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Abstract— Real-time machine learning object detection algo-
rithms are often found within autonomous vehicle technology
and depend on quality datasets. It is essential that these algo-
rithms work correctly in everyday conditions as well as under
strong sun glare. Reports indicate glare is one of the two most
prominent environment-related reasons for crashes. However,
existing datasets, such as the Laboratory for Intelligent & Safe
Automobiles Traffic Sign (LISA) Dataset and the German Traffic
Sign Recognition Benchmark, do not reflect the existence of sun
glare at all. This paper presents the GLARE (GLARE is available
at: https://github.com/NicholasCG/GLARE_Dataset) traffic sign
dataset: a collection of images with U.S-based traffic signs under
heavy visual interference by sunlight. GLARE contains 2,157
images of traffic signs with sun glare, pulled from 33 videos
of dashcam footage of roads in the United States. It provides
an essential enrichment to the widely used LISA Traffic Sign
dataset. Our experimental study shows that although several
state-of-the-art baseline architectures have demonstrated good
performance on traffic sign detection in conditions without sun
glare in the past, they performed poorly when tested against
GLARE (e.g., average mAP0.5:0.95 of 19.4). We also notice that
current architectures have better detection when trained on
images of traffic signs in sun glare performance (e.g., average
mAP0.5:0.95 of 39.6), and perform best when trained on a mixture
of conditions (e.g., average mAP0.5:0.95 of 42.3).

Index Terms— Traffic sign detection, public data set, sun glare.

I. INTRODUCTION

DRIVING has seen its numerous phases of evolution,
from being steam-propelled to becoming almost fully

autonomous. Throughout these developments, the existence
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of one phenomenon has remained constant in the daily envi-
ronment — intense sunlight which can obstruct the view of
a vision sensor (either eyes or cameras) while maneuvering
a vehicle. When the sun descends on the horizon, sun glare
seeps below a car’s visor and visually impairs vision sensors,
causing difficulty in navigating everyday traffic. Temporary
blindness (due to sun glare) causes difficulty in sensing other
cars, and traffic signs, often leading to accidents. As a result of
sun glare, a recent report [1] by the Department of Transporta-
tion has stated that as many as 9,000 glare-related accidents
occur each year, making it one of the two most prominent
environment-related reasons for crashes. The combination of
harsh sun glare with common driving risk factors contributes
to more crashes and congestion in day-to-day driving, leading
to setbacks in implementing new automotive technologies.

There has been an upsurge of autonomous vehicles driv-
ing alongside everyday drivers, such as Tesla or Google’s
Waymo. These self-driving vehicles make their decisions
through the use of object detection algorithms, which allows
the autonomous system to locate objects (such as traffic signs
on the road) using bounding boxes, classify them, and make
a real-time decision (machine learning [2]) based on the
algorithmic interpretation of the seen object. The functionality
of these algorithms heavily depends on rich sets of data that
are collected from real-world scenarios, annotated, and fed to
“teach” algorithms what it may experience on the road. One set
of data frequently used to teach algorithms within autonomous
cars includes traffic signs—critical for navigating everyday
traffic. While there are several datasets publicly available that
focus on traffic signs in regular weather conditions, there is
few traffic sign dataset focusing on traffic signs with sun glare.
Our experiments indicate that when vehicles are continuously
trained to recognize objects using data without sun glare, real-
time algorithms within cars may fail to detect traffic signs
and other objects when blinded by high-intensity visual noise,
leading to catastrophe.

Datasets containing traffic signs with sun glare are often
internal within autonomous driving companies and conse-
quently are not publicly available for wider research purposes.
While existing public datasets (such as the Laboratory
for Intelligent & Safe Automobiles Traffic Sign (LISA)
Dataset [3]) do not contain any sun glare at all, there is an
emerging need to create a public dataset with a wide variety
of traffic signs with sun glare interference to fill this disparity.

