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This work discusses a protocol for constructing highly accurate potential energy curves (PECs) for
the lowest two states of Rb2

+, i.e. X Σ2 +
g and (1) Σ2 +

u , using an additivity scheme based on coupled-
cluster theory. The approach exploits the findings of our previous work [J. Schnabel, L. Cheng and
A. Köhn, J. Chem. Phys. 155, 124101 (2021)] to avoid the unphysical repulsive long-range barrier
occurring for symmetric molecular ions when perturbative estimates of higher-order cluster operators
are employed. Furthermore, care was taken to reproduce the physically correct exchange splitting
of the X Σ2 +

g and (1) Σ2 +
u PECs. The accuracy of our computational approach is benchmarked for

ionization energies of Rb and for spectroscopic constants as well as vibrational levels of the a Σ3 +
u

triplet state of Rb2. We study high-level correlation contributions, high-level relativistic effects and
inner-shell correlation contributions and find very good agreement with experimental reference values
for the atomic ionization potential and the binding energy of Rb2 in the a Σ3 +

u triplet state. Our
final best estimate for the binding energy of the Rb2

+ X Σ2 +
g state including zero-point vibrational

contributions is D0 = 6179 cm−1 with an estimated error bound of O(±30 cm−1). This value is
smaller than the experimentally inferred lower bond of D0 ≥ 6307.5 cm−1 [Bellos et al., Phys. Rev.
A 87, 012508 (2013)] and will require further investigation. For the (1) Σ2 +

u state a shallow potential
with D0 = 78.4 cm−1 and an error bound of ±9 cm−1 is computed.

I. INTRODUCTION

The recent experimental progress [1–6] towards enter-
ing the ultracold (T < 1mK) quantum regime of hybrid
ion-atom systems is naturally entangled with the need
for accurate theoretical models based on first principles.
While the cold regime (T > 1mK) of ion-atom collisions
is essentially classical, the ultracold domain allows for
s-wave collisions and thus for reaching the pure quan-
tum regime. The realization is still a non-trivial task for
hybrid ion-atom systems due to more stringent tempera-
ture requirements, in particular for Rb2

+ [7]. Ultracold
ion-atom systems provide a rich platform allowing for
the discovery of novel phenomena and applications [2].
Among others, those may reach from precision measure-
ments of ion-atom collision parameters and associated
molecular potentials [1, 8, 9] to ultracold state-resolved
quantum chemistry [10] and to the ultimate goal of realiz-
ing strongly coupled charge-neutral polaron systems [11–
13]. For a comprehensive overview on both the theoretical
and experimental state-of-the-art research on cold hybrid
ion-atom systems see, e.g., Refs. [7, 14].

The successful experimental realization of an ultracold
ion-atom system has been demonstrated in Ref. [1] for
Li2

+. The idea of this class of experiments starts with
implanting an ionic impurity into a Bose-Einstein conden-
sate through a single precursor Rydberg atom followed by
subsequent ionization to initiate collisions with the ionic
core and the ground state host gas atoms.
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For Rb2
+, initial experiments date back to the 1960s to

1980s and have been performed in Rb vapor with densities
of 2.69 · 1019 atoms cm−3 [15]. Corresponding measure-
ments range from associative photoionization [15, 16] to
rough estimates based on the analysis of charge exchange
cross sections [17] to multiphoton ionization of Rb2 and
subsequent dissociation of dimer ions by one or more ad-
ditional photons [18]. More recent experiments [1–6] used
the same technique as described for Li2

+. In this way, the
diffuse transport dynamics of the impurity through the
BEC and ion-atom-atom three-body recombination could
be observed [4, 5, 19]. In Ref. [4] it was even possible to
estimate the binding energies of some threshold bound
states. These experiments may thus offer a way to probe
chemical reaction channels at the quantum level. This
so-called state-to-state chemistry will require resolving
the quantized molecular energy levels both theoretically
and experimentally.

Recent theoretical investigations of X2
+ systems (with

X=Li, Na, K, Rb) can be found, e.g., in Refs. [20–27].
The equation-of-motion coupled-cluster method for elec-
tron attached states with single and double replacements
(EA-EOM-CCSD) or even including triple replacements
(EA-EOM-CCSDT) and including scalar-relativistic ef-
fects via the Douglas-Kroll-Hess method has been used
for calculations of Li2

+, Na2
+, and K2

+ [25–27]. The
authors reported satisfactory agreement with available
experimental results. As perhaps the only work aiming at
highest possible accuracy, Schmid et al. reported ab-initio

calculations for the Li2
+ interaction potential based on

an additivity scheme with coupled-cluster (CC) computa-
tions and large basis sets. These findings accompany the
respective experimental work in Ref. [1], which were for
the first time precise enough to predict reasonable bounds
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Figure 1. Schematic overview on relevant potential energy
curves of Rb2 and Rb2

+ to obtain a lower bound for D0(Rb2
+)

based on the experimental approach reported in Ref. [33]. This
requires the atomic Rb ionization energy EIP, the binding
energy Eb (see inset) of the v′′ = 35 vibrational level of the
a Σ3 +

u state of Rb2 (initial state for photoexcitation) as well as
the photon energy hν required for the onset of autoionization
(via a “superexcited” level of the 8 Σ3 +

g state of Rb2). Inspired
by a figure of M. A. Bellos et al., Phys. Rev. A 87, 012508
(2013).

for the Li+Li+ scattering length.
With the present work we attempt to provide a gen-

eral route for obtaining high-accuracy interaction poten-
tials for the alkaline X2

+ systems based on an additivity
scheme using CC theory. The approach is inspired by
the HEAT (High accuracy Extrapolated Ab-initio Ther-
mochemistry) protocol [28–30], which allows for comput-
ing binding energies with uncertainties on the order of
< 1 kJ/mol, which translates into < 84 cm−1. By includ-
ing our latest findings [31, 32] to circumvent the wrong
asymptotic behavior of some of the CC approximations
required in this scheme, we report Rb2

+ PECs with so
far unprecedented precision. The binding energy derived
from the computed X Σ2 +

g potential can be compared
to the experimentally derived [33] lower bound for Dexp

0 .
This experiment aimed at measuring an upper bound to
the ionization energy of 85Rb2 formed via photoassocia-
tion, which also provides a lower bound to the dissociation
energy of Rb2

+. The bounds were measured by the onset
of autoionization of the excited states of 85Rb2 below
the 5S+7P atomic limit. As illustrated in Fig. 1, Dexp

0 of
Rb2

+ can be derived given the atomic ionization potential
EIP, the binding energy Eb[Rb2(v

′′ = 35)] of the initial
state and the applied photon energy hν, which causes the
onset of autoionization.

Besides computing spectroscopic constants, we provide
analytical representations of our precise ab-initio poten-
tials, which may serve as foundation to facilitate more
sophisticated scattering calculations for more quantitative
statements on the conditions needed to identify effects for
Rb+Rb+ collisions that go beyond the Langevin regime.

Conventional approaches [10, 19, 34] for studying these
collision processes are merely based on model potentials.

