dataset
Due to lack of annotated datasets in con�ict and mediation domain,
we created a brand-new dataset for our application purpose. The
test data is made up of the gold standard records originally used
for validating PERTARCH2 and UPETRARCH1, plus the annotated
sentences available in CAMEO codebook 2, totaling 451 error-free
annotated sentences in English language. The test dataset necessary
for performing the multilingual experiments were obtained by man-
ually translating the 451 English (EN) sentences into Portuguese
(PT) and Spanish (ES) to obtain three parallel testing corpus (⇡C4BC

⇢#
, ⇡C4BC

⇢( , ⇡C4BC
%) ). Note that, translations were performed by native

speakers of the target languages, in order to guarantee syntactic
and semantic correctness on testing samples.

For obtaining the training (and validation) dataset, we collected
3,728 sentences (2,207 in English and 1,521 Spanish) by crawl-
ing newswire text data from various world-wide news agencies,
and carefully pre-processing and �ltering out out-of-domain news
based on the metadata information. The annotations for penta-
codes, sources, and targets were independently performed by six
undergraduate students trained for such task and revised by a com-
mittee consisting of con�ict specialists. Overall, we obtained good
standards in terms of inter-annotation agreement (Fleiss’ Kappa =
60.03% for pentacodes).

The distribution for pentacodes on training dataset is balanced,
with 16.44% of the sentences labeled with the less frequent pen-
tacode (Material Con�ict) and 29.08% with the most frequent one
(Verbal Con�ict). On the other hand, the token labels distribution
is quite unbalanced: only 1.98% of tokens are labeled as reciprocal,
while 70.46% are labeled as others.

5.2 Baseline Models
As our main baselines, we adopted the current state-of-the-art
frameworks for CAMEO-coded political event extraction. As previ-
ously introduced in Subsection 2.2, the PETRARCH family imple-
ments three distinct versions of coding mechanisms: PERTARCH,
PERTARCH2 and UPETRARCH. Although UPETRARCH is the
only one which supports event coding in English and Spanish, we
took all of them as reference for the experiments.

In addition, we implemented an LSTM-based model for se-
quence labeling tasks [30, 76]. Our model is a two-step pipeline:
(1) a sequence classi�er which implements a bidirectional LSTM
(BiLSTM) layer and two dense layers trained to detect the penta-
codes, followed by (2) a sequence tagger based on BiLSTM and
Conditional Random Field (CRF). We concatenate the embedding of
predicted pentacode as an additional feature with word embedding
to feed the BiLSTM layer in step (2), following [29, 95]. Finally, we
use Viterbi algorithm to obtain the most likely tag sequence. To
support multilingual experiments on LSTM models, we used 300-
dimensional English, Spanish, and Portuguese word embeddings
pretrained on Wikipedia from fastText [8]. We followed [74] to
align monolingual vectors from these three languages in a single
vector space.

1https://github.com/openeventdata/petrarch2/blob/master/petrarch2/data/text/
GigaWord.sample.PETR.xml
2https://parusanalytics.com/eventdata/data.dir/cameo.html
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Finally, we experimented a state-of-the-art BERT-basedmodel for
SRL [72] implemented in AllenNLP toolkit [23]. Since SRL outputs
only spans of texts as its arguments, it can be experimented merely
for source and target detection, making its application impractical
for pentacodes detection and end-to-end event coder purposes.
For each sentence, SRL outputs multiple tuples of semantic roles
(arguments). Out of all the arguments, most of the time, ARG0 and
ARG1 correspond to the source and target, respectively. Therefore,
we extract sources and targets from the outputs of SRL in two
ways in which we consider ARG0 as the source and ARG1 as the
target. In the �rst version, called SRL-based, we choose the �rst
tuple that has both ARG0 and ARG1. In the second version, called
SRL-based-UB, we choose the tuple having ARG0 and ARG1 that
maximize Macro-F1 when calculated against the gold sources and
targets. Note that SRL-based-UB works only as an upper-bound
baseline since it is not implementable in practice. It simply shows
what would be the best possible performance we could reach by
using SRL model.

5.3 Setup
To conduct the experiments presented in this paper, we used a com-
puter with one NVIDIA GeForce RTX 2080 GPU. We run 10 rounds
of training process for each experimented model and report the
averaged results observed on testing set. In each round, we generate
di�erent train/validation splits (75%/25% over the annotated data)
and randomly initialize the model based on the seed assigned for
that round. We train our models over 30 epochs and the best model
of each round is selected based on F1-scores observed on their cor-
responding validation splits. We use the same random seeds for all
models to make the comparison fair. Speci�cally for PETRARCH
and SRL-based baselines, we run them over the test set only once
(they do not require training process).

