
NONCLASSICAL MINIMIZING SURFACES WITH

SMOOTH BOUNDARY

Camillo De Lellis, Guido De Philippis & Jonas Hirsch

Abstract

We construct a Riemannian metric g on R
4 (arbitrarily close to

the euclidean one) and a smooth simple closed curve Γ ⊂ R
4 such

that the unique area minimizing surface spanned by Γ has infinite
topology. Furthermore the metric is almost Kähler and the area
minimizing surface is calibrated.

1. Introduction

Consider a smooth closed simple curve Γ in R
n. The existence of ori-

ented surfaces which bound Γ and minimize the area can be approached
in two different ways. Following the classical work of Douglas and Rado
we can fix an abstract connected smooth surface Σg of genus g whose
boundary ∂Σg consists of a single connected component and look at
smooth maps Φ : Σg → R

n with the property that the restriction of Φ
to ∂Σg is an homeomorphism onto Γ. We then consider the infimum
Ag(Γ) over all such Φ and all Riemannian metrics h on Σ of

∫

Σg

|∇Φ|2 dvolh .

If Ag(Γ) < Ag−1(Γ), then there is a minimizer (Φ, h) and the image of
h is an immersed surface of genus g, with possible branch points, see
[17, 27, 8] and also [25, 29]. The second, more intrinsic, approach
was pioneered later by De Giorgi, in the codimension 1 case [9], and
by Federer and Fleming in higher codimension [19]. They look at a
suitable measure-theoretic generalization of smooth oriented surfaces,
called integral currents T , whose generalized boundary is given by JΓK
and minimize a suitable generalization of the area, called mass. In this
framework a minimizer always exist and competitors do not have any
topological restriction.

A basic question is whether the Federer-Fleming solution T coincides
with the Douglas-Rado solutions for some genus g. This is true if the
curve Γ is sufficiently regular (Ck,α for k + α > 2, because combining
De Giorgi’s interior regularity theorem [10] with Hardt and Simon’s
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boundary regularity theorem [24], we know that every minimizer is an
embedded C2 surface up to the boundary Γ, in particular it has finite
genus g0. As corollaries, any conformal parametrization Φ of T gives
a minimizer in the sense of Douglas and Rado, while Ag(Γ) = Ag0

(Γ)
for every g > g0. If we instead merely assume that Γ has finite length,
Fleming showed in [20] that it is possible to have Ag+1(Γ) < Ag(Γ)
for g arbitrarily large, implying in particular that every integral current
minimizer has infinite topology, see also [3] for related phenomena.

In higher codimension, namely for n ≥ 4, it is known that the min-
imizer T is in general not regular, neither in the interior nor at the
boundary. Concerning the interior regularity, it has been shown by
Chang in [7] that T is smooth in R

n \ Γ up to a discrete set of singular
branch points and self-intersections (we in fact refer to [15, 12, 13, 14]
for a complete proof, as Chang needs a suitable modification of the tech-
niques of Almgren’s monumental monograph [2] to start his argument,
and the former has been given in full details in [13]). As a corollary
we know therefore that for any point p 6∈ Γ there is a neighborhood U
in which T is the union of finitely many topological disks. Nonetheless
it is still an open problem whether “globally” such solutions T have
finite topology. So far this can be only concluded if Γ is of class Ck,α

for k + α > 2 and lies in the boundary of a uniformly convex open set,
because Allard’s boundary regularity theorem [1] rules out boundary
singularities.

In the general case, however, very little is known about the boundary
regularity of area minimizing integral currents. The first result has been
established by the authors and A. Massaccesi in the recent work [11],
which shows that, if Γ is of class Ck,α for k + α > 3, then the set of
regular boundary points is open and dense in Γ. On the other hand
the same paper gives a smooth simple closed curve Γ in R

4 bounding
a (unique) minimizer T which has infinitely many singularities. Such
T is, however, still an immersed disk, which has a countable number of
self-intersections accumulating towards a boundary branch point: it is,
in particular, a Douglas-Rado solution with genus g = 0.

In his work [30] White conjectures that the Federer-Fleming solution
has finite genus if Γ is real analytic. If White’s conjecture were true,
then the main theorem in [30] would imply that, for real analytic Γ,
the set of boundary and interior singular points is finite and it would
also exclude the presence of branch points at the boundary: the (finitely
many) singular boundary points would all arise as self intersections.

