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Exact two-component (X2C) coupled-cluster calculations of electronic g-factors for

heavy-atom-containing small molecules pertinent to search of new physics Beyond

the Standard Model (BSM) is reported. A magnetic-field-dependent unitary trans-

formation of the Dirac Hamiltonian has been adopted to enable a simple inclusion

of the quantum electrodynamics correction to the free-electron g-factor in the four-

component formulation. The X2C transformation is subsequently employed to elim-

inate the positronic degrees of freedom to enhance computational efficiency without

significant loss of accuracy. The relationship of the present scheme to alternative

four- and two-component formulations is discussed. To demonstrate the accuracy

and usefulness of the present X2C scheme, we report coupled-cluster calculations for

electronic g-factors of representative heavy-metal-containing small molecules includ-

ing those relevant to precision spectroscopic search of BSM physics.
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I. INTRODUCTION

Precision measurement of heavy-atom-containing small molecules is a promising approach

to search for fundamental physics Beyond the Standard Model (BSM).1–6 An important line

of research here is to search for electron electric dipole moment (eEDM) originating from

charge-conjugation and parity symmetry violation through precision measurement of atoms

and molecules. Molecular species containing a heavy atom with strong spin-orbit coupling

and a light atom or a functional group with high electronegativity exhibit gigantic effective

internal electric fields.7–22 They thus feature high sensitivity in the eEDM measurement.

Recent updates of the upper bound for the eEDM value have been obtained from precision

spectroscopy of diatomic molecules.23–26 Experimental measurements using YbF7,23,27 and

ThO24,26,28–30 take advantage of the high density of neutral molecules in molecular beam

experiments, while those using molecular ions such as HfF+ and ThF+ exploit long coherence

time of ions within an ion trap.25,31–34 Heavy-atom-containing linear triatomic molecules such

as YbOH have also been proposed as promising candidates for the search of eEDM,35 in

which the use of vibrational excited levels of the degenerate bending modes enables efficient

polarization of a molecule using applied external electric fields.

Precision measurements of molecular eEDM-sensitive states require precise knowledge

about electrical and magnetic properties for these states. Determination of these proper-

ties relies on high resolution spectroscopic studies.27,34,36–47 Meanwhile, electronic-structure

calculations are being used to predict these parameters and/or to facilitate experimental

analysis.9,13,14,48–57 Quantum-chemical calculations of molecular properties are sensitive to

treatments of electron correlation. Molecular states of interest in the eEDM measurements

are usually doublet or high-spin triplet states, whose wavefunctions are dominated by a
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single determinant; electron correlation in these electronic states are dynamic in nature.

Coupled-cluster (CC) methods58,59 that can provide accurate treatments of dynamic cor-

relation thus have been widely used. Relativistic CC calculations in combination with the

four-component Dirac-Coulomb Hamiltonian or relativistic two-component Hamiltonians

have been shown to provide useful results for electric dipole moments, electronic g-factors,

and magnetic hyperfine coupling constants for heavy-atom containing small molecules.

A motivation of the present work is to incorporate quantum electrodynamics (QED)

correction to the free-electron g-factor into relativistic four-component and two-component

formulations for ab initio calculations of electronic g-factors. Since many eEDM-sensitive

states, e.g., the 3∆1 states of ThO, HfF+, and ThF+, exhibit small electronic g-factor values,

the inclusion of the QED correction to the free-electron g-factor plays an important role in

accurate calculations of electronic g-factors for these molecular states. It is also essential to

include this correction for accurate calculations of shifts of electronic g-factors relative to

the free-electron g-factor.60 In the non-relativistic formulation for electronic g-factors with

perturbative treatment of spin-orbit coupling, the QED correction to free-electron g-factor

has been included by scaling the non-relativistic spin Zeeman interaction with the ratio

of the exact value of 2.002319304362(15)61 for the free-electron g-factor and the value of

two. Its importance has been demonstrated using the comparison of high-accuracy CC

calculations of molecules containing first-row elements with the corresponding experimental

values.60 Skripnikov and Titov have used the form of thus-scaled non-relativistic spin Zee-

man interaction in relativistic two-component calculations of electronic g-factors and have

obtained promising results.50 Nevertheless, development of an approach based on the Dirac

Hamiltonian would be of significant interest. Calculations of electronic g-factors using the

