
Compositional Mixed-Criticality Systems with
Multiple Executions and Resource-Budgets Model

Abdullah Al Arafat∗, Sudharsan Vaidhun†, Liangkai Liu‡, Kecheng Yang§, Zhishan Guo∗
∗North Carolina State University, †University of Central Florida, ‡Wayne State University, §Texas State University
{aalaraf, zguo32}@ncsu.edu, sudharsan.vaidhun@knights.ucf.edu, liangkai@wayne.edu, yangk@txstate.edu

Abstract—Software reusability and system modularity are key
features of modern autonomous systems. As a consequence,
there is a rapid shift towards hierarchical and compositional
architecture, as evidenced by AUTOSAR in automobiles and
ROS2 in robotics. The resource-budget supply model is widely
applied in the real-time analysis of such systems. Meanwhile,
real-time systems with multiple critical levels have received
significant attention from the research community and industry.
These systems are designed with multiple execution budgets
for multiple system-critical levels. Existing studies on mixed-
criticality systems consider a dedicated resource supply. This
paper considers a novel generalized system model with multiple
execution estimations and resource-budget supplies for com-
positional systems. An analytical model and a demand-bound
function-based schedulability test are presented for the EDF-
based scheduler in the proposed compositional mixed-criticality
system. A range for setting the resource supply period is
derived to ensure the schedulability of workloads when supply
budgets are known. The general performance of the scheduling
framework and its wider applicability is further demonstrated
and evaluated using synthetic workloads and resource models,
where synthetic workload parameters are derived through a case
study on an autonomous driving system.

Index Terms—Mixed-Criticality, Compositional Scheduling,
Resource Criticality, Demand Bound Functions, AUTOSAR

I. INTRODUCTION

Autonomous systems, such as autonomous vehicles, indus-
trial robots, drones, etc., are the next major computing demand
drivers. Most of these systems are safety-critical, and their
functional and temporal correctness must be verifiable. Due
to the sophisticated design and underlying hardware-platform
complexities, software reusability and system modularity are
required design choices for these systems. An embedded
system design paradigm has emerged to support the software
reusability and system modularity of these systems, requir-
ing an additional software layer between the function and
hardware layers, such as those defined in AUTOSAR [3] and
ROS2 [2]. The design of such an additional software layer
makes a rapid shift towards compositional (also known as hi-
erarchical) architecture, as evidenced by, e.g., AUTOSAR [3],
[17] in automobiles and ROS2 [2] in robotics.

Compositional scheduling framework has emerged as an
efficient way to provide temporal isolation among applications
and has been used as one of the common scheduling frame-
works for mixed-criticality (MC) systems in practice [42].
Typically, compositional scheduling framework maintains two
layers of schedulers: local scheduler schedules the workloads
in a virtual processor (VP) and global scheduler schedules all

the VP’s providing resource supply from the underlying hard-
ware platform [43]. Scheduling workloads of an application in
a VP ensures the modularity and reusability of the application.

Usually, the resource supply model consists of a single
supply budget for each VP [43]. However, in scheduling MC
workloads [47] in a VP, a single resource supply results
in sub-optimal performance [28]. Therefore, Lackorzyński et
al. [28] developed a multiple-supply-based scheduling scheme
to schedule MC workloads in a VP. Later, Gu et al. [24]
also proposed a dual-supply-based hierarchical scheduling
framework for resource efficient scheduling of MC work-
loads. However, these methods either relaxed the isolation
constraints of VPs [28] or added awareness of workload
criticality-based mode-switch of local scheduler to global
scheduler [24]. Although these relaxations significantly reduce
the local scheduler’s scheduling complexity (e.g., schedulable
‘system modes’ are restricted to only the modes introduced
by workload criticalities), it may break some of the critical
properties of compositional scheduling framework, such as
temporal isolation, modularity, and reusability.

We, instead, consider a dual-critical resource model for
MC workload scheduling in a standard hierarchical scheduling
framework, where the local and global schedulers are indepen-
dent [43]. Specifically, our resource supply model is driven by
a practical one designed for AUTOSAR [3], which consists
of a ‘nominal’ and ‘critical’ supply budget. Such a resource
supply model is currently available on adaptive partition
scheduling (APS) in QNX [17]. Notably, APS can be used
in ROS2 too [17]. To illustrate the necessity of this resource
model, let us consider a scenario where resource supply is
not consistent due to critical resource requirements from some
VPs in the system. To provide such critical supplies, other VPs
will receive a degraded supply. In such case, it is important to
guarantee that the VP with degraded resource supply should
at least schedule high-critical workloads. To tackle such a
scenario, we consider a dual-critical resource supply with a
‘nominal’ resource supply during regular system operations
and a ‘critical’ supply where resource supply is lower than
normal due to critical system operations. Notably, however,
VPs with ‘surplus’ resource supply due to critical resource
requirements are expected to complete critical workloads of
those VPs. Hence, we do not consider to tackle issues related
to ‘surplus’ resource supply.

Recently, Yang and Dong [50] proposed an MC model for
resource budgets in compositional scheduling. The authors



considered a dual-critical resource supply model for a VP in
a hierarchical scheduling scheme in the proposed MC model.
However, the paper did not consider the workload criticality
model presented in Vestal’s MC model [47] to mitigate the
curse of pessimism induced by the overly-pessimistic worst-
case-execution-time (WCET) estimations of workloads. In
contrast, we have developed scheduling strategies for MC
workloads with multiple execution times in a VP with dual-
critical resource supply. Notice that scheduling MC workloads
with multiple execution times on a dual-criticality resource
supply introduces new scheduling challenges, which is the
focus of this paper. It is mainly caused by the necessity of
independently system mode-switch triggering for workloads
and resource supplies (details presented in Sec. II-C).

Contributions. In this paper, we present MC-Budget, the first
general MC model that includes both resource and workload
criticalities independently for a VP under the compositional
scheduling framework. As both MC and compositional sys-
tems become jointly employed and more popular in safety-
critical systems, MC-Budget will be a critical foundation for
real-time analysis and verification purposes. Specifically, we
consider a dual-critical workload model where each task is
either a low- or high-critical task with two estimations (e.g.,
optimistic and pessimistic) of execution time. Regarding re-
source supply to a VP, we consider a ‘nominal’ and a ‘critical’
resource supply. Overall, MC-Budget consists of four system
modes, each with a combination of resource and workload
criticality levels. In particular, the technical contributions to
this paper are summarized as follows:

• We propose the first generalized mixed-criticality system
model (MC-Budget), which subsumes the state-of-the-art
(e.g., [47], [50]) as special cases under the MC scheduling
framework.

• We present a new demand bound function-based pseudo-
polynomial schedulability test for the EDF-based sched-
uler of the proposed MC model.

• We derive a range for the resource period, ensuring a
given workload’s schedulability.

• We conduct extensive schedulability evaluations using
synthetic workloads and resource models, where the
workload parameters are estimated through the simulation
of a fully functional autonomous driving system.

Organization. The remaining of the paper is organized as
follows: Section II introduces the detailed system model,
its background and then proposes a scheduler that handles
such systems. Section III and IV present a corresponding
schedulability test and a bound for setting the resource supply
period, respectively. Section V illustrates an algorithm to
jointly determine hyper-parameters (e.g., deadline shrinkage
parameter and resource period) for the schedulable work-
load. Section VI demonstrates a detailed evaluation of the
scheduler and the associated schedulability test using synthetic
workloads. Section VII discusses the related work. Finally,
Section VIII provides the concluding remarks of the paper.

II. SYSTEM MODEL AND BACKGROUND

The scheduling model consists of a workload model that
describes the tasks and a resource model that describes the
available resources, and scheduling strategies (algorithm) to
schedule the workloads on the available resources. This section
formally describes the workload and resource model for a set
of constrained-deadline sporadic tasks to be scheduled on a
virtual processor. We then present the scheduling strategy of
the proposed scheduling problem.

