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Abstract

We construct a Riemannian metric g on R* (arbitrarily close to
the euclidean one) and a smooth simple closed curve I' € R* such
that the unique area minimizing surface spanned by I' has infinite
topology. Furthermore the metric is almost Kéahler and the area
minimizing surface is calibrated.

1. Introduction

Consider a smooth closed simple curve I' in R™. The existence of ori-
ented surfaces which bound I' and minimize the area can be approached
in two different ways. Following the classical work of Douglas and Rado
we can fix an abstract connected smooth surface X, of genus g whose
boundary 0¥, consists of a single connected component and look at
smooth maps ® : X, — R" with the property that the restriction of ®
to 0¥z is an homeomorphism onto I'. We then consider the infimum
Ag(T") over all such ¢ and all Riemannian metrics i on 3 of

/ |V®|2 dvoly, .
g

If Ay(T") < Ag_1(I"), then there is a minimizer (®,h) and the image of
h is an immersed surface of genus g, with possible branch points, see
[17, 27, 8] and also [25, 29]. The second, more intrinsic, approach
was pioneered later by De Giorgi, in the codimension 1 case [9], and
by Federer and Fleming in higher codimension [19]. They look at a
suitable measure-theoretic generalization of smooth oriented surfaces,
called integral currents T', whose generalized boundary is given by [I']
and minimize a suitable generalization of the area, called mass. In this
framework a minimizer always exist and competitors do not have any
topological restriction.

A basic question is whether the Federer-Fleming solution 7" coincides
with the Douglas-Rado solutions for some genus g. This is true if the
curve I' is sufficiently regular (C* for k + o > 2, because combining
De Giorgi’s interior regularity theorem [10] with Hardt and Simon’s
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boundary regularity theorem [24], we know that every minimizer is an
embedded C? surface up to the boundary I', in particular it has finite
genus gy. As corollaries, any conformal parametrization ® of T' gives
a minimizer in the sense of Douglas and Rado, while Ag(I") = A,z (I')
for every g > gy. If we instead merely assume that I' has finite length,
Fleming showed in [20] that it is possible to have Agi1(T") < Ag(T)
for g arbitrarily large, implying in particular that every integral current
minimizer has infinite topology, see also [3] for related phenomena.

In higher codimension, namely for n > 4, it is known that the min-
imizer T is in general not regular, neither in the interior nor at the
boundary. Concerning the interior regularity, it has been shown by
Chang in [7] that T is smooth in R™ \ T" up to a discrete set of singular
branch points and self-intersections (we in fact refer to [15, 12, 13, 14]
for a complete proof, as Chang needs a suitable modification of the tech-
niques of Almgren’s monumental monograph [2] to start his argument,
and the former has been given in full details in [13]). As a corollary
we know therefore that for any point p &€ I' there is a neighborhood U
in which T is the union of finitely many topological disks. Nonetheless
it is still an open problem whether “globally” such solutions 7" have
finite topology. So far this can be only concluded if I' is of class C*
for k + a > 2 and lies in the boundary of a uniformly convex open set,
because Allard’s boundary regularity theorem [1] rules out boundary
singularities.

In the general case, however, very little is known about the boundary
regularity of area minimizing integral currents. The first result has been
established by the authors and A. Massaccesi in the recent work [11],
which shows that, if T' is of class C*® for k + a > 3, then the set of
regular boundary points is open and dense in I'. On the other hand
the same paper gives a smooth simple closed curve I' in R* bounding
a (unique) minimizer 7' which has infinitely many singularities. Such
T is, however, still an immersed disk, which has a countable number of
self-intersections accumulating towards a boundary branch point: it is,
in particular, a Douglas-Rado solution with genus g = 0.

In his work [30] White conjectures that the Federer-Fleming solution
has finite genus if I' is real analytic. If White’s conjecture were true,
then the main theorem in [30] would imply that, for real analytic T,
the set of boundary and interior singular points is finite and it would
also exclude the presence of branch points at the boundary: the (finitely
many) singular boundary points would all arise as self intersections.

