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Abstract

We give an alternative proof of the regularity, up to the loose end, of minimizers, resp. critical
points of the Mumford-Shah functional when they are sufficiently close to the cracktip, resp.
they consist of a single arc terminating at an interior point.
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1. Introduction

In this paper we study the regularity properties of the jump set of local minimizers of the
Mumford-Shah energy on an open set  C R?, which for v € SBV() is given by

E(v) := /Q |VolPdz + H'(S,) . (1)

We say that u : Q@ — R is a minimizer if u € SBV(Q2), E(u) < +00 and
E(u) < E(w) whenever {w # u} CC Q.

For the notation and all the results concerning SBV functions we refer to the book [5].

The Mumford-Shah functional has been proposed by Mumford and Shah in their seminal
paper [26] as a variational model for image reconstruction. Since then, it has been widely
studied in the literature, from the theoretical side but also from the numerical and applied
ones (see [17, 19, 14, 10, 12| and also the many references in |5, Section 4.6]). Starting with
the pioneering work [19], the existence of minimizers has been proved in several frameworks
and with different methods, see for instance [13, 14, 25|. The most general and successful
approach is that of De Giorgi and Ambrosio through the space of special functions of bounded
variation that works in any dimension (see [18, 1, 5]).

The regularity theory has seen several contributions, both in two and several space
dimensions, see (19, 14, 8, 2, 4, 3, 23, 21, 5]. The most important regularity problem is the
famous Mumford-Shah conjecture, which states that (in 2 dimensions) the closure of the jump
set S, can be described as the union of a locally finite collection of injective C! arcs {v;}
that can meet only at the endpoints, in which case they have to form triple junctions. More
precisely, given any point y € S, \ 99 we only have one of the following three possibilities:

(a) y belongs to the interior of some 7; and thus S,, in a neighborhood of y, is a single
smooth arc; in this case y is called a regular point.

(b) y is a common endpoint of three (and only three) distinct arcs which form (at y) three
equal angles of 120 degrees; in this case y is called a triple junction.

¢) y is the endpoint of one (and only one) arc v, i.e. it is a “loose end”; in this case y is
(c) y p y Vi y
called a crack-tip.

Correspondingly, for any minimizer u it is known since the pioneering work of David [14]
that:

(A) If S, is sufficiently close, in a ball B,.(zo) and in the Hausdorff distance, to a diameter
of B,(x¢), then in the ball B,s(xo) it is a C** arc.

(B) If S, is close to a “spider” centered at xg, i.e. three radii of B,(r() meeting at zq at
equal angles, then in the ball B, () it consists of three C'* closed arcs meeting at
equal angles at some point yo € B (o).
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Until recently no similar result was known in the case where S, is close to a single radius of
B,.(zp), namely the model case of (c) above. The best result available was still due to David
(see [15, Theorem 69.29)):

(C) if S, N B,.(x0) is sufficiently close to a single radius in the Hausdorff distance, then
Su N Byjy(xg) consists of a single connected arc which joins some point yo € B,/y(z0)
with 0B,/ (x) and which is smooth in B (xo) \ {yo}-

However, David’s result does not guarantee that such arc is C! up to the loose end yy: in
particular it leaves the possibility that the arc spirals infinitely many times around it (cf. for
instance [15, Section 80 pg. 571]). In this note we exclude the latter possibility and we prove
an e-regularity result analogous to (A) and (B) in the remaining case of crack-tips. In an
unpublished manuscript , cf. [22], the first and second author claimed the following theorem.

Theorem 1.1. There exist universal constants €,k > 0 with the following property. Assume
that w is a local minimizer of the Mumford-Shah functional in B,(x¢) and that dist (S, o) <
er where o is the horizontal radius [xo,xo + (r,0)]. Then there is a point yo € B js(xo) and
a CY* function v : [0,7/4] — [0,7/s] such that

Su N Brpa(yo) = {yo + (£,(t)) : £ €]0,7/4]} N Brya(yo) - (2)

The strategy was based on a suitable linearization but, due to a sign mistake, the linear
equations considered in [22] were actually not the correct ones. After correcting the mistake,
we found that for the new linear equations not all solutions had the appropriate decay
properties and in particular that there is a slowly varying solution which is not generated by
any symmetry of the original nonlinear equations (cf. the discussion below). In particular
the first and second author retrieved the manuscript [22] as the proof was not complete.
Andersson and Mikayelyan, in an independent work published around a year later attempted
a somewhat analogous linearization approach, based on much earlier computations from
their paper [6]. The latter reference contained as well an error and got them to consider
a wrong linearized problem (see the comments to [6], which was retrived by the authors,
and to version 1 of [7]). The works [22| and [6]-|7] linearize the problem in a different
system of coordinates, however both errors lead to a wrong sign in a corresponding term
of the equations, and in particular the slowly varying solution causing troubles is the same.
After realizing their mistake, Andersson and Mikayelyan came up with a clever competitor
argument which excludes that the linearization of minimizers might be (a multiple of) the
problematic slowly varying solution. In particular, in a revised version of their paper, they
claimed an adjusted proof of Theorem 1.1. Furthermore, since the remaining linear modes
have a faster decay, they indeed claimed that the arc is C?* and that the curvature vanishes
at the tip.

Theorem 1.2. Let u be as in Theorem 1.1. Then the function 1 is C** and its second
derivative vanishes at 0.

While we are not able to follow all the details of their arguments, we believe that this
is just due to some technical problems and that their approach is overall correct. In this
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paper we propose some alternative methods that take care of a few technical issues and give
different proofs of the Theorems 1.1 and 1.2. In particular, even though the fundamental
reason for the regularity is still the same, we use three distinct ideas:

(i) First of all, in order to exclude the slowly varying solution of the linearized problem we
use a suitable cut-off argument on the usual Euler-Lagrange identity for inner variations.
This replaces computations of Andersson and Mikayelyan (which are rather involved)
with a clean simple identity between boundary integrals for critical points. In particular
suitable variants of Theorem 1.1 and Theorem 1.2 are in fact valid for critical points.
Our point of view gives an interesting link to another identity discovered by David
and Léger and Maddalena and Solimini. The one used in this paper and the one of
David-Léger-Maddalena-Solimini are in fact particular cases of a more general family
of identities found by applying the “truncation method” to isometries and conformal
transformations.

(ii) Rather than linearizing the equations for the Mumford-Shah minimizers, we linearize
the one for its harmonic conjugate. This has the advantage that the Neumann bound-
ary condition is replaced by the Dirichlet boundary condition, simplifying several
computations.

(iii) Finally, we take the change of variables approach of [22], inspired by the pioneering
work of Leon Simon [27], which avoids any discussion of the behavior of the solution at
the tip, prior to knowing Theorem 1.1, and the technicalities involved by comparing
functions defined on different domains.

As remarked in [22], a consequence of Theorem 1.1 is a strengthening of the conclusions in
[20, Proposition 5| that yields an energetic characterization of the Mumford-Shah conjecture
quoted above.

Proposition 1.3. The Mumford-Shah conjecture holds true for a local minimizer u in € if
and only if Vu € L?(;EO(Q), i.e. if for all O CC §Q there is a constant K = K () > 0 such
that for all A > 0

Hr € O |Vu(x)] > A} < KA

2. Reduction to a single connected curve

Theorems 1.1 and 1.2 will be proved combining (a more precise version of) David’s
statement (C) with Theorem 2.1 below, which for simplicity we state when the domain € is
the unit disk (a corresponding version for {2 = B,(x) can be then proved by a simple scaling
argument). Theorem 2.1 is not comparable to Theorem 1.1 because:

e on the one hand it assumes the stronger property that the jump set of the critical point
is a single arc with one endpoint at the boundary dB; and the other endpoint at the
origin;

e on the other hand it assumes that (u,.S,) is a critical point, rather than a minimizer.
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We recall that a critical point (u, S, ) satisfies the following two identities, which we will call,
respectively, outer and inner variational identities:

Vu-Vo=0 Ve CHR) (3)
O\S,,

/ (|Vul|? divy — 2Vu” - Vi - Vu) = —/ el -Vn-edH' VneCHQR?), (4)
O\S.,

u

where e(x) is a unit tangent vector field to the rectifiable set S,. The first identity corresponds
to the stationarity of the energy with respect to the perturbation w;(z) := u(x) + t¢(x). For
the second, if we define ®,(z) := x + tn(x), then &, is a diffeomorphism of 2 onto itself for
all sufficiently small ¢ and (4) is equivalent to the condition £ FE(u o )| o = 0. We note in
passing that arguing by density (3) is in fact valid for every ¢ € H}(Q)*, while (4) for every
n € CH(Q,R?). In fact (4) can be extended to n € W, (Q, R?), but such extension would
require a discussion of how to interpret appropriately the derivative of a Lipschitz function

along tangent fields to rectifiable sets, which is not needed for our purposes.