3



four-component Dirac-Coulomb Hamiltonian62–65 and exact two-component theory66,67 have

been reported. The inclusion of the QED correction to the free-electron g-factor in these

relativistic formulations have not been discussed so far. A challenge might be that it is not

straightforward to apply the scaling factor in the original Dirac Hamiltonian. We mention

than more approximate two-component approaches such as zeroth-order regular approxima-

tion and low-order Douglas-Kroll-Hess methods for calculations of electronic g-factors have

been developed mostly for density-functional theory calculations.68–72 The present work aims

at rigorous treatments of relativistic and electron-correlation effects and will be focused on

four-component and exact two-component formulations and CC calculations.

In this paper, we present a simple scheme for incorporating the QED correction to the

free-electron g-factor into the four-component formulation for electronic g-factors, hereby

employing a unitarily-transformed Hamiltonian originally developed by Kutzelnigg73 and ex-

tensively studied by Liu and coworkers in calculations of nuclear magnetic resonance shield-

ing tensors.74,75 Subsequently, we apply the exact two-component (X2C) transformation76–78

for focusing on the electronic degrees of freedom. The present X2C formulation have been

used together with an X2C atomic mean-field spin-orbit approach79 and the recent imple-

mentation of X2C-CC analytic derivative techniques80 to perform calculations of electronic

g-factors. Theory and computational details are presented in Section II and III. The X2C

results for several representative molecules are reported in Section IV and compared with

corresponding four-component results, available computational results in the literature, as

well as experimental values. We have also compared Kramers unrestricted Hartree-Fock

(KUHF) and Kramers restricted open-shell HF (KROHF) based calculations to demon-

strate the relevance of a relativistic analogue to the spin contamination in these open-shell
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CC calculations. Finally, a summary and an outlook is given in Section V.

II. THEORY

A. Four-component and exact two-component theory for electronic g-factors

using a unitary transformation scheme

The Dirac Hamiltonian in the presence of a uniform external magnetic field can be written

as a sum of the field-independent Hamiltonian H0 and the interaction with the magnetic

field H1

H = H0 + H1. (1)

H0 can be written in a block form as

H0 =




V c~σ · ~p

c~σ · ~p V − 2c2


 , (2)

in which c is the speed of light, ~σ is the vector of Pauli spin matrices, ~p is the momentum op-

erator, and V represents the electron-nucleus electrostatic interaction. The SI-based atomic

units have been used. Within the minimum-coupling principle, H1 is an “odd” operator

appearing in the off-diagonal block of the Dirac Hamiltonian

H1 =




0 c~σ · ~A

c~σ · ~A 0


 , (3)

with the vector potential for the uniform external magnetic field ~A given by

~A =
1

2
~B × ~r. (4)

Ĥ1 can be equivalently written as

H1 = ~B · ~HB, (5)
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with ~HB given by

~HB =




0 1
2
c~σ × ~r

1
2
c~σ × ~r 0


 . (6)

The Dirac Hamiltonian gives a free-electron g-factor value of two. Note that the non-

relativistic spin-Zeeman term is given by ~s · ~B with ~s = 1
2
~σ. The quantum electrody-

namics (QED) correction to the free-electron g-factor can readily be included in the non-

relativistic theory by replacing a factor of two with the exact value of the free-electron

g-factor ge = 2.002319304362(15) in this equation, leading to 1
2
ge~s · ~B. However, it is not

straightforward to incorporate this into the Dirac Hamiltonian by scaling the Pauli spin

matrices in Eq. 6.

To address this problem, we apply a magnetic-field-dependent unitary transformation to

the Dirac Hamiltonian as originally proposed by Kutzelnigg.73 The transformed Hamiltonian

H̃ is given by

H̃ = e−τHeτ = H̃0 + H̃1 + · · · , (7)

τ =




0 − 1
2c
~σ · ~A

1
2c
~σ · ~A 0


 . (8)

The field-independent part of the transformed Hamiltonian is identical to that of the un-

transformed one

H̃0 = H0. (9)

The expansion of H̃ features a non-terminating field-dependent series. For calculations of

g-factors, we focus our discussion on the terms linear in magnetic field given by

H̃1 = H1 + [H0, τ ] = ~B ·
~̃
HB, (10)
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in which the magnetic interaction now appears on the diagonal blocks of the transformed