For MTL-BERT, we leverage multi-task learning implementa-
tions for transformers-based networks from previous works [41, 77]
and perform the necessary adaptations to attend our design. We
�ne-tune MTL-BERT using both cased3 and uncased4 multilingual
pre-trained versions. Since both models presented similar perfor-
mance, we suppress the results for uncased model in Subsection
5.4, reserving space for this analysis in Appendix A.1.

5.4 Experiments on Con�ict and Mediation
Dataset

We design cross-language experiments to analyze the performance
of models on multilingual application. In each evaluation, we train
MTL-BERT and LSTM-based models on the same monolingual
(EN/ES) or multilingual (EN+ES) dataset, and then evaluate them
on each parallel testing datasets (⇡C4BC

⇢# , ⇡C4BC
⇢( , ⇡C4BC

%) ). Once PE-
TRARCH, PETRARCH2 and SRL models do not support multilin-
gual application, we restrain our analysis on English language only.

Following, we analyze the performance of the models on Source
and Target Detection (text spans format) and Action Detection
(pentaclass format) tasks separately. For that purpose, we apply
MTL-BERT and evaluate its performance versus the baselines. Then,

3https://huggingface.co/bert-base-multilingual-cased
4https://huggingface.co/bert-base-multilingual-uncased

we close our experiments by analyzing the performance of Multi-
CoPED as an end-to-end CAMEO-based event coder.

Source and Target Detector: Given a sentence as the input, for
the pattern matching approaches (PETRARCH, PETRARCH2 and
UPETRARCH), we mark as Source (S) and Target (T) the spans
of text returned by PETRARCH coders as source and target, re-
spectively. For LSTM-based and MTL-BERT, we follow the same
procedure explained in step (i) in Subsection 4.2 to obtain S, T,
and R spans. For this evaluation, R is regarded as both an S and a
T. Table 2 shows the F1-scores (in exact-match and partial-match
manners) not only on S and T spans detection, but also overall
(Macro-F1). MTL-BERT trained both on English and Spanish corpus
consistently outperforms the other models, except for Source detec-
tion on Spanish testing corpus (for exact-match), where MTL-BERT
trained on Spanish presented the best results.

Action Detector: Table 3 shows the F1-scores for action detection
task. MTL-BERT models signi�cantly outperform all the other mod-
els for all the pentacodes individually and collectively (Macro-F1),
in all languages. In particular, MTL-BERT(⇢#+⇢() improves the
existing best coders PETRARCH (in English) and UPETRARCH
(in Spanish), by absolute Macro-F1 increases of 25.9% and 31.9%,
respectively.

End-to-end Event Coder: Finally, to evaluate Multi-CoPED as an
end-to-end CAMEO-based event coder, we analyze the performance
of this model in event level through example-based metrics [75].

Although we implemented the example-based measures to eval-
uate the end-to-end models in an overall manner, we too show the
results broken by source, target, and action separately in Table 4.
The results indicate that Multi-CoPED outperforms all the baselines,
including the current systems for CAMEO-coded political event
extraction both in English and Spanish languages.

Speci�cally, Multi-CoPED trained on English and Spanish corpus
(Multi-CoPED(⇢#+⇢() ) signi�cantly outperforms the best results
observed for the existing event coder systems (i.e. PETRARCH2 and
UPETRARCH), improving the absolute overall F1-score by 23.3%
and 30.7% on English and Spanish languages, respectively.

Overall Discussion and Findings: The empirical results discussed
along this section show indications to support the following �nd-
ings. First, the performance superiority of both MTL-BERT and
Multi-CoPED against the baselines is statistically signi�cant (at
0.001 level based on t-test) in all evaluated languages when looking
at the Macro-F1 scores.

Second, our proposed models address the low-recall weakness
typically associated to pattern-matching approaches (e.g., PETRARCH
family). Recall �gures observed under Overall column in Table 4
illustrate this e�ect as well as Tables 6 and 7 in Appendix A.2.

Third, our models keep high performance standards on Target
detection, which is the most challenging task we experiment (due
to the reasons discussed in Section 3).