Theorem 2.1. There are universal constants g, g, C' > 0 with the following property. Let
u be a critical point of the Mumford-Shah functional in By whose singular set S, is given, in
cartesian coordinates, by

Sy = {r(cosa(r),sina(r)) : r €0,1[} (5)
for some smooth function « :)0,1[— R with

sup(rfa’(r)] +r%|o”(r)]) < eo. (6)

T

Then the curvature k(r) of the curve S, at the point r(cos a(r),sin a(r)) satisfies the estimate

|k(r)| < Cro. (7)

(7) is easily seen to give a C? estimate for the curve S, and shows as well that the
curvature vanishes at the tip.

We next introduce the harmonic conjugate of u. First of all, given a vector z = (x1,z5) €
R?, we denote by xt its counterclockwise rotation of 90 degrees 2t := (—5, ;). Second,
observe that, by (3), the L? vector field X := Vu? is curl-free in the distributional sense,
hence Vu' is the gradient of a function w which is unique up to addition of a constant®.

4We use the standard notation H* for W*2, for k € N

®Note indeed that (3) is equivalent to [ X - (Vi) = 0. Fix a family of standard mollifiers ¢, and observe
that, for every fixed o < 1, provided ¢ > 0 is sufficiently small, X, := X % ¢, is smooth in B, and satisfies
f pcurl X, = — f X, -Vt =0 for every ¢ € C2°(B,). This shows that X, is curl-free in the classical sense
and hence the gradient of a smooth potential w?, which we can assume to have average zero in B,. By H!
compactness, as € J. 0, w? converges, up to subsequences, to a H' potential w® for X on B,. Letting o 1 1
and again using standard Sobolev space theory, we conclude the existence of w € H! such that Vw = X.
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Next note that, since S, is smooth on B; \ {0} and, by (3), u and w are harmonic on By \ Sy,
they both have smooth traces on S, \ {0} from both sides of S,. Being w in H' the two
traces of w agree on S, \ {0} and thus w is continuous on S, \ {0} and therefore in By \ {0}.
Moreover, again by (3), u satisfies the Neumann boundary condition on S, \ {0}, which in
turn implies that the tangential derivative of the traces of w along S, \ {0} vanishes. Thus
w is constant on S, \ {0} and, by possibly adding a constant to it, we fix its value on the
curve to be equal to 0. Finally, note that we can apply Bonnet’s monotonicity formula, that
it is valid in particular for critical points (cf. [8, Theorem 3.1]), and thus conclude that

/\mﬁ:/ ]Vu]QST/ Vuf?.
B B,\Su B

In particular a simple scaling argument using regularity of harmonic functions implies that
[Vwl|LeB,\B, ) < Cr~1/2. Hence w extends continuously to the point 0 (and in fact it

belongs to Cllo/f(Bl)). We can restate Theorem 2.1 using the harmonic conjugate as follows:

Theorem 2.2. There are universal constants g, 0, C' > 0 with the following property. Let
a:]0,1[—= R be a smooth function with sup, (r|c/(r)| + r?|a”(r)]) < ey and set

K := {r(cosa(r),sina(r)) : r €]0,1[} . (8)

Let w € H' N CY2(By) be such that Aw =0 on By \ K, w|x =0 and the identity

/Q\K(|Vw]2 divy — 2(Vwt)" - V- Vo) = — / e(z)! -V -e(z) dH () 9)

K

holds for every n € C}(By,R?). Then (7) holds.

3. Singular inner variations

Clearly if 1 is not compactly supported, the identity (4) is not valid any more. However,
consider the case in which B; C 2. We can then take a sequence of cut-off functions
o € CX(B;) with the property that ¢ 1 15,. Hence we can plug ¢xn into (4) and derive,
for k 1 oo, the analog of (4), which results into the same identity with some additional
boundary terms.

This procedure was first applied by Maddalena and Solimini in [26] to the vector field
n(x) = x to derive an interesting identity discovered independently by David and Léger in
[16]. The general statement is

Theorem 3.1. Let u be a critical point of the Mumford-Shah functional in ) such that:
(a) B, C
(b) Su.NOB, is a subset of the regular part of Sy;

(c) Sy intersects OB, transversally in a finite number of points.
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Let n € CY(B,,R?). Then:

/ (!Vu]Qdivn—ZVuT-Vn'Vu)+/ el -Vn-edH'
Br\Su

B.NS.
ou
S R G ) P SARt R} (10
8B, \ S v PESLNOB,
where v(x) = fa s the exterior unit normal to the circle and e(p) is the tangent unit vector

to Sy such that e(p) - p = |p|(e(p) - v(p)) > 0.

Proof. Fixn € CY(B,,R?) and ¢, € C=(B,). Since V(o) = ©x V) +n® Vi, the identity
(4) applied to the test field pxn € CL(B,,R?) can be rewritten as

/ (|Vul*divy — 2Vu® - V- Vu) ey + / (e" -V -e)prdH'
Br\Su

SuNBy

:_/B\S (|VU|2VS0k-U—Q(V@k'VU)(Vu-n))_/SmB (e'n)(e‘v@k)d}[l.
(11)

In order to simplify further our computations assume additionally that ¢g(z) = gx(|z|) for
some smooth function gy of one variable such that g, =1 on [r(1 — 1), 7], |g;,| < 2kr~" and
gk T L. Thus the left hand side of (11) converges to the first line of (10) by dominated

convergence. Observe next that Vi, = u = —vH' L 0B, in the sense of measures on {2
and that, although Vu is discontinuous on 5, it is right and left continuous on it in the
corona B,(144) \ Bra-o) for any sufficiently small o. Since |u|(S,) = 0 the first integral in
the right hand side of (11) converges to the first integral in the second line of (10). As for
the last term, enumerate the points {pi,...,pn} = S, NIB,. For every sufficiently small o
the set (B, \Fr(l_a)) NS, consists of finitely many connected components 7, ..., vy such
that p; =7, N 0B,. We next compute

fim [ (e-n)(e- Vi) i’

J/

-~

=:Iy (1)

Observe that for each ¢ € [r(1 — 1),7] and each ¢ € {1,..., N}, ; N 9B, consists of a

single point p;(t). Moreover choose e(p) on each ~; in such a way that it is continuous and
e(p:) - v(p;) = e(p:) - pi > 0. Using the coarea formula with the function d(z) = |z| we get

N r e(p: . ' e .pi(t) / 1
W = [ () 100) (0 235 4O o) e

Observe that Vd(p;(t)) - e(pi(t)) = e(pi(t)) - ;Zgg' and that the latter is a positive number if

pi(t) is sufficiently close to p;(1) = p;. Moreover the function h(t) = (e(pi(t)) - n(pi(t))) is
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continuous and h(1) = e(p;) - n(p;). Therefore we have
L) = [ (e nm®) okt at

—cp) o) [ siar+ [ (o) =m0}

N
=

Recalling that fll_l g, (t)dt = —1 and that ||g;|lo < 2k, the continuity of h shows that
k
limy, I1.(i) = —e(p;) - n(p;). O

There are two interesting particular classes of vector fields that one could use as tests in
(10). First of all, if  is conformal, then |v|?divn(z) — 20T - Vn(z) - v = 0 for every z € B,
and for every v € R?. Therefore the first bulk integral in (10) disappears. A very particular
family of conformal vector fields 7 is of course given by constant vector fields and rotations:
for the first Vn vanishes and for the second V7 is a (constant) skewsymmetric matrix and
thus vT - V- v vanishes for every vector v € R%2. We thus derive the following simple corollary
of Theorem 3.1

Corollary 3.2. Let u be a as in Theorem 8.1. If n € CY(B,,R?) is conformal, then

ou
eT‘VU'edH1=/ (Vu277'u—2—Vu-77)d’Hl+ e(p) - n(p).
/Bmsu OBy \Su | ‘ ov Z ( ) ( )

pESLNIB,

In particular, for every constant vector v we have

Ju Ou
0:/ (Vu%-u—?——)d?—ll—l— e(p)-v 13
(v r 2 > e (13)
and if T denotes the tangent to the unit circle, then
Ou Ou
0= Z e(p)-7(p) — 2/ ——dH". (14)
PESLNOB, r
The David-Léger-Maddalena-Solimini identity is given when n(z) = z in (12):
1,4 ou\> ou\’ 1
“HY(S.NB,) = — ) = (=) JaH'+ > e -vp).  (15)
r 0B\ Sy 87' aV pESaOB,

Next, consider the situation in which S, N 0B; consists of a single point p. We can then take
a suitable linear combination of (13) and (14) to derive a boundary integral identity which
does not involve the set S,,.



