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Reentrant rigidity percolation in structurally correlated filamentous networks
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Many biological tissues feature a heterogeneous network of fibers whose tensile and bending rigidity
contribute substantially to these tissues’ elastic properties. Rigidity percolation has emerged as an important
paradigm for relating these filamentous tissues’ mechanics to the concentrations of their constituents. Past
studies have generally considered tuning of networks by spatially homogeneous variation in concentration, while
ignoring structural correlation. We introduce here a model in which dilute fiber networks are built in a correlated
manner that produces alternating sparse and dense regions. Our simulations indicate that structural correlation
consistently allows tissues to attain rigidity with less material. We further find that the percolation threshold
varies nonmonotonically with the degree of correlation, such that it decreases with moderate correlation and
once more increases for high correlation. We explain the eventual reentrance in the dependence of the rigidity
percolation threshold on correlation as the consequence of large, stiff clusters that are too poorly coupled to
transmit forces across the network. Our study offers deeper understanding of how spatial heterogeneity may
enable tissues to robustly adapt to different mechanical contexts.
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I. INTRODUCTION

Networks and networklike structures are ubiquitous in
biological cells and tissues and provide the basis for their
mechanical properties and functions. Biopolymer networks
are largely responsible for the mechanical response of the
cytoskeleton of cells [1–6] and the extracellular matrix of
tissues [7–11]; more recently, rigidly percolating connected
networks of cells have been shown to account for the vis-
coelasticity of developing embryos [12]. These networks are
generally highly disordered and spatially inhomogeneous as
a result of how they are assembled and disassembled. For
example, cytoskeletal networks are highly dynamic and have
a complex and heterogeneous spatial organization allowing
for context-dependent cell remodeling and response [1]. As a
second example, the collagen II scaffold in articular cartilage
is densest in the vicinity of chondrocytes, cells which secrete
extracellular matrix material to construct and sustain collagen
networks [13]. In fact, previous work has established spatial
heterogeneity as a crucial consideration in developing faithful
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cartilage replacements and scaffolds for tissue regeneration
[14,15].

In the past two decades, there has been extensive study of
disordered biopolymer networks through in vitro experiments
and simulations, which have provided a wealth of informa-
tion about these networks’ responses to mechanical stimuli
[16–24]. To date, however, almost all computational studies of
biopolymer networks have focused on spatially homogeneous
systems and ignored the presence of structural correlations,
which can have significant consequences for the collective
properties of the network.

The effects of heterogeneity and correlations have been
investigated in other percolation phenomena, such as colloidal
gelation [25] and connectivity percolation arising from the
union of random walks [26]. Heterogeneity has also been
found to be consequential in determining the mechanics of
glassy solids [27] and to cause a shift in the critical tem-
perature at which various critical phenomena occur [28].
Nonetheless, to our knowledge, the role of spatial hetero-
geneity in the mechanics of fibrous tissues has yet to be
systematically explored. Here, we address this gap and present
a novel investigation of the percolation of rigidity in struc-
turally correlated fiber networks, which are found in many
cells and tissues, using a lattice-based framework.

Lattice-based fiber networks are a prominent paradigm for
modeling biopolymer scaffolds [19,21,22,24,29]. These net-
works are constructed by laying down infinitely long fibers in
a regular pattern, such that whenever two fibers cross, there
is a crosslink which allows free rotation of the fibers but does
not allow them to slide. The fibers can stretch and bend, but
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pay energy penalties for these deformations. Each fiber can
further be thought of as a collinear series of connected bonds,
such that random removal of bonds yields a broad distribution
of fiber lengths.

The mechanical response of such a disordered fiber net-
work can be mapped to the fraction of bonds present. Starting
with a network in which all the bonds are present, one can
progressively decrease network rigidity by removing bonds.
Once the network reaches a certain threshold of bond occu-
pation, its elastic moduli undergo a dramatic, many-decade
decrease, dropping to negligibly small values. This mechani-
cal phase transition is known as rigidity percolation [19,29].
This phenomenon is distinct from connectivity percolation,
which requires only the existence of a path from one edge of
the network to another. In general, a network with a system-
spanning connected component may not be able to transmit
force from one boundary to another. Dilute fiber networks
have shown great promise as micromechanical models for in
vitro cytoskeletal networks [16–19], and more recently for
extracellular matrix networks in tissues [8,11,30].