As already mentioned, the example in [11] shows that the latter con-
clusion would certainly be false for smooth Γ in R

4. In this note we
show that, if we perturb the Euclidean metric in an appropriate way,
the same curve bounds a unique area minimizing integral current with
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infinite topology. In particular, if we look at White’s conjecture in Rie-
mannian manifolds, real analyticity is a necessary assumption to exclude
infinite topology of the Federer-Fleming solution. Our precise theorem
is the following, where we denote by δ the standard Euclidean metric.

Theorem 1.1. For every ε > 0 and every N ∈ N there is a smooth
metric g on R

4, a smooth oriented curve Γ in the unit ball B1 passing
through the origin and a smooth oriented surface Σ in B1 \ {0} such
that:

(a) g = δ on R
4 \ B1 and ‖g − δ‖CN < ε;

(b) JΣK is the unique area minimizing integral current in the Riemann-
ian manifold (R4, g) which bounds JΓK;

(c) Σ has infinite topology.

In our example Σ has (only) one singularity at the origin. The latter
is a boundary singular point and Σ displays a sequence of interior necks
accumulating to it. A simple modification of our proof gives the exis-
tence of an area-minimizing current which bounds a smooth curve in
a smooth Riemannian manifold and has an infinite number of interior
branch points accumulating to the boundary. For the precise statement
see Theorem 6.1 below. For the proofs of both Theorem 1.1 and The-
orem 6.1 it is essential that we are allowed to perturb the Euclidean
metric. In particular the question whether such examples can exist in
some Euclidean space remains open.

As pointed out, the question of whether the Federer-Fleming solution
coincides with a Douglas-Rado solution is closely related to the regular-
ity theory for area minimizers. We therefore close this introduction with
a brief (and certainly not exhaustive) review of what is known for the
Douglas-Rado solution. Interior branch points can be excluded in codi-
mension 1, i.e. for surfaces in R

3, see [26, 4, 5, 23] and the discussion
in [16, Section 6.4]. In higher codimension both interior branch points
and self intersections are possible (primary examples are holomorphic
curves in C

k = R
2k). Concerning boundary branch points, it is well

known that they can exist in higher codimension if the boundary curve
is just Ck. The example of [11] mentioned above shows that they can
exist even if it is C∞, while the aforementioned paper of White [30]
excludes their existence when Γ is real analytic. In fact the same con-
clusion was drawn much earlier in codimension 1 by a classical paper of
Gulliver and Lesley, [22].

In codimension 1 the existence of boundary branch points for the
Douglas Rado solution is still an open question and it is probably the
most important one in the field, we refer again to the discussion in [16,
Section 6.4] for a detailed account of the known results. In [21] Gulliver
provides an interesting example of a C∞ curve in R

3 which bounds a
minimal disk with one boundary branch point, however it is not known
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wether this surface is a Douglas-Rado solution. We note in passing that
Gulliver’s proof gives as well a Douglas-Rado disk-type solution (in fact
a Federer Fleming solution) in R

6 spanning a C∞ curve and with a
boundary branch point.

Acknowledgements. The authors would like to thank Claudio Arezzo
and Emmy Murphy for several interesting discussions. The work of
G.D.P is supported by the INDAM grant “Geometric Variational Prob-
lems”.

2. Preliminaries

The Riemannian manifold (R4, g) of Theorem 1.1 has in fact a very
special geometric structure, since it is an almost Kähler manifold.

Definition 2.1. An almost complex structure on a 4-dimensional
smooth manifold M is given by a smooth (1, 1) tensor J with the prop-
erty that J2 = − Id. The structure is almost Kähler if there is a smooth
Riemannian metric g with the properties that:

(i) J is isometric, namely g(JV, JW ) = g(V, W ) for every vector fields
V and W ;

(ii) The 2-form defined by ω(V, W ) := −g(V, JW ) is closed.

ω will be called the almost Kähler form associated to the almost Kähler
structure.

Theorem 1.1 will then be a corollary of the following

Theorem 2.2. For every ε > 0 and every N ∈ N there is a smooth
metric g on R

4, a smooth oriented curve Γ in the unit ball B1 passing
through the origin and a smooth oriented surface Σ in B1 \ {0} such
that:

(a) g = δ on R
4 \ B1 and ‖g − δ‖CN < ε;

(b1) there is an almost complex structure J for which the conditions (i)
and (ii) of Definition 2.1 hold;

(b2) JΣK bounds JΓK and the pull-back of the corresponding ω on Σ is
the volume form with respect to the metric g;

(c) Σ has infinite topology.