This paper is organized as follows. Section II intro-
duces several computational aspects of this work, includ-
ing the additivity scheme proposed to potentially reach
high accuracy. We gauge the expected accuracy and limi-
tations of our approach in Sec. III in terms of benchmark
calculations for ionization energies of Rb and spectro-
scopic constants as well as vibrational levels of the a Σ3 +

u

triplet ground state of Rb2. Hereafter we investigate the
prospects for obtaining highly accurate ground state PECs
of the Rb2

+ system in Sec. IV. Therefore, we provide a
protocol for constructing physically meaningful interac-
tion potentials based on CC calculations. By thoroughly
investigating basis set effects and high-level correlation
contributions, we infer reasonable error bars of our com-
putational approach and demonstrate that the latter are
less important to closely reproduce experimental findings.
We provide spectroscopic constants and explore the rovi-
brational structure of the X Σ2 +

g and (1) Σ2 +
u states of

Rb2
+. Finally, we summarize the main findings of this

work in Sec. V.

II. COMPUTATIONAL ASPECTS

High-accuracy quantum-chemical calculations of atomic
and molecular energies often rely on additivity
schemes [28, 35–39]. Our approach follows the HEAT
protocol [28–30], where we assume that the total elec-
tronic energy E can be calculated via

E = E∞
HF +∆E∞

CCSD(T) +∆EHLC +∆EHLR . (1)

Herein, E∞
HF and ∆E∞

CCSD(T) are the Hartree-Fock energy
and the CCSD(T) correlation energy, respectively, at
the complete basis set (CBS) limit. Correlation effects
beyond CCSD(T) are denoted as high-level correlation
(HLC) contributions ∆EHLC and high-level relativistic
(HLR) effects are labeled by ∆EHLR.

The Hartree-Fock and coupled-cluster calculations are
performed using either the small-core effective core po-
tential (scECP) ECP28MDF from Ref. [40], where only
the 4s24p65s1 electrons of Rb are treated explicitly and
all the others are modelled via a scalar-relativistic pseu-
dopotential (PP) or using the all-electron spin-free exact
two-component theory in its one-electron variant (SFX2C-
1e) [41, 42] to treat scalar-relativistic effects. We use the
restricted open-shell (ROHF) approach for the Hartree-
Fock part and for generating the orbitals for the subse-
quent single-reference CC calculations. For the latter,
we applied an unrestricted spin-orbital formalism in its
singles and doubles variant augmented with a noniter-
ative triples method based on a ROHF reference, the
ROHF-UCCSD(T) method [43–46].

The HLC contributions considered in this work include
the full triples correction obtained as the difference be-
tween full CC singles doubles and triples (CCSDT) [47–50]
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and CCSD(T) results using smaller basis sets (i.e., e.g.,
triple- and quadruple-ζ quality) and the quadruples cor-
rection obtained as the difference between CC singles
doubles triples augmented with noniterative quadruples
[CCSDT(Q)] [51–53] and CCSDT results (at the triple-ζ
level); cf. Sec. III. Here we used the CCSDT(Q)/B variant
for ROHF references [54]. The same convergence thresh-
olds for the HF and CC calculations as described in our
previous work on the Rb2

+ system [31] were employed.
The aug-cc-pCVnZ-PP and aug-cc-pwCVnZ-PP (n =

3, 4, 5) correlation-consistent basis sets for alkali and al-
kaline earth atoms, designed for the ECP28MDF pseu-
dopotential [55], have been used. Furthermore, motivated
by the promising results obtained in our recent work on
Rb3 [56], we constructed a large [17s14p9d7f6g5h4i] un-
contracted even-tempered basis set (≡ UET17) based on
the given valence basis set coming with the ECP28MDF
pseudopotential in Ref. [40]; see supplementary mate-
rial [57] for details. To obtain a better estimate on the
Hartree-Fock limit, we combined an uncontracted and
extended version of the aug-cc-pCV5Z-PP basis set for
s-, p-, d- and f-exponents with diffusely augmented g-, h-,
and i-functions of the UET17 basis; cf. supplementary
material [57] for technical details and Tab. S.II for the
respective exponents. We will call this basis “reference”
in the following.

For the computations with the SFX2C-1e approach a
different type of basis set is required. As the correspond-
ing aug-cc-pwCVnZ-X2C basis sets are only available up
to n = 4 [55], we used the s-, p- and d-type primitive
functions of the uncontracted ANO-RCC (23s,19p,11d)
set [58] and augmented them with f-, g-, h-, and i-type
functions of our UET17 basis set, which were further com-
plemented by four steeper functions to be able to describe
core-valence correlation effects from the M shell (3s3p3d),
see Tab. S.III of the supplementary material [57]. These
basis sets will be called UANO-n with n = 3, 4, 5, 6 in
this work. To finally check basis set saturation in the
Hartree-Fock contribution, we replaced the s-, p-, and
d-type functions by the decontracted basis functions from
the aug-cc-pwCVQX-X2C basis and will call this basis
“reference (ae)”. The h- and i-type functions were skipped
in this case to keep the size of the calculations at a man-
ageable level. These higher-order angular momentum
functions are not expected to contribute significantly at
the Hartree Fock level. See Tab. S.IV of the supplemen-
tary material [57].

In detail, we used the following protocol for evaluating
the theoretical best estimates of the total energy according
to Eq. (1): The Hartree-Fock CBS limit is obtained by a
separate computation with the ‘reference’ basis sets, as
described above:

E∞
HF ≈ EHF(‘reference’ basis) , (2)

The correlation energy at the CBS limit is computed as

∆E∞
CCSD(T) ≈ Esingles(n = nmax) + E∞

pair + E∞
(T) . (3)

Here, Esingles is the CCSD energy contribution resulting
from the non-fulfillment of the Brillouin condition for the
ROHF orbitals. We found it advantageous not to extrap-
olate this contribution along with the pair and triples
energies as it has a distinctly different convergence behav-
ior and saturates quickly with increasing cardinal number.
Thus, we prefer to take the value for the highest available
basis set result (n = 6). The pair energy (E∞

pair) and
the noniterative triples (E∞

(T)) contributions are extrapo-
lated to their respective CBS limit using the conventional
two-point n−3 formula [59, 60]. The same procedure was
followed for ECP and SFX2c-1e computations. In the
latter case, we either correlated only the 4s4p and 5s shell
(the electrons explicitly treated in the ECP approach)
or we also included the 3s3p3d shell (M shell) into the
correlation treatment to investigate further core valence
correlation effects. We note that other schemes for CBS
extrapolation exist [61–64], but as demonstrated in Table
S.V. of the supplementary material [57] this has little
impact on the accuracy of the extrapolated values.

The HLC contributions are computed via

∆E
TZ/QZ
T = E

TZ/QZ
CCSDT − E

TZ/QZ
CCSD(T) , (4a)

∆ETZ
(Q) = ETZ

CCSDT(Q) − ETZ
CCSDT , (4b)

where we relied on ECP based calculations and the aug-
cc-pCVnZ-PP (n = T, Q) basis sets. As indicated by
the superscript “TZ/QZ”, the increment for the CCSDT
contribution is obtained by extrapolating the correlation
energies with the aug-cc-pCVTZ-PP and aug-cc-pCVQZ-
PP basis sets using the two-point n−3 formula. The
CCSDT(Q) computations used the aug-cc-pCVTZ-PP
basis.