Previous computational studies of fiber networks have ex-
amined spatially homogeneous disordered networks, in which
bonds are excluded or retained purely at random, and have
not considered the possibility of correlations in the inclusion
of bonds [16,17,19–21]. In this paper we introduce a model in
which bonds are added in a structurally correlated manner to
account for the pronounced heterogeneity in the distribution
of material observed in cells and tissues. In this model, the
likelihood of adding a bond is contingent upon the number
of adjacent bonds already present. This protocol gives rise
to networks in which already dense regions become further
enriched with material, while sparse regions remain compara-
tively dilute.

II. MODEL

A. Network construction

As we are interested in biopolymer networks in which ver-
tices correspond to crossings of adjacent filaments, we choose
as our model network the kagome lattice [8], with a maximum
coordination number of 4. We adjust the elastic moduli of
networks by randomly retaining a subset of the bonds, such
that some portion, p, is included. In the absence of structural
correlation, p corresponds to the probability that each bond is
retained, such that there is an independently and identically
distributed probability of keeping each bond. We instead use
the term bond portion to reflect the fact that, for correlated
dilute networks, once the network is seeded with an initial set
of bonds, other bonds do not have an identical likelihood of
inclusion.

We employ an iterative process, introduced in [25], in
which, at each step, a candidate bond is chosen at random
from those bonds that have not yet been included in the
network. We then count the number of bonds adjacent to
the candidate bond na that have already been retained, where
adjacency is defined by the condition that two bonds share a
common vertex. For the kagome lattice, the maximum possi-
ble number of adjacent bonds, na,max, is 6. Given a correlation
strength, c, where 0 � c < 1, the candidate bond is added

with a probability

P = (1 − c)na,max−na , (1)

where c = 0 corresponds to a purely random dilution and c ≈
1 corresponds to a maximally correlated dilution, in which a
bond is rejected unless all adjacent bonds have been retained.
This process is repeated until the desired portion of bonds has
been retained.

In Fig. 1, we show representative samples of networks with
varying degrees of dilution and correlation, including no cor-
relation. Increasing the correlation strength for a given bond
portion yields a network with dense clusters, interspersed with
sparse regions. As further bonds are added, relatively dense
regions become more enriched with material, while voids be-
tween these regions persist until the bond portion approaches
1. Notably, our procedure for adding structural correlation is
isotropic, so that it does not confer long-range orientational
order, apart from that arising due to the discrete rotational
symmetry of the kagome lattice.

The data presented in the main text were computed using
networks occupying an approximately square region with a
side length of about 330 bond lengths. Such networks contain
approximately 200 000 bonds when all bonds are present. We
have also considered two other cases in which networks have
approximately 800 000 and 2 000 000 bonds, respectively, in
the fully connected state, to check for finite size effects, and
found substantially similar results. Details of the finite size
effect study may be found in Appendix C.

B. Mechanical model

The bonds of the network resist stretch and compression
with a Hookean spring stiffness, α, and resist bending with
a bending rigidity, κ . Bending resistance is implemented by
regarding adjacent, collinear bonds as consecutive segments
of a fiber. If the bond connecting vertices i and j is collinear
with and adjacent to the bond joining vertices j and k, then we
penalize a change in the angle ∠i jk by an amount proportional
to the square of the angular deflection.

We focus on the mechanical response in the linear re-
sponse regime, so that the deformation energy consists of
terms quadratic in the strain. Following [8], we truncate the
deformation energy to leading order in the displacement of
vertices from the reference configuration of the network and
model the energy as

Estrain =α

2

∑
〈i j〉

pi j (ui j · r̂i j )2

+ κ

2

∑
〈i jk〉

pi j p jk[(u ji + u jk ) × r̂ ji]2. (2)

Here, 〈i j〉 denotes a sum over pairs of vertices sharing a bond,
〈i jk〉 denotes a sum over vertices of adjacent, collinear bonds,
and pi j is defined to be 1 if the bond between bonds i and j
is retained and 0 otherwise. Further, ui j denotes the difference
between the displacement vectors for vertices i and j, and r̂i j
denotes the direction vector of the bond between vertices i and
j in the reference state.