Property (b2) is usually referred to as ω calibrating the surface Σ. It
is a classical elementary, yet powerful, remark of Federer that the con-
ditions (b1)-(b2) imply, by an inequality of Wirtinger, the minimality
of the current JΣK, cf. [18]. Wirtinger’s theorem shows that

ω(V, W ) ≤ 1

whenever

|V ∧ W |g :=
√

g(V, V )g(W, W ) − g(V, W )2 ≤ 1
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and that the equality holds if and only if W = JV . In the language of
geometric measure theory Wirtinger’s inequality implies that the comass
(relative to the metric g) of the form ω is 1. Moreover, we infer from the
second part of Wirtinger’s Theorem (the characterization of the equality
case) that ω is pulled back to the standard volume form on Σ if and
only if there is a positively oriented tangent frame of the tangent bundle
to Σ of the form {V, JV }. Consider now any current (not necessarily
integral!) T which bounds JΓK. Since ω is closed and R

4 has trivial
topology, ω has a primitive α. We then must have

T (ω) = T (dα) =

∫

Γ
α =

∫

Σ
dα =

∫

Σ
ω = M(JΣK) .

On the other hand Wirtinger’s inequality implies that the comass of ω
in the metric g is 1 and thus the mass of T is necessarily larger than
T (ω).

This shows that JΣK is area minimizing. In order to conclude that
it is the unique minimizer, we must appeal to the boundary regularity
theory developed in [11]. First of all observe that, by [11, Theorem 2.1]
the interior regular set Λ := Regi(T ) of the current T is connected, it
is an orientable submanifold of R4 and (up to a change of orientation)
T = JΛK. Moreover, by [11, Theorem 1.6] there is at least one point p ∈
Γ\ {0} and a neighborhood U of p such that Λ∩ U is a smooth oriented
surface with smooth oriented boundary Γ ∩ U . By the argument above
we must have T (ω) = M(T ) and this implies, by Wirtinger’s Theorem,
that the tangent planes to Λ are invariant under the action of J . The
same holds for the tangent planes to Σ. In particular, the tangents to
Σ and Λ must coincide at every point q ∈ Γ ∩ U and they must have
the same orientation. Since both are smooth minimal surfaces in U , the
unique continuation for elliptic systems implies that they coincide in a
neighborhood of q. Again, thanks to the unique continuation principle
and the connectedness of Λ we conclude that Λ is in fact a subset of Σ.
However, since they have the same area, this implies that JΣK = T .

3. Proof of Theorem 2.2: Part I

In this section we slightly modify the construction given in [11, Sec-
tion 2.3] to achieve a smooth curve Γ in R

4 and an integral current T
in R

4 such that

(i) T bounds JΓK and is area minimizing in (R4, δ) (i.e. with respect
to the Euclidean metric), in fact T is induced by an holomorphic
subvariety in R

4 \ Γ;
(ii) T is regular at Γ \ {0};
(iii) 0 is an accumulation point for the interior singular set of T , de-

noted by Singi(T );
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(iv) At each p ∈ Singi(T ) there is a neighborhood U such that T in U
consists of two holomorphic curves intersecting transversally at p.

First of all consider the complex plane with an infinite slit

K := {z ∈ C} \ {z ∈ R : z ≤ 0} .

We consider the usual inverse arctan : R → (−π
2 , π

2 ) on the real axis
of the trigonometric function tan and we fix a determination of the
complex logarithm on K which coincides with

Log z = log |z| + i arctan
Im z

Re z
.

on the open half plane H := {z ∈ C : Re z > 0}. Correspondingly we
define the functions z−α = exp(−αLog z) for α ∈ (0, 1/2) and

fk(z) = exp(−z−α) sin

(

Log z +
3 − 2k

6
πi

)

for k = 0, 1, 2, 3.

Observe that:

(i) If we extend each fk to the origin as 0, then fk is a smooth function
over any wedge

Ka := {z : −Re z ≤ a|Im z|}

with a positive.
(ii) Since exp(−z−α) does not vanish on H \ {0} (recall that α ∈

(0, 1/2)), the zero set Zk of fk in H \ {0} is given by

Zk =

{

z ∈ H : Log z +
3 − 2k

6
πi ∈ πZ

}

,

namely by

(3.1) Zk =

{

exp

(

nπ + i
2k − 3

6
π

)

: n ∈ Z

}

.