A. Contributions

As an addition to the LISA Traffic Sign dataset, we establish
the GLARE dataset — a collection of images with traffic signs
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TABLE I
COMPARISON OF EXISTING TRAFFIC SIGN DATASETS

which have heavy visual interference as a result of strong
sunlight. GLARE will be a publicly available set of images for
training real-time object detection algorithms and more. This
dataset and the proposed algorithms are intended to act as a
baseline for upcoming researchers while developing, training,
and examining their own models. The contributions of this
work comes in three folds:

• We establish a fine-grained traffic sign dataset, GLARE,
abundant with realistic glares on or near the traffic sign
areas. To our knowledge, GLARE is the first traffic sign
dataset with detailed annotations of sun glares, covering
varied scenarios of glare conditions from daily driving.
Compared to the commonly used dataset (e.g., LISA [3],
GTSDB [6], and TT-100K [7]), GLARE provides pure
observation of traffic sign with glares instead mixing with
a sparse witness of general occlusions. We follow the
standard format to annotate, calibrate, and reorganize the
dataset for a wide range of research tasks (e.g., traffic sign
localization, image classification, and temporal localiza-
tion).

• We also have released the full procedures to step-by-step
create the dataset and analyze its statistical features.

• We further showcase the research potentials of the
GLARE dataset by testing it on a large group of bench-
marks. Specifically, we observe that the performances
of mainstream object detection architectures used in
real-time traffic sign detection degrades drastically when
trained on the LISA dataset, whereas training with the
GLARE dataset shows a significant performance gain
instead.

B. Organization

The rest of the paper is organized as follows: Section II
summarizes the existing related work of traffic sign datasets
and cutting-edge object detection architectures. Section III
details the dataset including its collection, annotation, and
statistics. Section IV reports the experiments to check the
testing performance of the mainstream object detection archi-
tectures with both partially and entirely and without the
GLARE dataset in the training phase. Section V concludes
the paper and suggests ideas for future research.

II. RELATED WORK

A. Traffic Sign Datasets

With the advancement of autonomous driving, there has
been an emphasis on collecting data with all types of road
conditions, signs, and any factor to note while driving, leading
to a plethora of datasets in the community specific to traffic
sign detection.

Several datasets tend to focus on traffic signs found glob-
ally, each with variations. For example, the German Traffic
Sign Recognition Benchmark [6] focuses on traffic signs
from Germany and captured images in different environments
under varied weather conditions. Others that follow a similar
pattern include the Tsinghua-Tencent 100K dataset [7], the
Swedish Traffic Sign dataset [4], and the Belgium Traf-
fic Signs dataset [10]. It is advantageous to the computer
vision community to have access to traffic signs from around
the world, but there is a significant drawback common to
public traffic sign datasets: a lack of sun glare within its
images.

The use of convolutional neural networks (CNNs) is preva-
lent throughout traffic sign datasets, often for the tasks of
localization, recognition, and joint localization and recog-
nition, which is commonly referred to as object detection.
To set the standard for these tasks, baselines are often attached
to datasets in the form of varied CNNs. The Mapilliary
dataset [8], for example, uses a Faster regional-based con-
volutional neural network (R-CNN) based detector to produce
mean average precision (mAP) results over all of its classes.
The DFG Traffic Sign dataset [9] is another example that
uses such techniques to establish a baseline, utilizing a Faster
R-CNN and a Mask R-CNN to provide mAP values ranging
in the upper 90s. Although the dataset includes traffic-sign
instances with synthetic distortions that may resemble sun
glare, these images are incomparable to those with natural sun
glare. Generalization performance may suffer from improper
training when strictly utilizing datasets that lack natural sun
glare. This is a phenomenon found often throughout datasets
focused on traffic sign depiction: models are trained on data
without obscuring conditions or with synthetic ones, such as
sun glare, usually are unsatisfactory when tested in real driving
scenarios.
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Severe conditions, such as sun glare or heavy rain, impede
the visibility of traffic signs while driving. Just as it hin-
ders human drivers, it additionally interferes with algorithmic
vision. The CURE-TSD-Real dataset [11], comprised of traffic
sign images in simulated heavy road conditions, is an example
of a dataset with severe conditions that resulted in a 29%
drop in average precision. This motivates us to investigate the
possibility of harsh sun glare causing a drop in algorithmic
performance as well.

The GLARE dataset intends to be an extension of the LISA
dataset, which is one of the most commonly used American
traffic sign datasets with an emphasis on large variations
within urban landscapes. The dataset is comprised of videos
and stand-alone images of traffic signs, amounting to about
6,610 images and 7,855 annotations. Source data for the LISA
dataset comes with color, in grayscale, and does not include
images with excessive sun glare. The LISA dataset answered
a need for a public dataset with US-based traffic signs and
notably contributed more as it includes full traceability of
its dataset by providing full annotations of all images, and
includes all associated tracks. We provide full comparisons
of the existing related traffic sign datasets in Table I with
GLARE, which shows that GLARE is the latest traffic dataset
(with two years gap from DFG and MTSD and nine years gap
from original LISA) and is formed by high-resolution images
with heavy/harsh glares on traffic signs.