A. Workload Model

Let us consider a constrained-deadline sporadic task set of
k independent and preemptive MC tasks, τ = {τ1, τ2, ..., τk}.
Each task τi consists of a five-tuple, τi = (CLO

i , CHI
i , Ti, Di, ςi)

that can release (potentially) infinite sequence of instances
with a minimum inter-arrival separation of Ti and the relative
deadline of the task for each instance is Di(≤ Ti) time units.
We consider two estimations of execution time for each task
τi—CLO

i , CHI
i which are the optimistic execution time and

worst-case-execution-time (WCET) of τi, respectively. The
parameter ςi ∈ {LO, HI} represents the criticality of task τi.
Each task in the system is either a low or high critical task.
For instance, if CLO

i < CHI
i , then the task is a high-critical task

(ςi = HI) and a system mode switch can be initiated in case
of over execution of CLO

i . In contrast, if CLO
i = CHI

i , then the
task is a low-critical task (ςi = LO) and there would not be a
system mode switch for overrun of CLO

i . For brevity, we will
term the low- and high-critical tasks as LO-tasks and HI-tasks
and define LO- and HI-task set as τLO = {τi ∈ τ |ςi = LO} and
τHI = {τi ∈ τ |ςi = HI}, respectively in rest of the paper.

Utilization of a task τi is defined as the ratio of execution time
and period of the task, ui(p) = Cp

i /Ti, where p ∈ {LO, HI}.
For example, ui(LO) denotes the utilization of task τi using
optimistic execution time, CLO

i . We define task set utilization
as follows,

Up
′

p =
∑

τi∈τ |ςi=p′∈{LO,HI}

ui(p) (1)

For instance U HI
LO is the utilization of HI-task set with optimistic

execution times, CLO
i ’s.

Demand bound function (DBF), dbf(τi, ℓ), gives an upper
bound of maximum possible execution of all jobs of task, τi =
(Ti, Ci, Di) that have both their arrival times and deadlines
in the scheduling window, ℓ. The demand bound function is
defined as follows [11],

dbf(τi, ℓ) =

(⌊
ℓ−Di

Ti

⌋
+ 1

)
· Ci (2)

Note, ∀ℓ ≥ 0, dbf(τi, ℓ) ≥ 0, as
(⌊

ℓ−Di

Ti

⌋
+ 1

)
≥ 0|Di ≤ Ti.

Fact 1. A linear demand bound function of task τi, ldbf(τi, ℓ)
is,

ldbf(τi, ℓ) =

{
0 if ℓ ≤ Di(

ℓ−Di

Ti
+ 1

)
· Ci if ℓ > Di

(3)



Fig. 1: Worst-case resource supply of a periodic resource
model R(Θ,Π) [43].

where ldbf(τi, ℓ) ≥ dbf(τi, ℓ) for ∀ℓ ≥ 0.

B. Resource Model
We consider a periodic partitioned resource model
R(Θ,Π), where a virtual processor (VP) periodically receives
a certain amount of resource budget Θ = {Θn,Θc} in
between a specified time period Π. Depending on the resource
criticality, the resource budget Θ is either a nominal budget
Θn, or a critical budget Θc where Θn > Θc. Let us define
nominal resource model as Rn(Θ

n,Π) and critical resource
model as Rc(Θ

c,Π). We further define nominal and critical
bandwidth of resource as,

ωn =
Θn

Π
and ωc =

Θc

Π
, respectively.

Supply bound function, sbf, is the minimum resource supply
during an interval of ∆. The sbf(∆) of a periodic partition
resource model R(Θ,Π) is given by [43] as,

sbfR(∆) =

{
0; if ∆ ≤ 2 · (Π−Θ)⌊
∆−(Π−Θ)

Π

⌋
·Θ+ ϵ; otherwise

(4)

where,

ϵ = max

{
∆− 2(Π−Θ)−Π

⌊
∆− (Π−Θ)

Π

⌋
, 0

}
Figure 1 illustrates the sbfR(∆) considering a worst-case

scenario to show minimum resource supply during an interval.
Note that maximum non-supply interval is zero and the sbf()
is a non-decreasing function.

Fact 2. (Theorem 1 [43]) A constrained-deadline task set, τ ,
with a periodic resource model R(Θ,Π) can be successfully
scheduled by a dedicated resource supply, if and only if∑

τi∈τ

dbf(τi, ℓ) ≤ sbfR(ℓ), ∀ℓ ≥ 0. (5)

Fact 3. (Lemma 1 [43]) The linear supply bound function
lsbf(∆) of R(Θ,Π) is,

lsbfR(∆) =
Θ

Π
(∆− 2 · (Π−Θ)) ≤ sbfR(∆)

So, the nominal lsbfRn(∆) of Rn(Θ
n,Π) and critical

lsbfRc(∆) of Rc(Θ
c,Π) are,

lsbfRn
(∆) = ωn · (∆− 2 · (Π−Θn)) (6)

lsbfRc
(∆) = ωc · (∆− 2 · (Π−Θc)) (7)

Fig. 2: Proposed state diagram of system modes. Mode
switches are indicated by solid lines (blue and red lines
indicated that mode switches are initiated by HI-task’s overrun
and scarcity of resource supply, respectively). Dotted lines
indicate the mode restoration direction. Note that some jobs of
each task τi ∈ τLO in system modes SMw

M and SMr
M are dropped

following graceful degradation strategy, while all jobs of HI-
tasks are executed by its deadline in all system modes.

Now we define pseudo-inverse of sbf(∆) as follows,

sbf(δ) = min{∆ | sbf(∆) = δ} (8)

sbf(δ) provides the minimum time to serve a resource δ.
The pseudo-inverse of lsbfRn

(∆) and lsbfRc
(∆) are,

lsbfRn(δ) =
1

ωn
· δ + 2 · (Π−Θn) (9)

lsbfRc
(δ) =

1

ωc
· δ + 2 · (Π−Θc) (10)

Equations 9 and 10 are directly derived from the linear
Equations 6 and 7, respectively.

Fact 4. (derived from Fact 3) The pseudo-inverse of lsbf(δ)
is always greater or equal than the pseudo-inverse of sbf(δ),

lsbf(δ) ≥ sbf(δ) (11)

C. System Modes

We consider four system modes based on the criticality
of workloads and resource budgets. Figure 2 presents a state
diagram of system states illustrating the possible system mode
switching scenarios. We define the system modes as follows:

• System Mode–Low (SML): All workloads are executed up
to CLO

i with a resource supply budget of Θn.
• System Mode–Medium (SMM): This system mode can be

triggered by either an overrun of workload or scarcity
of resources. So, we further define two distinct system
modes for SMM.

– SMM with Θc (SMr
M): In this mode, all workloads are

executed up to its CLO
i with a resource budget of Θc.

– SMM with CHI
i |τi ∈ τHI (SMw

M ): In this mode, all tasks
executes up to CHI

i (Note, CHI
i = CLO

i |τi ∈ τLO) with
a resource supply budget of Θn.

• System Mode–High (SMH): In SMH, only HI-tasks execute
up to its WCET, CHI

i with a resource budget of Θc.
Note that once a criticality is raised (either for a task

overrun or resource scarcity) and system mode is switched



accordingly, the system cannot return to the previous system
mode in the next clock tick. This property is certainly held as
a higher criticality mode is needed to address specific system
requirements for correct operation. In contrast, the system can
switch to a higher critical mode to address more criticalities
in the subsequent clock tick. Now, however, suppose both
resource and task overrun criticalities trigger simultaneously.
In that case, we address the criticalities in sequential order,
such as any one of the criticality triggers the first system
mode switch to one of SMM. The other criticality then triggers
the system mode switch to SMH respectively. All other valid
system mode transitions are illustrated in Fig. 2.

Algorithm 1: Acceptance Test of LO-tasks in SMM

Mode [25]
Input: Acceptance ratios of LO-tasks, {ri}

1 for ∃τi ∈ τLO do
2 ai ← 0 ; // Initialize acceptance job

counter
3 end
4 while TRUE do
5 //Check whether pth job Jp of τi is released;
6 if Jp ∈ τi|ς = LO release then
7 if ai ≤ ri · p then
8 //Accept the job to schedule;
9 ai ← ai + 1 ; // Increase counter

10 end
11 else
12 //Drop the job;
13 end
14 end
15 end

Graceful Degradation of LO-tasks in SMM. We consider a
graceful degradation of LO-tasks in SMr

M and SMw
M modes,

where some jobs of each LO-task are dropped, and others are
executed up to its WCET (CLO

i ). For LO-job admission/drop
in SMr

M and SMw
M , following the existing work on graceful

mixed-criticality scheduling [25], we maintain a fixed ratio,
ri where ⌈ri · x⌉ jobs of every x jobs that released in SMM

mode are accepted for execution. The LO-jobs acceptance
test in SMr

M and SMw
M modes is presented in Algorithm 1

(adopted from [25]). Algorithm 1 keeps accepting jobs until
the number of accepted jobs becomes equal to the product of
the ratio times released jobs counter. Note that this ratio holds
for any number of released jobs. To include the acceptance
ratio, ri in each LO-task, we modify the LO-task tuple as:
τi = (CLO

i , Ti, Di, ri, ςi = LO). We ignored CHI
i here due to

the fact that, for LO-tasks, CLO
i = CHI

i .