Consider next the function

g(z) =

3∏

k=0

fk(z) .

We then conclude that g is holomorphic on K, it is C∞ on Ka for every
a > 0 and its zero set in H, which we denote by Z, is given by

Z = {0} ∪

3⋃

k=0

Zk .

Define now the map G : K → C
2 by G(z) = (z3, g(z)). We consider

a smooth simple curve γ ⊂ K1 which in a neighborhood of the origin
is tangent to the imaginary axis and we let D ⊂ K1 be the open disk
bounded by γ. Following the arguments of [11, Section 2.3] it is not
difficult to see that γ can be chosen so that:
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(A) {g = 0} ∩ γ = {0};
(B) {g = 0} ∩ D ⊂ H, hence {g = 0} ∩ D ⊂ Z and, for each k ∈

{0, . . . , 3}, it contains all sufficiently small elements of Zk, namely
there is a positive constant c0 such that {z ∈ Zk : |z| ≤ c0} ⊂ D.

The current T := G♯ JDK is integer rectifiable, it has multiplicity one
(in particular it coincides with JG(D)K) and

∂T = G♯∂ JDK = G♯ JγK .

Observe that G(D) is an holomorphic curve of C2, which carries a natu-
ral orientation. If JG(D)K denotes the corresponding integer rectifiable
current, we then can follow the argument in [11, Section 2.3] to show
that T = JG(D)K and Federer’s classical argument implies that T is area
minimizing for the standard Euclidean metric.

The arguments given in [11, Section 2.3] show that G♯ JγK = JG(γ)K
and G(γ) ⊂ C

2 = R
4 is a smooth embedded curve. The same arguments

also show that G(D) is a smooth immersed surface, that it is embedded
outside the discrete set G(Z) and that at each point q ∈ G(Z ∩ D) it
consists of two holomorphic graphs intersecting transversally.

4. Proof of Theorem 2.2: Part II

In order to conclude the proof of Theorem 1.1 the idea is to modify
the example of the previous section and substitute the self-intersection
of each singular point q ∈ G(Z ∩ D) with a neck. In order for the new
surface to be area minimizing we will then perturb the Euclidean metric
and the standard complex structure to a nearby metric and a nearby
almost Kähler structure. More precisely, order the points {pk}k∈N of
the discrete set G(Z ∩D). Fix sufficiently small balls B100rk

(pk) so that
they are all disjoint and do not intersect the boundary curve Γ. Recall
that G(D) ∩ B100rk

(pk) consist of two holomorphic disks intersecting
transversally at pk. In particular, we can assume that the two tangents
to these disks are given by π1 and π2, where π1 and π2 are two distinct
affine complex planes, namely

π1 = pk + {(z, w) : a1z + b1w = 0}(4.1)

π2 = pk + {(z, w) : a2z + b2w = 0}(4.2)

for two different points [a1, b1], [a2, b2] ∈ CP
1. The idea is to choose a

sufficiently small ηk > 0, substitute the surface G(D) inside Brk
(pk)

with the holomorphic subvariety

Λk := {pk + (z, w) : (a1z + b1w)(a2z + b2w) = ηk} ,

and glue it back to the original surface G(D) in the annulus

B100rk
(pk) \ Brk

(pk) .
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If ηk and rk are sufficiently small, we can assume that

Λk ∩ B100rk
(pk) \ Brk

(pk) andG(D) ∩ B100rk
(pk) \ Brk

(pk)

consist each of two annuli, respectively Λ1
k, Λ

2
k and Σ1

k, Σ
2
k, where Λi

k

is close to Σi
k. Moreover, again by assuming that ηk and rk are suffi-

ciently small, each Λi
k and Σi

k are graphs of holomorphic functions over
the plane pk + πi. We now wish to glue the surfaces Σ1

k and Λ1
k and

Σ2
k and Λ2

k and modify the Euclidean metric and the standard Kähler

structure in the annulus B100rk
(pk) \ Brk

(pk) to a nearby Riemannian
metric with a corresponding almost Kähler structure, so that the glued
surface is calibrated by the associated almost Kähler form. Both the
new metric and the corresponding almost Kähler form will coincide with
the Euclidean metric and the standard Kähler form outside of a neigh-
borhood of the glued surface. By assuming rk and ηk very small, we can
reduce to perform such glueing in neighborhoods of the planar annuli
(pk + π1) ∩ B100rk

(pk) \ Brk
(pk) and (pk + π2) ∩ B100rk

(pk) \ Brk
(pk),

which are disjoint. In particular we can assume that we glue the two
pairs of surfaces and we modify the metric and the Kähler form in two
separate regions. A schematic picture summarizing our discussion is
given in the picture below.