Corollary 3.3. Let u be as in Theorem 3.1 and assume that S, N OB, is a singleton {p}.
Then,

[ (V@) 70 + 25 @00 () - 7)) a0, (10)
9B \{p}

We will use the latter identity to exclude the “lowest mode” in the series expansion of
solutions of the linearized equation (51), cf. Section 7. This, loosely speaking, corresponds
to the competitor argument used by Andersson and Mikayelyan in [7] to exclude a similar
term in the linearization considered there. Its advantage over the argument used in [7] is,
however, that only boundary integrals of the actual critical points are involved and we do
not need to discuss any harmonic extension of competitors.

4. Rescaling and reparametrization

Before starting our considerations, we must introduce the model “tangent function” of a
local minimizer at a loose end, which in polar coordinates is given by

Rsq(o,r) == \/%cosg (17)

and whose singular set Srsq is the open half line {(¢,0) : ¢ € R*} (in cartesian coordinates).

Observe that Rsq is, up to the prefactor \/g , the real part of a branch of the complex

square root. We will likewise use the notation Isq for the imaginary part of the same branch
multiplied by the same prefactor, namely

Isq(o,r) == \/?;Tsin % : (18)

It was conjectured by De Giorgi that Rsq is the unique global minimizer in R?. In
particular its restriction to any bounded open set is a minimizer in the sense introduced
above. This last property was proved in a remarkable book by Bonnet and David, see [9].

4.1. Rescalings

From now on till the very last section, u will always denote a critical point of the
Mumford-Shah energy in B satisfying the assumptions of Theorem 2.1. Keeping the
notation introduced there, for p > 0 set

w(g.r) = p~ P ulo+alpr), pr), (19)
al(r) = a(pr). (20)

Lemma 4.1. For every 6 > 0 and for every k € N there is €1 > 0 such that if u and « are
as i Theorem 2.1 with g < €1, then

[u” — Rsallcxoznxpe2) + 108 lckqp) <6 Vp < (21)

9
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Proof. The statement follows easily from the blow-up technique of Bonnet, see [8], and the
higher differentiability theory of [4]. O

Corollary 4.2. For every 6 > 0 and for every k € N there is €1 > 0 with the following
property. If u and o satisfy the assumptions of Theorem 2.1 with ey < €1, then

sup 7 21849; (u(é + a(r),r) — Rsa(é,r))| <0 Vit j <k, (22)
[0,27] x]0,1/2[
sup 'l (r)] < & Vi<hk. (23)
10,1/2]

Proof. Observe first that . o
(a”)D(r) = p'at (pr).
Taking the supremum in r € [1/2,2] in the latter identity, we easily infer
Pl lcogopm = 1) llcoqz -

and hence conclude (23) from Lemma 4.1.
Next, from (19) and the !/2-homogeneity of Rsq we conclude

u(6+ a(r),r) = Rsa(é,r) = p* (v (6,2) ~Rsa (6,2)) -
Differentiating the latter identity j times in 6 and ¢ times in r, we conclude
010, (u(6 + a(r),r) — Rsa(6, 1)) = p*00] (u” — Rsa) (6, %)

Substitute first p = r and take then the supremum in ¢ and r to achieve (22), again from
Lemma 4.1. O

4.2. Reparametrization
We next introduce the functions

—t

O(t) ==a(e™) =a® (1) (24)
o(t) :=e (cosq?(t) sin (t)) (25)
F(6,1) =ePw (g + 9(t), ") = w (4,1), (26)
rsq(¢) :=Rsq(¢, 1). (27)
Isq(¢, r) := 1/ % sin (%) (28)
isq(9) =Tsa(@, 1) (29)

In the next lemma we derive a system of partial differential equations for the functions
f and ¥, exploiting the Euler-Lagrange conditions satisfied by u and S, (cf. (3) and (4)).
We also rewrite the estimates of Corollary 4.2 in terms of the new functions. It is more
convenient to work with w rather than wu, because of the homogeneous Dirichlet boundary
condition satisfied by w on S, instead of its Neumann counterpart satisfied by w.

10



Lemma 4.3. If u satisfies the assumptions of Theorem 2.1 and ¥, f are given by (24) and
(26), then

(

fi = £ + foo + fu+ (Vfs + 0% fap — 20 fr — O fs)

f(ov t) = f(27T, t) =0 (30)

i
(1 +02)%
Moreover, for every fived 0,6 > 0 and k € N, the following estimates hold provided ey in
Theorem 2.1 is sufficiently small:

= f2(2m,t) — f3(0,1).

||?9(i)HCO([J,oo[) <4 foralli <k, (31)

10507 (f — 180) [ oo (0,20 x 00 < O for alli+j < k. (32)

Proof. Let us first introduce the unit tangent and normal vector fields to S, denoted by e(t)
and n(t):

where, given v = (v;,v2) € R% vt = (—vq,v1), namely v — vt is the rotation of 5

counterclockwise. Moreover, we will denote by Vu™ and Vu~ the traces of Vu on S, where
=+ is identified by the direction in which the vector n is pointing. More precisely, if p € S,
then

Vut(p) = lim Vu(p + sn(p))

Vu~ (p) = lim Vu(p — sn(p)).

Observe that, under the assumptions of Lemma 4.1, e(t) is pointing “inward”, i.e. towards
the origin, and hence for p = o(t) = (e *(cos(¥(t)), sin(¥(t))) we have

Vut(p) = (})1Tr2r71r Vu(e *(cos(9(t) + ¢),sin(I(t) + ¢)) (33)
Vu~(p) = 1(;{{)1 Vu(e *(cos(V(t) + ¢),sin(I(t) + ¢)), (34)

we refer to Figure 4.2 for a visual illustration.
Since u : B; C R? — R is a critical point of the E energy,

Au =0 on B
Gu =0 on S, (35)
k=—|Vu']? + |Vu ]2 on S, .

11



X2

X1

Figure 1: The tangent vector e(p) and the normal vector e(p) and a point p € S,. Since ¢t — |o(t)| is a
decreasing function, e(p) points towards the origin. Consequently the convention for the symbols + on traces

of functions is as illustrated in the picture.

where k is the curvature of S, given by

1
k=—=—6(t) -n(t).
|o(t)]
In particular, the harmonic conjugate w of u satisfies
Aw =0 on B;
w =10 on S,
k=—|Vu > + |[Vw|? on S, .

Recalling that
w(¢a T) - Tl/Q.f(d) - 79(_ In T), - lnr),

we compute

wT:rl/z(f ft+19f¢>, wy =" f,.

>
Next we recall the formula for the Laplacian in polar coordinates:

Aw=0 <= 1 2wey+r (rw,), =0.

By means of (38) we get
rwag = 17" fag,

T_1<Twr)r :r_l (TI/Z (g - ft + ﬁf¢)>

and

=rP (i ey %> +r (—7"1% + r%?%)

4 2 2

+ 7’71/2 (Tilftt — 27ﬁ7179ft¢ — 7”717§qu + 7”71192f¢¢,>

—p3 <f Je+ 19f¢ + fu — 219ft¢ - ﬂf(b + 192f¢¢) :

T
12

(36)

(37)

(38)



In conclusion, we get

fo= T foo e Dy + L — 201 — 1),

(39)

Next, recalling equality (37), we may rewrite the Dirichlet condition in the new coordinates

simply as

£0,6) = f(2m,1) = 0.

(40)

Finally, we derive the equation satisfied by the scalar curvature k. To this end take into

account that
o(t) = — eH(cos O(t), sinV(t)) + e M) () (— sind(t), cos V(1))
= —o(t) +0(t)o*(t)
and thus differentiating (41) we get
b(t) = — o+ ot + 9o .
On the other hand, explicitely we have
o(t)t = —eH(—sind(t), cosV(t)) — e~tI(t)(cos I(t), sin ¥ (t))
= —0"(t) = I(t)olt) -

Hence, we conclude

1 (d o) ) Lot o) ot (1)

k = — —
lo()] \dt [o(t)] ) [o(t)] EGE
_@ P D) _ I+ -
B (1 + 192)3/2@(15)‘3 - (1 + 15,2)3/2 :
As 2
[Vl = [Vwl® = (w)?* + 172 (wy)* = (5 + 05 - ft) ol
we get 2
9+ 9% — 9 (f . 2 A
1A —+19f¢—ft) +f
(1+ 92)* 2 2

Thus, by taking into account (40) and (45) we conclude the third equation in (30).
In terms of ¥ the bound of « in (23) reads as

sup [99D(t)] < C;6 for every i < k.

t€[o,00[

Indeed, differentiating ¢ times the identity ¥(t) = a(e™") we get

DO (t) = Zbi,je_jtoz(j)(e_t) :
j=1

13
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(45)



with b@j € R.