Hamiltonian with
~̃
HB taking the form

~̃
HB =




1
2
(~l + 2~s) 0

0 −1
2
(~l + 2~s)


 , ~l = ~r × ~p , ~s =

1

2
~σ. (11)

The unitary transformation scheme has been developed to elucidate the origin of the diamag-

netic contribution to second-order magnetic properties including magnetizability and nuclear

magnetic resonance shielding tensors in four-component relativistic theories,73 where it is

shown to be equivalent to Gordon decomposition of current density.81 In-depth studies of

this scheme in computations of second-order magnetic properties together with other explicit

magnetic balance conditions74,75,82,83 have been reported. It is straightforward to include the

QED correction to the free-electron g-factor in the same way as in the non-relativistic theory,

by replacing the factor of two in front of ~s in Eq. (11) with ge. The corrected H̃B is given

by

~̃
HB =




1
2
(~l + ge~s) 0

0 −1
2
(~l + ge~s)


 . (12)

Eqs. (9), (10), and (12) together define the four-component one-electron Hamiltonian for

the present scheme. The two-electron instantaneous Coulomb interaction commutes with

this unitary transformation and thus is not affected. We mention that the unitary transfor-

mation does not commute with the Gaunt term84 or gauge transformation with distributed

gauge origins,85 and thus introduces extra field-dependent two-electron integrals when used

together with the Gaunt term or gauge-including atomic orbitals.

To enhance computational efficiency without significant loss of accuracy, the matrix repre-

sentation of the above four-component Hamiltonian in terms of kinetically balanced basis sets
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is transformed into the two-component formulation using the exact two-component (X2C)

transformation76,86 and its analytic-gradient formulation.87,88 The resulting “electrons-only”

two-component Hamiltonian, with the two-electron spin-orbit coupling contributions in-

cluded using an atomic mean-field spin-orbit approach (X2CAMF),79 is used together with

the two-electron Coulomb interaction in subsequent many-electron treatments. The “picture

change”89 of the magnetic interaction has been fully taken into account in the present X2C

scheme.

B. Relationship to alternative approaches

The scheme developed by Skripnikov and Titov uses the non-relativistic Zeeman inter-

action 1
2
(Lz + gesz) in two-component relativistic calculations.50 Since 1

2
(Lz + gesz) is the

same as the large-large block of the present four-component transformed Hamiltonian in

Eqs. (10) and (12), the scheme of Skripnikov and Titov corresponds to the neglect of the

picture-change effects in the present X2C formulation. The present scheme thus features

a more rigorous treatment and also provides a justification for the scheme of Skripnikov

and Titov using the non-relativistic operator. Because picture-change effects are in general

small for valence properties,89 the present X2C results for g-factors are expected to agree

closely with those in Ref.50.

The use of basis sets with restricted magnetic balance (RMB)83

φL
p =

∑

µ

CL
µpfµ , φS

p =
∑

µ

CS
µp

~σ · ~p + ~σ · ~A

2c
fµ, (13)

is a plausible alternative to the present approach. The unperturbed and first-order Hamil-
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tonian matrix then can be written as

HRMB
0 = H0 , HRMB

1 =




0 H
LS,RMB
1

(HLS,RMB
1 )† H

SS,RMB
1


 , (14)

in which

(HLS,RMB
1 )µν =

1

2
〈fµ| ~B · (~l + 2~s)|fν〉 →

1

2
〈fµ|

1

2
~B · (~l + ge~s)|fν〉, (15)

(HSS,RMB
1 )µν = −

1

2
〈fµ| ~B · (~l + 2~s)|fν〉 → −

1

2
〈fµ| ~B · (~l + ge~s)|fν〉. (16)

Similar to calculations of NMR shield tensors,75 Eq. (14) and (16) is expected to work as

well as the unitary transformation scheme for calculations of electronic g-factors. Note that

additional field-dependent two-electron integrals are required in calculations using the RMB

basis sets, while the unitary transformation scheme using a common gauge origin requires

no field-dependent two-electron integrals. In the present calculations of small molecules, the

dependence of computed results with respect to gauge origin plays an insignificant role. We

focus the present work on the simpler unitary transformation scheme.