Figure 1. A schematic picture of the procedure outlined
above. The figure contains cross sections of the corre-
sponding objects with the real affine plane pk +R×R ⊂
C×C. In particular, G(D) is pictured by the thick con-
tinuous curves, which in pk are tangent to the union of
two crossing complex lines pk + π1 and pk + π2. The
dashed lines represent the hyperbola Λk. The surface Σ
will coincide with the dashed lines in the inner ball, with
the thick lines outside the outer ball and with a smooth
interpolation between the two surfaces in the annular re-
gion. The interpolation will take place in the shadowed
region, where both Λk and G(D) are graphical over the
corresponding portion of pk + πi.
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The corresponding metric gk will coincide with the euclidean one
outside of the annulus and will have the property that, if we set k̄ :=
max{k, N}, then

(4.3) ‖gk − δ‖Ck̄ < ε2−k̄−1 ,

where ε is the constant of Theorem 2.2. The latter estimate will be
achieved by choosing ηk appropriately small, so that the graphs Λi

k

almost coincide with the graphs Σi
k.

The surface Σ and the metric g of Theorem 2.2 will then be defined
as follows:

• Outside of
⋃

k B100rk
(pk) Σ coincides with G(D) and the metric g

is the Euclidean metric.
• Inside each Brk

(pk) Σ coincides with the holomorphic submanifold
Λk and the metric g is the Euclidean metric.

• In the annulus B100rk
(pk) \ Brk

(pk) Σ is the glued surface and g
is the metric gk described above.

The existence of the (local) glued surface and of the metric gk is thus
the key point and is guaranteed by the glueing proposition below (after
appropriate rescaling). In the rest of the note we use the following
notation:

• Dr(p) ⊂ C is the disk centered at p ∈ C of radius r; p will be
omitted if it is the origin.

• ω0 is the Kähler form on R
4 = C

2 and δ is the Euclidean metric
on R

4.
• J0 is the standard complex structure on R

4, namely J0(a, b, c, d) =
(−b, a, −d, c).

• Norms on functions, tensors, etc. are computed with respect to
the Euclidean metric.

Proposition 4.4 (Glueing). For every η > 0, N ∈ N there is ε > 0
with the following property. Assume that f, h : D10 \ D1 → C are two
holomorphic maps with

‖f‖CN+2 + ‖h‖CN+2 ≤ ε .

Then there are

(i) a metric g ∈ C∞ with ‖g − δ‖CN ≤ η and g = δ outside (D9 \
D1) × D2η,

(ii) an almost Kähler structure J compatible with g such that ‖J −
J0‖CN ≤ η and J = J0 outside (D9 \ D1) × D2η,

(iii) an associated almost Kähler form ω with ‖ω − ω0‖CN ≤ η and
ω = ω0 outside (D9 \ D1) × D2η

(iii) and a function ζ : D10 \ D1 → Dη

such that

(a) ζ = (Re f, Im f) on D2 \ D1 and ζ = (Reh, Imh) on D10 \ D9;
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(b) ω calibrates the graph of ζ.

5. Proof of the glueing proposition

Before coming to the proof, let us recall some known facts from sym-
plectic geometry. First of all, a 2-form α on R

2n is called nondegenerate
if for every point p ∈ R

2n the corresponding skew-symmetric bilinear
map αp : R2n × R

2n → R is nondegenerate, namely

(5.1) ∀u ∈ R
2n 6= 0 ∃v ∈ R

2n with αp(u, v) 6= 0 .

Given a skew-symmetric form we can define Ap : R2n → R
2n as

(5.2) ωp(v, w) = −δ(v, Apw)

where we recall that δ is the Euclidean metric. The nondegeneracy
condition (5.1) is equivalent to kerAp = {0}. Note that if ω0 is the
standard Kähler form of R2n, then Ap = J0 and that

‖α − ω0‖CN ≤ η ⇒ ‖Ap − J0‖CN ≤ Cη

In particular, any 2-form which is sufficiently close to ω in the C0 norm
is necessarily nondegenerate.