As already mentioned, the example in [11] shows that the latter con-
clusion would certainly be false for smooth I' in R*. In this note we
show that, if we perturb the FEuclidean metric in an appropriate way,
the same curve bounds a unique area minimizing integral current with
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infinite topology. In particular, if we look at White’s conjecture in Rie-
mannian manifolds, real analyticity is a necessary assumption to exclude
infinite topology of the Federer-Fleming solution. Our precise theorem
is the following, where we denote by d the standard Euclidean metric.

Theorem 1.1. For every € > 0 and every N € N there is a smooth
metric g on R*, a smooth oriented curve I' in the unit ball By passing
through the origin and a smooth oriented surface ¥ in By \ {0} such
that:

(a) g=0 on R*\ By and ||g — 6l on < g;

(b) [X] is the unique area minimizing integral current in the Riemann-
ian manifold (R*, g) which bounds [I'];
(¢) X has infinite topology.

In our example ¥ has (only) one singularity at the origin. The latter
is a boundary singular point and ¥ displays a sequence of interior necks
accumulating to it. A simple modification of our proof gives the exis-
tence of an area-minimizing current which bounds a smooth curve in
a smooth Riemannian manifold and has an infinite number of interior
branch points accumulating to the boundary. For the precise statement
see Theorem 6.1 below. For the proofs of both Theorem 1.1 and The-
orem 6.1 it is essential that we are allowed to perturb the Euclidean
metric. In particular the question whether such examples can exist in
some Fuclidean space remains open.

As pointed out, the question of whether the Federer-Fleming solution
coincides with a Douglas-Rado solution is closely related to the regular-
ity theory for area minimizers. We therefore close this introduction with
a brief (and certainly not exhaustive) review of what is known for the
Douglas-Rado solution. Interior branch points can be excluded in codi-
mension 1, i.e. for surfaces in R3, see [26, 4, 5, 23] and the discussion
in [16, Section 6.4]. In higher codimension both interior branch points
and self intersections are possible (primary examples are holomorphic
curves in C¥ = R?¥). Concerning boundary branch points, it is well
known that they can exist in higher codimension if the boundary curve
is just C*. The example of [11] mentioned above shows that they can
exist even if it is C°°, while the aforementioned paper of White [30]
excludes their existence when I' is real analytic. In fact the same con-
clusion was drawn much earlier in codimension 1 by a classical paper of
Gulliver and Lesley, [22].

In codimension 1 the existence of boundary branch points for the
Douglas Rado solution is still an open question and it is probably the
most important one in the field, we refer again to the discussion in [16,
Section 6.4] for a detailed account of the known results. In [21] Gulliver
provides an interesting example of a C* curve in R? which bounds a
minimal disk with one boundary branch point, however it is not known
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wether this surface is a Douglas-Rado solution. We note in passing that
Gulliver’s proof gives as well a Douglas-Rado disk-type solution (in fact
a Federer Fleming solution) in R® spanning a C* curve and with a
boundary branch point.

Acknowledgements. The authors would like to thank Claudio Arezzo
and Emmy Murphy for several interesting discussions. The work of
G.D.P is supported by the INDAM grant “Geometric Variational Prob-
lems”.

2. Preliminaries

The Riemannian manifold (R*, g) of Theorem 1.1 has in fact a very
special geometric structure, since it is an almost Kéhler manifold.

Definition 2.1. An almost complex structure on a 4-dimensional
smooth manifold M is given by a smooth (1,1) tensor J with the prop-
erty that J? = —Id. The structure is almost Kéhler if there is a smooth
Riemannian metric g with the properties that:

(i) J isisometric, namely g(JV, JW) = g(V, W) for every vector fields
V and W;
(ii) The 2-form defined by w(V, W) := —g(V, JW) is closed.
w will be called the almost Kéahler form associated to the almost Kahler
structure.