We should mention that it is also possible to perform separation of spin-dependent and

spin-independent terms for the magnetic-field dependent terms in the matrix representation

of the original Dirac Hamiltonian [Eq. (3)] in terms of kinetically balanced basis sets90 and

subsequently include the QED correction to the free-electron g-factor. The term linear in

magnetic field in the matrix representation of Eq. (3) in terms of kinetically balanced basis

sets

φL
p =

∑

µ

CL
µpfµ , φS

p =
∑

µ

CS
µp

~σ · ~p

2c
fµ. (17)

9



can be written as

H1 =




0 HLS
1

HSL
1 0


 , (18)

with matrix elements of HLS
1 and HSL

1 given by

(HLS
1 )µν =

1

2
〈fµ|(~σ · ~A)(~σ · ~p)|fν〉 (19)

=
1

2
〈fµ| ~B · (

1

2
~l + 2~s) − i~σ · (~p× ~A)|fν〉 (20)

→
1

2
〈fµ| ~B · (

1

2
~l + ge~s) − ige~s · (~p× ~A)|fν〉 (21)

(HSL
1 )µν =

1

2
〈fµ|(~σ · ~p)(~σ · ~A)|fν〉 (22)

=
1

2
〈fµ| ~B ·

1

2
~l + i~σ · (~p× ~A)|fν〉 (23)

→
1

2
〈fµ| ~B ·

1

2
~l + ige~s · (~p× ~A)|fν〉 (24)

Since a four-component theory based on Eqs. (18) is equivalent to the “matrix form” of

the unitary transformation scheme (UTm) as developed in Ref. 74, the performance of Eqs.

(18) is expected to be similar to unitarily transformed Hamiltonian for four-component cal-

culations of electronic g-factors. The use of a magnetic balance condition thus is optional for

four-component calculations of first-order magnetic properties, although it is necessary to

use a magnetic balance condition for four-component calculations of second-order magnetic

properties using finite basis-set representation. On the other hand, the X2C transforma-

tion of magnetic-field-dependent four-component Hamiltonian requires a full solution of the

one-electron Dirac equation. Therefore, the use of Eqs. (18) in the X2C transformation

introduces noticeable errors in a finite basis-set representation compared with the use of

unitarily transformed Hamiltonian [Eqs. (10) and (12)], which will be demonstrated using

numerical results in Section IV.
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III. COMPUTATIONAL DETAILS

While the formulations in the previous section are generally applicable for calculations

of g-factors, the present calculations are focused on a parallel component G|| of a linear

molecule. G|| is defined as as a first derivative of the electronic energy with respect to the

z-component of the field strength of a uniform external magnetic field13,51

G|| =
2

Ω

∂Eele

∂Bz

| ~B=0, (25)

in which Ω represents the z-component of total angular momentum. The CFOUR pro-

gram package79,80,91–93 has been used in all the computations presented here. We compare

X2CAMF KUHF results for G|| in the 3∆1 states of HfF+, ThF+, and ThO using the

unitarily transformed Hamiltonian with the corresponding four-component Dirac-Coulomb

results to demonstrate the accuracy of the X2CAMF scheme. The experimental equilibrium

bond lengths of 1.809 Å,40 1.987 Å,43 and 1.840 Å39 for HfF+, ThF+, and ThO have been

used in these calculations. The uncontracted correlation-consistent triple-zeta basis sets for

Th (33s29p20d13f4g1h),94 F (10s5p2d1f) and O (10s5p2d1f)95 as well as the uncontracted

Dyall’s valence triple-zeta basis set for Hf (30s24p15d11f2g)96 have been used in these KUHF

calculations.

X2CAMF-KUHF-based coupled-cluster singles and doubles (CCSD)97 and CCSD aug-

mented with a non-iterative triples correction [CCSD(T)]98 calculations have then been

performed to obtain electron-correlation contributions to G||’s using the recent imple-

mentation of analytic X2CAMF-CCSD and CCSD(T) gradients.80 Basis-set effects have

been studied using systematically enlarged basis sets. The uncontracted Dyall’s triple-zeta