Remark 1. Note that we consider dropping all active LO-
jobs when a mode switch instant triggered from SML to SMr

M

or SMw
M . As we drop only a single instance of LO-tasks during

the mode-switch instant, it will not affect the performance of
LO-tasks in the system. Hence, all first released instant of LO-
tasks at SMr

M and SMw
M are accepted to execute following the

acceptance test in Algorithm 1.

Mode Switches. Each virtual processor (VP) starts with SML.

Time (t)

Fig. 3: Illustration of resource scarcity instant. In a supply
period Π, suppose a VP received supply S. At the earliest
time instant t∗, the remaining period of resource supply for
the VP is P such that S+P < Θn. Then the resource scarcity
is triggered at t∗.

System switches to SMw
M or SMr

M from SML due to either
overrun of CLO

i by any HI-task or the scarcity of regular
resource budget, Θn, respectively. The system triggers a mode
switch from SMw

M mode to SMH if there is resource scarcity
of regular supply budget Θn in the system and changes the
supply budget from Θn to Θc. Similarly, a mode switch from
SMr

M to SMH is initiated if a HI-task overruns its execution
budget CLO

i . As illustrated in Fig. 2, the system triggers a
mode switch (e.g., valid mode switch denoted by solid lines)
following the rules mentioned above. In case of the mode
switch in reverse direction as illustrated in Fig. 2 by the dotted
lines, we consider the system can only restore to the SML from
any other system modes when the current system mode remain
idle at or after the resource replenishment instant. Note that it
might be possible to switch back earlier than the idle instant
of resource replenishment instant; however, for simplicity, we
consider absolute idle instant (e.g., system restart) for restoring
to the initial system mode.

Remark 2. Note that tracking whether a VP could receive
a nominal budget or not is different from tracking whether a
task has overrun. In the case of tracking task overruns, we only
need to measure the execution time of the task and compare
it with its WCET. Typically, a single counter (e.g., Watchdog)
monitors task overrun issues. However, in the case of resource
budget tracking, we need to track both the received budget and
the available remaining resource period. Therefore, we should
use two counters – the first to measure the unconsumed budget,
and the second to measure the budget available within the
resource period for consumption. The system will raise the
resource scarcity flag whenever the remaining budget exceeds
the remaining budget period. Figure 3 illustrates an instance
of a mode-switch trigger due to resource scarcity.

D. Scheduling Algorithm

Earliest-deadline-first (EDF) algorithm is an optimal
scheduling algorithm for non-mixed-criticality workload
scheduled on a dedicated supply uniprocessor platform [32].
Baruah et al. [12] developed a modified version of EDF with
virtual deadlines for HI-tasks (EDF-VD) for mixed-criticality
workload scheduling on a uniprocessor platform. We briefly
describe the EDF-VD for MC systems [12] as follow.

EDF-VD [12]. In EDF-VD scheduling of a dual-critical
regular MC system, HI-tasks are scheduled following a vir-
tual deadline (typically, shorter than the actual deadlines),



Dv
i = x·Di for 0 < x ≤ 1 and LO-tasks are scheduled by their

actual deadline in low-system-critical mode. The parameter x
is a deadline ‘shrinkage factor’ for HI-tasks. All LO-tasks are
dropped immediately in high-system-mode, and HI-tasks are
scheduled following their actual deadlines.

However, the scheduling problem we present in this paper
is entirely different from the existing problems addressed
by EDF-VD. For the system mode-switches, a mode switch
occurs only when at least one of two conditions is met –
resource get scarce or a HI-task overruns. In addition, we
allow graceful degradation of LO-tasks execution in SMw

M and
SMr

M modes. We derive virtual deadlines of HI-tasks using
Algorithm 2.

Remark 3. Note that in regular MC systems, EDF-VD
leverages the advantages of virtual deadlines of HI-tasks to
fulfill the additional execution demands (e.g., CHI

i − CLO
i ) for

carry-over jobs1 after a mode switch instant, which is triggered
only by overrun of HI-tasks. In addition to overrun of HI-tasks,
our system model also supports mode switches (e.g., SML to
SMr

M and SMw
M to SMH) triggered by resource scarcity. Unlike

regular MC systems, after a resource scarcity-triggered mode
switch, our algorithm maintains the same deadline parameters
(e.g., Di or Dv

i ) in the new system mode.

Scheduling Strategies. The scheduling strategies for each
system mode are as follows:

• In SML, all workloads are executed following EDF up
to its WCET, CLO

i . Each LO-task must complete its
execution within its deadline Di. Each HI-task must
complete execution by its virtual deadline, Dv

i .
• In SMr

M (or, SMw
M ), for any LO-task, τi, only ⌈ri · x⌉ out

of each x jobs are required to be executed up to its CLO
i

on or before its deadline Di (Algorithm 1). In case of HI-
tasks, all tasks executed either up to CLO

i in SMr
M mode

on or before its virtual deadline, Dv
i or CHI

i in SMw
M mode

by their actual deadline, Di, respectively.
• In SMH, all LO-tasks are dropped immediately. HI-tasks

execute up to its CHI
i on or before its deadline, Di.

Remark 4. Although our focus in this paper is the schedula-
bility analysis of the local scheduler for a VP, having a valid
schedulability guarantee for the global scheduler is necessary
to ensure end-to-end schedulability of a hierarchical and
compositional scheduling framework. When it comes to global
scheduling, a common strategy is to model each VP as an
independent task to abstract resource demand by the VP, and
then the global scheduler ensures a schedulability guarantee
by providing sufficient resource supply to the VP [43]. We as-
sume that the global scheduler is guaranteed to be schedulable
with a ‘nominal’ and ‘critical’ resource budget model for each
VP. Note that, due to the dual-resource supply model provided
by the global scheduler, all valid mode-switches illustrated in
Fig. 2 are feasible for dual-critical workloads.

1A carry-over job is a job that released and remained unfinished before a
mode-switch instant.

III. SCHEDULABILITY TEST

The schedulability analysis for EDF-VD is usually per-
formed either using utilization-based analysis [6], or DBF-
based analysis [20], [18]. Utilization-based tests can be per-
formed in linear time complexity; however, the tests are
sufficient only, and involves huge pessimism for constrained
deadline systems (as the test becomes density-based). In
this paper, we will develop a DBF-based test with pseudo-
polynomial time complexity.

Ekberg and Yi [20] developed DBF-based analysis for
regular MC systems, where they analyzed the DBF-based
schedulability for each mode separately. Before deriving the
DBFs for different system modes, we define the following
functions for DBFs of LO- and HI-tasks in each mode:

• dbfSML
LO (τi, ℓ)—the demand of a task τi ∈ τLO in SML

mode for any time interval of length ℓ.
• dbfSML

HI (τi, ℓ)—the demand of a task τi ∈ τHI in SML mode
for any time interval of length ℓ.

• dbf
SMr

M
LO (τi, ℓ)—the demand of a task τi ∈ τLO in SMr

M

mode for any time interval of length ℓ.
• dbf

SMr
M

HI (τi, ℓ)—the demand of a task τi ∈ τHI in SMr
M

mode for any time interval of length ℓ.
• dbf

SMw
M

LO (τi, ℓ)—the demand of a task τi ∈ τLO in SMw
M

mode for any time interval of length ℓ.
• dbf

SMw
M

HI (τi, ℓ)—the demand of a task τi ∈ τHI in SMw
M

mode for any time interval of length ℓ.
• dbfSMH

HI (τi, ℓ)—the demand of a task τi ∈ τHI in SMH

mode for any time interval of length ℓ.

Now we use the Fact 2 to derive the DBF-based schedula-
bility test of our proposed system.