The considered high-level relativistic effects are relevant
as corrections for the SFX2C-1e approach only. They con-
sist of the two-electron picture-change (2e-pc) corrections,
spin-orbit (SO) corrections, and the contributions from
the Breit term. In addition there are effects from quan-
tum electrodynamics (QED), which we did not attempt to
compute here. The 2e-pc correction is obtained as the dif-
ference between the spin-free Dirac-Coulomb (SFDC)[65]
and SFX2C-1e results. The SO correction together with
the contribution from the Breit term is calculated as the
difference between the spin-orbit X2C scheme with atomic
mean-field spin-orbit integrals (X2CAMF) based on the
Dirac-Coulomb-Breit Hamiltonian[66, 67] and the SFX2C-
1e scheme. Calculations of these contributions have been
carried out at the CCSD(T) level using the uncontracted
ANO-RCC basis set, employing the frozen-core approxi-
mation for the 1s2s2p3s3p3d shells and deleting virtual
orbitals higher than 1000 Eh.

We note that it is less straightforward to incorporate
∆EHLR into ECP calculations. This is due to the fact that
the ECP28MDF pseudopotential already contains a two-
component spin-orbit coupled part with corresponding
parameters adjusted to valence energies obtained at all-
electron multiconfiguration Dirac-Coulomb-Hartree-Fock
(DC-HF) level of theory, which includes relativistic effects
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at a four-component level of theory [40]. Therefore, one
cannot use the difference between SFX2C-1e and high-
level relativistic effects and ECP results as the correction
to ECP. Furthermore, the quality of the basis sets used
in the SFX2C-1e calculations are not exactly the same as
those for the ECP calculations, so taking the difference
introduces additional errors.

All ROHF-UCCSD(T) calculations have been per-
formed with the Molpro 2019.2 program package [68–
70], the CCSDT calculations have been carried out us-
ing the cfour program package [46, 71–74], and all
CCSDT(Q) energies were computed with the Mrcc pro-
gram suite [53, 75–77].

III. BENCHMARK CALCULATIONS

In the following we benchmark the protocol described
in Sec. II to assess both its expected accuracy and its
limitations based on experimental reference values for Rb
and Rb2.

A. Rb ionization potential

Calculations of the ionization potential (IP) of atomic
Rb are listed in Tab. I. Comparison to the results using
the aug-cc-pCVnZ-PP basis shows that the UET17 indeed
leads to a much tighter convergence of the correlation en-
ergy. The gap between the n = 6 result and the estimated
CBS limit of the IP is only ∼10 cm−1 and this observation
also holds for the all-electron calculations with the UANO
basis. We may therefore estimate the uncertainty of this
result to be at most half of this difference. It is also
evident from the two last columns of Tab. I that there is
a significant contribution from the M shell correlation of
nearly 80 cm−1. Interestingly, the ECP result (that only
implicitly includes the effect of inner shells) is rather close
to the SFX2C-1e result with explicit M shell correlation,
see line ‘CBS’ in Tab. I. As the effect of core-correlation
will be much smaller in the other cases where we mainly
look at binding energies, we did not go into further detail
regarding this observation. Clearly, this points at the
limits of the accuracy of the ECP approximation.

Moving to a larger basis for the Hartree-Fock contri-
bution leads to corrections of the IP by 6 and 2 cm−1

for the ECP approach and the all-electron calculations,
respectively. As a conservative estimate of the residual
uncertainty for the Hartree-Fock contribution we thus
take 5 cm−1. The high-level correlation effects have been
evaluated for the ECP/aug-cc-pCVnZ-PP computations
only. The overall result is a contribution of 10 cm−1. For
the atoms, it was also feasible to carry out the CCSDT(Q)
calculations with a quadruple-ζ quality basis set, which
allowed a basis set extrapolation for this quantity as well,
leading to another 3 cm−1. Overall, the contribution of
∆EHLC is not very large and we will in the following use
its total value as an estimate of the overall uncertainty

in the correlation energy due to higher-order correlation
(for the case of the IP of Rb: 10 cm−1).

Finally, we consider the high-level relativistic (HLR)
corrections beyond SFX2C-1e, ∆EHLR. The two-electron
picture change correction gives 5.76 cm−1 and the inclu-
sion of spin-orbit coupling and the Breit term contributes
2.01 cm−1 further. In addition, a QED correction of
9.98 cm−1 has been taken from Ref. [80]. These three
contributions add up to ∆EHLR = 17.75 cm−1 as given in
Tab. I. The uncertainty in this correction may be conser-
vatively estimated as roughly half its amount (10 cm−1);
we will later find much smaller relativistic corrections
in the calculation of binding energies, which will then
allow us to gauge the uncertainty by the total size of the
high-level relativistic correction.

The final best estimates may be compared to the experi-
mental value of Eexp

IP = 33690.81±0.01 cm−1 [78, 79]. We
find a deceptively good coincidence of the ECP based re-
sult, in particular, if the extrapolated CCSDT(Q) results
are taken into account. However, the error estimates dis-
cussed so far add up to approximately ±30 cm−1. Using
this error bound, the overall X2C-based theoretical best
estimate of 33709 cm−1 is also in good agreement with
the experimental value. The core-correlation from the M
shell seems to be important for quantitative predictions
and will be closely analyzed for its impact on the binding
energies. It is most likely dominated by the 3d subshell,
which is energetically significantly higher than the 3s and
3p subshells. The correlation from lower-lying shells (K
and L) is much less important, as exploratory computa-
tions show (although with not fully sufficient basis sets,
as even steeper polarization function were needed). Using
the UANO-6 basis, correlation of the L shell reduces the
IP by 3 cm−1 and of the K shell by further 1 cm−1, see
supplementary material [57].

In summary, the results for the ionization energy are
very promising in terms of obtaining first-principle pre-
dictions with an accuracy definitely better than 1 kJ/mol
(84 cm−1).

B. Rb2 – the a Σ3 +
u state

Next, we gauge the accuracy of our computational
approach for molecular calculations and compute the
spectroscopic constants De and Re, i.e. the depth of
the interaction potential and its equilibrium distance,
for the lowest triplet state a Σ3 +

u of Rb2. This state
plays a fundamental role in photoassociation processes to
produce ultracold Rb2 molecules [33, 81–85] and is quite
challenging for computational studies due to the shallow
nature of the potential, as displayed in Fig. 1. Table II
lists the results in a scheme analogous to that used for
the IP of atomic Rb.

Interestingly, in comparison to the known experimen-
tal reference, the ECP computations deliver the closest
result. This close coincidence is largely lucky in view of
the estimates for the uncertainty of these values. The
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Table I. Results for the Rb ionization energy EIP (in cm−1). The 4s4p and 5s shells are correlated unless noted otherwise. The
experimental value is E

exp.

IP = 33690.81 cm−1 [78, 79].