B. Traffic Sign Classification

One of the most popular applications with the aforemen-
tioned datasets is traffic sign classification, where tremendous
efforts are accomplished from statistical learning to deep
learning paradigms. For example, Soendoro and Supriana [12]
first adopt the SVMs with sparse representation to recognize
the class of traffic signs in images. With the rise the deep
learning, convolutional neural networks begin to dominate the
performances of recognition/classification in the traffic sign
domain. Specifically, on the GTSRB dataset, a large amount of
CNN variants [13] shows a powerful ability for generalization,
where the classification accuracy on the testing set is even
better than the performance of human experts (e.g., CNNs with
spatial transformers [14] can achieve roughly 99.7% in terms
of top-1 accuracy). Note that, the reported high classification
accuracy is based on the cropped traffic sign images, where
we can obtain these images via a specifically designed object
detection task.

C. End-to-End Traffic Sign Detection

At first, the localization and the classification are two
independent tasks, where the classification is built upon
the properly localized bounding boxes (i.e., the traffic sign
is located and extracted intact). With the rise of the
CNNs, the original powerful performance of image classifi-
cation/recognition [15] rapidly transfers to object detection
domain. Furthermore, it has been a consensus that the family
of CNNs is capable of detecting a bounding box for a
specific object while classifying its category simultaneously.
The well-known RCNN/Fast-RCNN [16], [17] first generates

potential bounding boxes on the frames and then classifies
the object only in these bounding boxes. However, the final
performance of object detection depends on the performances
of multiple stages during the complex pipeline (i.e., pre-
processing, classification, and post-processing to re-score the
proposed bounding boxes), where the whole process is slow
as well. To address the efficiency and complexity issue, [18]
proposes the first edition of You Only Look Once (YOLO)
series, v1 to v5, and treats the object detection as a single
regression task to directly establish the connection among
the image pixels, the bounding box coordinates and the
labels with probabilities. To further improve the performance,
YOLOX [19] is proposed as incorporating the anchor-free
manner and several cutting-edge detection techniques (e.g.,
decoupled head, dynamic label assignment strategy).

Another branch of object detection strategies leverages the
popular transformer [20] encoder-decoder architectures by
removing the complicated hand-designed components such
as non-maximum suppression or anchor generation while
optimizing a global loss that enables unique classifications via
bipartite matching. Similar ideas are brought into traditional
RCNN architecture that a special Swin Transformer [21]
shows a great performance gain when replacing the ResNet50
backbone. Almost all the aforementioned object detection
algorithms rely on supervised learning with labeled traffic
signs and it is rarely considered that the possible strong
localized noises (e.g., sun glare) in the testing phase may
degrade the detection performance.

III. GLARE DATASET

This section presents the GLARE traffic sign dataset, a sun
glare focused dataset to assist researchers and developers
in building real-time autonomous traffic sign detection and
classification system in sun glare conditions. The dataset
includes 2157 images and annotations, each containing a single
traffic sign annotation. This dataset can be used for object
localization, recognition, and object detection tasks.

A. Video Collection and Processing

The initial collection process started with three dashboard
cameras recording approximately 38 hours of footage around
the Orlando area. Two cameras were forward facing with one
filmed at 1920 × 1080 (1080p) and the other rearward facing
one filmed at 720 × 480 (480p). In total, the cameras filmed
463 initial videos of 40 hours and 25 minutes of footage.

The first step in video processing was to remove all videos
that did not meet the criteria of having both sun glare and
traffic signs at the time. This resulted in 163 videos that
contained some amount of sun glare. The second step was
to extract the sections of video with sun glare, referred to as
clips. The clips each contained a continuous presence of sun
glare, with about a half second of extra time at the start of
each clip to allow for ease of finding the beginning of the sun
glare. Since only footage that concurrently contains sun glare
and traffic signs matters, any clips that did not contain traffic
signs during the follow-up screening section were discarded.
Following a similar procedure as the LISA dataset [3], these
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short videos are referred to as tracks. 189 tracks were used in
the creation of the GLARE dataset, totaling 18 minutes and
11 seconds of footage. The tracks were organized by their
original source video, with 33 original source videos being
used in total to produce the GLARE dataset.