Fourth, as expected, languages with larger lexical similarity (e.g.,
Spanish and Portuguese) show better results in cross-language
experiments. In all experiments in this section, we see the models
trained in Spanish performing better than those trained in English
when looking at the performance over Portuguese testing set ⇡C4BC

%) .
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Table 2: Experimental results for source and target detector. We compute F1-scores (both in Exact-Match and Partial-Match
fashion) to evaluate performance of MTL-BERT vs. the baselines on testing set per language. Each column identi�ed with a
language code shows the models’ performance on testing set in that particular language (⇡C4BC

⇢# , ⇡C4BC
⇢( and ⇡C4BC

%) ). Bold values
represent the highest scores among all the models per language per argument (source and target).

F1-score Exact-Match on testing set by language F1-score Partial-Match on testing set by language
Source Target Macro-F1 Source Target Macro-F1

EN ES PT EN ES PT EN ES PT EN ES PT EN ES PT EN ES PT
PETRARCH [7] 45.6 - - 32.6 - - 39.1 - - 50.2 - - 41.4 - - 45.8 - -
PETRARCH2 [47] 34.1 - - 22.6 - - 28.3 - - 36.5 - - 30.3 - - 33.4 - -
UPETRARCH [43] 38.3 36.8 - 14.1 11.4 - 26.2 23.4 - 44.0 42.9 - 25.4 22.6 - 34.7 32.5 -
SRL-based [72] 73.4 - - 12.7 - - 43.0 - - 83.4 - - 36.1 - - 59.7 - -
SRL-based (UB) 77.4 - - 20.0 - - 48.7 - - 82.8 - - 39.9 - - 61.4 - -
LSTM-based(⇢# ) 85.7 80.0 81.8 64.4 43.2 34.9 75.0 61.6 58.3 89.1 85.8 86.6 75.6 59.2 55.9 82.3 72.5 71.3
LSTM-based(⇢() 68.6 85.5 84.7 35.7 61.2 44.8 52.1 73.4 64.7 80.0 88.7 88.4 55.8 73.2 67.1 67.9 81.0 77.7
LSTM-based(⇢#+⇢() 86.4 87.1 87.8 65.6 61.9 49.8 76.0 74.5 68.8 88.7 89.9 90.3 75.9 74.2 69.0 82.3 82.0 79.6
MTL-BERT(⇢# ) 89.6 87.4 87.1 74.6 65.9 62.7 82.1 76.7 74.9 93.1 91.4 92.0 83.3 78.8 79.2 88.2 85.1 85.6
MTL-BERT(⇢() 86.8 90.9 90.4 65.8 70.2 64.3 76.3 80.5 77.3 91.6 93.4 93.9 78.4 81.0 79.5 85.0 87.2 86.7
MTL-BERT(⇢#+⇢() 90.3 90.4 90.6 75.8 71.7 66.6 83.0 81.1 78.6 93.6 93.4 94.1 83.8 82.1 81.4 88.7 87.7 87.8

Table 3: Experimental results for pentacodes classi�cation (action detector). Each column identi�ed with a language code shows
the F1-score for the models on testing set in that particular language (⇡C4BC

⇢# , ⇡C4BC
⇢( and ⇡C4BC

%) ). Bold values represent the highest
scores among all the models per language per pentacode.

F1-score on testing set by language
Make a Statement Verbal Cooperation Material Cooperation Verbal Con�ict Material Con�ict Macro F1
EN ES PT EN ES PT EN ES PT EN ES PT EN ES PT EN ES PT

PETRARCH [7] 60.7 - - 59.0 - - 43.0 - - 56.9 - - 68.5 - - 57.6 - -
PETRARCH2 [47] 53.6 - - 58.3 - - 54.2 - - 54.1 - - 67.4 - - 57.5 - -
UPETRARCH [43] 53.5 41.5 - 56.2 49.3 - 52.2 41.4 - 59.1 52.8 - 66.0 60.6 - 57.4 49.0 -
LSTM-based(⇢# ) 64.5 43.7 47.8 72.7 62.9 59.3 66.7 46.3 50.8 77.5 67.8 64.1 83.0 76.2 76.1 72.9 59.3 59.6
LSTM-based(⇢() 44.5 61.7 55.4 62.4 69.2 54.1 44.2 62.3 49.4 70.1 73.5 64.7 76.0 81.0 78.8 59.4 69.4 60.5
LSTM-based(⇢#+⇢() 64.5 65.1 59.1 74.9 71.8 63.8 66.8 65.7 60.6 79.7 78.5 71.1 84.0 83.0 81.1 74.1 72.8 67.1
MTL-BERT(⇢# ) 81.1 49.3 46.3 81.6 63.4 62.3 77.1 47.6 46.7 86.6 70.1 66.8 88.6 76.5 76.3 83.0 61.3 59.6
MTL-BERT(⇢() 50.1 75.6 66.1 63.0 79.1 72.8 52.2 71.5 55.1 73.4 80.4 74.6 77.9 84.1 81.6 63.2 78.1 70.0
MTL-BERT(⇢#+⇢() 82.1 78.6 70.6 82.0 80.5 74.4 77.4 75.8 60.9 87.0 83.0 77.2 89.3 86.5 84.2 83.5 80.9 73.5