Instead, the bound (32) is a consequence of the linearity and continuity of the harmonic
conjugation operator, i.e. the circular Hilbert transform, together with the decay (22).
Indeed, the latter translates into

sup |8;8t](g —rsq)| < C; 6 for every t € [o,00] and i + k < k,
¢

having set g(¢,t) := et/zu(¢ + 9(t), e_t). Therefore, using the !/2-homogeneity of Rsq, we
infer
9(6,t) —13q(¢) = € (u(¢ + ae), ") — Rsq(e, e "))
Ph(p,et). (46)
We conclude that (22) can be reformulated as
sup Ti_1/2||8gaf;h(-,7‘)||co < C; 0.
r€l0,1/2]

On the other hand, differentiating (46) yields

0501 (g(9, 1) —rsq(0)) = Y bip e [0/ h] (4,7,
=0

t

for some b;, € R. Setting » = e, we then conclude

||8§)8tj(g — 159 [|co(0,2n] x[o,00)) < O foralli+ 7 <k,
and thus (32) follows at once. =

5. First linearization

In this section we consider a sequence (u;, ;) as in Theorem 2.1 where condition (6)
holds for a vanishing sequence ¢¢(j) | 0. Without loss of generality we assume «a;(e™*) =0
for some a > 0. We next define 9;, o; and f; as in (24)-(26). Furthermore we fix Ty > 0 and
define:

£7(9.8) = 5(f3(,1) = f;2m — 6,1)) (47)
8; = 141l m2(o.2m ¢ [ 7o) + 1951 (fasasmi) (48)
vi(¢,t) == ;1 f7 (9, 1) (49)
Aj(t) = 05 19,(t) (50)

Remark 5.1. It is moreover convenient to introduce the following terminology: a function A

on [0, 27] X [a, b] will be called even if h(¢,t) = h(2m — ¢,t) and odd if h(p,t) = —h(27 — ¢, 1).
Moreover, a general h can be split into the sum of its odd part h;?(gb, t) = w and
its even part h$(¢,t) = M Note finally that, if A is even (resp. odd), then 85,8{%
is odd (resp. even) for j odd and even (resp. odd) for j even.

14



Next, we show that limits of (v;, A;) solves a linearization of (30). In addition, for future
purposes it is also necessary to take into account the linearization of (10) (actually it suffices
to consider (16)).

Proposition 5.2. Let (uj, ;) as in Theorem 2.1 where condition (6) holds for a vanishing
sequence €o(j) 1 0. Assume aj(e™®) =0 and define 9, 0; and f; as in (24)-(26) and v; and
Aj as above. Then, up to subsequences,

(a) v; converges weakly in H*([0,27] X [a,a + Tp]) and uniformly to some odd v;
(b) A; converges uniformly to some X in [a,a + Ty);

(¢) the convergences are, respectively, in C**(|0,2x] X [a + o,a + Ty — o) for v; and in
C**(Ja+o,a+ Ty — o)) for \; for all o € (0,Tp/2),a € (0,1).

Moreover, the pair (v, \) solves the following linear system of PDFEs in [0,27] X [a,a + Ty
(v, — vy = 5+ vgg + ()\ — .).\)isq(b

v(0,t) =v(2m,t) =0
(51)

and satisfies the following integral condition for every o € (a,a + Tp):

[ 15— ) (0.0 (cos %+ cos) + wuf60) (sin % +sin )] do + \[530) = 0. (62

Proof of Proposition 5.2. First of all, by a simple rescaling argument we can assume a = 0.
(a) and (b) are obvious consequences of the bounds on ()}, v;) (and of the fact that H?([0, 2] x
[0, Tp)) (resp. H?([0,Tp])) embeds compactly in C([0, 27] x [0, Tp]) (resp. C([0,Tp])). Observe
that, by assumption, A;(0) = 0 and thus A(0) = 0 is a consequence of the uniform convergence.
Likewise the boundary condition v(0,-) = v(27,0) = 0 is also a consequence of uniform
convergence and v;(0,-) = v,(0,-) = 0.

We next observe that the PDE in (30) is linear in the unknown f. Hence, setting
J5 = f§ + d;v;, we can take the odd part of each sides of the equation and, using Remark 5.1
infer (A . . . .

Uin+ Vigo = = + Wi+ (& = M) o+ 28 F50 = X006 (53)

Observe that ff — isq in C?([0,27] x [0,T]) and in C*([0,27] x [0, T — o]) for every k and
every o > 0 by Lemma 4.3. Passing into the limit we therefore conclude easily that v solves
the PDE in the first line of (51).

15



We now rewrite the equation above in the following way:

U . .o . .
ZJ +vj + (Nj = A fie + 20 fite (54)

‘G

(1 + (SJZ}\?)UJ'J% + Uj7¢¢ = —

(.

Observe that, by our assumptions, the left hand side is an elliptic operator with a uniform
bound on the ellipticity constants and a uniform bound on the C'/? norm of the coefficients.
We next write the third equation in (30) in terms of \;,v; and f;:

Aj— Ay = SN+ AL+ 57N f2,(0,8)v;4(0, 1) . (55)

Observe that, by the trace theorems, v; (0, -) enjoys a uniform bound in H 12 Clearly, by
the C? convergence of f5 toisq we get that the third equation in (51) holds. Moreover, by
the Sobolev embedding we conclude that the right hand side has a uniform control in L? for
every q < oo, in particular the same bound is enjoyed by )\j — }\j and, using that H}\jHCo is
bounded, we conclude that }\j has a uniform W4 bound for every ¢ < oo.

Inserting the new estimates in (54) we can get a uniform bound on ||G;|| Lajo,2x]x[0,17) for
every q < oo. Using elliptic regularity we conclude a uniform bound for ||v;||w2.a(jo,2x]x[o,7—0])-
We now can use Morrey’s embedding to get a uniform estimate on ||v;||c1.e((0,2x)x [20,7-20]) fOr
every o < 1. We now turn again to (55), to conclude that the right hand side has a uniform
C* bound in [20,T — 20] for every a > 0. This gives uniform C** bounds on the coefficient
of the elliptic operator in the left hand side of (54) and uniform C® bounds on the right
hand side of (54). We can thus infer a uniform C** bound in [0, 27] X [30,7 — 30| on v,
from elliptic regularity.

It thus remains to prove (52). The latter will come from (16). First of all, we fix o,
set ro := e~7 and observe that dB,, N S,, consists of a single point p;. We can thus apply
Corollary 3.3. Hence using the relation between harmonic conjugates, we rewrite (16) as

[ (w@Pv o) - 252 @500 () — () ) ari(a) 0.
9Bro\{p;}

Next, we assume without loss of generality that p; = 0 and rewrite the latter equality using
polar coordinates:

2m 1 2m
/ <r0w]27r - — J2¢> (¢, 10) sinprodp — 2/ (wj,rwje) (P, r0)(L+cosp)dp =0 (56)
=:A; =:B;

We next write w; in terms of v;, v; and A; as

w;(r, @) =" f(¢ — 5\ (—Inr), — Inr) + &;7'v;(¢ — ;0 (—Inr), —Inr)

16



Note that, having normalized so that p; = 0, we conclude that \;(—Inrg) = X;(0) = 0.
Using the latter we compute:

S =y (5 i) @) 48" (m cos o+ 90Ty (6 a>> +o(8)

V21 2 2
=.a; (d)) :l:;(d))
(57)
ow;
—(¢,10) —r02 s +0; re v;4(0,0) . (58)
aQb \\/_/ N——
—ic;(9) =d;(4)
Note now that the function a? -1 c? is even. Since sin ¢ is odd, we thus conclude

A =2, [ (roas(00,0) — 15" (0)() sino s+ 0(5).

Letting 7 — oo we obtain

Jlg?oé 1A = \/g/o27T (sing ()\\/(—;_73 cos g - U(q;’ 7) _ vy (o, 0)) — cos %w(éﬁ,a)) sin ¢ d¢ .