ECP SFX2C-1e

apCVnZ-PP UET17 UANO UANO (M shell)a

n = 4 33 550.89 33 644.35 33 561.48 33 639.48
n = 5 33 606.14 33 664.46 33 581.71 33 660.87
n = 6 – 33 671.71 33 589.01 33 668.26

CBS (corr.)b 33 665.87 33 681.74 33 599.11 33 678.50
CBS (HF+corr.)c – 33 675.96 33 601.49 33 680.89

∆E
TZ/QZ
T 2.40 [ 2.40] [ 2.40] [ 2.40]

∆ETZ
(Q) 7.63 [ 7.63] [ 7.63] [ 7.63]

∆E
TZ/QZ

(Q) 10.72 [10.72] [10.72] [10.72]

+∆EHLR – – 17.75 17.75

TBEd 33 675.90 33 685.99 33 629.57 33 708.96
TBE(ext)e 33 678.99 33 689.08 33 632.66 33 712.05

a 3s3p3d shell included in correlation treatment.
b Extrapolation of correlation energy only, Hartree-Fock energy from largest n.
c Including a correction for Hartree-Fock limit using the ‘reference’ basis sets.
d Theoretical best estimate (see text).
e Theoretical best estimate using ∆E

TZ/QZ
(Q)

instead of ∆E
TZ
(Q)

Table II. Computed binding energies De and equilibrium bond distances of the a Σ3 +
u state of Rb2. The experimental values

are Dexp
e = 241.5045 cm−1 and Rexp

e = 6.0650Å.[86].

ECP SFX2C-1e SFX2C-1e (+ M shell)a

De (cm
−1) Re (Å) De (cm

−1) Re (Å) De (cm
−1) Re (Å)

n = 4 239.08 6.081 249.20 6.068 249.77 6.058
n = 5 241.62 6.069 252.94 6.046 253.90 6.033
n = 6 241.90 6.066 253.22 6.044 254.22 6.030

CBS (corr.)b 242.28 6.062 253.59 6.040 254.64 6.026
CBS (HF+corr.)c 239.50 6.067 246.31 6.057 247.31 6.044

+∆E
TZ/QZ
T 237.58 6.067 244.39 6.058 245.39 6.044

+∆ETZ
(Q) = TBEd 243.25 6.058 250.09 6.049 251.11 6.036

∆EHLR −0.30

a 3s3p3d shell included in correlation treatment.
b Extrapolation of correlation energy only, Hartree-Fock energy from largest n.
c Including a correction for Hartree-Fock limit using the ‘reference’ basis sets.
d Theoretical best estimate (see text).

uncertainty in the extrapolation is rather small in this
case, the results for the CBS limit deviate by less than
0.5 cm−1 from the n = 6 value in all cases and the impact
on the bond distance is less than 0.005Å. The effect of
core correlation is also very small, the results of the two
sets of X2C-1e computations without and with correlation
of the M shell differ by only 1 cm−1. A slightly larger cor-
rection is imposed by the Hartree-Fock correction, which
reduces the binding energy by nearly 3 cm−1 for the ECP
calculations and 7 cm−1 for the all-electron calculations.
The high-level corrections for full three-electron clusters
and four-electron clusters work in opposite directions, giv-

ing corrections of −2 cm−1 and +6 cm−1, respectively.
High-level relativistic corrections turn out to have very
little impact on the binding energy, they reduce the bind-
ing energy by 0.30 cm−1 and thus do not close the small
gap between the ECP and the all-electron results. In
view of the smallness of this correction (a similar size
of correction will be found for Rb2

+) we decided to not
include this value in the total sum for the best estimate
but only as indicator for the size of effects due to the
approximate treatment of relativistic effects. The total
estimate of the uncertainty of the binding energy, ob-
tained in the same way as before for the IP, adds up to
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±12 cm−1 and thus also spans the difference between
the ECP and all-electron calculations. The experimental
value lies quite at the border of this range, indicating
that the all-electron calculations may have the general
tendency of overbinding due to basis set superposition
errors. The predicted equilibrium bond distance follows
the trend for the binding energies: The larger the binding
energy the shorter the bond. Again in comparison to the
experimental value, the all-electron results give slightly
too short bond distances.

For comparison, we performed ECP-based CCSD(T)
calculations using the aug-cc-pCVnZ-PP basis sets yield-
ing (De, Re) = (266.9 cm−1, 6.09Å), (255.5 cm−1, 6.06Å)
and (245.5 cm−1, 6.07Å) for the n = 3, 4, 5 cardinalities,
respectively. These computations converge to comparable
results, but clearly with a much larger uncertainty for the
extrapolation to the CBS limit.

We also assessed the size of the spin-orbit split-
ting of the triplet state by performing frozen-core
MRCI/ECP28MDF/UET17(n = 3) calculations [87–89]
using the ECP-LS technique for the corresponding small-
core ECP. The computations included seven singlet and
seven triplet states of Rb2, such that in total a 28×28
spin-orbit matrix is set up and diagonalized. The result-
ing zero-field splittings and energy shifts for the a Σ3 +

u

state are both ≪ 1 cm−1, which suggests that spin-orbit
effects can be neglected in the further discussion. A very
small zero-field splitting could also be observed in the
X2CAMF computations. This is in accordance with the
results reported in Ref. [90] for the a Σ3 +

u state of Rb2,
yielding effects in the order of 0.5 cm−1 for De when com-
paring numbers obtained with and without SO effects
included.

The ROHF-UCCSD(T)/ECP28MDF/UET17 approach
was also used to compute a larger set of points of the poten-
tial energy curve and the one-dimensional RP-RKHS in-
terpolation method as described in Refs. [91–97] was used
to obtain an analytic representation. The respective long-
range coefficients required by this procedure were taken
from Ref. [84], with C6 = 0.227003 · 108 cm−1Å

6
, C8 =

0.778289 ·109 cm−1Å
8

and C10 = 0.286887 ·1011 cm−1Å
10

;
cf. Sec. IVB for details on the asymptotic form of inter-
action potentials. This long-range behavior with three
reciprocal power terms defines the RP-RKHS parameters,
yielding nRb2

= 3, mRb2
= 2 and sRb2

= 2 as well as
Ra = 18.0 a0. To further provide a physically meaningful
short-range description, we imposed a correction of the
form

VSR(R) =
a

R
exp(−bR) . (5)

This only affects the PEC for R < 4.0Å and is introduced
to correct for inherent artefacts of the RP-RKHS pro-
cedure concerning short-range extrapolation [98]. Thus,
it has no impact on De and Re but gets relevant for
high-energy scattering states (E > 15000 cm−1).

Inspired by the approach reported in Ref. [97], we fur-
ther provide an empirically adjusted “optimal” PEC for

which we scaled and shifted the CBS ab-initio data in
order to match the experimentally derived values Dexp

e

and Rexp
e , respectively [32]. The resulting PEC can be

reproduced using our programs and data available from
Ref. [99]. In the present work, we used this PEC to com-
pute the rovibrational structure of the a Σ3 +

u state of Rb2.
The resulting 41 vibrational levels for J = 0 are given in
Tab. S.VIII of the supplementary material [57]. We ob-
serve excellent agreement with experimentally measured
levels.

IV. HIGH-ACCURACY RUBIDIUM ION-ATOM

INTERACTION POTENTIALS

The previous discussion on Rb ionization energies and
spectroscopic constants of the a Σ3 +

u triplet ground state
of Rb2 demonstrate the capability of our computational
approach to predict energies and potential energy curves
to high accuracy. In the following we investigate the
binding energies and the full PECs of the two lowest
states of Rb2

+.