Finally, training the models in multilingual corpus (EN+ES)
consistently produces better results than training in monolingual
dataset (ES or ES separately) on both ⇡C4BC

⇢# and ⇡C4BC
⇢( , and even

on a third language (⇡C4BC
%) ), which is not part of the training cor-

pus. Such �nding is consistent to previous studies in cross-lingual
representations [2, 14, 22, 36, 73, 74, 89].

Qualitative Analysis: The superiority of MTL-BERT and Multi-
CoPED goes beyond the �gures denoted in the empirical experi-
ments shown here. Apart from the advantage of supporting multi-
lingual coding, the models proposed in this paper do not rely on
extensive annotated action dictionaries including verbal phrase pat-
terns, which are too expensive to update and maintain. Instead, our
models explore not only the syntactic but also the semantic aspects
of input text, by leveraging the default BERT pre-trained models
through transfer learning (requiring a small annotated corpus to
do a successful job). Further, as depicted in Fig. 2b, Multi-CoPED
works as a hybrid model, which is able to output both the CAMEO
codes and the spans of text for sources and targets. Such property
can be potentially explored for retrieving new political actors and
extending the CAMEO repositories.

6 CONCLUSIONS AND FUTUREWORK
Political event data generation is a crucial process for understanding
and managing the global violence. Political scientists and govern-
ment agencies in the security sector typically rely on computerized
systems to gather and analyze event data on con�ict processes and
violence around the world. However, the existing event coder sys-
tems present major limitations in terms of cost, performance, and
multilingual parsing. These shortcomings prevent the generation
of accurate event data, causing signi�cant impacts on forecasting
and monitoring political con�ict and violence events.

To overcome these key challenges and help advance the global
violence management, we propose an innovative technique by com-
bining state-of-the-art NLP models with multi-task learning ap-
proach to e�ciently extract events in structured CAMEO-like for-
mat. Our proposed model, MTL-BERT, requires a small number
of labeled data to provide high quality results for source, target,
and action detection. We extend MTL-BERT by integrating it with
CAMEO actor repositories through our novel procedure, called
Multi-CoPED, which employs MTL-BERT as its main engine to
compose an end-to-end CAMEO-based event coder.

The experiments on our multilingual corpus indicate that MTL-
BERT outperforms all the baselines in actors and action detection,

Contributed Paper AIES ’22, August 1–3, 2022, Oxford, United Kingdom

707



Table 4: Results based on example-based metrics for Multi-CoPED and baseline models working as end-to-end CAMEO-based
event coders. Table on the top shows performance over the English testing set (⇡C4BC

⇢# ) while the bottom one shows the �gures
for the models over Spanish testing set (⇡C4BC

⇢( ). We do not evaluate the results on (⇡C4BC
%) ) since UPETRARCH does not support

Portuguese language. Bold values represent the highest scores among all the models per component (Source, Target and Action).

Testing in English (⇡C4BC
⇢# ) Source Target Action Overall

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
PETRARCH [7] 62.1 46.2 53.0 51.0 38.0 43.6 62.3 46.4 53.2 34.3 22.9 27.5
PETRARCH2 [47] 53.2 51.7 52.4 45.9 44.6 45.3 46.5 45.2 45.8 50.4 34.9 41.2
UPETRARCH [43] 41.5 47.5 44.3 37.2 42.6 39.7 43.5 49.8 46.4 31.8 26.3 28.8
LSTM-based(⇢# ) 81.4 80.4 80.8 76.9 71.2 73.8 74.8 64.5 69.3 57.1 51.9 54.3
LSTM-based(⇢() 77.9 69.0 73.1 72.6 47.0 56.8 63.2 54.5 58.5 44.0 26.7 33.1
LSTM-based(⇢#+⇢() 83.3 80.4 81.8 79.0 72.2 75.4 76.2 65.7 70.6 59.7 53.2 56.2
Multi-CoPED(⇢# ) 90.4 84.6 87.4 79.8 81.3 80.5 84.1 72.6 77.9 59.8 65.7 62.6
Multi-CoPED(⇢() 88.3 82.4 85.2 72.5 75.4 73.9 66.6 57.4 61.7 41.0 48.1 44.3
Multi-CoPED(⇢#+⇢() 91.1 84.7 87.8 81.4 82.7 82.0 84.6 73.0 78.4 62.2 67.1 64.5