Theorem 1. A mixed-criticality workload τ can be success-
fully scheduled on MC-Budget system with a resource supply
R(Θ,Π) if each of the following conditions is satisfied for
∀ℓ ≥ 0:

(A) :
∑

τi∈τLO

dbfSML
LO (τi, ℓ) +

∑
τi∈τHI

dbfSML
HI (τi, ℓ) ≤ sbfRn(ℓ)

(B) :
∑

τi∈τLO

dbf
SMw

M
LO (τi, ℓ) +

∑
τi∈τHI

dbf
SMw

M
HI (τi, ℓ) ≤ sbfRn

(ℓ)

(C) :
∑

τi∈τLO

dbf
SMr

M
LO (τi, ℓ) +

∑
τi∈τHI

dbf
SMr

M
HI (τi, ℓ) ≤ sbfRc

(ℓ)

(D) :
∑

τi∈τHI

dbfSMH
HI (τi, ℓ) ≤ sbfRc(ℓ)

Theorem 1 can be directly employed up on the calculation of
DBFs and SBF for each condition. We can directly compute
the SBF of each condition using Equation 4. Next, we will
compute the DBFs.

Compute dbfSML
LO (τi, ℓ) and dbfSML

HI (τi, ℓ). In SML mode, all
LO-tasks are executed by its deadline and HI-tasks are executed



by its virtual deadline. Therefore, the DBFs of SML can be
directly calculated following Equation 2,

∀τi ∈ τLO, dbfSML
LO (τi, ℓ) =

(⌊
ℓ−Di

Ti

⌋
+ 1

)
· CLO

i

∀τi ∈ τHI, dbfSML
HI (τi, ℓ) =

(⌊
ℓ−Dv

i

Ti

⌋
+ 1

)
· CLO

i

Compute dbf
SMw

M
LO (τi, ℓ). As we drop any carry-over job from

LO-tasks, computation dbf
SMw

M
LO (τi, ℓ) is straightforward. How-

ever, we consider graceful degradation of LO-tasks. Therefore,
we need to consider only ⌈ri · x⌉ job’s out of x consecutive
releases while computing the DBF of ∀τi ∈ τLO as follows,

dbf
SMw

M
LO (τi, ℓ) =

(⌈
ri ·

(⌊
ℓ−Di

Ti

⌋
+ 1

)⌉)
· CLO

i (12)

Compute dbf
SMw

M
HI (τi, ℓ). The DBF of HI-tasks in SMw

M can
be computed following the approach presented in [20]. Let
us consider full(τi, ℓ) as the maximum demand of a HI-task
including any potential carry-over job’s in SMw

M and done(τi, ℓ)
as the minimum demand of a carry-over HI-task that must
complete in SML. Then the dbf

SMw
M

HI (τi, ℓ) is computed as,

∀τi ∈ τHI, dbf
SMw

M
HI (τi, ℓ) = full(τi, ℓ)− done(τi, ℓ) (13)

full(τi, ℓ) and done(τi, ℓ) can be computed as follows [20],

full(τi, ℓ) =

(⌊
ℓ− (Di −Dv

i )

Ti
+ 1

⌋)
· CHI

i (14)

done(τi, ℓ) =


max{CLO

i −m+Di −Dv
i , 0};

if Di −Dv
i ≤ m ≤ Di

0; otherwise
(15)

where, τi ∈ τHI and m = ℓ mod Ti.

Compute dbf
SMr

M
LO (τi, ℓ). Computation dbf

SMr
M

LO (τi, ℓ) is similar
to dbf

SMw
M

LO (τi, ℓ) and computed as follows for ∀τi ∈ τLO,

dbf
SMr

M
LO (τi, ℓ) =

(⌈
ri ·

(⌊
ℓ−Di

Ti

⌋
+ 1

)⌉)
· CLO

i

Compute dbf
SMr

M
HI (τi, ℓ). In SMr

M, HI-tasks are executed up to
its CLO

i by its virtual deadline, similar to SML mode. Therefore,
DBFs of HI-task in SMr

M is computed as follows (Equation 2),

∀τi ∈ τHI, dbf
SMr

M
HI (τi, ℓ) =

(⌊
ℓ−Dv

i

Ti

⌋
+ 1

)
· CLO

i

Compute dbfSMH
HI (τi, ℓ). Note that SMH can be triggered from

SMr
M and SMw

M . Consider the DBF computation for each case
separately,

• Mode switch from SMw
M to SMH: as the HI-tasks are

executed up to CHI
i by its actual deadline Di similar

to SMw
M and all LO-tasks are dropped immediately in

the mode-switch instant, DBFs for SMH is simply using
Equation 4 for ∀τi ∈ τHI,

dbfSMH
HI (τi, ℓ) =

(⌊
ℓ−Di

Ti

⌋
+ 1

)
· CHI

i , (16)

• Mode switch from SMr
M to SMH: In this case, HI-tasks’

execution demands changes from CLO
i to CHI

i with an
increased deadline from Dv

i to Di similar to a mode
switch from SML to SMw

M . So the DBF computation of
SMH is similar to SMw

M ,

∀τi ∈ τHI, dbfSMH
HI (τi, ℓ) = dbf

SMw
M

HI (τi, ℓ)

So, for the feasibility test of condition D of Theorem 1, we
need to take the max of the two possible demand functions.

Timing complexity of schedulability test. In Theorem 1, all
four conditions need to be assessed for ∀ℓ, which is unbounded
number of computation. Here, we will derive upper bound
for ℓ to satisfy the schedulability test for each condition.
The following four lemmas upper-bound ℓ for each condition,
respectively.

Lemma 1. Let c1 and c2 be constants such that U LO
LO ≤ c1,

U HI
LO ≤ c2, and c1 + c2 < ωn. Then the condition A of

Theorem 1 is true ∀ℓ ≥ 0 if it is true for ∀ℓ ≤ LA such
that,

LA <
c1 · max

τi∈τLO
{Ti −Di}+ c2 · max

τi∈τHI
{Ti −Dv

i }+R

ωn − c1 − c2
,

where, R = 2 · ωn · (Π−Θn)

Proof. Assuming that c1+ c2 < ωn, we prove the contraposi-
tive that if ∃ℓ ≥ 0 such that the condition A of Theorem 1 does
not hold, then ∃ℓ ≤ LA such that the condition A does not
hold as well. We let ℓ0 denote such ℓ ≥ 0 that the condition
A does not hold. That is,

DBFSML (τ, ℓ0) > sbfRn(ℓ0); where,

DBFSML (τ, ℓ0) =
∑

τi∈τLO

dbfSML
LO (τi, ℓ0) +

∑
τi∈τHI

dbfSML
HI (τi, ℓ0)

Now applying Equation 8, we get

sbfRn(DBFSML (τ, ℓ0)) > ℓ0
(Eqn. 11)
=====⇒ lsbfRn

(DBFSML (τ, ℓ0)) > ℓ0

(Eqn. 9)⇐====⇒ 1

ωn
· DBFSML (τ, ℓ0) + 2(Π−Θn) > ℓ0 (17)

Now we simplify the computation of DBFSML (τ, ℓ0),



∑
τi∈τLO

dbfSML
LO (τi, ℓ0)

=
∑

τi∈τLO

(⌊
ℓ0 −Di

Ti

⌋
+ 1

)
· CLO

i

≤
∑

τi∈τLO

(
ℓ0 −Di

Ti
+ 1

)
· CLO

i

=
∑

τi∈τLO

CLO
i

Ti
· (ℓ0 + Ti −Di)

≤ c1 ·
(
ℓ0 + max

τi∈τLO

{Ti −Di}
)

(18)∑
τi∈τHI

dbfSML
HI (τi, ℓ0)

=
∑

τi∈τHI

(⌊
ℓ0 −Dv

i

Ti

⌋
+ 1

)
· CLO

i

≤
∑

τi∈τHI

(
ℓ0 −Dv

i

Ti
+ 1

)
· CLO

i

=
∑

τi∈τHI

CLO
i

Ti
· (ℓ0 + Ti −Dv

i )

≤ c2 ·
(
ℓ0 + max

τi∈τHI
{Ti −Dv

i }
)

(19)

Applying Equations 17,18,19, we get —

ℓ0 <
c1 · max

τi∈τLO
{Ti −Di}+ c2 · max

τi∈τHI
{Ti −Dv

i }+R

ωn − c1 − c2
where, R = 2 · ωn · (Π−Θn)

This implies that if the task set is not schedulable, then the
demand of the task set would be greater than the supply at
least one time instant before ℓ0. So, the Lemma follows. ■

Lemma 2. Let c3 and c4 be constants such that∑
τi∈τLO

ri·CLO
i

Ti
≤ c3, U HI

HI ≤ c4, and c3 + c4 < ωn. Then
the condition B of Theorem 1 is true ∀ℓ ≥ 0 if it is true for
∀ℓ ≤ LB such that,

LB <
c3 · P + c4 ·Q+ 2 · ωn · (Π−Θn)