Theorem 1.1 will then be a corollary of the following

Theorem 2.2. For every € > 0 and every N € N there is a smooth
metric g on R*, a smooth oriented curve I' in the unit ball By passing
through the origin and a smooth oriented surface ¥ in By \ {0} such
that:

(a) g=0 on R*\ By and ||g — 0||o~ < €;

(bl) there is an almost complex structure J for which the conditions (i)
and (ii) of Definition 2.1 hold;
(b2) [X] bounds [I'] and the pull-back of the corresponding w on ¥ is
the volume form with respect to the metric g;
(¢) X has infinite topology.

Property (b2) is usually referred to as w calibrating the surface 3. It
is a classical elementary, yet powerful, remark of Federer that the con-
ditions (b1)-(b2) imply, by an inequality of Wirtinger, the minimality
of the current [X], cf. [18]. Wirtinger’s theorem shows that

w(V,W) <1

whenever

VAW|g:=g(V,V)g(W, W) — g(V,W)2 <1
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and that the equality holds if and only if W = JV. In the language of
geometric measure theory Wirtinger’s inequality implies that the comass
(relative to the metric g) of the form w is 1. Moreover, we infer from the
second part of Wirtinger’s Theorem (the characterization of the equality
case) that w is pulled back to the standard volume form on ¥ if and
only if there is a positively oriented tangent frame of the tangent bundle
to ¥ of the form {V,JV}. Consider now any current (not necessarily
integral!) T which bounds [I']. Since w is closed and R* has trivial
topology, w has a primitive a. We then must have

T(w):T(da):Aa:/Eda:L:w:M(ﬂEﬂ).

On the other hand Wirtinger’s inequality implies that the comass of w
in the metric ¢ is 1 and thus the mass of T is necessarily larger than
T(w).

This shows that [X] is area minimizing. In order to conclude that
it is the unique minimizer, we must appeal to the boundary regularity
theory developed in [11]. First of all observe that, by [11, Theorem 2.1]
the interior regular set A := Reg;(T") of the current T is connected, it
is an orientable submanifold of R* and (up to a change of orientation)
T = [A]. Moreover, by [11, Theorem 1.6] there is at least one point p €
I'\ {0} and a neighborhood U of p such that ANU is a smooth oriented
surface with smooth oriented boundary I' N U. By the argument above
we must have T'(w) = M(T') and this implies, by Wirtinger’s Theorem,
that the tangent planes to A are invariant under the action of J. The
same holds for the tangent planes to X. In particular, the tangents to
3 and A must coincide at every point ¢ € I' N U and they must have
the same orientation. Since both are smooth minimal surfaces in U, the
unique continuation for elliptic systems implies that they coincide in a
neighborhood of ¢. Again, thanks to the unique continuation principle
and the connectedness of A we conclude that A is in fact a subset of X.
However, since they have the same area, this implies that [X] = T

3. Proof of Theorem 2.2: Part I

In this section we slightly modify the construction given in [11, Sec-
tion 2.3] to achieve a smooth curve I' in R* and an integral current T
in R* such that

(i) T bounds [I'] and is area minimizing in (R*,§) (i.e. with respect
to the Euclidean metric), in fact 7' is induced by an holomorphic
subvariety in R* \ T

(ii) T is regular at T'\ {0};

(iii) 0 is an accumulation point for the interior singular set of 7', de-
noted by Sing;(T);
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(iv) At each p € Sing;(T’) there is a neighborhood U such that T in U
consists of two holomorphic curves intersecting transversally at p.

First of all consider the complex plane with an infinite slit

K:={zeC}\{zeR:2<0}.

We consider the usual inverse arctan : R — (=%, 5) on the real axis

of the trigonometric function tan and we fix a determination of the
complex logarithm on K which coincides with

) Im 2
Log z = log |z| + i arctan — .
Rez

on the open half plane H := {z € C : Rez > 0}. Correspondingly we
define the functions z~% = exp(—alog z) for a € (0,1/2) and

3—2k
fr(2) = exp(—z~%) sin <Logz + 5 7ri) for k=0,1,2,3.