Source Target Action Overall
Testing in Spanish (⇡C4BC

⇢( ) Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
UPETRARCH [43] 39.2 47.0 42.8 35.3 42.7 38.7 42.6 48.8 45.5 29.3 26.4 27.7
LSTM-based(⇢# ) 70.9 75.9 72.3 62.6 50.2 54.7 62.9 54.2 58.2 38.6 30.7 33.5
LSTM-based(⇢() 80.2 78.6 79.4 72.0 66.4 69.0 71.4 61.5 66.1 48.3 44.7 46.4
LSTM-based(⇢#+⇢() 78.8 79.1 78.8 70.8 67.9 69.2 74.8 64.5 69.3 50.4 48.7 49.4
Multi-CoPED(⇢# ) 83.1 81.1 82.1 73.6 77.1 75.3 64.5 55.6 59.7 38.4 47.2 42.3
Multi-CoPED(⇢() 85.1 82.1 83.6 74.1 79.2 76.5 79.1 68.2 73.2 52.0 60.8 56.0
Multi-CoPED(⇢#+⇢() 84.2 82.1 83.1 75.7 80.2 77.9 81.8 70.5 75.8 54.6 62.9 58.4

in all languages. Additionally, Multi-CoPED consistently shows the
best results on generating CAMEO-coded political event data.

An open discussion for future work is to analyze how the perfor-
mance of Multi-CoPED model will behave in multilingual corpus
containing more languages with lower lexical similarity. Moreover,
we intend to expand the case study to other micro domains in the po-
litical science sphere (e.g., terrorism, organized crime, insurgencies,
protest movements, and multinational military exercises).
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A APPENDIX
A.1 Cased vs. Uncased
Table 5 shows the performance of MTL-BERT considering multilin-
gual pre-trained models both cased and uncased as initial weights
on training (�ne-tuning) process.

Table 5: Results for MTL-BERT utilizing cased and uncased
multilingual BERTpre-trainedmodels. Bold values represent
the highest scores among all the models per language.

Source and Target
Detection

S & T Detection Action Detection
EN ES PT EN ES PT

MTL-BERT20B43 (⇢# ) 82.1 76.7 74.9 83.0 61.3 59.6
MTL-BERT20B43 (⇢() 76.3 80.5 77.3 63.2 78.1 70.0
MTL-BERT20B43 (⇢#+⇢() 83.0 81.1 78.6 83.5 80.9 73.5
MTL-BERTD=20B43 (⇢# ) 82.2 76.2 75.6 82.2 63.8 60.0
MTL-BERTD=20B43 (⇢() 74.6 79.3 76.6 63.6 78.6 67.7
MTL-BERTD=20B43 (⇢#+⇢() 82.9 81.4 78.5 83.3 81.3 73.5

A.2 Overall Performance (Recall and Precision)
Tables 6 and 7 show the performance for MTL-BERT and baselines
for Source and Target Detector and Action Detector, respectively.
We show precision and recall measures in order to complement
the discussion over Tables 2 and 3 in Section 5.4, facilitating a
comprehensive analysis.
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Table 6: Evaluating precision and recall computed in exact-match fashion for MTL-BERT and baselines on Source and Target
detection. Each column shows the performance over di�erent testing set (⇡C4BC

⇢# , ⇡C4BC
⇢( and ⇡C4BC

%) ). Bold values represent the
highest scores among all the models per argument (Source and Target) per metric.