(30s24p15d11f2g) and quadruple-zeta (34s30p19d13f3g2h) basis sets for Hf have been used
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and are denoted as the TZ and QZ sets. The s-, p-, d-, f-type functions of the QZ set are

further combined with g-, h-, and i-type correlating functions of the cc-pwCV5Z-PP basis

set99 to form a 5Z (34s30p19d13f4g3h2i) set. Correlation-consistent polarized core-valence

triple- and quadruple-zeta basis sets for Th94 have been used in the fully uncontracted form

and are denoted as the TZ (33s29p20d13f4g1h) and QZ (37s34p24d15f7g4h1i) sets. Note

that, since the basis sets are fully decontracted, the exponents of the d- and f-type core-

correlating functions of the cc-pwCVTZ set fall into the range of the primitive functions

and thus are removed. The uncontracted cc-pVTZ, cc-pVQZ, and cc-pV5Z of O and F have

been used for O and F and are denoted as TZ, QZ, and 5Z sets, respectively. Forty-six core

electrons of Hf (1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d electrons of Hf), sixty core electrons of Th

(1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f electrons of Th), the F and O 1s orbitals, and virtual

orbitals with orbital energies greater than 100 Hartree have been kept frozen in CCSD and

CCSD(T) calculations.

We also compare KUHF- and KROHF-based calculations for electronic g-factors of ThO,

ThF+, ThF, and ThCl using the uncontracted ANO-RCC basis sets.100,101 We have per-

formed X2CAMF-KROHF calculations using fractional occupation numbers to obtain the

orbitals, i.e., we have used an occupation number of 0.5 for the open-shell σ1/2 and δ3/2

orbitals in these HF calculations. The equilibrium bond lengths of 2.029 Å and 2.501 Å

determined in the experimental study52 have been used for ThF and ThCl. Because we have

not implemented analytic CC gradients for the Kramers restricted open-shell HF reference

functions yet, the electron-correlation contributions have been obtained using an orbital-

unrelaxed finite-difference scheme. We have carried out finite differentiation of KUHF- and

KROHF-CCSD correlation energies with the magnetic-field perturbation included in the
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Fock matrices. A two-point formula with field strengths of ±0.001 a.u have been used.

IV. RESULTS AND DISCUSSIONS

A. Benchmark studies of the accuracy of the X2CAMF scheme,

electron-correlation contributions, and basis-set effects

As shown in Table I, the X2CAMF Kramers unrestricted Hartree-Fock results are in

close agreement with the corresponding results obtained from the parent four-component

Dirac-Coulomb calculations. The largest discrepancy amounts to only 0.0002 in the case of

ThF+. This demonstrates the reliability of the X2CAMF scheme. The inclusion of the QED

correction to the free-electron g-factor plays an important role in these calculations. Since

the absolute values of g-factors for these molecular states are small, the X2CAMF calcula-

tion using ge = 2 as given in Table I introduces significant errors. The results obtained from

X2CAMF calculations using kinetic balance basis sets without the field-dependent unitary

transformation are summarized as “X2CAMF(KB)” in Table I. They exhibit around 10%

deviation compared with the X2CAMF results using the unitary transformation as well as

with the four-component Dirac-Coulomb results. Although the errors are not too large,

it underlies the importance of using a magnetic balance condition in X2C calculations of

electronic g-factors.

As expected, the electron correlation contributions play significant roles for calculations

of G||. As shown in Table II, in the case of HfF+, the electron-correlation contribution (the

difference between CCSD(T) and HF results in Table II) amounts to more than 50% of the

total value. For ThF+ and ThO, the effects are even more important, e.g., the HF results
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for ThO have a wrong sign and the major cancellation between HF and electron-correlation

contributions renders it challenging to obtain accurate results. On the other hand, since

the triples correction [the difference between CCSD(T) and CCSD results] amount to only

0.001, it is likely that high-level correlation contributions beyond CCSD(T) is smaller and

the treatment of electron correlation has converged to a reasonable accuracy at the CCSD(T)

level of theory.

The basis-set effects have been taken into account by using systematically enlarged basis

sets and performing extrapolation to estimate the basis-set-limit values for the electron-

correlation contributions.102 The basis-set effects beyond triple-zeta basis sets play a rel-

atively minor role in these calculations of electronic g-factors. The basis-set errors of

triple-zeta basis sets amount to around 10% of the total value for HfF+ and ThF+. In the

case of ThO, the ratio is around 20% because of the major cancellation between HF and

electron-correlation contributions, although the absolute value of 0.0008 remains small.