ωn − c3 − c4
;

where, P = max
τi∈τLO

{Ti −Di +
Ti

ri
},

and Q = max
τi∈τHI

{Ti − (Di −Dv
i )}

Lemma 3. Let c2 and c3 be two constants such that U HI
LO ≤ c2,∑

τi∈τLO

ri·CLO
i

Ti
≤ c3 and c2 + c3 < ωc. Then the condition

C of Theorem 1 is true ∀ℓ ≥ 0 if it is true for ∀ℓ ≤ LC such
that,

LC <
c2 · max

τi∈τHI
{Ti −Dv

i }+ c3 · P + 2 · ωc · (Π−Θc)

ωc − c2 − c3
;

where, P = max
τi∈τLO

{Ti −Di +
Ti

ri
}

Lemma 4. Let c4 be a constant such that U HI
HI ≤ c4 < ωc,

then condition D of Theorem 1 is true ∀ℓ ≥ 0 if it is true for
∀ℓ ≤ LD such that,

LD <
c4 · max

τi∈τHI
{Ti − (Di −Dv

i )}+ 2 · ωc · (Π−Θc)

ωc − c4
Note that we skip the proof of Lemma 2, 3, and 4 due to

the space limitations; however, these lemmas can be proved
using similar approach we presented to prove Lemma 1.

Remark 5. We present maximum number of DBF computa-
tions, LA,LB ,LC ,LD such that the conditions A,B,C,D in
Theorem 1 are satisfied for ∀ℓ ≥ 0, respectively. However,
in the implementation of the test, the computation can be
drastically reduced using the quick processor demand analysis
(QPA) method presented in [52] with an worst case upper
bound of L.

IV. SETTING RESOURCE PERIOD

Resource period is an optimization problem from the fact
that a larger period has the advantages of less number of bud-
get replenishment instants and a longer continuous resource
supply. In contrast, a larger period can make the scheduler
fail to schedule workload due to the larger non-supply interval
(e.g., from Equation 4, largest ‘0’ supply interval is 2·(Π−Θ)).
In this section, we will derive the bounds for the resource
supply period given the system workload, nominal, and critical
resource budgets.

Lemma 5. Given the workloads τ = {τLO, τHI} and nominal
resource budget Θn, if resource period ΠA is within the
following range, then the Condition A of Theorem 1 holds
TRUE,

Θn < ΠA ≤
Θn · (l + 2 ·Θn)

c1 · (l + α) + c2 · (l + β) + 2 ·Θn

where, α = min
τi∈τLO

{Ti −Di},

β = min
τi∈τHI

{Ti −Dv
i }, l = lcm{Ti|τi ∈ τ}.

Proof. The lemma can be proved using Condition A of
Theorem 1, as follows:∑

τi∈τLO

dbfSML
LO (τi, l) +

∑
τi∈τHI

dbfSML
HI (τi, l) ≤ sbfRn

(l)

By applying Fact 1 and 3, we just need:

⇐
∑

τi∈τLO

ldbfSML
LO (τi, l) +

∑
τi∈τHI

ldbfSML
HI (τi, l) ≤ lsbfRn

(l)

Now we simplify terms in the left side of above inequality,∑
τi∈τLO

ldbfSML
LO (τi, l)

=
∑

τi∈τLO

(
l −Di

Ti
+ 1

)
· CLO

i (Using Eqn. 3)

=
∑

τi∈τLO

CLO
i

Ti
· (l + Ti −Di)

≥ c1 ·
(
l + min

τi∈τLO
{Ti −Di}

)
(20)



∑
τi∈τHI

ldbfSML
HI (τi, l)

=
∑

τi∈τHI

(
l −Dv

i

Ti
+ 1

)
· CLO

i (Using Eqn. 3)

=
∑

τi∈τHI

CLO
i

Ti
· (l + Ti −Dv

i )

≥ c2 ·
(
l + min

τi∈τHI
{Ti −Dv

i }
)

(21)

By applying Equations 20,21,6, we have:

c1 · (l + α) + c2 · (l + β) ≤ ωn · (l − 2 · (Π−Θn)),

where, α = min
τi∈τLO

{Ti −Di}, β = min
τi∈τHI

{Ti −Dv
i }

⇔ Π ≤ Θn · (l + 2 ·Θn)

c1 · (l + α) + c2 · (l + β) + 2 ·Θn

The remaining case, Θn < ΠA, is trivial as the resource period
must be greater than the resource budget to supply the budget
in each period.

So, the lemma holds. ■

Lemma 6. Given the workloads τ = {τLO, τHI} and nominal
resource budget Θn, if the resource period ΠB is within the
following range, then the Condition B of Theorem 1 holds
TRUE,

Θn < ΠB ≤
Θn · (l + 2 ·Θn)

c3 · (l + γ) + c4 · (l + σ) + 2 ·Θn

where, γ = min
τi∈τLO

{Ti −Di +
Ti

ri
},

σ = min
τi∈τHI

{Ti − (Di −Dv
i )}, l = lcm{Ti|τi ∈ τ}.

Lemma 7. Given that the workloads τ = {τLO, τHI}, and
critical resource budget Θc, if the resource period ΠC is within
the following range, then the Condition C of Theorem 1 holds
TRUE,

Θc < ΠC ≤
Θc · (l + 2 ·Θc)

c2 · (l + β) + c3 · (l + γ) + 2 ·Θc

where, β = min
τi∈τHI

{Ti −Dv
i },

γ = min
τi∈τLO

{Ti −Di +
Ti

ri
}, l = lcm{Ti|τi ∈ τ}.

Lemma 8. Given that the workloads τHI, and critical resource
budget Θc, if the resource period ΠD is within the following
range, then the Condition D of Theorem 1 holds TRUE,

Θc < ΠD ≤
Θc · (l + 2 ·Θc)

c4 · (l + σ) + 2 ·Θc

where, σ = min
τi∈τHI

{Ti − (Di −Dv
i )}, l = lcm{Ti|τi ∈ τHI}.

Note that Lemma 6, 7, and 8 can be proved using a similar
approach used to prove the Lemma 5. We skipped the proofs
due to page limitations.

Remark 6. Note that, regarding l in the lemmas, we do not
use the L’s derived in the previous section as L is dependent
on Π. Instead, we use a more pessimistic value: l = lcm{Ti}.

It is safe to do so, as both the denominator and the numerator
of the equations related to Π’s contain l.

The MC-Budget system will be schedulable only if all four
conditions of Theorem 1 are true. So, a single resource period
Π should satisfy the periods for all four conditions bounded
by Lemmas 5,6,7,8.

Theorem 2. Given a MC-Budget system with workload τ =
{τLO, τHI}, and nominal and critical resource budgets Θn and
Θc. If the resource supply period Π is in the following range,
then the system is schedulable:

Θn < Π ≤ min{ΠA,ΠB ,ΠC ,ΠD} (22)

Proof. As the workloads are only schedulable on the system
with resource budgets if four conditions of Theorem 1 hold
true. Therefore, Lemmas 5,6,7,8 need to hold simultaneously
implying a range of Π must be the smallest range among
ΠA,ΠB ,ΠC ,ΠD. ■

V. ALGORITHM FOR JOINT DETERMINATION OF
DEADLINE TIGHTENING PARAMETER x FOR WORKLOAD

AND RESOURCE SUPPLY PERIOD Π

In this section, we will jointly determine a suitable deadline
shrinkage parameter x for HI-tasks and the resource supply
period Π using the schedulability test presented in Section III
and the bounds for resource period developed in Section IV.

In Algorithm 2, we first calculate the upper bound of
feasible resource period Πub using Theorem 2 (Line 6) for the
given workload and resource budgets. Note that we choose the
upper-bound of feasible resource periods instead of searching
the whole range provided by Theorem 2 as the larger resource
period provides better QoS minimizing budget replenishment
instants. Once the resource period is calculated, we evaluate
the Theorem 1 (Line 7 - 10) to check whether the workload
and resource budgets are schedulable or not with current x
and Πub. If all conditions in Theorem 1 are satisfied, then the
algorithm return x and Πub (Line 11) for online scheduling.
In case any condition fails, we tune x using binary search
following the fact that a smaller virtual deadline favors the
system mode that uses CHI

i of HI-tasks after mode-switch.
So, if such a system mode fails to satisfy the schedulability
condition for a shrinkage factor x, we reduce the factor further
by updating it to x − δ (δ is a shrinkage parameter for the
binary search in Algorithm 2, which shrinks the search space
by a factor of 0.5 in each iteration). Conversely, if a system
mode with CLO

i will fail, we increase the shrinkage factor
by updating it to x + δ. Notice that out of the 16 possible
combinations and four schedulability conditions presented in
Theorem 1, only six conditions are usable for fine-tuning
the deadline shrinkage factor. One combination (all TRUE
conditions) returns a valid x and Π. Other nine combinations
return failure to find a valid x to schedule the task set due to
conflict in the x tuning conditions (e.g., if either both CA &
CB or CC & CD are false (Line 22), then there is not any



Algorithm 2: Searching x for Virtual Deadline Setting
of HI-tasks and Π for Resource Period

Input: Workload τ = {τ1, τ2, · · · , τn}, LO−tasks
drop-off ratio {ri}, precision accuracy ϵ,
nominal and critical resource budgets Θn and
Θc.