B. Annotation Process

The image annotation process was separated into two main
steps: bounding box localization of traffic signs, and bounding
box approval with cleanup. The first step was completed by
two individuals at the same time with a single open-source
tool [22] to allow for efficient labeling. The second step
was completed after the initial processing of all the images
as a quality assurance step by two individuals who worked
on labeling and processing the initial bounding boxes in the
LISA dataset format [3]. The automatic bounding box tracking
algorithms available with the tool were Re3 [23] and CMT
(Consensus-based Matching and Tracking of Keypoints for
Object Tracking) [24], and we used Re3 for all our annotations
due to stable tracking at all sizes. When annotations were
saved, each image that was exported had a single associated
annotation.

1) Traffic Sign Localization: In the first step, tracks were
processed together based on the original source video. Each
track would then be played to completion, with the bounding
box labeling occurring on the first frame with sun glare
that was a multiple of 5. The process would continue with
the current bounding box being saved on every subsequent
multiple of 5 until the track finished playing or sun glare was
no longer on the screen. When labeling traffic signs using
the bounding box localization tool, you could automatically
choose the classification of the traffic sign to allow for
increased efficiency. After the initial labeling, the annotation
tool would continue automatically annotating until the current
user deemed the automatic annotation to have drifted too far.
The annotator would then delete and reapply the bounding box,
and continue annotating until all the tracks were processed. For
each traffic sign in a track, no more than 30 annotations of
that traffic sign would be saved to decrease the overexposure
of that sign.

2) Bounding Box Approval and Cleanup: After a track was
labeled, the annotations were reviewed and either approved or
rejected. Any bounding boxes with background noise that can
be removed with manual selection are removed and relabeled.
After all tracks and annotations were processed, the video was
exported in a single CSV file (similar to the LISA dataset) for
further processing, as demonstrated by Figure 1.

After all the tracks were processed and exported by the
original source video, the annotations were further processed
to remove previously uncaught errors and extract statistical
information from the entire dataset. Any bounding box that
did not localize a sign or contained significant background
noise was rejected, and any improperly labeled annotations
were renamed. After removing the improper annotations, the
remaining annotations were then categorized on if the traffic
signs were covered in any way, and if they were on the current
road or a side road [3]. These “Occluded” and “On another
road” annotations [3] were then pooled.

Fig. 1. Bounding box processing and exporting.

C. Dataset Statistics

The GLARE dataset contains 2,157 bounding box anno-
tations and associated images distributed across 41 classes.
Figure 2a shows the distributions of the annotations per class.
The annotations were created from multiple videos to ensure
a variety in the location in glare conditions. For each track in
each source video, a maximum of 30 frames for each traffic
sign class were allowed to minimize over-exposure of traffic
signs in specific positions and sun glare conditions. Figure 2b
shows the distribution of annotations across the 33 source
videos processed. The size of the bounding box annotations
varies between 6 × 14 and 137 × 178 pixels, and the size
of the images is either 810 × 540 or 937 × 540 pixels. The
dataset works with existing scripts released alongside the LISA
dataset for annotation, extraction, and splitting [3].

The types of visual interference labeled as sun glare can
be broadly categorized into four categories. The categories
described are subjective but are recorded to allow for a greater
understanding of how we evaluated sun glare during the initial
video processing for the dataset. Examples of each category
can be seen in Figure 3. The first category is where there is a
clear sun without any significant additional bright cloud noise
or brightness interference from the camera. The sun appears
as a bright ball, excluding any obstruction by either clouds
or other objects. In an upcoming section, we will describe
a naïve detector for this type of sun glare to improve traffic
sign detection results. The second category is where there is
a visible sun, but there are additional clouds that add to the
overall brightness of the image. The third category is where
there is minimal to no visible sun due to cloud interference.
Although the sun is not visible in the frame, there is still visual
interference that causes traffic signs to be less visible than in
clear conditions, decreasing detection. The fourth category is
sun glare due to other interference. The sun being visible is not
a requirement, as there is visual interference due to the camera
settings. Either way, the visual interference appears similar to
the interference caused by the other types of sun glare. The
images themselves have not been labeled based on the type
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Fig. 2. Statistics/Distributions of GLARE dataset.

