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ABSTRACT. We show that for an area minimizing m-dimensional integral current
T of codimension at least 2 inside a sufficiently regular Riemannian manifold, the
upper Minkowski dimension of the interior singular set is at most m — 2. This
provides a strengthening of the existing (m — 2)-dimensional Hausdorff dimension
bound due to Almgren and De Lellis & Spadaro. As a by-product of the proof, we
establish an improvement on the persistence of singularities along the sequence of
center manifolds taken to approximate T' along blow-up scales.
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1. INTRODUCTION AND MAIN RESULTS

Integral currents are a natural generalization of m-dimensional integer multiplicity
smooth oriented manifolds with boundary, and are realized as the weak-* closure of the
space of such manifolds, when treated as dual to the space of differential m-forms. They
allow one to solve the oriented Plateau problem over this class and provide a suitable
setting in which to analyze the singular structure of minimizers. We will be working
with the following core assumption throughout:

Assumption 1.1. T is an m-dimensional integral current in 3, where ¥ is an (m + 71)-
dimensional embedded submanifold of class C*0 in R™*" = R™*+7+! where ¢ € (0,1)
is a fixed constant. Assume that 7' is area-minimizing in ¥ and that 1 > 2.

We define the interior regular set of T' to be all points around which sptT" can locally
be expressed as the graph of a sufficiently regular map. Namely,

RegT — {p c sptT\spt(&T) . sptT N Br(p) is a C'*® submanifold of R™*" for } .

some R,a > 0
Consequently, we define the (interior) singular set of T to be
SingT := sptT\(spt(T) u Reg T)).

A sharp Hausdorff dimension estimate for the interior singular set of 7' in this setting
has been determined in all possible cases. When the codimension 7 is one, the Hausdorff
dimension of this set was shown to be at most m — 7 (with purely isolated singularities
when m = 7) by Federer [12], with important contributions from Fleming, De Giorgi,
Almgren and Simons for the lower dimensional cases (see [30-32,39,40]). It was further
shown by Simon in [38] that the singular set is (m — 7)-rectifiable. The sharpness of
these results in codimension one were verified by Bombieri, De Giorgi & Guisti in [33].
There, the authors demonstrate that Simons’ cone

S={zeR®:af+a5+a3+a] =2 +af+25+23} <R,
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which has an isolated singularity at the origin, is area minimizing.
When 71 > 2, the seminal work of Almgren [14] provides an upper Hausdorff dimension
bound of m — 2 for the interior singular set:

(1) dimy (SingT’) < m — 2.

The sharpness of this can be easily seen from considering any holomorphic variety of
complex codimension one (real codimension two) with a singular branch point at the
origin, such as
I={(z,w)eC®:2*=w’}.

Almgren’s original proof has since been simplified and made more transparent by De
Lellis & Spadaro in the series of papers [20-22]. Furthermore, these authors were also
able to relax the a priori assumptions on the ambient manifold ¥ from C° to merely
03’80.

An important first step towards classifying the types of singularities of T' comes from
Almgren’s stratification (see, for example, [2]), which tells us that

(2) dimy (S*(T)) < &,
where
k . . ny tangen ne of T ¢ spli ff
(3) S (T) = {p € SptT\SptaT * n(? ni]ozz tghealf zok—?j?men:igfaizu%ssgace } :

If the codimension of T' is one, then any point that has a flat tangent cone is neces-
sarily regular. This is due to the local characterization of codimension one integral
currents in terms of boundaries of Caccioppoli sets, see [23, Theorem 27.6, Corol-
lary 27.8], combined with De Giorgi’s e-Regularity Theorem. In addition, we always
have S~ 1 (T)\S™ %(T) = & for classical area-minimizers. Combining these facts
with (2), the codimension two bound on the singular set follows immediately (the sharper
codimension 7 bound due to Federer [12] comes from a more elaborate dimension re-
duction argument). This is no longer true in higher codimension; flat singular points
peS™(T)\S™ H(T) exist, as exemplified by holomorphic subvarieties of the form

I'={(z,w) eC*: (z —w?)® = w'" }.