A. Accurate binding energies of Rb2
+

We start out with a discussion of the binding energy
and equilibrium distance of the X Σ2 +

g state. As al-
ready discussed previously[31], there is in our approach a
slight consistency error in the asymptotic region, as the
symmetry-adapted mean-field (Hartree-Fock) solution for-
mally dissociates the system into two fragments which are
a 50:50 mixture of a cation and a neutral atom. Thus, the
computed energies in the asymptote do not coincide with
the sum of those of the atom and the cation from individ-
ual mean-field computations. The consistency could only
be achieved by allowing for symmetry-broken solutions
in the asymptote. This problem may be fully avoided by
special techniques, e.g. the electron attachment equation
of motion coupled-cluster (EA-EOM-CC) approach [25–
27]. However, going to higher-order correlation methods,
the effect diminishes and eventually does not significantly
contribute to the overall uncertainty of the final result.
At the Hartree-Fock level, using the ECP based approach,
the asymptote lies 40 cm−1 above the atomic limit, which
diminishes to −4.4 cm−1 at the CCSD(T) level (nearly
independent of the basis set size). At the CCSDT and
CCSDT(Q) level, the error shrinks to +1.5 cm−1 and
+0.7 cm−1 respectively. In the SFX2C-1e scheme, the
same observations are made, differing by only 0.3 cm−1

from the values quoted above. We will thus in the fol-
lowing report energies relative to those computed for the
separated ion and atom. The main results are summarized
in Tab. III, using the same scheme as discussed before.

The CCSD(T) binding energies at the CBS limit differ
by approximately 20 cm−1 when evaluated from either
the ECP or the SFX2C-1e all-electron approach. When
correcting for the Hartree-Fock limit, using again large
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Table III. Computed binding energies De and equilibrium bond distances of the X Σ2 +
g state of Rb2

+.

ECP SFX2C-1e SFX2C-1e (+ M shell)a

De (cm
−1) Re (Å) De (cm

−1) Re (Å) De (cm
−1) Re (Å)

n = 4 6157.6 4.813 6171.9 4.820 6181.4 4.806
n = 5 6176.8 4.806 6198.1 4.810 6210.5 4.795
n = 6 6181.5 4.803 6203.8 4.807 6217.0 4.792

CBS (corr.)b 6187.7 4.801 6210.2 4.804 6224.5 4.788
CBS (HF+corr.)c 6180.5 4.804 6189.6 4.810 6203.6 4.795

+∆E
TZ/QZ
T 6177.4 4.806 6186.5 4.812 6200.5 4.797

+∆ETZ
(Q) = TBEd 6178.8 4.805 6187.9 4.811 6201.9 4.796

∆EHLR −0.4

a 3s3p3d shell included in correlation treatment.
b Extrapolation of correlation energy only, Hartree-Fock energy from largest n.
c Including a correction for Hartree-Fock limit using the ‘reference’ basis sets.
d Theoretical best estimate (see text).

basis sets in both approaches, the difference shrinks to
less than 10 cm−1. Correlating the M shell in the latter
approach adds 14 cm−1 to the binding energy. The dif-
ference between ECP and SFX2C-1e results cannot be
attributed to remaining high-level relativistic effects. By
comparison of SFX2C-1e and SFDC computations, we
can estimate a two-electron picture-change effect on the
order of −0.14 cm−1 whereas going to the two-component
X2CAMF scheme gives a correction of the dissociation
energy by −0.26 cm−1, resulting in a total ∆EHLR of
−0.4 cm−1. The high-level correlation effects are also
rather small. Including full triply connected clusters de-
creases the binding energy by 3 cm−1 and the correction
from CCSDT(Q) increases it again by approximately half
of this value.

Overall we may estimate an uncertainty of ±10 cm−1

for the Hartree-Fock contribution, ±5 cm−1 for the ex-
trapolation of the CCSD(T) CBS limit and ±5 cm−1

for high-level correlation effects. Further uncertainties
may be correlation effects from even deeper core shells
(should not exceed ±5 cm−1) and further relativistic ef-
fects (which are also unlikely to exceed ±5 cm−1). Our
best estimate for the dissociation energy of Rb2

+ in the
X Σ2 +

g state is thus 6202±30 cm−1.
The predicted equilibrium distance changes by less than

0.02Å among all calculations, except for those with the
smallest basis set, see Tab. III. Correlation of the M shell
leads to a small contraction of the distance by 0.01Å and
our best estimate is thus 4.796(10)Å.

The antisymmetric (1) Σ2 +
u state also shows a shallow

minimum, which is purely due to induced dipole-charge
and dispersion effects. The first conclusion is supported by
the fact that the computed Hartree-Fock contribution to
the binding energy is around 60 cm−1 at the equilibrium
distance. The best estimate for the binding energy includ-
ing correlation effects can be deduced from the numbers
in Tab. IV. In this case there are only little effects from
basis set extrapolation, both for the correlation and the

Hartree-Fock contribution. Likewise there is only a small
discrepancy of 1 cm−1 between ECP-based and SFX2C-
1e-based computations and a nearly vanishing effect of
core correlation. High-level relativistic effects have not
been estimated for this case due to technical problems in
converging the orbitals, but based on previous experience
they are expected to be miniscule. The largest correction
comes from high-level correlation effects, a reduction of
the binding energy by nearly 5.5 cm−1 from the CCSDT
calculations and a slight increase again by 2.9 cm−1 from
CCSDT(Q). The final best estimate is thus 80±9 cm−1

for the binding energy.
The equilibrium distance also shows only very little

dependence on the basis set size and the biggest correction
comes from the high-level correlation effects, being a
shortening by 0.015Å. There is also some effect of M core
correlation, which shortens the bond length by 0.02Å
in comparison to the computation that keeps this shell
uncorrelated. Overall, we may give a best theoretical
estimate for Re of 12.163(20)Å.

B. General long-range form of X2
+ interaction

potentials

An essential aspect of the recent experimental works [1–
6] towards entering the ultracold domain of ion-atom
interactions relies on studying scattering events. The
scattering properties of such collisions are defined by the
long-range form of the respective interaction potentials [7].
For ionic dimers with a single active electron (i.e., e.g.,
alkali-metal systems such as Rb2

+) this long-range behav-
ior contains the two contributions [14]

VLR(R) = Vind/disp(R)± Vexch(R) , (6)

where Vind/disp(R) describes the leading induction and
dispersion interaction, while Vexch defines the exchange in-
teraction term. For interactions between an S-state atom
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Table IV. Computed binding energies De and equilibrium bond distances of the (1) Σ2 +
u state of Rb2

+.