B. Comparison between KUHF- and KROHF-based calculations

As spin-dependent properties, the computed electronic g-factors are expected to be sensi-

tive to the breaking of Kramers symmetry. As shown in Table III, the Kramers unrestricted

calculations show a relativistic analogue of spin contamination. In the calculations for the

X2∆3/2 states of ThF and ThCl, the KUHF values of G|| amount to 0.810 and 0.776, which

substantially deviate from the spin-free value of 1.0 and the experimental values of 1.075

and 1.130. The ROHF values of 1.024 and 1.068 are significantly closer to the experimental

values and also reproduce the relative shift between ThF and ThCl fairly well. On the
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other hand, the inclusion of electron correlation at the CCSD level largely corrects the con-

tamination problem in KUHF-based calculations. The KUHF-CCSD and KROHF-CCSD

calculations have produced similar results for ThF and ThCl. We have similar observation

for ThF+ and ThO. Namely, KUHF and KROHF results differ substantially, while the

KUHF-CCSD and KROHF-CCSD results closely agree with each other.

The KROHF results for ThF+, ThF, and ThCl are quite close to the KROHF-CCSD

ones; the electron-correlation contributions in KROHF-CCSD calculations are smaller than

those in KUHF-CCSD calculations for these molecules. On the other hand, the electron-

correlation contribution obtained from the KROHF-CCSD calculation for ThO is even larger

than that in the corresponding KUHF-CCSD calculation; it is in general necessary to include

electron correlation to obtain qualitatively correct results for electronic g-factors. Neverthe-

less, the ROHF calculations for electronic g-factors seem to perform better than the KUHF

calculations in general. It would also be of interest to develop relativistic analogues of spin-

adapted CCSD methods103–106 or the partially spin-adapted107,108 and spin-restricted109,110

CCSD.

C. Comparison with previous calculations and experiments

The computed G|| values in the present work are in good agreement with previous compu-

tations. The present results of 0.0117 and 0.035 for HfF+ and ThF+ are consistent with the

values of 0.0115/0.0127 and 0.034 reported in Refs.13,15,51. The computed value of 0.0117 for

HfF+ is in close agreement with the experimental value of 0.0118. The computed value of

0.035 in the case of ThF+ is in reasonable agreement with but underestimate the measured

value of 0.048(2). It might be interesting to investigate the contributions from the rotational
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g-factor, which has been demonstrated to contribute about 6% to the g-factor of ThO by

Petrov et al.48

The computed value of 0.0040 for ThO amounts to around half of the experimental value

of 0.0088(10). We have also studied the contribution from the Gaunt term to this g-factor

(Table I) and found that its magnitude is smaller than 0.0002. Considering the convergence

of electron-correlation and basis-set effects and the small magnitude of the Gaunt-term

contribution, this discrepancy of a factor of 2 between computation and experiment seems

to merit further study. The present value of 0.0040 for ThO is also smaller than the previous

computational values of 0.007 or 0.005 in Ref.50. The calculations presented in Table II

have used Kramers unrestricted HF wave functions as the reference functions, while the

values of 0.007 and 0.005 have been obtained using averaged of configuration HF or the

orbitals obtained from HF calculations of the closed-shell 1Σ1 state. Our present KROHF-

CCSD results in Table III are consistent with the corresponding CCSD value of 0.003 in

Ref.50. On the other hand, the calculations in Ref.50 have provided a (T) correction of

0.003, which are significantly larger than the (T) correction of 0.001 in the KUHF-CCSD(T)

calculations in Table II. These deviations necessitate further study to include high-level

correlation contributions beyond CCSD(T)111,112 in the present calculations.

V. SUMMARY AND OUTLOOK

A simple scheme based on a magnetic-field-dependent unitary transformation of the Dirac

Hamiltonian has been developed to include the quantum electrodynamics correction to the

free-electron g-factor in four-component and exact two-component (X2C) calculations of

electronic g-factors. The accuracy of the X2C approach is validated with comparison with
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the corresponding results obtained using the parent four-component method. It will be of

interest to combine computed and measured electronic g-factors to analyze the compositions

of the excited-state wave functions in heavy-atom-containing small molecules being used in

the eEDM search, for example, to understand the coupling between excited states of YbF55

and YbOH. It might also be of interest to extend the applicability of the present formulation

to larger molecules by using gauge-including atomic orbitals.
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54Y. Hao, L. F. Pašteka, L. Visscher, P. Aggarwal, H. L. Bethlem, A. Boeschoten,

A. Borschevsky, M. Denis, K. Esajas, S. Hoekstra, K. Jungmann, V. R. Marshall, T. B.

Meijknecht, M. C. Mooij, R. G. E. Timmermans, A. Touwen, W. Ubachs, L. Willmann,

Y. Yin, and A. Zapara, J. Chem. Phys. 151, 34302 (2019).

55C. Zhang, C. Zhang, L. Cheng, T. C. Steimle, and M. R. Tarbutt, Journal of Molecular

Spectroscopy 386, 111625 (2022).