MODELS
⇡C4BC
⇢# ⇡C4BC

⇢( ⇡C4BC
%)

Source Target Source Target Source Target
Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

PETRARCH 55.1 38.9 42.2 26.6 - - - - - - - -
PETRARCH2 52.5 25.2 33.8 17.0 - - - - - - - -
UPETRARCH 49.8 31.1 22.5 10.3 47.2 30.3 18.9 8.1 - - - -
SRL-based 77.5 69.7 13.0 12.4 - - - - - - - -
SRL-based (UB) 88.6 68.7 22.4 18.1 - - - - - - - -
LSTM-based(⇢# ) 87.6 83.9 66.1 62.8 81.8 78.3 51.8 37.1 85.1 78.8 44.1 28.9
LSTM-based(⇢() 75.7 62.8 44.0 30.1 86.9 84.2 63.9 58.8 87.9 81.6 51.8 39.6
LSTM-based(⇢#+⇢() 88.6 84.2 67.4 63.9 88.2 86.1 64.0 60.0 90.1 85.7 55.7 45.1
MTL-BERT(⇢# ) 90.5 88.6 73.6 75.7 86.4 88.5 63.9 68.1 85.9 88.3 60.6 65.0
MTL-BERT(⇢() 88.8 84.9 65.1 66.5 91.7 90.0 68.4 72.1 91.2 89.6 63.0 65.7
MTL-BERT(⇢#+⇢() 91.3 89.3 74.8 76.8 90.9 89.9 70.3 73.2 91.4 89.8 65.7 67.6

Table 7: Evaluating precision and recall for MTL-BERT and baseline models on action detection. Each split on the table shows
the performance over di�erent testing set (⇡C4BC

⇢# , ⇡C4BC
⇢( and ⇡C4BC

%) ). Bold values represent the highest scores among all the models
per pentacode per metric.

Testing in
English (⇡C4BC

⇢# )
Make a Statement Verbal Cooperation Material Cooperation Verbal Con�ict Material Con�ict
Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

PETRARCH 60.7 60.7 69.5 51.3 55.6 35.1 80.5 44.0 81.0 59.3
PETRARCH2 63.4 46.4 78.7 46.3 66.7 45.6 86.8 39.3 79.8 58.3
UPETRARCH 76.7 41.1 58.9 53.8 51.7 52.6 80.5 46.7 74.4 59.3
LSTM-based(⇢# ) 60.4 69.9 77.5 68.9 64.2 69.9 78.0 77.1 85.4 81.0
LSTM-based(⇢() 44.9 45.9 72.3 55.1 39.6 51.7 71.2 69.5 77.1 75.3
LSTM-based(⇢#+⇢() 60.4 69.9 78.4 72.3 62.7 71.7 81.0 78.9 87.2 81.2
MTL-BERT(⇢# ) 75.5 87.6 80.1 83.1 74.6 80.0 89.6 83.8 91.6 85.6
MTL-BERT(⇢() 49.9 50.9 83.2 51.0 43.9 65.8 70.8 76.0 82.9 73.6
MTL-BERT(⇢#+⇢() 75.9 89.4 81.3 82.7 73.6 82.0 90.5 83.7 92.6 86.0
Spanish (⇡C4BC

⇢( ) Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec
UPETRARCH 58.9 32.5 57.9 43.3 39.8 43.9 70.9 42.5 68.3 54.6
LSTM-based(⇢# ) 41.0 47.0 76.8 54.4 43.6 52.5 69.7 66.7 75.3 77.6
LSTM-based(⇢() 54.4 71.2 77.2 63.0 59.5 66.5 77.5 70.0 80.1 82.2
LSTM-based(⇢#+⇢() 57.0 75.6 81.3 64.3 61.0 71.6 82.4 75.5 83.1 82.9
MTL-BERT( (⇢# ) 43.6 58.2 74.4 55.8 45.9 50.8 70.7 69.9 78.9 74.3
MTL-BERT(⇢() 68.7 84.0 82.7 76.0 63.3 81.9 85.9 75.6 86.4 81.8
MTL-BERT(⇢#+⇢() 73.3 85.2 81.8 79.2 70.3 82.6 86.3 79.9 89.0 84.1
Portuguese (⇡C4BC

%) ) Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec
LSTM-based(⇢# ) 39.5 61.5 79.1 48.3 45.3 60.5 69.8 59.8 77.5 74.7
LSTM-based(⇢() 47.0 68.5 71.6 44.0 41.7 62.0 71.5 59.9 79.9 78.1
LSTM-based(⇢#+⇢() 49.3 73.7 77.7 54.3 52.6 71.8 78.8 65.2 81.5 81.0
MTL-BERT(⇢# ) 41.2 53.5 71.9 55.9 44.8 50.1 66.9 67.2 80.5 72.3
MTL-BERT(⇢() 56.6 79.8 80.4 66.7 47.0 67.2 79.7 70.3 89.6 75.1
MTL-BERT(⇢#+⇢() 62.1 81.8 81.0 68.9 52.5 72.9 81.3 73.6 91.0 78.4
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