1 δ ← 0.5 ; // step size for binary search
2 x← δ ; // initial shrinking factor
3 while δ ≥ ϵ do
4 δ ← δ/2;
5 for each τi ∈ τ |ς = HI do Dv

i ← x ·Di ;
6 Πub = min{ΠA,ΠB ,ΠC ,ΠD}; // calculate

upper bound of acceptable resource
period for given resource budgets
and workloads

7 CA = Check (Condition A in Theorem 1);
8 CB = Check (Condition B in Theorem 1);
9 CC = Check (Condition C in Theorem 1);

10 CD = Check (Condition D in Theorem 1);
11 if CA ∧ CB ∧ CC ∧ CD then return x, and Πub ;
12 else if CA ∧ CB ∧ CC ∧ ¬CD then
13 x← x− δ ;
14 else if CA ∧ CB ∧ ¬CC ∧ CD then
15 x← x+ δ ;
16 else if CA ∧ ¬CB ∧ CC then
17 x← x− δ ;
18 else if ¬CA ∧ CB ∧ CD then
19 x← x+ δ ;
20 else if CA ∧ ¬CB ∧ ¬CC ∧ CD then
21 return FAILURE; // {ri}--not acceptable
22 else return FAILURE; // x can’t be found
23 end
24 return −1 ; // still possible to find a x

with smaller ϵ

feasible x for such a case). After each change of x, the above
steps are repeated until the algorithm converge.

Computational Complexity. In Algorithm 2, the deadline
shrinkage parameter x is computed using a binary search
algorithm that runs in linear time (e.g., ten iterations for an
accuracy precision of ϵ = 2−10). However, checking the dbf-
based schedulability conditions in each iteration is pseudo-
polynomial and Theorem 2 (Line 6) is linear time. Hence the
overall complexity of the algorithm is Pseudo-Polynomial.

VI. EVALUATION

In this section, we evaluate our proposed scheduling algo-
rithm through a case study of real workloads generated by an
autonomous driving system and then schedulability tests on
synthetic workloads.

A. Case Study

Autonomous vehicles (AV) employ a variety of sensors to
capture and understand the surrounding environment of the
vehicles [21], [35]. A typical driving system is based on a

Sensing

Localization Global Planning

Local Planning

Drive-by-wire

Location

Objects

Open Space

Navigation

Trajectory

steering

throttle

brake
Sensor 
Fusion

Lane Detection

Object Detection

Segmentation

Lanes

Image

(1a)

(1b)

(1c)

(1d)

(2)

(2)

(2)

(3)

(4)

(5)

(6)

(2)

Fig. 4: A general end-to-end pipeline for modular-based au-
tonomous driving. (Experimental setup is adopted from our
previous work [34])

Timeline (s)

La
te

nc
y 

(m
s)

0

20

40

60

80

100 200 300 400

ORB-SLAM2

Timeline (s)

La
te

nc
y 

(m
s)

0

50

100

150

200

100 200 300 400

LaneNet

Timeline (s)

La
te

nc
y 

(m
s)

0

50

100

150

200

250

100 200 300 400

Faster R-CNN
Timeline (s)

La
te

nc
y 

(m
s)

0

50

100

150

200

100 200 300 400

Deeplabv3

Fig. 5: The Inference latency for state-of-the-art DNN models
for Localization (ORB-SLAM2), Object Detection (FAST R-
CNN), Lane Detection (LaneNet), and Semantic Segmentation
(Deeplabv3).

modular design, which consists of sensing, perception, plan-
ning, and control [31], [27], [46]. Fig. 4 shows a generalized
pipeline for modular-based autonomous driving. The captured
sensor data is fed to all the perception nodes for localization,
object detection, lane detection, and segmentation. Next, a
sensor fusion node combines the information of the vehicle’s
location, surrounding objects, lanes, and open spaces together
in real time. The location is also published to the global plan-
ning function to obtain a navigation route to the destination.
Both the navigation route and sensor fusion results are fed to
the local planning stage, which constructs a local driving space
cost map and generates vehicle trajectories, and publishes it
to the vehicle’s drive-by-wire system. Finally, the drive-by-
wire system will send control messages to ECUs through
the Controller Area Network (CAN bus) to make the vehicle
drive. Since the execution times of the perception tasks, i.e.,
localization, object detection, lane detection, and semantic
segmentation, vary over time and the other tasks are stable,
we focus on the four perception tasks in this case study.

The autonomous driving system is implemented on a
GPU workstation which consists of 28 Intel Core i9-9940X
CPUs with the highest frequency at 3.3GH and 4 NVIDIA



0.2 0.4 0.6 0.8 1.0

Average Utilization

0.0

0.2

0.4

0.6

0.8

1.0
S

ch
ed

u
la

b
il

it
y

R
a
ti

o

Deadline Ratio

0.7

0.8

0.85

0.9

(a) RΘ = 0.5

0.2 0.4 0.6 0.8 1.0

Average Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

Deadline Ratio

0.7

0.8

0.85

0.9

(b) RΘ = 0.6

0.2 0.4 0.6 0.8 1.0

Average Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

a
ti

o

Deadline Ratio

0.7

0.8

0.85

0.9

(c) RΘ = 0.7

Fig. 6: Varying the resource budgets for different values of workload parameters while both shrinkage parameter x and resource
supply period Π obtained jointly using Algorithm 2. (P = 0.5; RC = 0.7; ri = 0.3)

0.2 0.4 0.6 0.8 1.0

Average Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

Theta Ratio

0.5

0.7

0.9

(a) ωn = 0.5; Π = 10

0.2 0.4 0.6 0.8 1.0

Average Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

Theta Ratio

0.5

0.7

0.9

(b) ωn = 0.5; Π = 100

0.2 0.4 0.6 0.8 1.0

Average Utilization

0.0

0.2

0.4

0.6

0.8

1.0

S
ch

ed
u

la
b

il
it

y
R

at
io

Theta Ratio

0.5

0.7

0.9

(c) ωn = 0.5; Π = 150

Fig. 7: Varying the workload parameters for fixed values of resource budget and period. (P = 0.5; RC = 0.7; ri = 0.3 and
implicit deadlines)

GeForce RTX 2080 Ti/PCIe/SSE2 GPU cards, providing
304 TOPS in total. Each GPU card has 4352 CUDA cores,
supporting 10 Giga Rays/s and 14 Gbps memory speed. The
GPU-shared memory has 11GB GDDR6 with 352 memory
interface widths. Additionally, the platform has 64 GB of
DDR4 shared memory. Each DDR4 memory has a speed
of 2666 MT/s. The libraries installed for machine learning-
related applications include: CUDA Driver 510.47.03,
CUDA runtime 11.6, TensorFlow 1.15.2, torch
v1.10.1, torchvision v0.11.2, cuDNN 8.3.2,
OpenCV 4.2, etc. ROS Melodic is deployed as the
communication middleware. Since accuracy is essential for
the autonomous driving scenario, all the DNN models are
trained and tested with single precision (FP32) [1]. Four
tasks are implemented for perception: ORB-SLAM2 [36]
for localization; Faster R-CNN [41] for object detection,
LaneNet [38] for lane detection, and Deeplabv3 [15]
for semantic segmentation. The execution time for each
perception task is given in Fig. 5.

Based on our case study, we have derived different workload
generation parameters for abstract synthetic workload for our
schedulability test in the following subsection. Specifically, the
execution time and deadline distributions are taken from the
empirical results of case study.

B. Schedulability Evaluation

In this section, we first discussed the procedure to generate
synthetic workloads and resource model parameters for the

simulation of the schedulability test of our proposed schedul-
ing framework. Then we discussed the results of the tests.