ECP SFX2C-1e SFX2C-1e (+ M shell)a

De (cm
−1) Re (Å) De (cm

−1) Re (Å) De (cm
−1) Re (Å)

n = 4 82.55 12.206 83.88 12.217 83.88 12.196
n = 5 82.64 12.202 83.95 12.212 83.95 12.191
n = 6 82.66 12.200 83.97 12.210 83.97 12.189

CBS (corr.)b 82.65 12.198 83.96 12.208 83.95 12.187
CBS (HF+corr.)c 82.51 12.205 82.91 12.216 82.90 12.195

+∆E
TZ/QZ
T 77.14 12.192 77.53 12.204 77.53 12.182

+∆ETZ
(Q) = TBEd 80.04 12.173 80.43 12.185 80.43 12.163

a 3s3p3d shell included in correlation treatment.
b Extrapolation of correlation energy only, Hartree-Fock energy from largest n.
c Including a correction for Hartree-Fock limit using the ‘reference’ basis sets.
d Theoretical best estimate (see text).

and an S-state ion, the first term of Eq. (6) becomes [7]

Vind/disp(R) = −
C ind

4

R4
−

C ind
6

R6
−

Cdisp
6

R6
+ · · · . (7)

In leading order the interaction is due to the charge q of
the ion inducing an electric dipole moment of the atom,
which reflects in the corresponding induction coefficient

C ind
4 =

1

2
q2αd , (8)

with the static electric dipole polarizability αd of the atom.
The next higher-order induction term is caused by the
interaction between the charge of the ion and the induced
electric quadrupole moment of the atom, described by
the respective coefficient

C ind
6 =

1

2
q2αq , (9)

with the static electric quadrupole polarizability αq of
the atom. The van der Waals type dispersion interac-
tions are usually weaker, with the leading-order term of
Eq. (7) accounting for dynamic interactions due to instan-
taneous dipole-induced dipole moments of the ion and the
atom arising due to quantum fluctuations. Higher-order
terms could be added to Eq. (7), but since reaching the
s-wave scattering regime for Rb2

+ is barely possible at
all, truncating after the R−6 is usually sufficient.

The second term of Eq. (6) is due to the indistinguisha-
bility of the two limiting cases Rb+Rb+ and vice versa. It
is thus defined by the energy splitting between the asymp-
totically degenerate gerade and ungerade states and deter-
mines the cross section for resonant charge transfer [100].
For alkali-metal X2

+ systems, it generally involves one
active electron and if both ion and atom are in an S-state,
it takes the form, in atomic units [14, 20]

Vexch(R) =
VX 2Σ+

g
(R)− V(1) 2Σ+

u
(R)

2
, (10a)

=
1

2
ARαe−βR

[
1 +

B

R
+

C

R2
+ · · ·

]
.(10b)

In Ref. [14], the parameters α, β and B are related by
simple expressions to the ionization potential IRb of the
Rb atom

β =
√
2IRb , ν =

1

β
,

α = (2ν − 1) , B = ν2
(
1−

1

2
ν

)
. (11)

The corresponding value for the ionization potential is
taken from Ref. [78, 79], yielding Iexp

Rb = 0.15350655Eh

(original measurement: Iexp
Rb = 33690.81 ± 0.01 cm−1).

The parameter A is the normalization factor of the asymp-
totic wavefunction involved to arrive at Eq. (10b) and is
given [20, 101] in terms of the parameters of Eq. (11)

A = −
β2(2β)2νe−ν

Γ(ν + 1)Γ(ν)
, (12)

where Γ(·) denotes the Gamma function. The second-
order expansion coefficient C of Eq. (10b) may be ex-
tracted from fits to ab-initio results and is taken from
Ref. [14] with C = −19.22.

The characteristic ion-atom interaction length scale
R∗ may be derived from Eq. (7), yielding [7] R∗ =√
2µC4~

−2, which is in general at least one order of
magnitude larger than corresponding neutral atom-atom
interactions. The corresponding characteristic energy
scale E∗ ∝ (2µ2C4)

−1 is at least two orders of magni-
tude smaller than the one for neutral atom-atom systems.
Due to the small reduced mass of Li2

+, this explains
why it was possible to reach the s-wave scattering regime
in the experimental run described in Ref. [1]. For the
Rb2

+ system, the characteristic interaction length scale is
R∗ ≈ 5000 a0, with the respective s-wave scattering limit
E∗ = kB × 79 nK [2]. This stringent temperature require-
ment is one of the reasons why reaching the quantum
collision regime for Rb2

+ is considerably more difficult as
compared to neutral atom systems or to Li2

+.



9

C. Construction procedure

The results from Sec. IVA indicate that overall the
ROHF-UCCSD(T) approach based on effective core po-
tentials is already quite accurate. We will thus use it for
the overall construction of the X Σ2 +

g and (1) Σ2 +
u poten-

tial energy curves and account for higher-level corrections
by an appropriate rescaling.

Concerning the CCSD(T) approach for X2
+ systems

in general, our previous work [31] revealed some limita-
tions, as already indicated at the start of this section.
In Ref. [31] we demonstrated that CCSD(T) leads to an
unphysical long-range barrier of the respective system,
which is related to a symmetry instability of the under-
lying Hartree-Fock mean-field solution. However, our
findings also suggested that using (T) corrections from
symmetry-broken calculations for the long-range tail and
properly merging these with symmetry-adapted solutions
for smaller internuclear distances may be a promising
approach to construct well-defined and physically mean-
ingful global PECs for the X Σ2 +

u and (1) Σ2 +
u states of

Rb2
+. The hybrid ROHF-UCCSD(T) energies for both

states are defined as [32]

Ehybrid
CCSD(T)(R) = ED2h

ROHF(R) + ∆ED2h

CCSD(R)

+ ∆Ehybrid
(T) (R) , (13)

with the hybrid (T) correction to model the long-range
region given by

Ehybrid
CCSD(T)(R) =

{
∆EC2v

(T ) (R) for R > Rm[
∆ED2h

(T ) (R) + |∆Es|
]

for R ≤ Rm

(14)

The first two terms in Eq. (13) denote the ROHF refer-
ence energy and the CCSD correlation energy, respectively.
The point group labels represent the computational point
groups and correspond to symmetry-adapted (D2h) and
symmetry-broken (C2v) solutions. Equation (14) formally
represents the use of (T) corrections from symmetry-
broken calculations to model the long-range tail and the
proper merging to symmetry-adapted (T) corrections
at some merging point Rm in the intermediate region
to describe the remaining part of the PEC. At Rm the
symmetry-adapted values have to be shifted by the respec-
tive constant energy difference |∆Es| to the symmetry-
broken solution to obtain continuous curves. This con-
struction procedure is schematically illustrated in Fig. 2.
In total energies this shift amounts up to ≈ O(14 cm−1),
as can be approximated by the respective differences in
Fig. 2. For interaction energies, in particular in the vicin-
ity of the potentials equilibrium R = 4.8Å, the respective
difference is in the order of ≈ O(0.5 cm−1). In general,
the point Rm, cf. Eq. (14), enters as an additional free
parameter that might be adjusted so to optimally repro-
duce certain experimental findings (e.g. spectroscopic
constants, scattering length, vibrational levels, etc.).
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solution

Rm
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Figure 2. Schematic visualization of the construction pro-
cedure illustrating how to merge symmetry-broken and
symmetry-adapted (T) contributions to avoid the repulsive
CCSD(T) long-range barrier and to consequently obtain a
hybrid ROHF-UCCSD(T) model.

We further note, that the small oscillation that occurs in
Fig. 2 for the symmetry-broken curve before it collapses
to the symmetry-adapted one is a consequence of the
numerical bistability of the symmetry-broken CCSD(T)
solution in the region where it cannot “decide” whether
to collapse to the symmetry-adapted Σg or Σu state; see
Refs. [31, 32] for details.