This is a 3-valued perturbation of the regular graph z = w? locally around the origin,
and 0 € S™(T)\S™ 1(T).

Thus, more work needs to be done in the higher codimension setting, to estimate
the size of those singular points at which T is close to being flat. An important step
is the removal of the contribution of the ‘regular part’ of the current around singular
points, before analyzing the singular behaviour. This is precisely the role of the center
manifold.

In contrast to the codimension one case, the fine structure of the interior singular set
is still unknown in general. In the case m = 2, Chang [11] and De Lellis, Spadaro &
Spolaor [8-10] established a structure theorem for the singular set: all singularities are
isolated. Chang’s result relies heavily on the existence of a branched center manifold.
The rigorous proof of the existence of such an object is due to the latter named authors,
who also generalize the structure result to the wider class of semicalibrated currents and
spherical cross sections of area minimizing cones.

See also the recent work of Liu [1], where the author demonstrates that it is possible
for any finite (combinatorial) graph to arise as the singular set of a 3-dimensional area
minimizing current in a 7-dimensional closed, compact Riemannian manifold. The sin-
gular set produced there, however, consists only of conical and cylindrical singularities;
namely, points in S*(T').

The results of this article are an initial step towards better understanding the problem
of how to determine the structure of the singular set; in particular, the ‘flat’ singular
points p € S™(T)\S™ }(T). Before we state our main result, let us introduce some
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common notation. We will use dimys(E) to denote the upper Minkowski dimension of
a set £ < R™™™, Namely,

dimy; (E) := inf { $>0: limsupd®*N(§, E) < o0 } ,
510

where N(0, E') denotes the smallest number of open balls of radius § required to cover
E.
For Q € N, we let
Sing. o (T') := SingT n D>q(T')
where
D>q(T) == {pesptT\spt(dT) : O(T,p) = Q}.
When we are referring to singular points of density exactly Q, we will use the notation
SingT". We are now ready to state our main result, which is the following:

Theorem 1.2. For T and ¥ as in Assumption 1.1 and @ € N\{0},
dim s (Sing> T N Q) <m — 2
for any Q @R™*™\(0T U Sing- 1, T)-

This provides a more refined dimension bound on the singular set than the existing
one (1) due to Almgren. However, we are not able to control the (m — 2)-dimensional
Minkowski content via the methods here. See the recent work [35] of De Lellis, March-
ese, Spadaro & Valtorta, where the authors successfully get an (m — 2)-dimensional
Minkowski content bound and establish (m — 2)-rectifiability for the set of Q-points of
(non-trivial) multi-valued harmonic maps. There, the authors use rectifiable Reifenberg
methods to establish this; it is currently unclear as to whether the same approach can be
adopted in this setting. There is also the alternative approach in [3] by Krummel & Wick-
ramasekera, but this seems to heavily rely on the explicit structure of Dir-minimizers
on two-dimensional domains and the classificaiton of their frequency values.

Notice that in order to prove Theoreom 1.2, it suffices to establish the estimate

di_mM(Sing[Q’QJrs]T NnQ)<m-—2, for any € > 0,
where
Sing[q, g+ = SingT N Diq,q+<T,
and
Dig,0+aT == {pesptT\spt(dT) : Q <O(T,p) < Q+¢c}.
This is because we have the following consequence of the quantitative stratification of

Naber & Valtorta in [19]:

Lemma 1.3. For any ¢ > 0, the following holds. For T and ¥ as in Assumption 1.1
and Q € N\{0}, the set

Sing> . T N Q
is (m — 3)-rectifiable and has finite upper (m — 3)-Minkowski content, for any Q €
R™+\ (0T U Sing. o1 (T'))-