Observe that:

(i) If we extend each f to the origin as 0, then f is a smooth function
over any wedge

Kq:={z:—Rez < a|lmz|}
with a positive.

(i) Since exp(—z~*) does not vanish on H \ {0} (recall that a €
(0,1/2)), the zero set Zj of fi in H \ {0} is given by

— -2k
Zk—{zeH:Logz—i- wiewZ},
namely by
2k —3
(3.1) Zy = {exp <n7r+i 5 77) s Z} .

Consider next the function
3
g9(z) = [ fx(2).
k=0

We then conclude that g is holomorphic on K, it is C° on K, for every
a > 0 and its zero set in H, which we denote by Z, is given by

3
k=0

Define now the map G : K — C? by G(z) = (23,9(2)). We consider
a smooth simple curve v C K; which in a neighborhood of the origin
is tangent to the imaginary axis and we let D C Ky be the open disk
bounded by «. Following the arguments of [11, Section 2.3] it is not
difficult to see that vy can be chosen so that:
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(A) {g=0}ny={0};

(B) {g =0} nD C H, hence {g = 0} N D C Z and, for each k €
{0, ..., 3}, it contains all sufficiently small elements of Zj, namely
there is a positive constant cg such that {z € Z : |z| < ¢} C D.

The current T := Gy [D] is integer rectifiable, it has multiplicity one
(in particular it coincides with [G(D)]) and

oT = G.0[D] = G: [1] -

Observe that G(D) is an holomorphic curve of C2, which carries a natu-
ral orientation. If [G(D)] denotes the corresponding integer rectifiable
current, we then can follow the argument in [11, Section 2.3] to show
that T'= [G(D)] and Federer’s classical argument implies that 7" is area
minimizing for the standard Euclidean metric.

The arguments given in [11, Section 2.3] show that Gy [v] = [G(v)]
and G(v) C C% = R* is a smooth embedded curve. The same arguments
also show that G(D) is a smooth immersed surface, that it is embedded
outside the discrete set G(Z) and that at each point ¢ € G(Z N D) it
consists of two holomorphic graphs intersecting transversally.

4. Proof of Theorem 2.2: Part II

In order to conclude the proof of Theorem 1.1 the idea is to modify
the example of the previous section and substitute the self-intersection
of each singular point ¢ € G(Z N D) with a neck. In order for the new
surface to be area minimizing we will then perturb the Euclidean metric
and the standard complex structure to a nearby metric and a nearby
almost Kéahler structure. More precisely, order the points {py}ren of
the discrete set G(ZN D). Fix sufficiently small balls Bgor, (p) so that
they are all disjoint and do not intersect the boundary curve I'. Recall
that G(D) N Bioor, (pr) consist of two holomorphic disks intersecting
transversally at pi. In particular, we can assume that the two tangents
to these disks are given by m; and mg, where m; and 72 are two distinct
affine complex planes, namely

(4.1) T =pr + {(z,w) : a1z + byw = 0}
(4.2) o = pi + {(z,w) : agz + bow = 0}

for two different points [a1, b1], [az, ba] € CP'. The idea is to choose a
sufficiently small 7, > 0, substitute the surface G(D) inside By, (px)
with the holomorphic subvariety

Ag = A{pr + (z,w) : (a12 + byw)(agz + bow) = N},
and glue it back to the original surface G(D) in the annulus

Bi1oor, (Pk) \ Bry (k) -
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If 0, and rj are sufficiently small, we can assume that