(59)

Similarly, a;jc; is odd and therefore [ a;c;(1+ cos¢)d¢p = 0, from which we conclude

2
By =25 [ (0,(0)dy(0) + b(0)es(6)) (1 + cos6) o+ of5).
Hence
li)m o5 'B;
:\/;/027r (Sin §v¢(¢, o)+ cos% <% cos%S + U(QZ;, o) _ v (b, a))) (14 cos @) do.

(60)

Combining (59) and (60) with (56) we conclude

) 2m 2m
0 zﬁ/ (sin ¢ — (1 + cos ¢)?) dop — \/g/ vg(0, 0) (smg + sin %) do
0 0
2
- \/g/o (%(gb,a) s 0)) (cos§+ cos—¢) do .

Using f027r(sin2 ¢ — (1 + cos ¢)?)d¢ = —2m, we conclude (52). O
17



6. Spectral analysis

In this section we will find a suitable representation of odd solutions of (51) on a domain
[0, 27] x [0, T'], based on the spectral analysis of a closely related linear PDE. Next we consider
the change of variables

. At) ¢
1) = v(p,t) — A(t)isqu(t) = v(¢p,t) — —==cos = . 61
C(6:) = v(6.1) = AltYisa(t) = v(o,1) — - cos (61)
Lemma 6.1. The pair (v,\) € H? x H? solves (51) if and only if (-, t) is odd, (0,0) =0
¢(0,t) = —i\/(—%, and ¢ solves the following partial differential equation with Ventsel boundary
conditions:
Ctt+c¢¢+%_Ct:O
(62)
Co(0,8) + 5 (5(0,) + C4u(0, 1)) = 0.

Taking into account standard regularity theory, the lemma is reduced to elementary
computations which are left to the reader. We aim at representation for (, i.e. a representation
as a series of functions in ¢ with coefficients depending on ¢ for which we can reduce (62) to
an independent system of ODEs for the coefficients. To that aim we introduce the space

O :={ge€ H'(0,2n]) : 9(¢) = —g(27 — 9)}, (63)
The representation is detailed in the following

Proposition 6.2.

(b, t) =Y ar(t)u(9) (64)

k=0

where:
(a) C7137 ai(t) < IS, 0)|13: < C Y, ai(t) for a universal constant C;

(b) The functions ¢, are defined in Section 6.2;

(c) For k > 2, the coefficients ay. satisfy ap(t) = (C(+,t), (k) for the bilinear symmetric form
(-,+) defined in Section 6.1 (cf. (67)), while the coefficients ag(t) and ai(t) are given
by ao(t) = Lo(C(+,t)) and ay(t) = L1(¢(+,t)) for appropriately defined linear bounded
functionals Lo, L1 : O — R.

Next, if ¢ € H*([0,2n] x [0,T]) is odd and solves (62) then ¢ € C*([0,2n] x (0,T)) and for
every k > 2 the coefficients ay(t) in the expansion satisfy aj(t) — aj,(t) = (v — §)ax(t), where
the number vy ’s are given in Lemma 6.5.

The proof is an obvious consequence of Proposition 6.6, which will be the main focus of
this section.

18



6.1. The Ventsel boundary condition
For every g € O we look for solutions h € O of the following equation:

hes =g

(65)

o) =3 (1

>\ + h¢¢(0)) .

The following is an elementary fact of which we include the proof for the reader’s convenience.

Lemma 6.3. For every g € O there is a unique solution h := </ (g) € O of (65). In fact
the operator o : O — O is compact.

Proof. h € O solves the first equation in (65) if and only if

s)dsdr . (66)

¢ T
o) =homo-m+ [ [ glo)
=:G(9)
On the other hand the initial condition holds if and only if

ho(7) (%2 - 1> = G'(0) + g (@ + G”(O)> .

Since G is determined by g, the latter determines uniquely hy(7) and thus shows that there
is one and only one solution h = o/(g) € O of (65). Moreover, we obviously have

17 ()| s < Cllgllar

which shows that the operator is compact. O

We next introduce in O a continuous bilinear map

2m 1 2m
(u,v) = / Ul — —/ uv . (67)
0 4 Jo

If (-,-) were a scalar product on O, & would be a self-adjoint operator on O with respect to
it and we would conclude that there is an orthonormal base made by eigenfunctions of .o7.
Unfortunately (-, ) is not positive definite. This causes some technical complications.

Lemma 6.4. The bilinear map (-,-) satisfies the following properties:
(a) (v,v) >0 for everyv € O;
(b) (v,v) =0 if and only if v(¢) = ,ucos%5 for some constant y;

(c) <v,cos§> =0 for everyv € O;
19



(d) (o (v),w) = (v, (w)) for every v,w € O.

Proof. (a) & (b) First observe that (a) is equivalent to

1 27r2 27r2
Z/OUS/O vy - (68)

If we write v using the Fourier series expansion v(¢) = >~ ay cos %, the inequality becomes
obvious and it is also clear that equality holds if and only if a; = 0 for every k > 2.

(c) Let 2(¢) := cos £ and observe that Z + z45 = 0 and that 24(0) = z4(27) = 0. We

therefore compute
21 2m z
— W | Zpp + —> =0.
0 /0 < o0y

27 1 2
(w, z) :/ Wezy — Z/ 2W = W2y
0 0

(d) Consider z = &7 (v) and u = &7 (w). We then compute

27 1 21
(A (v), w) =(z,ugg) :/0 ZgUpps — Z/o ZUgep

o 27 1 o 1 21
— ZodUsd — —2U + - 2ol
/0 ololedot 4 @ 0 4/0 pU¢

0

27 21 1
— 2 + = 23U

0 folopelo) 0 4¢

=Z¢Ugep

2 271' 1
+ Zodbdls — —2U
0 /0 Ppd L 4 ¢

=Zplgg

2

2ﬂ. 1 /271'
- — ZpplU
0 4 /o ¢¢
z
— Ug <Z¢¢> + Z> .
27

. + (v, o (w)) = (v, o (w)) . O

w\ |27

)
2

= — —Z24U
et

, + (260> )

2 2
+ —

, Tt

6.2. Spectral decomposition

We are now ready to prove the following spectral analysis. First of all we start with the
following

Lemma 6.5. If p is a real number and h € O a solution of the following eigenvalue problem

hog = ph
(69)
= ((h(0
ho(0) = =5 (M2 + hos(0))
then
(a) 1 <0 and if we set u = —v?* for v >0, then v is a positive solution of

=T ) (70)

veosvm = o | 7 —v" | sinv.

20



(b) h is a constant multiple of sin(v(¢p — 7)).

(c) The positive solutions of (70) are given by an increasing sequence {vy}r € N in which

m=3,1>3and

27

. Vi,
lim = =1 1
im (71)

We will postpone the proof of the lemma and introduce instead the following notation.

For k = 1 we set (;(¢) = cos &, while for k > 1 we let (; := ¢y sin(v(¢ — 7)), where ¢ is

chosen so that ((j, (x) = 1. Furthermore we set (y(¢) := (¢ — 7) sin %, the relevance of the
latter function is that it solves

oo = =5+ G
(72)
Go(0) = =5 (42 + Guol0) -

In particular if we restrict the second derivative operator on the 2-dimensional vector space
generated by (; and (p, its matrix representation is given by

()

Consequently the operator <7 is not diagonalizable in O, which is the reason why its spectral
analysis is somewhat complicated.

Proposition 6.6. The set {(x} C O is an Hilbert basis for O, namely for every ¢ € O there
is a unique choice of coefficients {ay} such that

(=) ad, (73)
k=0

where the series converges in H'. The coefficients ay, in (73) are determined by
ap =(C,CG)  forallk =2, (74)

while ag and ay are continuous linear functionals on O.

Proof of Lemma 6.5. First of all, consider 4 = 0. An odd solution of (69) must then take
necessarily the form ¢(¢ — ) and the boundary condition would imply ¢ = 0. If 4 > 0 observe
that a nontrivial function ¢ € O solving (69) would also satisfy <7 () = /% If p =v? >0 for
v > 0, then h(¢) = c(e’®~™ — e~¥(#=7)) for some constant c. If ¢ # 0 the boundary condition
becomes

1
v (671/7r 4 emr) — _E S V2 (efwr - ewr) ) (75)
2 \4
The latter identity is equivalent to
™ (1 + 4nv® — 8v) = w + 4w + Sv. (76)
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If we make the substitution z = 27, we then are seeking for zeros of the function
O(z) =" (m* +2° —4do) — 1 —2* — 4o = 0.
The derivative is given by
P'(z) =e"(2* — 20+ 7° —4) — 2(2 + ),
the second derivative by
D"(z) =e“(2*+ 7 —6) —2>3e" —2> 0.