Workload generation. The workload for evaluation is gener-
ated following the parameters described below.

• UW = {x/20 | 1 ≤ x ≤ 20} - Average utilization
• Ti ∼ U[100, 1000] - Task periods chosen uniformly
• P = 0.5 - Probability of high-critical task
• RC = 0.7 - CLO

i /CHI
i

• RD = {0.7, 0.8, 0.85, 0.9} - Di/Ti - Deadline Ratio
• ri = 0.3 - Rate of execution
• RΘ = {0.5, 0.6, 0.7, 0.9} - Θc/Θn

• Θn ∼ U[5, 10] - Nominal budget chosen uniformly
The number of tasks per task set is chosen to be n = 10. For
each configuration, 500 task sets are generated to calculate
the schedulability ratio. The task set generation procedure
begins with a two empty sets of utilizations ULO and UHI.
ULO is the set of LO-mode utilizations and UHI is the set of
HI-mode utilizations. Next, we uniformly sample utilization
u from U[0, 1] and add to ULO. For each generated task,
we assign its criticality to be HI with a probability P . If
the task is chosen to be a HI-criticality task, then we add
u/RC to UHI, otherwise we add u to UHI. In this fashion,
tasks are added repeatedly, to their respective sets, until
average(

∑
(ULO),

∑
(UHI)) ≤ UW−0.025. Upon addition of a

task, if the average exceeds UW+0.025, then the entire task set
is discarded and the process is restarted. The task periods are
sampled uniformly from [100, 1000]. Following this, the LO-
mode and HI-mode WCET values are calculated. The iterative



task generation procedure used is consistent with the existing
literature [6]. The resource calculation is independent of the
workload. At first, a nominal budget Θn is chosen from a
uniform distribution, and a fixed value of budget ratio is chosen
from RΘ. Following that, the critical budget Θc is calculated
using nominal budget Θn and budget ratio RΘ.

Evaluation for joint optimization of shrinkage parameter and
resource period. We first experimented the acceptance test for
a set of workloads where the deadline shrinkage parameter
x and resource period Π are determined using Algorithm 2.
Resulted schedulability ratio is shown in Fig. 6 for different
ratio of resource budgets (RΘ). Note that, RΘ plays an
significant rule in acceptance test. A resource model with
relative small critical budget forces to fail to schedule more
task sets than a ‘critical budget’ close to ‘nominal budget’.
These results imply that if RΘ → 1 (e.g., signal budget
supply), schedulability ratio increases significantly (which is
expected). However, the necessity of dual-resource is driven
from practical implication of systems as mentioned previously.

For constrained-deadline workloads, the difference between
the task’s period and deadline plays a vital role in the
schedulability ratio and is one of the reasons to use the DBF-
based test instead of the utilization-based test. As the relative
deadlines are reduced with decreasing deadline ratio RD, the
performance drops in general. The results in each subplot of
Fig. 6 are in line with existing results in the literature, as
constrained deadlines increase the density of the workloads.

Evaluation for fixed resource model. Although we developed
an optimal resource model through searching an efficient
resource period for a VP for a given workload, in practice,
the resource model might be fixed during and need to apply
acceptance test of a workload for a fixed resource model. Such
as a case is shown in Fig. 7

Resource supply period is a critical parameter and has
significant effects on schedulability of workloads. In general,
a lower resource period performs better due to less non-
supply interval (i.e., 2 · (Π − Θ)). Each subplot in Fig. 7
demonstrates the effect of the resource supply period. A
maximum difference of schedulability ratio between resource
periods 10 and 200 is observed as ∼ 40%. Besides, resource
bandwidths ωn and ωc play a critical role in the schedulability
of workloads as the total workload utilization must be less than
the resource bandwidths. Each subplot in Fig. 7 illustrates that
the any taskset with UW > ωn is not schedulable.

VII. RELATED WORKS

Both mixed-criticality (MC) systems [47] and compositional
scheduling [43] have been heavily studied over the years. An
up-to-date survey on MC systems can be found in [14]. Orig-
inal MC model [47] has been studied for different scheduling
frameworks such as fixed-priority scheduling e.g., [47], dy-
namic scheduling e.g., [6], [20], [18]. Later MC model has re-
laxed for practical considerations, for instance, [13] considered
running the LO-tasks to completion once it started; [7] reduced

the priority of LO-tasks; [40], [44], [45] considered an elastic
task model by stretching the periods and deadlines of LO-
tasks; [5] analysed for the criticality of task’s period; [26]
analyzed imprecise MC model and [23] a budget control
model; [48] considered a partition model to move LO-tasks
a different processor than the critical one; [22], [24], [29]
improved resource utilization while guaranteeing the execution
of critical tasks. MC systems also analyzed for varying speed
processors [9], [10] and for graceful degradation [8], [25],
[33]. Similarly, compositional framework has been studied
under different system architectures and resource model (few
to mention [4], [16], [30], [37], [39], [49], [19]).

Gu et al. [24] presented a resource efficient MC scheduling
for hierarchical scheduling framework. To provide efficient
resource supply to virtual component/processor, they consid-
ered a dual-critical resource supply model called, MCPR. In
MCPR, it was assumed that the supply model is always aware
of the workload criticality of a VP and hence, can adjust the
supply criticality according to workload criticality. Therefore,
the scheduling framework for the VP is still maintain two
criticality mode. In comparision with MCPR, our resource
model is independent of the criticalities of workload of a VP
which is more practical and used in practice [17].

Lackorzyński et al. [28] observed that a single supply for a
VP in a hierarchical scheduling framework underperforms in
the case of MC workload scheduling by the VP. To improve
the performance, they have added multiple supplies for each
VP and relaxed the strong isolation constraints among VP’s
to develop overall priority order of different critical workloads
of all VPs. Leveraging the priority orders and supply model,
the lower-level scheduler can provide an appropriate resource
budget to each VP. However, they did not present the schedul-
ing model and strategies for a VP, which is the main focus of
this paper. Moreover, our supply model preserves the temporal
isolation among VP’s which is a critical concern from security
perspectives [51].

Recently, Yang and Dong [50] presented a mixed-criticality
model for resource budget and developed a scheduling frame-
work for a VP. However, the paper did not consider the
workload criticality model with different WCETs of a task
for each criticality level. In contrast to [50], we present a
generalized MC model with workload and resource budget
criticality. Moreover, we consider a more general workload
model, constrained-deadline workloads, and present a DBF-
based schedulability test different from the utilization-based
test of implicit-deadline workloads presented in [50].

VIII. CONCLUSION

In this paper, we have presented MC-Budget, the first gener-
alized mixed-criticality system in a compositional scheduling
framework that includes both resource supply criticality and
workload criticality. In our model, we have considered dual
workload criticalities for a constrained-deadline sporadic task
model and a resource supply model with two supply budgets
(i.e., nominal and scarce budget) to a virtual processor, re-
sulting in four system modes. We have developed an EDF-



VD-based dynamic scheduler and presented a DBF-based
pseudo-polynomial schedulability test. We have further derived
a range for resource supply periods from the schedulability
of the workloads with dual-critical supply budgets. We have
performed extensive simulations of the schedulability test to
measure the efficacy of the proposed model on synthetic
workloads and resource models. While no-such generalized
framework exists in the compositional scheduling framework,
our proposed MC-Budget framework lays the foundation to ef-
fectively and efficiently design modern safety-critical systems
with multiple criticality levels.

Future Works. We left several research problems related
to this paper for future work. First, in this paper, we have
considered a simple sufficient heuristic to restore system mode
to initial system mode by observing an idle instant in the
resource replenishment instant of a virtual processor. However,
it may be possible to analyze for an exact or more efficient
system mode restoration instant which is open in this work.
Second, we consider non-clairvoyance for both workload and
resource supply criticality-based mode-switch instances. In
the case of resource supply criticality, however, it could be
possible that the OS can be clairvoyant and let the VPs
know about upcoming mode-switch trigger instant. Third, we
assumed the context switching overheads are negligible and
covered by the task’s WCET. However, a more practical model
would be the explicit modeling of overheads in the analysis.

REFERENCES

[1] Floating Point and IEEE 754 Compliance for NVIDIA GPUs. https:
//docs.nvidia.com/cuda/floating-point/index.html.