A N Bioor, (Pk) \ By, (pk)  andG (D) N Bigor, (pk) \ By, (Pk)

consist each of two annuli, respectively A,lg, Ai and E}C, Zi, where AfC
is close to Z?c. Moreover, again by assuming that 7 and 7 are suffi-
ciently small, each A}C and E}; are graphs of holomorphic functions over
the plane p; + m;. We now wish to glue the surfaces E}C and AllC and
Ei and Az and modify the Euclidean metric and the standard Kéhler
structure in the annulus Bigoy, (px) \ By, (Pk) to a nearby Riemannian
metric with a corresponding almost Kéahler structure, so that the glued
surface is calibrated by the associated almost Kéahler form. Both the
new metric and the corresponding almost Kéahler form will coincide with
the Euclidean metric and the standard Kéhler form outside of a neigh-
borhood of the glued surface. By assuming r and 7 very small, we can
reduce to perform such glueing in neighborhoods of the planar annuli
(pr + m1) N Bioor, (Pk) \ By (i) and (pr + m2) N Bioor, (pk) \ By (),
which are disjoint. In particular we can assume that we glue the two
pairs of surfaces and we modify the metric and the Kahler form in two
separate regions. A schematic picture summarizing our discussion is
given in the picture below.

Figure 1. A schematic picture of the procedure outlined
above. The figure contains cross sections of the corre-
sponding objects with the real affine plane p, + R x R C
C x C. In particular, G(D) is pictured by the thick con-
tinuous curves, which in pp are tangent to the union of
two crossing complex lines pp + 71 and pr + me. The
dashed lines represent the hyperbola Aj. The surface X
will coincide with the dashed lines in the inner ball, with
the thick lines outside the outer ball and with a smooth
interpolation between the two surfaces in the annular re-
gion. The interpolation will take place in the shadowed
region, where both Ay and G(D) are graphical over the
corresponding portion of py + ;.
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The corresponding metric g will coincide with the euclidean one
outside of the annulus and will have the property that, if we set k :=
max{k, N}, then

(4.3) gk — 8l i < €251,

where € is the constant of Theorem 2.2. The latter estimate will be
achieved by choosing 7 appropriately small, so that the graphs AfC
almost coincide with the graphs Ei;.

The surface ¥ and the metric g of Theorem 2.2 will then be defined
as follows:

e Outside of | J, Bioor, (p) 2 coincides with G(D) and the metric g
is the Euclidean metric.

e Inside each By, (p;) ¥ coincides with the holomorphic submanifold
Ay and the metric g is the Euclidean metric.

e In the annulus Bigor, (pr) \ By, (pr) X is the glued surface and g
is the metric g, described above.

The existence of the (local) glued surface and of the metric g is thus
the key point and is guaranteed by the glueing proposition below (after
appropriate rescaling). In the rest of the note we use the following
notation:

e D,(p) C C is the disk centered at p € C of radius r; p will be

omitted if it is the origin.
e wy is the Kihler form on R* = C? and § is the Euclidean metric

on R*.
e Jj is the standard complex structure on R*, namely Jy(a, b, c, d) =
(=b,a,—d,c).

e Norms on functions, tensors, etc. are computed with respect to
the Euclidean metric.

Proposition 4.4 (Glueing). For every n > 0, N € N there is e > 0
with the following property. Assume that f,h : D1g \ D1 — C are two
holomorphic maps with

[fllev+2 + [[Allov+e <e.
Then there are
(i) a metric g € C* with ||g — d||cv < n and g = 0 outside (Dy \
El) X Dgn,
(ii) an almost Kdhler structure J compatible with g such that ||J —
Jollen < m and J = Jy outside (Dy \ D1) X Doy,
(iii) an associated almost Kdhler form w with |jw — wolloy < 1 and
w = wo outside (Dg \ D1) x Dy,
(iii) and a function ¢ : Dig \ D1 — D,
such that
(a) ¢ = (Re f,Im f) on Dy \ D1 and ( = (Reh,Imh) on D1g\ Dy;
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(b) w calibrates the graph of .

5. Proof of the glueing proposition

Before coming to the proof, let us recall some known facts from sym-
plectic geometry. First of all, a 2-form a on R?" is called nondegenerate
if for every point p € R?" the corresponding skew-symmetric bilinear
map ay, : R?” x R?™ — R is nondegenerate, namely

(5.1) Yu € R*™ % 0 Jv € R*™ with ay(u,v) #0.
Given a skew-symmetric form we can define A, : R?" — R?" as
(5.2) wp (v, w) = —0(v, Apw)

where we recall that § is the Euclidean metric. The nondegeneracy
condition (5.1) is equivalent to ker A, = {0}. Note that if wy is the
standard Kihler form of R?", then A, = Jy and that

lor —wolley <= [[4p = Jollen < Cn

In particular, any 2-form which is sufficiently close to w in the C° norm
is necessarily nondegenerate.