Note that, while we penalize filament stretching and fil-
ament bending, there is no energy cost of changing the
angle between crossing filaments at a crosslink. In such fiber
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FIG. 1. Sample networks are shown in which correlation strength is varied from 0 to 0.8 and the bond portion is varied from 0.4 to 0.8. We
show a magnified inset at the left of the figure to illustrate the correlated construction process. A candidate, marked in magenta, is considered
for inclusion and has five neighbors, marked in orange. As the correlation strength is increased, networks transition from arrangements of
homogeneously dispersed bonds to networks with dense clusters interspersed with sparse voids. Our procedure for adding structural correlation
thus adds strong density fluctuations, without introducing long-range orientational order.

networks, in which bending forces couple only collinear, adja-
cent bonds, the rigidity percolation threshold has been found
to be higher than the connectivity percolation threshold. The
rigidity and connectivity percolation thresholds were found to
be equal if every pair of adjacent bonds is coupled by bending
forces [22].

C. Structural relaxation procedure

We simulate the shear mechanics of our model networks by
imposing a series of small, simple shear displacements of the
vertices at the top. The displacements of the vertices at the bot-
tom of the network are constrained to be zero, while along the
sides we impose periodic boundary conditions. Given these
constraints, we minimize the energy given in (2) for a small
strain, εs = 0.001, and compute the shear modulus according
to the relation

E = 1

2
AGε2

s , (3)

where E is the minimized energy, A is the area of the network,
and G is the shear modulus. In seeking a mechanical ground

state, we choose as our starting guess an affine displacement
field, in which the displacement of each vertex is given by a
global linear transformation. For the simple shear we apply to
our networks, this amounts to displacing a point (x, y) by

�u(x, y) = [εs(y − ymin), 0], (4)

where �u is the displacement field, εs is the shear strain, and
ymin is the minimum y coordinate of any vertex in the network.
Full details of this calculation may be found in Appendix A.

III. RESULTS AND DISCUSSION

A. Shear mechanics

We first examined how the rigidity percolation threshold
can be tuned by varying the degree of correlation. We consid-
ered nine distinct values of c, ranging from 0 to 0.8, in steps of
0.1, and 61 distinct values of p, ranging from 0.4 to 1, in steps
of 0.01. We carried out structural relaxation for 10 realizations
for each combination of c and p, and identified G for each
combination as the geometric mean of the 10 values. The
shear modulus G, normalized by its universal maximum, G0,

043152-3



JONATHAN MICHEL et al. PHYSICAL REVIEW RESEARCH 4, 043152 (2022)

(b)

(a)

FIG. 2. In panel (a), we show the scaling of shear modulus with
bond portion for several structural correlation strengths. While the
dependence of the shear modulus on the bond portion is qualitatively
similar in each case, the point of rigidity percolation shifts initially to
the left, then back to the right with increasing structural correlation.
In panel (b), we show the dependence of G on c and p for the full
range of parameter space considered. The reentrance of the depen-
dence of pc on structural correlation strength is clearly discernible in
a contour of marginal stiffness on the left side of the heat map. We
attribute this reentrance to two competing effects: the need for rigid
clusters and the need for strong coupling between adjacent clusters.

is shown vs p for several values of c in Fig. 2(a), accompanied
by a full phase diagram in Fig. 2(b).

Figures 2(a) and 2(b) provide the first indications of an
intriguing variation in the rigidity percolation threshold with
the degree of correlation c of the disordered network. For each
value of c, we find a qualitatively similar scaling of the shear
modulus with the bond fraction. Interestingly, however, the
rigidity percolation threshold, i.e., the critical bond fraction,
pc, at which the shear modulus first differs appreciably from
zero, shifts markedly and nonmonotonically as c is varied:
while introducing a moderate correlation strength initially
diminishes pc, this effect saturates at about c = 0.6 and pc
increases for still larger values of c.

To quantitatively identify the rigidity percolation threshold
for each value of c, we considered pairs of bond fraction
and shear modulus for which the shear modulus ranged from
10−9 to ∼10−2. This ensured that the shear modulus was
greater than machine or algorithmic error, but still small in
comparison with its maximal value, G0, at p = 1. We used the

method of least squares to fit each set of bond fraction-shear
modulus pairs to a power law of the form

G = k(p− pc)β. (5)

For each value of c, we found a good fit to Eq. (5) over at
least seven decades of dynamic range in the shear modulus.
In each case, the correlation coefficient, R2, between log10(G)
and log10[k(p− pc)β] is �0.96. For the homogeneous case
c = 0, we recover the previously established result of pc ≈
0.6 [31].