We start with the following particular version of the Poincaré Lemma.
Since we have not been able to find a precise reference, we give the
explicit argument.

Lemma 5.3. Assume U ⊂ R
4 is a star-shaped domain with respect

to the origin and let β be a closed 2-form, with the property that the pull
back of β on {X3 = X4 = 0} vanishes. Then there is a primitive α with
the properties that

• α vanishes identically on {X3 = X4 = 0};
• ‖α‖CN ≤ C‖β‖CN+1, where the constant C depends only on the
diameter of U .

Proof. First of all recall the standard formula for the primitive of a
form given by integration along rays (cf. [28, Theorem 4.1]). Namely,
if

β̄ =
∑

i<j

β̄ij dXi ∧ dXj ,

then a primitive ᾱ can be computed using the formula

(5.4) ᾱ(X) =
∑

i

∑

j

(−1)j−1

∫ 1

0
tβ̄ij(tX) dt XjdXi

with the convention that β̄ij = −β̄ji if i > j. Using the latter ex-
pression we obviously have ‖ᾱ‖CN ≤ C‖β̄‖CN . Moreover, if β̄ vanishes
identically on {X3 = X4 = 0} then clearly ᾱ vanishes identically on
{X3 = X4 = 0}.
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Given a general closed 2-form β, we then look for a 1-form ϑ which
vanishes on {X3 = X4 = 0} and with the property that β̄ := β − dϑ
vanishes on {X3 = X4 = 0}. The resulting α will then be found as
ᾱ+ϑ, where ᾱ is the primitive of β̄ given in the formula (5.4). In order
to find ϑ we first write β in the form

β =f dX1 ∧ dX2 + (a1dX1 + a2 dX2)
︸ ︷︷ ︸

=:λ

∧dX3

+ (b1 dX1 + b2 dX2 + b3 dX3)
︸ ︷︷ ︸

=:µ

∧dX4 .

By assumption f equals 0 on {X3 = X4 = 0}. Let us set

ϑ = −X3µ − X4λ ,

so that

β − dϑ = f dX1 ∧ dX2 + X3dµ + X4dλ .

Since f vanishes on {X3 = X4 = 0} we then get the desired property
that β − dϑ vanishes on it as well. q.e.d.

Proof of the Glueing Proposition. We will focus on the construction of
the triple, whereas the estimates are a simple consequence of the algo-
rithm.

Step 1: Definition of ζ and a new system of coordinates: First we
smoothly extend f inside D1 and we then define ζ as

ζ = (Re f, Im f)ϕ + (Reh, Imh)(1 − ϕ) .

where ϕ ∈ C∞
c (D5) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on D4. In particular

ζ = f on D4 and ζ = h outside D5.

We now choose a system of coordinates X := (X1, . . . , X4) such that
‖X − Id ‖CN+1 ≤ Cε,

(5.5) Σ = graph(ζ) = {X3 = X4 = 0}

and

(5.6) TpΣ = Ker dX3 ∩ Ker dX4 TpΣ
⊥ = Ker dX1 ∩ Ker dX2

Note that this can be done by, for instance, taking normal coordinates
around Σ, provided ε is chosen sufficiently small.

More precisely, we first choose two vector fields ξ, τ along Σ such that:

• |ξp| = |τp| = 1 and ξp ⊥ τp (in the euclidean metric);

• TpΣ
⊥ = span(ξp, τp).

We set

Y (x1, x2, x3, x4)

=(x1, x2, ζ1(x1, x2), ζ2(x1, x2)) + x3ξ(x,1 , x2) + x4τ(x1, x2) ,
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where

ζ = (ζ1, ζ2) ,

p = (x1, x2, ζ1(x1, x2), ζ2(x1, x2)) ∈ Σ

ξ(x,1 , x2) = ξp

τ(x1, x2) = τp .

In order to get vector fields ζ and τ whose derivatives are under control,
a standard procedure is to take the standard vector fields e3 = (0, 0, 1, 0),
e4 = (0, 0, 0, 1), project them orthogonally onto T ⊥

p Σ and apply the
Gram-Schmidt orthogonalization procedure to them. Simple computa-
tions give that

‖ξ − e3‖CN+1 + ‖τ − e4‖CN+1 ≤ C‖ζ‖CN+2 .