The X Σ2 +
g and (1) Σ2 +

u states of Rb2
+ are asymptot-

ically degenerate and thus the construction procedure
according to Eqs. (13) and (14) can be applied to obtain
physically correct PECs for both states. This implies that
in both cases Rm has to be chosen equally, which is only
justified if Σg and Σu are reasonably well degenerate for a
given merging parameter Rm. Here, we assume that this
is fulfilled if the difference between the total symmetry-
adapted ROHF-UCCSD(T) energies is ≤ 10−8 Eh. More-
over, the choice of Rm should be sufficiently far off the
repulsive long-range barrier occurring at R ≈ 100Å [31].
These two conditions define the restriction

27.0Å ≤ Rm < 50.0Å . (15)

We set this value to Rm = 40.0Å for the following discus-
sion.

As shown in the previous section it is important to ex-
trapolate the ROHF-UCCSD(T) results to the respective
basis set limits. Again, we found an approach based on
Eqs. (2) and (3) as the best compromise to obtain the
CBS values using the UET17 basis sets. Effects beyond
the CCSD(T)/ECP approach, as discussed in Sec. IVA,
are now simply included by rescaling the potential en-
ergy curves to match De and Re of the theoretical best
estimates.

To generate PECs that can be used to study Rb++Rb
scattering events it is inevitable to recover the correct
long-range behavior according to Eq. (6). This also in-
volves ensuring that the rescaled ab-initio data reproduce
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the theoretically suggested exchange splitting between
the gerade and ungerade states as given by Eq. (10b).
Details of this corrections are given in the supplementary
material. [57] An overview of exchange splittings Ṽexch

that result from ab-initio data and a corresponding com-
parison with the respective theoretical curve according to
Eq. (10b) is given there, as well. Moreover, it is shown
that the exchange interaction is very sensitive to the re-
spective basis set leading to an interchange of the Σg and
Σu states; a problem that already occurs at the SCF level.

Finally, the adapted ab-initio data (≡ “hybrid ROHF-
UCCSD(T)/CBS/mod” level of theory), i.e. those ob-
tained by first transforming according to the hybrid model
of Eqs. (13) and (14), followed by a rescaling to the theo-
retical best estimates for De and Re and then by subse-
quent modification to obtain the correct exchange splitting
are passed to the one-dimensional RP-RKHS interpolation
method [91–97]. This gives analytical representations for
the X Σ2 +

g and (1) Σ2 +
u PECs and yields by construction

the correct leading-order multipole terms according to
Eq. (7). It is important to include a sufficient amount of
training data in the region R ∈ [20.0, 60.0]Å to ensure pre-
cise interpolation of the exchange interaction [32]. Beyond
that region, the training data should be chosen sparsely
to ensure extrapolation after Eq. (7). The correspond-
ing induction coefficients follow from the experimentally
measured static electric dipole polarizability αd [102, 103]
yielding [see Eq. (8)] C ind

4 = 2.751960345 · 106 cm−1Å
4

and from taking the most recent value, based on rela-
tivistic coupled-cluster calculations from Ref. [104], for
the static electric quadrupole polarizability αq yielding
[see Eq. (9)] C ind

6 = 0.156412961 · 108 cm−1Å
6
. The RP-

RKHS parameters are chosen as nRb2
+ = 2, mRb2

+ = 1,
sRb2

+ = 2 and Ra = 20.0Å for the X Σ2 +
g state and

Ra = 85.0Å for the (1) Σ2 +
u state. Furthermore, Eq. (5)

was imposed to provide a physically meaningful short-
range description. Again, the RP-RKHS parameters and
the short-range correction do not affect De and Re. The
resulting PECs can be generated using the python script
and data available from Ref. [105], which are either based
on the aug-cc-pCVnZ-PP or the UET17 basis set families
both extrapolated to their respective CBS limit. Corre-
sponding data were generated with the hybrid ROHF-
UCCSD(T) approach according to Eqs. (13) and (14) and
modified to reproduce the correct exchange interaction.
This procedure yields the PECs depicted in Fig. 3.

D. Resulting potential energy curves

As displayed in Fig. 3, the ground state of gerade sym-
metry is much deeper compared to the asymptotically
degenerate state of ungerade symmetry, which only shows
a rather shallow well at about 12Å. We note that the
choice of the merging parameter Rm, within the con-
straints defined by Eq. (15), mainly affects the long-range
behavior of the respective PECs. It can thus be viewed
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Figure 3. Potential energy curves of the X Σ2 +
g and (1) Σ2 +

u

states of Rb2
+ resulting from the RP-RKHS interpolation

method based on ab-initio data obtained at hybrid ROHF-
UCCSD(T)/CBS/mod level of theory with the UET17 basis
set. The inset shows the shallow potential well corresponding
to the ungerade state.

as defining a lower bound of the fitting range if the corre-
sponding ab-initio data were used to extract higher-order
induction and dispersion coefficients (i.e. Cdisp

6 , C ind
8 ,

etc.). These higher-order coefficients might improve the
quality of the RP-RKHS interpolated PECs by including
them into the inherent extrapolation according to Eq. (7).
This in turn may be used to screen the sensitivity of
subsequent scattering calculations based on these RP-
RKHS PECs that account for such higher-order effects.
A more detailed discussion on the extraction of induction
and dispersion coefficients from hybrid ROHF-UCCSD(T)
ab-initio data may be found in Ref. [32].

As already discussed in Sec. IV C, the choice of the merg-
ing point Rm and thus of |∆Es|, cf. Eq. (14), leaves Re ef-
fectively unchanged and alters De by about 0.5 cm−1. [32].
The corresponding effects that result from accounting for
the theoretically suggested exchange interaction are also
very small and give rise to the tiny differences between the
theoretical best estimate and the model potential for the
binding energies De as documented in Tab. V. The rovi-
brational ground state energies, i.e. (v, J) = (0, 0) where
v and J denote the vibrational and rotational quantum
numbers, were extracted using the Level16 code [106]
and the final RP-RKHS potential energy curve. The
results are summarized in Tab. V.

Experimental data given in this table refer to the works
already mentioned in the introduction. The most recent
experiment [33] aimed at measuring the ionization po-
tential of 85Rb2 formed via photoassociation of ultracold
85Rb atoms, cf. Sec. I. The molecules were subsequently
excited by single-photon UV transitions to states above
the ionization threshold. This approach yielded an upper
limit for the ionization energy of 85Rb2 and simultane-
ously provided a lower bound for D0 of 85Rb+2 ; as reported
in Tab. V with Dexp

0 ≥ 6307.5 cm−1.
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Table V. Overview of the theoretical best estimates and the binding energies and lowest rovibrational states realized in the fitted
model potentials for the X Σ2 +

g and (1) Σ2 +
u states of Rb2

+ in comparison to available experiments and other theoretical work.

basis set X Σ2 +
g (1) Σ2 +

u

De (cm
−1) D0 (cm

−1) Re (Å) De (cm
−1) D0 (cm

−1) Re (Å)

TBE 6202 ± 30 4.796 ± 0.010 80.4 ± 9.0 12.163 ± 0.020
Model pot. (87Rb2

+) 6202.02 6179.07 4.796 80.31 78.46 12.163
Model pot. (85Rb2

+) 6202.02 6178.80 4.796 80.31 78.44 12.163

Experiments
[15, 16] 5888±484 – – – – –
[17] – – 3.94 – – –
[18] 6049±807 – – – – –
[33] (85Rb2