As shown in Fig. 3(a), in which pc is plotted vs c, our
power law fits affirm the trend in pc previously identified
by inspection in Fig. 2. Surprisingly, the scaling exponent,
β, on the other hand, exhibits the opposite trend, increasing
with c until about c = 0.6, and decreasing thereafter. This
dependence of β on c indicates that an earlier onset of rigidity
percolation is accompanied by a more abrupt rise in the shear
modulus at the point of percolation.

As shown in Fig. 3(c), we find β to decrease linearly
with pc (R2 = 0.92). We attribute the decrease in β with pc
to two competing factors determining percolation: the pres-
ence of large, rigid clusters and sound mechanical coupling
of adjacent clusters. As the correlation strength is increased
beyond its optimum value, the network segregates into large,
dense regions that are too poorly connected to enable optimal
transmission of stress. The optimal correlation strength of 0.6
strikes an ideal balance, enabling the greatest gain in stiffness
per unit material. To substantiate this conjecture, we turn to
detailed analysis of network displacement fields.

B. Analysis of nonaffine deformation

To gain further insight into the micromechanical mech-
anisms underlying the reentrance in the rigidity percolation
threshold, we quantified the degree of nonaffinity in each net-
work. Nonaffinity quantifies the departure of a displacement
field of a strained material from the displacement expected
in a simple, homogeneous elastic continuum. In an affinely
deforming network subjected to simple shear, a vertex with
an initial location �r0 = (x0, y0) will be mapped to the final
location �r ′

A = (x0 + εsy0, y0), where εs is the shear strain. The
nonaffine displacement field �uNA is defined as �r ′ − �r ′

NA, where
�r ′ is the true displacement field. The nonaffine parameter, �,
is then defined as

� = 1

N ε2
s l

2
0

N∑
i=1

|�uNA|2, (6)

where l0 is the length of an undeformed bond and N is the
number of vertices in the network [32]. Nonaffinity is a well
established means of characterizing the difference in behavior
of a purely entropic rubber and a gel of semiflexible polymers
[24] and has been found more broadly to be important in
accounting for the shear mechanics of disordered solids [33].
We computed � for all ten network realizations for each
combination of p and c and calculated the final nonaffine
parameter as the arithmetic mean over all realizations.

We note that, owing to zero frequency modes in the stiff-
ness matrices of underconstrained networks for which p < pc,
there will be some ambiguity in the solution for the dis-
placement field. This ambiguity is not entirely lifted by the
constraints we impose at the boundaries. While the nonaffine
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(a) (b) (c)

FIG. 3. Scaling behavior near the rigidity threshold: In (a), we show the results of fitting shear modulus–bond portion pairs to Eq. (5). In
each case, we find a sound fit spanning six to seven decades in the shear modulus. In (b), we show fitting results for the critical bond portion,
pc, and the scaling exponent, β, of the shear modulus with the excess bond portion. The scaling exponent exhibits the opposite trend from the
critical bond portion, indicating that a low percolation threshold is accompanied by a more abrupt increase in the shear modulus. In (c), we
demonstrate that the critical bond portion is a reliable predictor of the critical exponent relating growth in the shear modulus to the excess bond
portion. We find that the value c = 0.6 yields an optimal trade-off between a need for large, rigid clusters and a need for sound mechanical
coupling of adjacent clusters to enable coordinated, system-spanning force propagation. For excessive correlation, dense clusters amount to
stiff inclusions in an otherwise undercoordinated network.

parameter for p < pc is therefore protocol dependent, we
argue that it is still illuminating in this regime. Our trial
solution of affine displacement would be exact if our networks
had completely homogeneous mechanical response, but this
guess fails for the heterogeneous networks we consider here.
Nonaffine deformations generically result from an imbalance
of forces in the affinely deformed state [32,34]. A large depar-
ture of the displacement field from our starting affine guess
thus reveals a high degree of mechanical heterogeneity. In a
similar vein, previous work has found nonaffine rearrange-
ments to be useful in identifying “soft spots” in which the
onset of plasticity is most likely in disordered granular media
[35,36].