This allows us to ignore contribution from singularities of all non-integer densities
above an arbitrarily small threshold. We defer the proof of this to Section 11. By virtue
of the Allard-Almgren e-Regularity Theorem, in the case @ = 1 we have

Sing,T' c Sing~,, T

for any € > 0. Thus, in the special case of singular points with multiplicities @ € [1,2),
we immediately deduce the following stronger result:
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Proposition 1.4. For any Q € R™*"\(0T U Sing-,(T)), the set
Sing=,(T) N Q
is (m — 3)-rectifiable and has finite upper (m — 3)-Minkowski content.

Notice that throughout this article, we restrict to the study of interior singularities for
our area minimizing current 7'. Boundary singularities are much less clearly understood;
Hardt & Simon demonstrated in [36] that the boundary singular set is empty when the
codimension 71 = 1, while Allard [24] demonstrated boundary regularity in any dimension
and codimension under a multiplicity one assumption on the boundary and with a convex
barrier. More recently in the works [44] and [42,43] the uniqueness of tangent cones and
an Allard-type regularity result at the boundary is shown when m = 2. However, such a
regularity result only holds at all boundary points under a convex barrier assumption on
the boundary, and to the author’s knowledge, the best known result to date in general
is density of regular boundary points. See [34] for a proof of this.
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2. NOTATION

Let us now introduce the frequent notation that we will be using:

Ag (RF) the space of Q-tuples of vectors in R* (see [18] for more details);
B.(p) the (m + n)-dimensional Euclidean ball of radius r centered at p;
B.(z) the geodesic ball of radius r centered at z on a given center

manifold (see [22] for more details);
H? the s-dimensional Hausdorff measure, s > 0;
dg the Hausdorff metric on the space of compact subsets of R™+";
WhP (Q;Ag) the space of @Q-valued p-integrable Sobolev maps with
p-integrable distributional derivatives up to order k € N on (Q;
B, (z,7) the m-dimensional Euclidean ball of radius r and center z in the
m-~dimensional plane 7. If it is clear from context, we will just

write By(z);

E* The orthogonal complement to the set F with respect to the
standard Euclidean inner product;
C,(z,m) the infinite (m + n)-dimensional Euclidean cylinder B, (z,7) + 7+

with center z, radius 7 in direction 7;

—z
around the center z;

Loy the scaling map w —



T, the translation map w — w + z;

fi the push-forward under the map f;
E,. the blow-up (¢, )4 E of the set E;
TN the tangent plane to the manifold A" at the point p € N;
Q
Tr the current Z Z (f7):[M;] induced by the push-forward of a
ieN j=1

Q-valued map F : M — Ag(R™") on a Borel set M < R™ with

Q

decomposition F|ps, = Z 171, M = w;M; as in [16, Lemma 1.1]
j=1

(see [16, Section 1.1] for a more detailed definition);

EFECcF The set E is compactly contained in the set F, namely, E c F}

A~B The quantities A and B are comparable, namely, c;A < B < o B
for some ¢, ¢co > 0;

(T, p) the m-dimensional Hausdorff density of T" at a given point p;

Px the orthogonal projection to the m-plane 7 < R™*";

m(X) the space of integral m-dimensional varifolds on X;

F(V1,Va)  the flat distance between the varifolds V7 and Va;
F(V1,V3)  the varifold distance (induced by the weak- topology) between
and V5.

We refer the reader to a standard text such as [13], [23] or [7] for the relevant geometric
measure theory background. For further details on @Q-valued maps and related concepts,
we recommend [18] and [16].

We will often be extracting subsequences for compactness arguments throughout this
article. None of the subsequences will be relabelled, unless otherwise stated. Geometric
constants, which only depend only on m,n,n and @, will usually be denoted by Cj.
When it is not important for the overall argument, dependencies of constants such as ¢
and C' will be omitted. Such constants will typically also be geometric; otherwise, the
precise dependencies can often be inferred from the text.