+) – ≥ 6307.5(6) – – – –

Theory (model potentials)
[107] 6936 – 4.445
[108] 6977 – 4.604
[23] 5816 – 4.868 – – –
Theory (lcECP+CPP)
[109] 6130 – 4.780
[110] 6365 – 4.820
[111] (compact effective potential) 6323 – 4.731
[22] 6167 – 4.794 82 – 12.1340
[33] (85Rb2

+) – 6200±120 – – – –

As indicated in Tab. V, theoretical works on Rb2
+

found in the literature can be divided into two classes: cal-
culations that are based on model potentials [23, 107, 108]
or approaches using large-core effective core potentials
(lcECPs) with a core polarization potential (CPP) [22,
33, 109–111] to account for polarization effects of the
core electrons. In the latter approach spin-orbit effects
can be incorporated into the pseudopotential, cf., e.g.,
Refs. [22, 110]. The full valence configuration interaction
ab-initio calculations that accompany the experimental
work in Ref. [33] were based on a relativistic non-empirical
large-core pseudopotential with CPP. Spin-orbit effects
were modeled through a semi-empirical spin-orbit pseu-
dopotential and taken into account in the valence CI cal-
culations via the CIPSO procedure (configuration interac-
tion with perturbation including spin-orbit coupling) [90].
As can be inferred from the numbers reported in Ref. [22],
the SO effects on the spectroscopic constants of the two
lowest states of Rb2

+ are negligible.
In comparison to the most recent experimental refer-

ence value Dexp
0 ≥ 6307.5 cm−1 (Ref. [33]) the binding

energy computed in this work comes out too low by ap-
proximately 120 cm−1. While this is in general a satisfac-
tory agreement, the discrepancy is somewhat in conflict
with the accuracy estimates given by us previously, which
amount to O(30 cm−1).

E. Rovibrational structure

The analysis of the rovibrational term values supported
by the X Σ2 +

g and (1) Σ2 +
u RP-RKHS interpolated PECs

based on hybrid ROHF-UCCSD(T)/UET17(CBS)/mod
ab-initio data implies the existence of approximately 280
and 70 vibrational levels (J = 0), respectively. These
calculations were performed using the Level16 pro-

Table VI. Spectroscopic constants of the 85Rb2
+ states ob-

tained by a fit to the lowest rovibrational states (v ∈
{0, 1, . . . , 50}, J ∈ {0, 1, . . . , 20} for the X Σ2 +

g state and
v ∈ {0, 1, . . . , 20}, J ∈ {0, 1, . . . , 10} for the (1) Σ2 +

u state).

Parameter X Σ2 +
g (1) Σ2 +

u

ωe (cm−1) 46.482 3.767
ωexe (cm−1) 8.05× 10−2 5.25× 10−2

ωeye (cm−1) 9.04× 10−5 2.46× 10−5

ωeze (cm−1) −6.19× 10−7 3.10× 10−6

Be (cm−1) 1.72× 10−2 2.61× 10−3

De (cm−1) −8.94× 10−8 −1.94× 10−6

He (cm−1) −2.90× 10−10 −2.15× 10−8

Le (cm−1) <1× 10−12 8.80× 10−11

αe (cm−1) 3.96× 10−5 3.90× 10−5

βe (cm−1) 4.35× 10−10 1.08× 10−8

γe (cm−1) −8.14× 10−9 −1.45× 10−7

gram [106] assuming that Rb2
+ exclusively contains the

85Rb isotope. From a fit to the lower part of the spectrum
(up to v = 50 and v = 20 for the two potentials) to a
Dunham expansion, the spectroscopic constants listed in
Tab. VI can be extracted. The corresponding values for
87Rb2

+ are listed in the supplementary material [57]. The
rovibrational structures of the two states for (v, J = 0)
are shown in Figs. 4 (a) and (b). The level spacings of
the deeply bound vibrational states of the X Σ2 +

g state
amount to about 46 cm−1, close to values reported from
earlier computations [33].

The (1) Σ2 +
u potential is extremely shallow as reflected

by ωe ≈ 3.8 cm−1. Despite its well-depth of only ≈
80 cm−1 it still can support more vibrational levels than
the a Σ3 u state of Rb2 (cf. Tab. S.V) with a potential
depth of ≈ 241 cm−1, for which only 41 bound states are
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Figure 4. Computed vibrational levels (J = 0) of (a) the X Σ2 +
g state and (b) the (1) Σ2 +

u state. The results correspond to the
Rb2

+ system which only contains the 85Rb isotope.

found. This is a direct consequence of the exceedingly
large interaction length scale R∗ of Rb2

+, which is at
least one order of magnitude larger as compared to the
neutral species [7].

All data generated by the Level16 code can be found
in the supplementary material [57], which also includes
the corresponding input files for technical details and to
rerun our calculations. An analogous study based on
the aug-cc-pCVnZ-PP basis set series and referring to
Rb2

+ containing merely the 87Rb isotope may be found
in Ref. [32].

V. CONCLUSIONS

This work provides a protocol for computing highly
accurate binding energies and accurate global PECs for
the ground state of Rb2

+ within an additivity scheme
based on ROHF-UCCSD(T) calculations. The approach
circumvents our recently revealed limitations of pertur-
bative coupled-cluster approximations by using a hybrid
model with symmetry-broken (T) corrections describing
the respective long-range part of the PEC properly merged
to symmetry-adapted solutions for smaller internuclear
distances. Furthermore, the construction procedure is
designed such that the PECs for the X Σ2 +

g and (1) Σ2 +
u

states of Rb2
+ reproduce the physically correct exchange

splitting. This is particularly important when using the
corresponding potentials for highly accurate studies in
the context of ultracold chemistry, e.g. for scattering
calculations. In this regard, we moreover provide ready-
to-use analytical PEC representations obtained within
the framework of RP-RKHS interpolation.

We benchmarked the accuracy of our computational
method for ionization energies of Rb as well as for spectro-
scopic constants and vibrational levels of the a Σ3 +

u triplet
ground state of Rb2. In both cases we obtained very good
agreement with respective experimental findings, which

confirm the tight error bars estimated for the uncertainty
of the computed values. While in this respect including
high-level correlation (HLC) contributions and high-level
relativistic corrections are essential for ionization energies,
we found that they are of much less importance for inter-
action energies. For both Rb2 and Rb2

+, HLC effects are
in the order of ≈ 2− 3 cm−1 for the total binding energy.

Our computational approach gives a value of
6202±30 cm−1 for the dissociation energy of the X Σ2 +

g

state and 80.4±9.0 cm−1 for the antibonding (1) Σ2 +
u

state. We also investigated the rovibrational structure of
these states based on the model potentials fitted to our
computed values using the RP-RKHS approach. In par-
ticular we get a lowest rovibrational state in the X Σ2 +

g

with a binding energy of 6179 cm−1. There is a residual
deviation of approximately 130 cm−1 from the most re-
cent experimental estimate for the lower bound on the
binding energy of Rb2

+. This is a closer agreement as
compared to other theoretical works on X2

+ systems,
with X ∈ {Li,Na,K,Rb}. However, the discrepancy is
significantly larger than the estimate for the residual un-
certainty of our computations. This will certainly require
further theoretical and experimental investigations.

The data that support the findings of this study are
available within the article and its supplementary mate-
rial [57].
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