We start with the following particular version of the Poincaré Lemma.
Since we have not been able to find a precise reference, we give the
explicit argument.

Lemma 5.3. Assume U C R* is a star-shaped domain with respect
to the origin and let 5 be a closed 2-form, with the property that the pull
back of B on {Xs = X4 = 0} vanishes. Then there is a primitive o with
the properties that

e « vanishes identically on {X3 = X4 = 0};
o |a|lov < C||Bllcn+1, where the constant C depends only on the
diameter of U.

Proof. First of all recall the standard formula for the primitive of a
form given by integration along rays (cf. [28, Theorem 4.1]). Namely,
if

B=Y"BidX; AdX;,
1<J
then a primitive & can be computed using the formula

1
(5.4) d(X):ZZ(—l)j_l/o tBi;(tX) dt X;dX;
(2]

with the convention that Bz‘j = *sz’ if & > j. Using the latter ex-
pression we obviously have ||a||oy < C||B|lo~. Moreover, if 3 vanishes
identically on {X3 = X4, = 0} then clearly & vanishes identically on
{X3 = X4 =0}.
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Given a general closed 2-form (3, we then look for a 1-form ¢ which
vanishes on {X3 = X4 = 0} and with the property that 5 := 8 — dv
vanishes on {X3 = X4 = 0}. The resulting o will then be found as
@+, where @ is the primitive of 3 given in the formula (5.4). In order
to find ¥ we first write 8 in the form

B=fdX1 NdXo+ (CleXl + aq dXQ) NdX3

=:\
+ (b1 dX1 4 badXo + b3 dX3) ANdXy .

=:u

By assumption f equals 0 on {X3 = X, = 0}. Let us set
U= —X3,LL - X4)\7
so that
B —dd = fdX; NdXo + Xsdpu + XadX.

Since f vanishes on {X3 = X, = 0} we then get the desired property
that 8 — dv vanishes on it as well. q.e.d.

Proof of the Glueing Proposition. We will focus on the construction of
the triple, whereas the estimates are a simple consequence of the algo-
rithm.

Step 1: Definition of ( and a new system of coordinates: First we
smoothly extend f inside D; and we then define { as

¢ = (Re f,Im f)p+ (Reh, Imh)(1 — ).
where ¢ € C2°(D5) with 0 < ¢ <1 and ¢ =1 on Dy. In particular
C=f on Dy and (=h outside Ds.

We now choose a system of coordinates X := (Xi,...,Xy) such that
”X — Id HcN+1 S CE,

(5.5) ¥ = graph(() = {X3 = X4 =0}

and

(5.6) T, =KerdXzNKerdXy  T,Xt =KerdX; NKerdX,

Note that this can be done by, for instance, taking normal coordinates
around 3, provided ¢ is chosen sufficiently small.
More precisely, we first choose two vector fields &, 7 along ¥ such that:

o & =7 =1and §, L 7, (in the euclidean metric);
o 7,51 =span(&y, 7p).
We set

Y (21, %2, 3, 24)

=(x1, 22, C1(21,72), C2(21,22)) + x3& (2,1, 2) + 247 (21, T2) ,
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where
C = (Clu C2) )
p = (w1,22,C1(21,72), G2(21,22)) € X
5(.1‘71 7:U2) = fp

T(1,22) = Tp .