As reported in previous studies [21,24], we find a pro-
nounced peak in the nonaffine parameter near the rigidity
percolation threshold, as shown in Fig. 4(a). The relatively
small values of the nonaffine parameter for p � pc and p 	
pc are reasonable, as, in these limits, all parts of the network
are either equally soft or equally stiff, respectively. While
the same general trend holds for all correlation strengths, the
peak in the nonaffine parameter becomes lower and broader
as the structural correlation strength is increased. We posit
that this peak broadening is associated with the formation
of local rigid regions, joined by weakly connected interstitial
regions, such that stress is distributed in a nonuniform manner
over a larger range of bond fractions for networks with high
structural correlation. We investigate this idea further by con-
sidering the spatial correlations in the nonaffine displacement
field.

We first consider a radial nonaffine correlation function,
g(r). We take the inner product of nonaffine displacements
for all pairs of points within some cutoff distance, rcut, of one
another and bin displacement vectors between pairs of points
into annular sectors of thickness �r. We then define g(r) as

g(r) = 1

〈|�uNA|2〉 × 〈�uNA(�ri ) · �uNA(�r j )〉r�|�r j−�ri|<r+�r, (7)

where the first average runs over all points and the second
average runs over all distinct pairs of points i, j such that
the positions of vertices i and j in the undeformed lattice
are separated by a distance in the range [r, r + �r). This
normalizes g(r) to be equal to 1 when r = 0.

For each combination of p and c, we find g(r) to be well fit
(for all cases, R2 � 0.98) by the form

g(r) = 1 + a(e−r/λ − 1). (8)

We show a representative set of curves in Fig. 4(b), for
c = 0.6 and varying bond fractions. Symbols indicate data
points, while lines are fits to Eq. (8). Initially, the floor of
g(r) decreases, reaching its lowest point near the rigidity
percolation threshold, then steadily increases for larger values
of p. We attribute the early decrease in the floor to incipient
rigid clusters that deform differently from the surrounding soft
regions, such that there is no coordinated, long-range force
transmission. The subsequent rise in the minimum of g(r) is
associated with the emergence of system-wide spanning force
chains beyond the rigidity percolation threshold.

From the decay distance, λ, in Eq. (8), we infer an effec-
tive mechanical length scale. Different correlation strengths
yield qualitatively similar dependence of λ upon bond por-
tion, but λ at a fixed bond portion steadily increases with
increasing correlation. This further affirms the idea that the
size of a coherently deforming cluster becomes progres-
sively larger with growing correlation. Results are shown in
Fig. 4, panel (c), with trend lines computed from cubic basis
splines.

We finally seek to account for the reentrant scaling of pc
with structural correlation strength by identifying the critical
mechanical length scale, λc, at the onset of rigidity percolation
for each structural correlation strength, c. We estimate λc

by interpolation using the previously mentioned cubic ba-
sis splines. As shown in Fig. 4(d), we find that pc varies
nonmonotonically with λc, with an initial decrease until λc

exceeds about five bond lengths, after which pc once more
increases. The optimal value of λc is that obtained for a
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(b)(a)

(d)(c)

c = .6

FIG. 4. (a) We show the nonaffine parameter, as defined in Eq. (6), vs bond portion for a number of correlation strengths. In each case,
the nonaffine parameter exhibits a pronounced peak at the rigidity percolation transition. Larger correlation strengths correspond to nonaffine
rearrangements occurring over a wider range of bond fractions and are reflected in the peaks becoming progressively broader with increasing c.
(b) We display azimuthally averaged nonaffine correlations gNA(r) as a function of distance r between vertices. In each case, we find the decay
to be exponential, allowing us to extract an emergent mechanical length scale, λ. This length scale monotonically increases with bond portion
p, suggesting longer range correlations for networks with more fiber content. The nonaffine correlations in the large r limit decrease with
increasing bond portion below the rigidity percolation threshold; however, above this threshold they increase with increasing bond portion.
While we choose a correlation strength of 0.6 here, networks with differing correlation strength exhibited qualitatively similar behavior. Data
are shown in symbols, while lines show the best fit to Eq. (8). In (c), we show emergent mechanical length scales λ for different combinations
of p and c. At low bond portions, the length scale λ steadily increases with correlation strength for a given p, whereas at high bond portions,
values of λ for different values of c converge and approach the system size. In (d), we identify a critical mechanical length scale, λc, as the
decay length of nonaffine correlations at the onset of rigidity percolation, which exhibits a power law divergence as the structural correlation
strength nears 1 (see inset). We show that the critical bond portion pc varies nonmonotonically with λc in a manner reminiscent of the scaling
of pc with structural correlation strength c in Fig. 3(b).