In particular @ is convex and ®'(0) = 72 — 8 > 0. Thus  is strictly increasing and, since
®(0) = 0, it cannot have positive zeros.

Consider now p = —v? for v > 0. A solution of the PDE in (69) must then be a linear
combination of sinv(¢ — 7) and cosv(¢ — 7): the requirement that h € O excludes the
multiples of cosv(¢ — m) in the linear combination.

For h(¢) = sinv(¢ — ) the boundary condition becomes

veos(—vm) = — & (- - y2> sin(—vr) (77)

which is equivalent to (70). If we introduce the unknown = = 7rv, then the equation becomes
U(z) :=8xcosz — (7> — 42”) sinz = 0.

Since ¥'(x) = (42 + 8 — 7*) cosx, ¥’ has a single zero in the open interval ]0, 5[. Since
U(0) = ¥(5) = 0, we infer that there is no zero of ¥ in the open interval |0, 5[, i.e. any
positive v satisfying (77) cannot be smaller than % Moreover, as W' is strictly negative on
]2, 37 and W(37) < 0 < U(2n), the next solution v lies in |3, 2].

Next, there is a unique solution v, €]k — 1, k][, for every k > 3. Indeed, ¥((k — 1) 7) -
U(km) < 0 and ¥ has a single zero in the open interval |(k — 1), kw[. Therefore (v)y

satisfies (71). O

Proof of Proposition 6.6. Let Y be the closure in H' of the vector space V generated by
{Ck}k>o. First of all observe that, for some constant C' independent of k,

L= (G Gr) = C MGl VR >2. (78)

Indeed set gy := sinvg(¢ — m): (78) is then equivalent to say that the g;’s satisfy the same
inequality. An explicit computation shows that this is equivalent to

2 ) d 1 27r'2 d
/0 cos” V(¢ — ) ¢—@/0 sin” vy (¢ — ) do

>t (/27r cos® v (¢ — 7) dgb—k%/% sin? v (¢ — 7) dqb) :
0 0

k
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For each fixed v}, the fact that the inequality holds for a sufficiently large constant is an easy
consequence of the fact that [ cos® vy (¢ — 7) is positive while [ sin®vg(¢ — ) is finite. On
the other hand by (71) both integrals converge to 7 as k 1 oo and thus for a sufficiently large
k the inequality holds for C' > 2. Now, for k # j we have

(s G = =Vl (G), G) = G, (G))) = <Ck Gi)

<. mlww

implying that ((x, () =0

We next claim that (;(¢) = cos £ 93' Y. Otherwise there is a sequence {vn} C V such that
v, — (; strongly in H'. v, takes therefore the form v,, = Zk:Q an i Cr. Using that (v,,v,)
converges to ({1, (1) = 0. Thus we have

n
li 2 =0.
nl_)n;OZanyk 0 (79)
k=2
Now, given that the operator </ is compact we also have that z, := @ converges strongly

in H' to (Cl) cos . On the other hand

N(n) 1
Zp = — Z rljgan,ka .
k=2

We then would have by item (c) of Lemma 6.5 and (78)

| jl|an k|
0 <[IGllzn = lim [zo[l7 < lim Z 16] 7,7 1ol e 1[Gl 0
|a | N(n) N(n
n] i~
<C'h£n_>soL01p Z <C’hmsupz JZ nJSC'hmsupZ a,; = 0,

Consider now the standard H' scalar product (-,-) on O and for every ¢ € Y let ( = ¢+ + (|l
be the decomposition of ¢ into a multiple of (; and an element (* orthogonal in the scalar
product (-,+) to ;. Since ¢; € Y and Y is closed in H', there is a constant o > 0 such that
¢ > af|¢||%:- On the other hand using the Fourier expansion of ¢ we easily see that
(¢,¢) = (¢t ¢ty > C7Y|¢H||%4: for some universal constant C' > 0. In particular & is a
compact self-adjoint operator on Y, which implies that {(j},>2 is an orthonormal basis on
the Hilbert space Y (endowed with the scalar product (-, -)).

Consider now the 2-dimensional vector space Z = {ao(o+a1(1 : a; € R}. If aplo+ a1 =
z € ZNY, using Lemma 6.4 and the fact that (y, ;) = 0 for every y € Y, we can compute

(2, ¢5) = ao(Co, ¢5) = —v3{aoCo, @ ((;)) = —vi {aoe? (Co), G) = 417 {anCo, ¢j) = 473 (2, ()
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for every j > 2. Since v; > 3 we infer that (z,(;) = 0, i.e. that z = 0, since {(;};2 is
an orthonormal Hilbert basis of Y with respect to the scalar product (-,-). We have thus
concluded that ZNY = {0}. The proof of the proposition will be completed once we show

that Z +Y = O. Consider an element ( € O and define

f o 60

Gt j;«j,o@-

It turns out that ( € Z + Y and that ( := ¢ — ¢ satisfies the condition <§,z> = 0 for
every element z € Z 4+ Y =: X. We claim that the latter condition implies that é’ is a
constant multiple of cos 2. Indeed set Xt := {v : (v,w) = 0 Vw € X}. Then clearly
2/ (X+) € Xt. Moreover &/ on X+ has only one eigenvalue, namely —4. Consider now

Xt 30 Qv,v) = (F(v), o (v)) = (F*(v),v) and set
m:=sup{Q(v,v) :v € X+ and (v,v) =1}, (80)

where at the moment m is allowed to be co as well. If m = 0 we then have that </ (v)
is a multiple of (; for every v and this would imply that v itself is a multiple of ¢;. We
therefore assume that m is nonzero. Using the fact that Q(v, (1) = 0 for every v, we can find
a maximizing sequence with Fourier expansion

27 +1
Vg, ::Zc,wcos )+ 10}

, 2
j=1

for which we easily see that (v, vg) > C|lvgl|3,. We can thus extract a subsequence
converging weakly to some v. v clearly belongs to X+ and, by the compactness of the
operator <7 is actually a maximizer of (80). The Euler-Lagrange condition implies then that
/?(v) = mv + by for some real coefficients b. Consider now the vector space W generated
by (1,v and 7 (v). W is then either 2-dimensional or 3-dimensional and ./ maps it onto
itself. If W were three-dimensional, then the matrix representation of 7|y in the basis (i, v

and 7 (v) would be

—4 0 0
0 10
a 0 m

Since the characteristic polynomial of the latter matrix is (z — 1)(x — m)(x + 4), &/ would
have an eigenvalue different from —4 on W C X+, which is not possible. On the other hand
if W were 2-dimensional, then v and cos% would be a basis and the matrix representation of
o |w in that basis would be
—4 0
(<" 5)

Since |y cannot have an eigenvalue different than —4 this would force g = —4. We then
would have o7 (v) = —4v+a(y. This would imply that v is an odd solution of vg4+ 7 = a cos %
The general solution of the latter equation is given by ¢ cos %5 + cosin % + a(¢p — ) sin %, for
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real coefficients ¢; and co. The fact that v is odd implies ¢ = 0, namely ¢;(; + ay. The
fact that v is not colinear with ¢; implies that « # 0, but on the other hand since v € X+,
(v,¢;) = 0, which implies @ = 0. We have reached a contradiction: X1 was thus the line
generated by (;, proving that indeed X = O. O
7. The three annuli property

We now define a functional which will be instrumental in proving a suitable decay property
for coefficients of solutions of (51) and hence of (30).

Definition 7.1. Fix a constant ¢y > 0 appropriately small (whose choice will be specified
later). Consider now any o < s real numbers and a pair of functions (v, ) such that

(i) vis odd, v € H*([0,27] x [o,s]) and v(0,t) = v(2n,t) = 0 for every t;
(i) X € H*([o,s]).

Define ¢ as in (61) and let ax(t) be the coefficients in the representation (64) and vy the
numbers in Lemma 6.5. We then define the functionals

E(v, N\, 0,8) = Z /S(V,A;ak(tf + ay(t)?) dt (81)

F(v,\ 0,8) = /S(A(t)z A + ao(t)? + ar(t)? + ag(t)? + d(t)%) dt (82)
G(v,\,0,5) :=max{E(v, A\, 0,8), o F (v, \,0,9)} (83)

Proposition 7.2. There is a constant n > 0 such that the following property holds for every
solutions (v, \) € H? of (51) on [0,2n] x [0, 3] with v odd:

(a) If E(v, A, 1,2) > (1 —n)E(v, A, 0,1) then E(v, A, 2,3) > (1 +n)E(v, A\, 1,2).