In order to get vector fields ¢ and 7 whose derivatives are under control,
a standard procedure is to take the standard vector fields ez = (0,0, 1,0),
es = (0,0,0,1), project them orthogonally onto TplZ and apply the
Gram-Schmidt orthogonalization procedure to them. Simple computa-
tions give that

1€ = esllonr + (|7 = eallevr < CllCllon+2 -

Note in particular that, if ¢ is chosen sufficiently small, Y is a diffeo-
morphism onto its image and that the latter contains Dg x Dg. Letting
X = Y~ ! it is immediate to check that (5.5) is satisfied and thus also
the first equality in (5.6). To check the second one simply note, by the
very definition of X,

(X1 =c1,Xo=ca} =p+T, 5+ X(p) = (c1,¢2,0,0).
From now on, with a slight abuse of notation, we will denote by D, x Dy
the product of disks in the X system of coordinates, that is
D, x Dy ={X?+ X2 <r? X2+ X7<s?
and we will work in the domain Dg x Dg. Given that [|[DX — Id||co +
|IDY —1d||co < e and assuming, without loss of generality, that X and
Y keep the origin fixed, such sets are comparable to the corresponding
products Dy x D¢ in the euclidean system of coordinates, namely
D¢ 1, X Dioay C Dy x Dy C D, X D
where the constant C' approaches 1 as € — 0.
Step 2: Construction of the 2 form: We take 0 < n and, provided
€ < o, we claim the existence of a 2-form w on Dg x Dg such that

(a) w is closed (and hence exact);
(b) The pull back of w and wy are the same on X.
(c) Forallp € ¥N ((D7\ D3) x Ds)

(5.7) wp = wp(v,w) =0 for all v € T,% and all w € T,X+

(d) w = wp outside of D7 \Eg X Doy
(€) [lw—woller <n.
To construct the form we observe that, on X,

iﬁEwO = CL(Xl,XQ)Xm A dXo
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for a suitable smooth function a. Extending a constant in the X3, Xy
coordinates we can write

wo = a,(Xl, Xg)Xm NdX9 +w

where @ is pulled back to 0 on 3. Note that dw = 0 since w is closed.
Moreover

(5.8)  [la=1f|en+1(pg) + [[@ — dX3 A dXallev+1(DgxDs) < 0e(1)
where 0.(1) — 0 as ¢ — 0. We define
(5.9) 8= a(Xl,Xg)Xm ANdXo +dX3 N dXy.

We now apply Lemma 5.3 to find a primitive 9 of wg—f = w—dX3AdXy
which equals 0 on ¥. We also let ¢ be a smooth cut-off function such
that

{wzw) on (Dg \ Dy) x D,.
p=1 outside (D7 \ D3) x Doy
Note in particular that, provided ¢ < o,

(5.10) Y N{y #0} C graph f Ugraphh.
We define

w=p+dpd) =+ @(wy— B)+dp AD.

Clearly w satisfies (a) and (d). Property (e) follows by choosing ¢ <
o as a consequence of the construction of Lemma 5.3 and of (5.8).
Moreover since ¥ vanishes on X and the pull-backs of 5 and wy on X
are the same, also (b) is satisfied. To check (c) we note that due to
(5.6) and the definition of 3 we have that 3,(v,w) = 0 for all p in the
domain of X and v € T,X,w € T,X1. In particular (5.7) is satisfied
on {¢ = 0}. Since f,h are holomorphic outside D, by (5.10), for
p € {¢ # 0}N(Ds\ D2) x Dg the spaces T,¥ and T,X+ are perpendicular
complex lines. Hence wy satisfies (5.7) there, since

wly = (1 — )8 + pwo,
w satisfies (5.7) as well and (c) is verified.
Step 3: Definition of the almost complex structure and of the metric:
To conclude the proof it will be enough to construct a metric g and
a compatible almost complex structure J. Here we follow a method
used in [6]. Let A, be the skew-symmetric matrix defined in (5.2). In

particular @, = —AIQJ = APAZ defines a positive definite quadratic form
and thus it admits a (positive definite) square root. We set

1
gp= (-4 and  J, =g, Ay
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Note that g, and J, equal, respectively, the euclidean metric § and
the usual complex structure Jy where w = wp. Furthermore, since g,
commutes with A,, one immediately verifies that