56A. Zaitsevskii, L. V. Skripnikov, N. S. Mosyagin, T. Isaev, R. Berger, A. A. Breier, and

T. F. Giesen, J. Chem. Phys. 156, 44306 (2022).

57A. Sunaga and T. Fleig, J. Quant. Spectrosc. Radiat. Transf. 288, 108229 (2022).

58R. J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291 (2007).

59T. D. Crawford and H. F. Schaefer III, “An Introduction to Coupled Cluster Theory for

Computational Chemists,” in Rev. Comput. Chem. (John Wiley & Sons, Ltd, 2007) pp.

33–136.
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89V. Kellö and A. J. Sadlej, Int. J. Quantum Chem. 68, 159 (1998).

90R. E. Stanton and S. Havriliak, J. Chem. Phys. 81, 1910 (1984).

91J. F. Stanton, J. Gauss, L. Cheng, M. E. Harding, D. A. Matthews, and P. G. Szalay,

“CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical

program package,” With contributions from A. Asthana, A.A. Auer, R.J. Bartlett, U.

Benedikt, C. Berger, D.E. Bernholdt, S. Blaschke, Y. J. Bomble, S. Burger, O. Chris-

tiansen, D. Datta, F. Engel, R. Faber, J. Greiner, M. Heckert, O. Heun, M. Hilgenberg,
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TABLE I. G|| for the
3∆1 states of HfF+, ThF+, and ThO computed at the Kramers unrestricted

Hartree-Fock level using uncontracted correlation-consistent triple-zeta basis sets for Th, F and O

as well as the uncontracted Dyall’s valence triple-zeta basis set for Hf. A ge value of 2.002319304362

has been used throughout unless noted otherwise.

HfF+ ThF+ ThO

X2CAMF 0.00467 0.0074 -0.0057

X2CAMF(ge = 2) 0.00697 0.0097 -0.0034

X2CAMF(KB) 0.00397 0.0067 -0.0063

Dirac-Coulomb 0.00465 0.0072 -0.0058

Dirac-Coulomb-Gaunt 0.00426 0.0071 -0.0059
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TABLE II. G|| for the 3∆1 states of HfF+, ThF+, and ThO computed using the X2CAMF

scheme and comparison with experimental values as well as previous calculations. A ge value

of 2.002319304362 has been used in these calculations.

HfF+ ThF+ ThO

HF/TZ 0.0047 0.0074 -0.0057

CCSD/TZ 0.0097 0.0326 0.0021

CCSD(T)/TZ 0.0101 0.0305 0.0032

HF/QZ 0.0045 0.0072 -0.0057

CCSD/QZ 0.0103 0.0371 0.0027

CCSD(T)/QZ 0.0107 0.0330 0.0037

HF/5Z 0.0045 / /

CCSD/5Z 0.0108 / /

CCSD(T)/5Z 0.0112 / /

CCSD(T)/∞Z 0.0117 0.0348 0.0040

Experiment 0.011831,51 0.048(2)34 0.0088(10)48

Previous theory 0.011551, 0.012715 0.03413 0.007/0.00550
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TABLE III. G|| for the 3∆1 states of ThF+, and ThO and the X2∆3/2 states of ThF and ThCl

computed using the X2CAMF scheme and the uncontracted ANO-RCC basis sets. A ge value of

2.002319304362 has been used in these calculations.

ThF+ ThO ThF ThCl

KUHF HF 0.0073 -0.0057 0.810 0.776

CCSD 0.0298 0.0016 1.051 1.098

KROHF HF 0.0215 0.0123 1.024 1.068

CCSD 0.0308 0.0019 1.045 1.086

Experiment 0.048(2)34 0.0088(10)48 1.075(4)52 1.130(4)52
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