[2] ROS 2 Documentation. https://docs.ros.org/en/foxy/index.html.
[3] Autosar adaptive platform. https://www.autosar.org/standards/

adaptive-platform/, 2022. [Online; accessed 13-October-2022].
[4] M. Anand, S. Fischmeister, and I. Lee. Composition techniques for tree

communication schedules. In 19th Euromicro Conference on Real-Time
Systems (ECRTS’07), pages 235–246. IEEE, 2007.

[5] S. Baruah. Schedulability analysis of mixed-criticality systems with
multiple frequency specifications. In 2016 International Conference on
Embedded Software (EMSOFT), pages 1–10. IEEE, 2016.

[6] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. Van Der Ster, and L. Stougie. The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems. In ECRTS,
pages 145–154. IEEE, 2012.

[7] S. Baruah and A. Burns. Implementing mixed criticality systems in ada.
In International Conference on Reliable Software Technologies, pages
174–188. Springer, 2011.

[8] S. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems
to guarantee some service under all non-erroneous behaviors. In ECRTS,
pages 131–138. IEEE, 2016.

[9] S. Baruah and Z. Guo. Mixed-criticality scheduling upon varying-speed
processors. In 2013 IEEE 34th Real-Time Systems Symposium, pages
68–77. IEEE, 2013.

[10] S. Baruah and Z. Guo. Scheduling mixed-criticality implicit-deadline
sporadic task systems upon a varying-speed processor. In 2014 IEEE
Real-Time Systems Symposium, pages 31–40. IEEE, 2014.

[11] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In [1990] Proceedings 11th Real-
Time Systems Symposium, pages 182–190, 1990.

[12] S. K. Baruah, V. Bonifaci, G. d’Angelo, A. Marchetti-Spaccamela,
S. v. d. Ster, and L. Stougie. Mixed-criticality scheduling of sporadic
task systems. In European symposium on algorithms, pages 555–566.
Springer, 2011.

[13] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis
for mixed criticality systems. In 2011 IEEE 32nd Real-Time Systems
Symposium, pages 34–43. IEEE Computer Society, 2011.

[14] A. Burns and R. I. Davis. Mixed criticality systems-a review:(february
2022). 2022.

[15] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[16] S. Chen, L. T. Phan, J. Lee, I. Lee, and O. Sokolsky. Removing abstrac-
tion overhead in the composition of hierarchical real-time systems. In
2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 81–90. IEEE, 2011.

[17] D. Dasari, M. Becker, D. Casini, and T. Blaß. End-to-end analysis of
event chains under the qnx adaptive partitioning scheduler. In RTAS,
pages 214–227. IEEE, 2022.

[18] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic
tasks on one processor. In 2013 IEEE 34th Real-Time Systems Sympo-
sium, pages 78–87. IEEE, 2013.

[19] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using edp resource models. In 28th IEEE International Real-Time
Systems Symposium (RTSS 2007), pages 129–138. IEEE, 2007.

[20] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic tasks. In 2012 24th Euromicro Conference on Real-
Time Systems, pages 135–144. IEEE, 2012.

[21] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics,
37(3):362–386, 2020.

[22] X. Gu and A. Easwaran. Dynamic budget management with service
guarantees for mixed-criticality systems. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 47–56. IEEE, 2016.

[23] X. Gu and A. Easwaran. Dynamic budget management and budget recla-
mation for mixed-criticality systems. Real-Time Systems, 55(3):552–597,
2019.

[24] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin. Resource efficient
isolation mechanisms in mixed-criticality scheduling. In 2015 27th
Euromicro Conference on Real-Time Systems, pages 13–24. IEEE, 2015.

[25] Z. Guo, K. Yang, S. Vaidhun, S. Arefin, S. K. Das, and H. Xiong.
Uniprocessor mixed-criticality scheduling with graceful degradation by
completion rate. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 373–383. IEEE, 2018.

[26] L. Huang, I.-H. Hou, S. S. Sapatnekar, and J. Hu. Graceful degradation
of low-criticality tasks in multiprocessor dual-criticality systems. In Pro-
ceedings of the 26th International Conference on Real-Time Networks
and Systems, pages 159–169, 2018.

[27] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada. An open approach to autonomous vehicles. IEEE Micro,
35(6):60–68, 2015.

[28] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig. Flattening hier-
archical scheduling. In Proceedings of the tenth ACM international
conference on Embedded software, pages 93–102, 2012.

[29] J. Lee, K.-M. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee.
Mc-fluid: Fluid model-based mixed-criticality scheduling on multipro-
cessors. In 2014 IEEE Real-Time Systems Symposium, pages 41–52.
IEEE, 2014.

[30] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. Real-Time Systems,
43(1):60–92, 2009.

[31] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars. The architectural implications of autonomous driving:
Constraints and acceleration. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 751–766. ACM, 2018.

[32] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM (JACM),
20(1):46–61, 1973.

[33] D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi.
Edf-vd scheduling of mixed-criticality systems with degraded quality
guarantees. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages
35–46. IEEE, 2016.

[34] L. Liu, Z. Dong, Y. Wang, and W. Shi. Prophet: Realizing a predictable
real-time perception pipeline for autonomous vehicles. In 2022 IEEE
Real-Time Systems Symposium (RTSS), pages 305–317. IEEE, 2022.

[35] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi. Edge computing
for autonomous driving: Opportunities and challenges. Proceedings of
the IEEE, 107(8):1697–1716, 2019.

https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://docs.ros.org/en/foxy/index.html
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/


[36] R. Mur-Artal et al. ORB-SLAM2: an open-source SLAM system for
monocular, stereo and rgb-d cameras. arXiv preprint arXiv:1610.06475,
2016.

[37] A. Nelson, K. Goossens, and B. Akesson. Dataflow formalisation of
real-time streaming applications on a composable and predictable multi-
processor soc. Journal of Systems Architecture, 61(9):435–448, 2015.

[38] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool. Towards end-to-end lane detection: an instance segmenta-
tion approach. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages
286–291. IEEE, 2018.

[39] L. T. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky. Overhead-aware
compositional analysis of real-time systems. In 2013 IEEE 19th Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 237–246. IEEE, 2013.

[40] S. Ramanathan, A. Easwaran, and H. Cho. Multi-rate fluid scheduling
of mixed-criticality systems on multiprocessors. Real-Time Systems,
54(2):247–277, 2018.

[41] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in
neural information processing systems, pages 91–99, 2015.

[42] W. River. Arinc 653–an avionics standard for safe, partitioned systems.
In IEEE Seminar, 2008.

[43] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In RTSS 2003. 24th IEEE Real-Time Systems Symposium,
2003, pages 2–13. IEEE, 2003.

[44] H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-
criticality systems. In 2014 IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and Applications, pages
1–10. IEEE, 2014.

[45] H. Su and D. Zhu. An elastic mixed-criticality task model and its
scheduling algorithm. In 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 147–152. IEEE, 2013.

[46] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al. Autonomous driving
in urban environments: Boss and the urban challenge. Journal of Field
Robotics, 25(8):425–466, 2008.

[47] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE international
real-time systems symposium (RTSS 2007), pages 239–243. IEEE, 2007.

[48] H. Xu and A. Burns. Semi-partitioned model for dual-core mixed
criticality system. In Proceedings of the 23rd International Conference
on Real Time and Networks Systems, pages 257–266, 2015.

[49] M. Xu, L. T. X. Phan, O. Sokolsky, S. Xi, C. Lu, C. Gill, and I. Lee.
Cache-aware compositional analysis of real-time multicore virtualization
platforms. Real-Time Systems, 51(6):675–723, 2015.

[50] K. Yang and Z. Dong. Mixed-criticality scheduling in compositional
real-time systems with multiple budget estimates. In 2020 IEEE Real-
Time Systems Symposium (RTSS), pages 25–37. IEEE, 2020.

[51] M.-K. Yoon, M. Liu, H. Chen, J.-E. Kim, and Z. Shao.
Blinder:{Partition-Oblivious} hierarchical scheduling. In 30th USENIX
Security Symposium (USENIX Security 21), pages 2417–2434, 2021.

[52] F. Zhang and A. Burns. Schedulability analysis for real-time systems
with edf scheduling. IEEE Transactions on Computers, 58(9):1250–
1258, 2009.


	Introduction
	System Model and Background
	Workload Model
	Resource Model
	System Modes
	Scheduling Algorithm

	Schedulability Test
	Setting Resource Period
	Algorithm for Joint Determination of Deadline Tightening Parameter x for Workload and Resource Supply Period 
	Evaluation
	Case Study
	Schedulability Evaluation

	Related Works
	Conclusion
	References