structural correlation strength of 0.6, in concert with our pre-
vious findings. We further observe that λc appears to diverge
according to a power law as c approaches 1. In the limit c = 1,
either all bonds can be present or no bonds can be present, so
that the only percolating network would be a fully connected
network, in which vertex displacements are correlated over
arbitrarily large distances. We thus find that, while small, rigid
islands must nucleate to enable the most efficient percolation,
excessively large rigid clusters leave too little material else-
where to enable the formation of system-wide force chains.

IV. CONCLUSION

We have introduced and investigated a model of rigidity
percolation in spatially correlated networks. Our study of the
scaling of the shear modulus near percolation, coupled with

our analysis of networks’ strain fields, offers a straightforward
physical picture accounting for the reentrant scaling of pc with
c. While the length scale over which a network’s displacement
field is well coordinated grows monotonically with correlation
strength, eventually neighboring rigid clusters become poorly
coupled. Weak tethers between dense islands of bonds lead
to strain being highly concentrated, rather than the load being
distributed evenly throughout the network.

This work broadens the already successful rigidity percola-
tion framework to better account for the mechanical response
of structurally correlated, heterogeneous networks found in
cells and tissues. We anticipate this work will usher in fur-
ther studies exploring the role of anisotropy [37] observed in
many extracelluler matrices. Our findings indicate that, rather
than using just an averaged, system-wide characterization of
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network topology, local spatial patterns should be considered
to fully understand tissues’ responses to applied stress.
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APPENDIX A: FINDING MECHANICAL GROUND STATES
OF ELASTIC NETWORKS

We seek a zero-force configuration of the network, subject
to the constraint that the nodes along the bottom of the net-
work are fixed and the nodes along the top of the network
do not translate in the y direction and are displaced by a
uniform amount to the right. Periodic boundary conditions are
imposed at the left and right boundaries of the network. We
note that, due to the quadratic energy given by Eq. (2), the
restoring force, �F , resulting from a displacement field �u may
be computed as

�F = −K�u, (A1)

where, for a network with N vertices, K is a 2N × 2N matrix
and �u is a (2N × 1)-dimensional column vector with the dis-
placement field components of node i given in indices 2i − 1
and 2i of �u. For a total energy E , the matrix element Kαβ is

given by

Kαβ = ∂2E

∂uα∂uβ

, (A2)

where 1 � α, β � 2N .
We then partition indices of the displacement field on the

interval [1, 2N] into two subsets: the set R of indices cor-
responding to relaxed coordinates and the set B of indices
corresponding to constrained coordinates on the boundary.
Let �uR be an R × 1 column vector containing just those co-
ordinates permitted to relax, where R = |R| is the number of
relaxed coordinates. We further define a projection operator
from the full 2N-dimensional displacement field �u to �uR,
denoted by PN→R, and a projection operator PR→N from �uR
back to R2N . The product PR→NPN→R yields a 2N × 2N linear
operator satisfying

(PR→NPN→R)αβ =
{

1, α = β, α ∈ R,

0, otherwise. (A3)

Finally, we define a 2N × 2N operator, IB, to select just
those elements of �u corresponding to boundary nodes’
displacements:

Iαβ =
{

1, α = β, α ∈ B,

0, otherwise. (A4)

With the foregoing definitions in hand, we now return to
the physical situation. The net force on the relaxed nodes due
to interactions amongst relaxed nodes must be the opposite of
the net force on relaxed nodes due to their interaction with

p

.8

.6

.4

0

c

.4 .55 .65 .8

FIG. 5. We show the correlation in nonaffine parameter as a function of the magnitude and orientation of separation. The color scale for
each panel is normalized to the maximum value for a given combination of bond portion and correlation strength. The decay in nonaffine
displacement coefficient becomes more gradual with growing bond portion for all correlation strength, but growth in decay length becomes
markedly more rapid for highly correlated networks. We also note that, with growing bond portion, nonaffine correlations exhibit increasing
anisotropy, with decay in correlations becoming much more gradual along the direction of applied shear.
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boundary nodes. In terms of the previously defined quantities,
this implies