Note in particular that, if ε is chosen sufficiently small, Y is a diffeo-
morphism onto its image and that the latter contains D8 × D8. Letting
X = Y −1 it is immediate to check that (5.5) is satisfied and thus also
the first equality in (5.6). To check the second one simply note, by the
very definition of X,

{X1 = c1, X2 = c2} = p + TpΣ
⊥ X(p) = (c1, c2, 0, 0).

From now on, with a slight abuse of notation, we will denote by Dr ×Ds

the product of disks in the X system of coordinates, that is

Dr × Ds = {X2
1 + X2

2 < r2 , X2
3 + X2

4 < s2}

and we will work in the domain D8 × D8. Given that ‖DX − Id‖C0 +
‖DY − Id‖C0 ≤ ε and assuming, without loss of generality, that X and
Y keep the origin fixed, such sets are comparable to the corresponding
products De

ρ × De
σ in the euclidean system of coordinates, namely

De
C−1r × De

C−1s ⊂ Dr × Ds ⊂ De
Cr × De

Cs

where the constant C approaches 1 as ε → 0.

Step 2: Construction of the 2 form: We take σ ≪ η and, provided
ε ≪ σ, we claim the existence of a 2-form ω on D8 × D8 such that

(a) ω is closed (and hence exact);
(b) The pull back of ω and ω0 are the same on Σ.
(c) For all p ∈ Σ ∩

(
(D7 \ D3) × D8

)

(5.7) ωp = ωp(v, w) = 0 for all v ∈ TpΣ and all w ∈ TpΣ
⊥

(d) ω = ω0 outside of D7 \ D3 × D2σ

(e) ‖ω − ω0‖CN ≤ η.

To construct the form we observe that, on Σ,

i♯
Σω0 = a(X1, X2)dX1 ∧ dX2
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for a suitable smooth function a. Extending a constant in the X3, X4

coordinates we can write

ω0 = a(X1, X2)dX1 ∧ dX2 + ω

where ω̄ is pulled back to 0 on Σ. Note that dω̄ = 0 since ω is closed.
Moreover

(5.8) ‖a − 1‖CN+1(D8) + ‖ω − dX3 ∧ dX4‖CN+1(D8×D8) ≤ oε(1)

where oε(1) → 0 as ε → 0. We define

(5.9) β = a(X1, X2)dX1 ∧ dX2 + dX3 ∧ dX4.

We now apply Lemma 5.3 to find a primitive ϑ of ω0−β = ω−dX3∧dX4

which equals 0 on Σ. We also let ϕ be a smooth cut-off function such
that

{

ϕ ≡ 0 on (D6 \ D4) × Dσ.

ϕ ≡ 1 outside (D7 \ D3) × D2σ

Note in particular that, provided ε ≪ σ,

(5.10) Σ ∩ {ϕ 6= 0} ⊂ graph f ∪ graphh .

We define

ω = β + d(ϕϑ) = β + ϕ(ω0 − β) + dϕ ∧ ϑ.

Clearly ω satisfies (a) and (d). Property (e) follows by choosing ε ≪
σ as a consequence of the construction of Lemma 5.3 and of (5.8).
Moreover since ϑ vanishes on Σ and the pull-backs of β and ω0 on Σ
are the same, also (b) is satisfied. To check (c) we note that due to
(5.6) and the definition of β we have that βp(v, w) = 0 for all p in the

domain of X and v ∈ TpΣ, w ∈ TpΣ
⊥. In particular (5.7) is satisfied

on {ϕ = 0}. Since f, h are holomorphic outside D2, by (5.10), for
p ∈ {ϕ 6= 0}∩(D8\D2)×D8 the spaces TpΣ and TpΣ

⊥ are perpendicular
complex lines. Hence ω0 satisfies (5.7) there, since

ω
∣
∣
Σ
= (1 − ϕ)β + ϕω0,

ω satisfies (5.7) as well and (c) is verified.