Fig. 3. Examples of images form the GLARE dataset with bounding boxes
highlighted.

of sun glare due to the subjective nature of the categories and
that some images can fit into multiple categories.

IV. BENCHMARKS

In order to test how sun glare conditions affect the ability
to detect traffic signs, we performed multiple tests comparing
how different state-of-the-art object detection architectures
perform detecting traffic signs in sun glare conditions. Each
architecture was tested by being trained on only the LISA
dataset, on only the GLARE dataset, and on the LISA and

GLARE datasets combined. The trained models were tested on
similar testing sets, with the LISA-trained models tested on a
subset of the testing set for the GLARE and combined models.
We also performed a supplementary test using the YOLOv8
architecture for comparing how using initially random weights
and using pre-trained weights affects the ability to detect traffic
signs in sun glare conditions.

A. Splitting Methodology

To fairly test all the trained models and minimize similar
frames in the training sets and testing set, the initial testing
set was created using the frames from 5 videos in the GLARE
dataset with a focus on maximizing traffic sign coverage for
sign types present in multiple videos while minimizing the
percentage of the GLARE dataset used. However, it was found
that about half of the traffic sign types are only present in a
single video. Therefore, to give coverage of these traffic sign
types in the testing set while minimizing the likelihood of
similar frames across the sets, the last frames for traffic sign
types with less than 5 frames, in the order they appear in the
original video, were selected for the testing set. This resulted
in about 26.52% of the GLARE dataset being used for the
testing set.

To train each architecture, 3 different training sets were
created for the GLARE-only models, the LISA-only models,
and the combined dataset models. For the LISA dataset
models, the training set was created by selecting a subset of
the LISA dataset with only the frames with traffic sign types
that are present in both the LISA dataset and the GLARE
dataset. Similarly, a custom testing set was also created for
these models by subsetting the larger testing set with only the
frames containing traffic sign types present in both GLARE
and LISA. This was to not test the models on traffic sign types
not present during training. For the GLARE dataset models,
3 augmented copies for each frame in GLARE not selected for
testing were created with alterations using noise, color jitter,
and blur, and added to the training set along with the original
image. The GLARE training set was then split into 3 folds to
account for the added bias of similar frames in the training set
with 3 fold cross-validation performed. The resulting models
were tested using the entire testing set with the scoring results
averaged. For the combined models, the training sets for the
LISA and GLARE models were combined, shuffled, and split
into 3 folds similar to the GLARE training set for 3 fold cross-
validation. Similarly, the resulting models were tested using
the entire testing set with the scoring results averaged.

B. Scoring Methodology

The scoring metric used for comparing the performance of
the models is the Mean Average Precision (mAP) of the classes
as defined in COCO [25] and implemented in Ultralytics’
YOLOv5 [26] and YOLOv8 [27] releases and OpenMMLab’s
mmdetection toolbox [28]. For each ground truth bounding
box in an image, multiple predicted bounding boxes are
produced, and the ratio between the area of the intersection
between each prediction and the ground truth and the area
of the union between each prediction and the ground truth
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is calculated. If a predicted bounding box’s Intersection over
Union (IoU) is equal to over a specified threshold, then the
prediction is kept with the IoU used as a confidence score. The
Average Precision (AP) is then calculated as the area under the
precision-recall curve for the kept predictions, and the Mean
Average Precision is the average of the Average Precision over
all the different label types. We calculate mAP0.5 as the Mean
Average Precision where the specified threshold for the IoU
is 0.5. mAP0.5:0.95 is calculated as the average of the Mean
Average Precision with the specified thresholds being over a
range from 0.5 to 0.95 inclusive, with a step of 0.05 [25].

C. Configuration and Implementation

To demonstrate the necessity of viability of the GLARE
dataset, we experimented with seven state-of-the-art methods
comparing the results when training on only GLARE, only
LISA, and GLARE and LISA together. We chose to test on
a variety of different architecture families, with a focus on
including state-of-the-art one-stage architectures commonly
used in real-time object detection tasks and architectures
based on the transformer architecture, which has demon-
strated greatly improved results on several deep learning tasks,
such as object detection. For this, we chose YOLOv5 [26],
YOLOX [19], YOLOv8 [27], and TOOD [29] as our one-stage
detection architectures, and chose Deformable DETR [30] and
the Faster-RCNN [31] with a Swin Transformer backbone [21]
as our transformer architectures. Finally, we also selected the
Faster-RCNN with a ResNet50 backbone [32] as a baseline
to compare the more recent and state-of-the-art architectures
against.