Furthermore there is a positive constant ¢y such that the following property holds for every
solutions (v, \) € H? of (51) on [0,27] x [0, 3] with v odd and which satisfies (52):

(5) I G0, 1,2) 2 (1—n)G(v,1,0,1) then G(v,A,2,3) > (1 + )G (v, A, 1,2).

Proof. In order to prove claim (a) consider any of the functions ax(t) and a}(t) and call it
w(t) and observe we know k > 2 by assumption. From Proposition 6.2 and Lemma 6.5 it
follows that w solves then the ODE

W) — W' (t) — cw(t) =0,

where ¢ is a constant which depends on k, but it satisfies the bound ¢ > ¢ > 0 for some
positive ¢ independent of k. The polynomial 22 — x — ¢ has then a positive and a negative
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solution a™ and —a~ (also depending on k) with a* > oy > 0. The function w(t) is then
given by De®'t 4+ Ce= . A simple computations shows that

@wt

where the positive constant ¢ can be chosen to depend on «g and in particular independent
of k. Summing the square of all the coefficients involved in the computation of E we ﬁnd a
non negative function h(t) with the property that h”(t) > éh(t) and (v, X, s,0) = [7 h(t

In particualr, A is convex. The claim can be thus reduced that, for some 7 > 0,

/12h(t)dt2(1_77)/01h :>/ dt>””)/12h(t)dt' i

Arguing by contradiction, if this were to fail we could find a sequence of convex functions h;
normalized so that ff hi(t)dt =1 and

/12hj(t)dtzmax{(1—j—l)/olhj(t)dt (144~ 1)/23hj(t)dt}

By the convexity of h; we can extract a subsequence converging locally uniformly to a convex
function h, which satisfies h” > ¢h in the sense of distributions. The latter function h would

moreover satisfy
2 1 3
1:/ h(t)dtzmax{/ h(t)dt,/ h(t)dt}.
1 0 2

Since h is continuous in (0, 3) there would then be three points 0 <s; < 1 < $9< 2 < $3< 3
such that max{h(s1), h(s3)} < h(s2). The convexity of h would then imply that 4 is constant
and, since the integral of h over [1,2] is 1, the constant would have to be 1. But this would
contradict the inequality h” > h.

Having shown (a) we now turn to (b). We claim that (b) holds for ¢q sufficiently small.
Observe that if £(v, A\, 1,2) > ¢gF(v, A, 1,2), then (b) is simply implied by (a). Thus we may
assume G(v, A, 1,2) = ¢gF (v, A, 1,2). We argue by contradiction: for ¢y =1/; choose (v;, A;)
such that

g(vj7 )‘ja 17 2) Z maX{(l - n)g(vja >‘j7 07 1)a (1 + 77)_19(%‘, >\,27 3)} .

Using the linearity we can normalize it so that F(v;, A;, 1,2) = 1. Observe that we have the
inequalities

1= F(vj, Aj,1,2) > max{(1 —n)F(v;,A;,0,1), (L + 1) F(uv;, A;,2,3)} (85)
1= F(vj, M\, 1,2) > jmax{&(vj, A, 1,2), (1 —n)E(v;, Ay, 0, 1), (1 +n) " E(v;,04,2,3)} .
(86)

From Proposition 6.2 we gain a uniform bound on ||v;|g2(j0,2x]x[0,3)) and [¥ | e (j0,3)) and
consequently (since A;(0) = 0) on ||\ || g2(j0,3))- We then extract a sequence converging weakly
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to (v, \) € H? which satisfies (51) and (52). Consider the functions v and ¢, which are the
limit of the corresponding maps constructed from v;. From (86) and (81) we conclude that

C(p,t) = ao(t)Co(¢) + a1(t)¢1(¢). Unraveling the definition of { we infer
v(p,t) = ag(t)(p — ) sin% + a (t) cos% :

where a;(t) = a1(t) + \A/% However the boundary conditions v(0,t) = v(2w,t) = 0 imply
a; = 0. We are thus left with the formula v(¢,t) = ag(t)(¢ — 7) sin % Inserting in (51) we

get:

)

) — A(t) = —v/Zrao (1) (87)
0.

)
From the first equation we find ag(t) = ¢ + cpe’, while from the second we find \(t) =
—V2meit + doel — co/2mtel, e, A(t) = \/_ o(t) + dy + dae’. Using A\(0) = 0 we thus
get A(t) = —V2mtag(t) + d(e! — 1). We next use (52) to derive a further relation between aq
and A. The latter reads as

(3ao(t) — ag(t)) /o ﬂ(gb — 7)sin g (cos % + cos 2) do

2m
—l—ao(t)/ (sin g + 2" cos 2) (sin2 +sin §) do + [)\ (88)
0

Observe that, given our formulas for ag and A, the left hand side is linear combination of
the functions 1, e’ te!. However, the function te! appears only in )\(t) In particular its
coefficient must be 0. In turn this implies that ag is constant and aj, = 0, which implies that
the function e’ would appear only in the )\(t) part. We thus conclude that d = 0 as well. In

particular A(t) = —v/2wcit and ag(t) = ¢;. Finally, since ff(/'\2 +a3) = 1, the constant ¢,

cannot vanish. We thus can, without loss of generality assume ag = 1 and )\(t) = —/2nm.
Taking all this into account, the condition (88) can be rewritten as
% /O%(QS — 7)(sin 2¢ + sin ¢) d¢ + /027r (sin? £ 2 4gn? s1n—) dp —m=0
Observe that [ sin? % = 7, so that the identity can be further simplified into
% /02ﬂ(¢ — 7)(sin 2¢) + sin ¢) do + /027T (sin Lcospdp + sm cos £ sm ¢) dqﬁ =0.
—1 =11

We then compute

2
I=—(6—n) <Cos42qz5 N Cozsgb>

1 2
II = 5/ ((1 — cos @) cos ¢ +sin® @) dp =0,
0
reaching a contradiction. O
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8. Second linearization and proof of Theorem 2.1

The three annuli property of the previous section allows us to improve upon Proposition
5.2 and show that the sequence v; converges indeed on the whole [0, c0) and that the limit is
a decaying solution of the linearized problem.

Proposition 8.1. Let v; and \; be as in Proposition 5.2, where Ty s fized to be 1. Then,
there is a pair (v,\) € C? ([0,27] X [0,00)) with v odd and a subsequence, not relabeled,

loc
such that (v, A;) converges in C*([0,27] x [0,07']) to (v,\) for every o > 0. Moreover,
(v, A) solves (51), satisfies (52) and ||v||c2(ppr1)) + (Mot pr1y) < Ce ™ for some positive
universal constants C' and k and every k € N\ {0}.

Using this second linearization procedure and again the spectral analysis for odd solutions
of (51) we will then conclude

Corollary 8.2. There is a constant 6y with the following property. Assume u is as in
Theorem 2.1 and ¥ as in (24). Then |9 (t)] + [9"(t)| < Ce(1F0)t,

The latter implies easily Theorem 2.1.
8.1. Proof of Proposition 8.1

We start by observing that Proposition 5.2 and Proposition 7.2 gives easily the following
property:

o If u satisfies the assumptions of Theorem 2.1, ¢, f are given by (24) and (26) and &¢ in
Theorem 2.1 is sufficiently small, then for every k£ € N we have

if G(f°,0,k+1,k+2) > (1—-3)G(f°, 0,k k+1)
then G(f*, 0,k +2,k+3) > (1+3)G(f*, 0,k + Lk +2). (89)

Indeed, assume the claim is false, no matter how small £y in Theorem 2.1 is chosen, and let
thus f7,7; be a sequence which violates it when we choose g9 = % By translating in the
variable ¢ (which just implies a rescaling of the variable r in the original problem), we can
assume that the claim fails at & = 0. Additionally, after applying a rotation we can assume
that 9,(0) = 0, so that we can apply Proposition 5.2 with @ = 0 and 7; = 3. Introduce 4, v;
and \; as in (48)-(50). Since the functional G is quadratic, we immediately see that we have

-1
G(v;,Aj,1,2) > max { (1= 9) G320, 0.0, (14 3) 6w, 00,2 3)} . (0)
We can further renormalize G(vj, Aj, 1,2) = 1, and since

C (o ll2(o2mx[os) + A1 (0.sp) < G0, A, 0, 8) < C(|v]l m2(o.2mx (0.5 T M B ([05])) +

we can apply Proposition 5.2 to extract a subsequence converging to some (v, \). By the
C** convergence in [0, 27] x [1,2] for v; and in [1,2] for \;, we conclude that

g(U, )\, 1, 2) = hm Q(vj, )\ja 1, 2) s
J
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and in particular that the pair (v, A) is nontrivial.
On the other hand the functional G is lower semicontinuous with respect to the mentioned
convergences, and we thus infer from (90)