PN→RKPR→N �uR = −PN→RKIB�u. (A5)

We choose as our starting guess the affine displacement
field, �uA, and decompose �u as the sum of the affine field and
the nonaffine field, �uNA. Defining KR ≡ PN→RKPR→N , we
solve for the nonaffine component of �uR, �uNA,R as

�uNA,R = −K+
R (PN→RKIB�uA + PN→RKPR→N �uA,R). (A6)

K+
R denotes the Moore-Penrose inverse of KR [38–40], which

we compute using the package SUITESPARSEQR [41]. We fi-
nally solve for the overall displacement field as

�u = PR→N �uNA,R + �uA (A7)

and the residual strain energy as

E = 1

2
�uTK�u. (A8)

APPENDIX B: QUANTIFYING ANISOTROPY IN
NONAFFINE CORRELATIONS

We further look for evidence of orientational order in non-
affine correlations by averaging not over an annular sector, but
rather over all pairs of points whose relative displacement has
magnitude r and makes an angle ϕ with the positive x axis.

We define a measure of correlation ψ (r, ϕ):

ψ (r, φ) =
∑

�r1,�r2
�uNA(�r1) · �uNA(�r2)δr,|�r1−�r2|δϕ,θ1,2

〈|�uNA|2〉
∑

�r1,�r2
δr,|�r1−�r2|δϕ,θ1,2

, (B1)

where summations are over all vertices, δ is the Kronecker
delta, and θ1,2 is the angle between the displacement �r2 − �r2

and the positive x axis. Results are shown in Fig. 5. The color
scale for each combination of correlation strength and bond
portion is mapped to the range spanning the minimum and
maximum values of ψ for that combination.

While, for low bond portions, the correlation between
nonaffine displacement is highly isotropic, correlations de-
cay far more gradually along the direction of applied strain
at large bond portion. Well above the rigidity percola-
tion threshold, networks deform in a nearly affine manner,
as shown in Fig. 4(a). In this regime, the discrete rota-
tional symmetry of the kagome network introduces elastic
anisotropy. This anisotropy is more pronounced for net-
works with less structural correlation, as highly correlated
networks have greater fluctuation in local stiffness, a trait
known to increase nonaffinity [32]. Our analysis to eluci-
date the reentrance in the rigidity percolation threshold relies
upon nonaffine correlations for 0.52 � p � 0.6, where the
nonazimuthally averaged nonaffine parameter decays nearly
isotropically.

(a) (b) (c)

(f)(e)(d)

FIG. 6. We show the results of our study to check for finite size effects that may have influenced our findings. We show results for networks
four times the size of those considered in the main text in panels (a)–(c) and results for networks 10 times the size of those considered in the
main text in panels (d)–(f). In (a), we show agreement between simulation data and a fit to the exponential scaling model given by Eq. (5). In
(b), we show the scaling of the critical bond portion and critical exponent with the correlation strength and find these results to be substantially
similar to those shown in the main text, as shown in Fig. 3. In (c), we show the inverse relationship between the scaling exponent and the
critical bond portion, once more finding our results in close accord with those presented previously. Panels (d)–(f) correspond with panels
(a)–(c) and exhibit strong agreement with previous findings.
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APPENDIX C: INVESTIGATING FINITE SIZE EFFECTS

As mentioned in the main text, we also sought to confirm
that our findings remained valid for increasingly large net-
works. We considered cases in which the number of bonds
in the fully connected state was ≈800 000 and ≈2 000 000.
For each class, we varied the correlation strength c from 0
to 0.8, in steps of 0.1, and the bond portion, p, from 0.4 to
0.75, in steps of 0.01. We focused on the range from 0.45
to 0.7 for p as we were primarily interested in determin-
ing whether the same scaling behavior as reported in the

main text occurred in the vicinity of the rigidity percolation
transition.

We found that the scaling of the shear moduli of all larger
networks was still well captured by Eq. (5) and further found
the optimal correlation strength to be approximately 0.6.
Values of scaling exponents for networks of different size but
with the same correlation strength also proved to be strikingly
similar, suggesting that our system size is indeed appropriate
to reveal general bulk properties of structurally correlated
fiber networks. A summary of our findings is provided in
Fig. 6.
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