Jg = — Id gp(JpU, Jpw) - gp(v7 w) wp(vv w) = _gp(v7 Jpw)

so that the triple (g, J,w) defines an almost Kéhler structure on Dg x Dg
which coincides with the canonical one where w = wg. We are thus left
to prove that w calibrates ¥ on (D1g \ D7) x D1g. This is clear in the
region where w = wy, because in that region X equals either the graph
of f or that of h and these are holomorphic outside D;. Hence it is
enough to verify that X is calibrated in ((D7 \ D3) x Dg). To this end
note that, if p € XN ((D7\ D3) x Dg), by (5.7) and the definition of 4,,

0 = wp(v,w) = —60(v, Apw) = §(Apv, w) for all v € T,X , w € T,%+.

In particular A, maps T,¥ into itself (and 7,51 into itself as well).
The same is true then for J, and thus, if g,(v,v) = 1, (v, Jpv) is a g,-
orthonormal frame of 7),%. This implies that w is pulled back on ¥ to
the g-volume form and concludes the proof. q.e.d.

6. Branching singularities

A simple modifications of the ideas outlined above proves the follow-
ing
Theorem 6.1. For every € > 0 and every N € N there is a smooth
metric g on R, a smooth oriented curve I' in the unit ball By passing
through the origin and a smooth oriented surface 3 in By \ {0} such
that:
(a) g=0 on R*\ By and ||g — 0||o~ < €;
(b) [X] is the unique area minimizing integral current in the Riemann-
ian manifold (R*, g) which bounds [I'];
(¢’) There is an finite number of branching singularities pr € L\ T
accumulating to the only boundary singular point 0.

The idea of the proof is to produce the analogous to Theorem 2.2
where the conclusion (c¢) therein is substituted by the conclusion (c’)
above. Here we sketch the necessary modifications to the arguments
given for Theorem 2.2.

We start by constructing an example of an holomorphic subvariety in-
ducing an area minimizing current 7" as in Section 3 where the property
(iv) is however replaced by

(v) At each p € Sing;(T) there is a neighborhood U such that T" in U
consists of four holomorphic curves intersecting transversally at p.

More precisely there are four distinct elements
[alv bl]v [a2a bQ]v [ai’n b3]> [a4a b4] € CP!
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such that the tangent cone to T at p is given by the union of four
corresponding complex lines:

4
{(z,w) : H(aiz + bjw) = 0} .

i=1
In order to achieve such object we construct a similar function g as in
Section 3, by defining
7—2k
14

frx(2) = exp(—2z%) sin <Logz + m’) for k=0,1...,7

and

7
9(2) =[] £u(2)-
k=0

We then proceed as in Section 3 to define the zero sets Zj, of fi, on H\{0},
the set Z = {0} UJ, Zi, the curve v and the corresponding disk D,
where we require the properties analogous to (A) and (B) therein. We
finally define the map G(z) := (27, g(2)) and the current T is thus given
by [G(D)].

Next, proceeding as in Section 4, in a sufficiently small ball of radius
ri centered at pr € Sing;(T) we wish to replace G(D) with another
holomorphic subvariety, which has a branching singularity at pg. Since
G(D) is, at small scale, very close to the cone

4
Cy = U {pr + (z,w) : (a;z + bjw) = 0},
i=1

=Tk

the idea is to choose

4
Ay = {pk + (z,w) : H(aiz + biw) = n(2® — w2)} ,
i=1
where 7, is again a very small parameter. Choosing ri and ny, sufficiently
small, we can ensure that G(D) N Bioor, \ Br, (pr) and A N Bioor, \
Erk (px) consist each of four annuli which are graphs over correspond-
ing annular regions of the four distinct complex lines 74, i = 1,...,4.
We can obviously engineer such graphs to be arbitrarily close to the
corresponding planes, and hence to fall, after appropriating rescaling
under the assumption of the glueing Proposition 4.4. Hence the con-
struction of ¥ and of the almost Kéahler structure (g, J,w) follows the
same arguments.
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