G(v, A, 1,2) > max { (1 _ g) G(v,\,0,1), (1 v g)l Gv, )\, 2,3)} ,

contradicting Proposition 7.2 being (v, \) nontrivial.
Having completed the proof of (89), if for some ky € N we were to have

g(f07ﬁ7k0+17k0+2> Z <1_g> g(f07ﬁ7k07k0+1)7

from (89) we would infer that

)j—(k0+1)

g(fo,ﬁ,j,]‘i‘l)Z(l—l—g g(foaﬂak0+1ak0+2) v]2k0+1

However the latter contradicts the fact that f°(t,-) and A(t) converge smoothly to 0 for
t — o0.
We thus conclude that for every k € N

G(f*, 0,k +1,k+2) < (1= ) G/, 0.k k+1),

in turn implying, by iteration, the existence of positive constants C' and x such that

£l 2 o.2mx k1)) + 10N gy < Ce™™ (Hfon([o,zn]x[o,l]) + WHHl([OJ])) :

In turn, if (vj, ;) are as in the statement of the proposition, we infer

Vil 2 0,20) ¢ fese+1]) F [N [ (o)) < Ce™"k (HUJ'HHQ([O,%}X[O,H) + ”)‘jHHl([OJ])) = Ce.

The conclusion of the proposition is then a simple application of Proposition 5.2 with [0, Tp]
replaced by [k, k + 1], together with an obvious diagonal argument over k and j.

8.2. Proof of Corollary 8.2

First of all consider any limit (v, A) as in Proposition 8.1 and let ¢ be as in (61). By the
decay property of v and \ we easily infer that

C(p,t) =ay cos%5 + ; are " ()

where the a; are constants and —py is the negative solution of the quadratic polynomial
2 2 1

r? —x — (v; — 7). Note also that a, is indeed lim;_,c A(t). Recalling Lemma 6.5, we have
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vy > Uy > % when £ > 2 and thus we conclude that g > o > 1 for all £ > 2. It is then easy
to check that we have the estimate

]l c2 (0,27 x (7,217 + ||>\||cl([T,2T}) < Ce e <||U||H2([0,27r]x[0,1]) + ||/'\||H1([0,1})> )

where C' is a constant independent of T'. Fix now T". Using Proposition 8.1 we then conclude
that, if u is as in Theorem 2.1 and ¢ and f as in Lemma 4.3 and ¢y sufficiently small
(depending on T'), then

| fNle2(o,2m) x[T,2] + ||19||01([T,2T}) < 20e T <||f0||H2([0,27r]><[0,1]) + ||19||H1([o,1})>

< Ceret (HfOHC?([O,Qﬂx[O,T]) + ||?9||Cl([07T])> ’

where the constant C' is independent of 7. By a simple rescaling argument, this actually
implies that

I f ez (o,2x) x [+ )7y et2)7] F+ 1P e (o) T (R2)T))

<CetaT (HfOHC2([0,27r]><[kT,(k—i—l)T]) + |‘79H01([kT,(k+1)T})) Vk e N.

Considering now that p2 > 1, while the constant C is independent of T, we can choose the
latter large enough so that Ce=#27 = ¢=(1+%)T for some positive ;. We then can iterate the
latter inequality to infer

| FNlez(o.2m) x (et )7, kr2)1] F+ 1O e (o) (k2 T])

<e 0T (|12 caqoamstoy + [Pllcroary )
This easily gives the conclusion of the corollary.

8.3. Proof of Theorem 2.1

Using the relation 7 = e™* and (44), (7) is an obvious consequence of Corollary 8.2.

References

[1] L. Ambrosio. Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111
(1990), 291-322.

[2] L. Ambrosio, D. Pallara. Partial regularity of free-discontinuity sets I, Ann. Scuola Norm. Sup. Pisa (4)
24 (1997), 1-38.

[3] L. Ambrosio, N. Fusco, J. E. Hutchinson. Higher integrability of the gradient and dimension of the
singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differential Equations,
16 (2003) 187-215.

[4] L. Ambrosio, N. Fusco, D. Pallara. Higher regularity of solutions of free discontinuity problems, Diff. Int.
Eq. 12 (1999), 499-520.

[5] L. Ambrosio, N. Fusco, D. Pallara. Functions of bounded variation and free discontinuity problems, in
the Ozford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000.

30



[6]
|7
18]

19]
[10]

11]
12]
13]
14]
15]
16]
17]
18]
19]
[20]
[21]

[22]
23]

[24]
[25]
[26]

[27]

J. Andersson, H. Mikayelyan. The asymptotics of the curvature of the free discontinuity set near the
cracktip for the minimizers of the Mumford-Shah functional in the plain. Preprint arXiv:1204.5328

J. Andersson, H. Mikayelyan. Regularity up to the Crack-Tip for the Mumford-Shah problem. Preprint
arXiv:1512.05094

A. Bonnet. On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Analyse Non
Linéaire 13 (4) (1996), 485-528.

A. Bonnet, & G. David. Cracktip is a global Mumford-Shah minimizer, Astérisque, 274 (2001).

B. Bourdin, G. Francfort, J.J. Marigo, The variational approach to fracture, J. Elasticity 91 (2008), no.
1-3, 5-148.

T.H. Colding, C. De Lellis, W.P. Minicozzi II. Three circles theorems for Schrédinger operators on
cylindrical ends and geometric applications. Comm. Pure Appl. Math. 61 (2008), no. 11, 1540-1602.
G. Dal Maso, G.A. Francfort, R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Ration.
Mech. Anal. 176 (2005), no. 2, 165-225.

G. Dal Maso, J.M. Morel, S. Solimini. A wvariational method in image segmentation: existence and
approximation results, Acta Math. 168 (1992), no. 1-2, 89-151.

G. David. Ct-arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math. 56 (1996), no.
3, 783-888.

G. David. Singular sets of minimizers for the Mumford-Shah functional. Progress in Mathematics, 233.
Birkhauser Verlag, Basel, 2005. xiv+581 pp. ISBN: 978-3-7643-7182-1; 3-7643-7182-X

G. David, J.C. Léger. Monotonicity and separation for the Mumford-Shah problem, Ann. Inst. H.
Poincaré Anal. Non Linéaire 19 (2002), no. 5, 631-682.

E. De Giorgi. Free discontinuity problems in calculus of variations. Frontiers in Pure and Applied
Mathemathics, 55—62, North Holland, Amsterdam, 1991.

E. De Giorgi, L. Ambrosio. Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199-210.

E. De Giorgi, M. Carriero, A. Leaci. Fzistence theorem for a minimum problem with free discontinuity
set. Arch. Ration. Mech. Anal., 108 (1989), 195-218.

C. De Lellis, M. Focardi. Higher integrability of the gradient for minimizers of the 2d Mumford-Shah
energy. J. Math. Pures Appl. (9) 100 (2013), no. 3, 391-409.

C. De Lellis, M. Focardi, B. Ruffini. A note on the Hausdorff dimension of the singular set for minimizers
of the Mumford-Shah energy. Adv. Calc. Var. 7 (2014), issue 4, 539-545.

C. De Lellis, M. Focardi. Endpoint reqularity of 2d Mumford-Shah minimizers. Preprint arXiv:1502.02299.
A. Lemenant. Regularity of the singular set for Mumford-Shah minimizers in R® near a minimal cone,
Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011), no. 3, 561-609.

J. L. Lions, E. Magenes. Problemes aux limites non homogenes et applications. Vol. 1. (French) Travaux
et Recherches Mathématiques, No. 17 Dunod, Paris 1968 xx+372 pp.

F. Maddalena, S. Solimini. Regularity properties of free discontinuity sets. Ann. Inst. H. Poincaré Anal.
Non Linéaire 18 (2001), no. 6, 675-685.

D. Mumford, J. Shah. Optimal approximations by piecewise smooth functions and associated variational
problems. Comm. Pure Appl. Math. 42 (1989), no. 5, 577-—685.

L. Simon. Asymptotics for a class of nonlinear evolution equations, with applications to geometric
problems. Ann. of Math. (2) 118 (1983), no. 3, 525-571.

31



	Introduction
	Reduction to a single connected curve
	Singular inner variations
	Rescaling and reparametrization
	Rescalings
	Reparametrization

	First linearization
	Spectral analysis
	The Ventsel boundary condition
	Spectral decomposition

	The three annuli property
	Second linearization and proof of Theorem 2.1
	Proof of Proposition 8.1
	Proof of Corollary 8.2
	Proof of Theorem 2.1