The three YOLO architectures were chosen due to YOLOv8
and YOLOX having architecture changes to improve results
compared to YOLOv5. For example, YOLOv8 and YOLOX
are anchor-free architectures while YOLOv5 is anchor based,
which tends to increase the number of bounding box pre-
dictions. YOLOv8 has also done other changes compared to
YOLOv5, such as changing the first convolution layer in the
stem from 6 × 6 to 3 × 3 kernel, reducing the CSP Bottleneck
from 3 convolutions to 2, and changing the kernel size of the
first convolution layer in the bottleneck to 3 × 3. YOLOX
also differs from YOLOv5 by utilizing a decoupled head and
a novel dynamic label assignment strategy named simOTA.
All 3 YOLO architectures were trained using the small model
size, as the GLARE dataset is designed to be used in real-time
object detection. TOOD was chosen to demonstrate the per-
formance of a one-stage detection architecture that performs
object detection differently from the YOLO series, as TOOD
uses a “new head structure and alignment-based learning
approach” [29] to align the classification and localization tasks
for object detection.

The YOLOv5 and YOLOv8 models were trained and
tested on Ultralytics’ releases [27], [33], and the rest of the
architectures were trained and tested using OpenMMLab’s
MMDetection toolbox [28]. All architectures used the given
training and testing pipelines for images to not bias the
detection results to any training set. As MMDetection provides
different configurations for the available architectures, TOOD

TABLE II
TRAINING CONFIGURATION FOR EACH ARCHITECTURE

was trained with multi-scale training, Deformable DETR used
the 2-stage version with iterative box refinement, and the
Faster-RCNN with a Swin Transformer backbone used multi-
scale cropping.

The Faster-RCNN, Deformable DETR, and TOOD archi-
tectures used the ResNet50 backbone with pre-trained weights
trained on the COCO dataset [25], and the Faster-RCNN with
a Swin Transformer backbone used pre-trained weights trained
from the ImageNet-1k dataset [34] for the backbone. All the
YOLO architectures were trained with completely random
weights in the backbone. To account for the possible decrease
in performance compared to the other architectures with pre-
trained weights, we performed a supplementary test comparing
the performance of YOLOv8 when trained using random
weights and using weights pre-trained on the COCO dataset,
which the results are described in the following section.

The YOLOv5 models were trained on an RTX 3070, the
YOLOv8 and TOOD models trained on LISA and GLARE
were trained on an RTX 3090, and the rest of the models
were trained on two NVIDIA Tesla V100 GPUs. For all the
architectures, we used the default hyperparameters provided,
with alterations to the training batch size, initial learning rate,
and the number of epochs to fit our datasets. We only altered
the learning schedule for the Faster-RCNN with a ResNet50
backbone, where we did not have any warm-up epochs. For
the architectures trained using MMDetection, the auto-scale-
learning-rate flag was used to automatically adjust the learning
rate to the batch size. The architecture training configurations
are shown in Table II.

D. Benchmark Results

The results of testing the benchmark architectures trained
on the GLARE, LISA, and combined training sets are shown
in Tables III and IV.1 The results of testing the YOLOv8
architecture on random weights and pre-trained weights from
training on the COCO dataset are shown in Table V.

For the models trained on the GLARE dataset, the aver-
age mAP0.5 is 59.2, and the average mAP0.5:0.95 is 39.6.
For the models trained on the LISA dataset, the average
mAP0.5 is 34.7, and the average mAP0.5:0.95 is 19.4. For the
models trained on the combined GLARE and LISA datasets,

1The architectures are listed by the initial release of the associated publi-
cation or code itself if no publication is available.
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TABLE III
MAP0.5 SCORING RESULTS AFTER TRAINING WITH

RANDOM INITIAL WEIGHTS

TABLE IV
MAP0.5:0.95 SCORING RESULTS AFTER TRAINING WITH

RANDOM INITIAL WEIGHTS

the average mAP0.5 is 67.9, and the average mAP0.5:0.95 is
42.3. The difference between the GLARE-trained models and
the LISA-trained models is 24.5 for mAP0.5 and 20.2 for
mAP0.5:0.95, and the difference between combined-dataset-
trained models and GLARE-trained models is 8.7 for mAP0.5
and 2.7 for mAP0.5:0.95.