Step 3: Definition of the almost complex structure and of the metric:
To conclude the proof it will be enough to construct a metric g and
a compatible almost complex structure J . Here we follow a method
used in [6]. Let Ap be the skew-symmetric matrix defined in (5.2). In
particular Qp = −A2

p = ApAt
p defines a positive definite quadratic form

and thus it admits a (positive definite) square root. We set

gp =
(

− A2
p

)−
1

2 and Jp = g−1
p Ap.
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Note that gp and Jp equal, respectively, the euclidean metric δ and
the usual complex structure J0 where ω = ω0. Furthermore, since gp

commutes with Ap, one immediately verifies that

J2
p = − Id gp(Jpv, Jpw) = gp(v, w) ωp(v, w) = −gp(v, Jpw)

so that the triple (g, J, ω) defines an almost Kähler structure on D8×D8

which coincides with the canonical one where ω = ω0. We are thus left
to prove that ω calibrates Σ on (D10 \ D1) × D10. This is clear in the
region where ω = ω0, because in that region Σ equals either the graph
of f or that of h and these are holomorphic outside D1. Hence it is
enough to verify that Σ is calibrated in

(
(D7 \ D3) × D8

)
. To this end

note that, if p ∈ Σ∩
(
(D7 \ D3)×D8

)
, by (5.7) and the definition of Ap,

0 = ωp(v, w) = −δ(v, Apw) = δ(Apv, w) for all v ∈ TpΣ , w ∈ TpΣ
⊥.

In particular Ap maps TpΣ into itself (and TpΣ
⊥ into itself as well).

The same is true then for Jp and thus, if gp(v, v) = 1, (v, Jpv) is a gp-
orthonormal frame of TpΣ. This implies that ω is pulled back on Σ to
the g-volume form and concludes the proof. q.e.d.

6. Branching singularities

A simple modifications of the ideas outlined above proves the follow-
ing

Theorem 6.1. For every ε > 0 and every N ∈ N there is a smooth
metric g on R

4, a smooth oriented curve Γ in the unit ball B1 passing
through the origin and a smooth oriented surface Σ in B1 \ {0} such
that:

(a) g = δ on R
4 \ B1 and ‖g − δ‖CN < ε;

(b) JΣK is the unique area minimizing integral current in the Riemann-
ian manifold (R4, g) which bounds JΓK;

(c’) There is an finite number of branching singularities pk ∈ Σ \ Γ
accumulating to the only boundary singular point 0.

The idea of the proof is to produce the analogous to Theorem 2.2
where the conclusion (c) therein is substituted by the conclusion (c’)
above. Here we sketch the necessary modifications to the arguments
given for Theorem 2.2.

We start by constructing an example of an holomorphic subvariety in-
ducing an area minimizing current T as in Section 3 where the property
(iv) is however replaced by

(v) At each p ∈ Singi(T ) there is a neighborhood U such that T in U
consists of four holomorphic curves intersecting transversally at p.

More precisely there are four distinct elements

[a1, b1], [a2, b2], [a3, b3], [a4, b4] ∈ CP
1
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such that the tangent cone to T at p is given by the union of four
corresponding complex lines:

{

(z, w) :

4∏

i=1

(aiz + biw) = 0

}

.

In order to achieve such object we construct a similar function g as in
Section 3, by defining

fk(z) = exp(−zα) sin

(

Log z +
7 − 2k

14
πi

)

for k = 0, 1 . . . , 7

and

g(z) =

7∏

k=0

fk(z) .

We then proceed as in Section 3 to define the zero sets Zk of fk onH\{0},
the set Z = {0} ∪

⋃

k Zk, the curve γ and the corresponding disk D,
where we require the properties analogous to (A) and (B) therein. We
finally define the map G(z) := (z7, g(z)) and the current T is thus given
by JG(D)K.

Next, proceeding as in Section 4, in a sufficiently small ball of radius
rk centered at pk ∈ Singi(T ) we wish to replace G(D) with another
holomorphic subvariety, which has a branching singularity at pk. Since
G(D) is, at small scale, very close to the cone

Ck :=
4⋃

i=1

{pk + (z, w) : (aiz + biw) = 0}
︸ ︷︷ ︸

=:πk,i

,

the idea is to choose

Λk :=

{

pk + (z, w) :

4∏

i=1

(aiz + biw) = ηk(z
3 − w2)

}

,

where ηk is again a very small parameter. Choosing rk and ηk sufficiently
small, we can ensure that G(D) ∩ B100rk

\ Brk
(pk) and Λk ∩ B100rk

\

Brk
(pk) consist each of four annuli which are graphs over correspond-

ing annular regions of the four distinct complex lines πk,i, i = 1, . . . , 4.
We can obviously engineer such graphs to be arbitrarily close to the
corresponding planes, and hence to fall, after appropriating rescaling
under the assumption of the glueing Proposition 4.4. Hence the con-
struction of Σ and of the almost Kähler structure (g, J, ω) follows the
same arguments.
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