The best-performing architectures overall were the
Faster-RCNN with a Swin Transformer backbone and TOOD,
with the Swin architecture performing best when trained
on only GLARE for both mAP0.5 and mAP0.5:0.95, TOOD
performed best when trained on only LISA for both mAP0.5
and mAP0.5:0.95, and among the models trained on the
combined dataset, the Swin architecture performed best on
mAP0.5 and TOOD performed best on mAP0.5:0.95. Among
transformer-based models, the Swin architecture performed
best when trained on only GLARE or the combined dataset,
and Deformable DETR performed best when trained on
only the LISA dataset. For single-stage architectures, TOOD
outperformed every architecture in the YOLO family for
GLARE-trained, LISA-trained, and combined-dataset-trained
models. Compared to the Faster-RCNN with a ResNet50
backbone, YOLOv5 and YOLOX performed worse when
trained on only the GLARE dataset, and all architectures in
the YOLO family performed worse when trained on only the
LISA dataset and when trained on the combined dataset.

These results indicate that sun glare has a noticeable effect
on the ability of object detection architecture to detect traffic
signs in sun glare conditions, especially for the YOLO family
of architectures, which are frequently used in real-time object

TABLE V
SCORING RESULTS AFTER TRAINING YOLOV8 WITH

RANDOM WEIGHTS AND PRE-TRAINED WEIGHTS

detection tasks. When the architectures were trained on LISA
alone, there was a significant decrease in performance com-
pared to when they are trained on GLARE alone or GLARE
and LISA together. Our results also validate the GLARE
dataset as a useful extension of the LISA dataset, as training
using the LISA and GLARE datasets together resulted in supe-
rior performance compared to both the architectures trained
only on GLARE and the architectures trained only on LISA.
The unusually high performance of the TOOD architecture,
especially when trained on only the LISA dataset, warrants
future investigation on the ability of architectures with similar
structures to detect traffic signs in sun glare conditions when
trained on datasets without a significant presence of sun
glare.

For the test using YOLOv8 comparing using random
weights and COCO pre-trained weights, using pre-trained
weights led to an increase in performance by 3 in mAP0.5
and 3.4 in mAP0.5:0.95 for the models trained on the GLARE
dataset and by 1.4 in mAP0.5 and 1.9 in mAP0.5 for the
models trained on the combined dataset. For the models
trained on the LISA dataset, training using pre-trained weights
led to a decrease in performance by 2.4 in mAP0.5 and
mAP0.5:0.95. A reasonable explanation for these results is that
the pre-trained weights allow for YOLOv8, and by extension
possibly other architectures in the YOLO family and similar
architectures, to better fit the training set. This would lead to
the models trained on LISA having more difficulty detecting
traffic signs in sun glare conditions, while models trained with
at least part of the data containing traffic signs in sun glare lead
to increased performance, further indicating the usefulness of
the GLARE dataset in traffic sign detection.

V. CONCLUSION AND FUTURE WORKS

This paper introduces GLARE, a traffic sign dataset with
a focus on sun glare and how it affects the recognition of
traffic signs in such conditions. The dataset includes 2,157
images with corresponding bounding box annotations of traffic
signs across 41 classes from the Orlando area. The GLARE
dataset has a specific focus on images with sun glare present,
which affects both human drivers and cameras for autonomous
driving systems. Our baseline benchmarks have shown that
sun glare has a noticeable effect on the ability of current
architectures to detect traffic signs.

The GLARE dataset is the beginning of future research
on traffic sign detection in naturally noisy conditions and the
removal of sun glare as well. We believe this dataset can be
used as a testing set for entire sun glare removal using the
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U-Net architecture [35], as seen in previous work removing
sun flares from images [36]. We also believe this dataset can
be extended to include traffic signs in other noisy or abnormal
conditions, such as rain, fog, and night-time driving. Such
an extension could be used to create and train architectures
that can detect traffic signs with greater precision in a wider
variety of conditions, whether through image restoration or
detection and recognition alone. Finally, we believe this dataset
can be used to assist in the development of object detection
architectures that can detect objects well despite localized
noise, as possibly evidenced by TOOD.
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