3. KEY PRELIMINARY RESULTS

Before stating the important preliminary results needed to prove Theorem 3.3, we
remind ourselves that the goal is to prove that for any given « > 0, the upper (m—2+a)-
Minkowski content of SingT" vanishes:

lim sup N (SingT’, r)r™ 2% = 0.
rl0
We argue by contradiction; suppose this is not true. As in the proof of the Hausdorff
dimension bound, we would like to blow up around an arbitrary H™ 2+*-density point
p € SingT" and combine this with the existence of a flat tangent cone there to reach
a contradiction. The problem is that the Minkowski contents do not behave desirably
under Hausdorff convergence of sets, and in fact are not even measures so are not
particularly easy to work with in general. The Hausdorff measure itself is also not
necessarily lower-semicontinuous with respect to Hausdorff convergence, but to avoid
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issues with this one can relax it to the premeasure H5,. Null sets are preserved under
this replacement, so this does not affect our contradiction argument.

Thus, we first reduce the problem of estimating the upper Minkowski content of
SingT' to one of estimating the Hausdorff dimension. Of course, since the latter is a
cruder dimension estimate, we pay the price of having to bound the Hausdorff dimension
uniformly for every set in an appropriate compact family. A crucial tool that we will
require is Almgren’s Work Raccoon Lemma, which allows us to work with the Hausdorff
measure instead of the Minkowski content. To the author’s knowledge, this result is
originally due to Almgren and a version of it is likely contained within [5], but first
formally appeared in [6, Theorem 5.1]. However, in both of these references, it was used
to establish Hausdorff dimension estimates for blow-up limits and as far as the author
is aware, it has not yet been formally observed that this result also gives a Minkowski
dimension bound.

Lemma 3.1 (Work_Raccoon Lemma). Suppose that we have a non-trivial class € of
compact subsets of By < R™*™ such that

(a) € is closed under rescalings, namely, for each K € €, v € By and 0 < r < 1,
Kyrn B; = (tz,r)p K N B, €%,
(b) € is closed under Hausdorff convergence.

Then the family of exponents
A(€)={a=0:H*(K)=0 for every Ke €}

is an open half-line (ag, 00).
Moreover, for every 0 < r < 1, the minimal number N(K,r) of balls of radius r
required to cover K satisfies

(4) N(K,r)r* < C(a) for every a € o (%).

We postpone the proof of this Lemma to Section 10, and will henceforth assume its
validity.

We will henceforth fix an arbitrary set Q@ € R™*"\(0T U Sing_5,T). We now
seek an appropriate family of sets to which the Work Raccoon Lemma applies. Recall
that, as for the Hausdorff dimension estimate, we are interested in blowing up around
points z € Sing[g g4 7 M €2, in order to understand the size of this singular set. This
motivates choosing the compact family of sets to be the smallest one that contains blow-
up sequences of the singular set and is closed under Hausdorff convergence and rescalings
of the form in (a) of the lemma. We formulate this more precisely as follows.

Given € € (0,1), let

(5) A(e) == Q\Sing_ o, . T.

By the upper-semicontinuity of the density, this is an open set, and so can be written
as an (increasing) countable union of compact sets. Fix any one of these compact sets
K = K(¢) and let
K% K) == K(¢) n Sing. T

Hence, in order to prove the Minkowski dimension estimate in Theorem 1.2, it suffices to
establish it for K (e, K ). First of all, observe that we may find R > 0 large enough such
that Q c By, so K°(e, K) is a compact subset of Bg. Clearly the result of the Work
Raccoon Lemma is unchanged by replacing B, with By, so we may assume that R = 1.
Our candidate for the family to which we wish to apply the Work Raccon Lemma is
then

~ 0 o =Y dH
¢ (e, K) =< K compact, K c K% : Koy, (6, K) n By = K%, .
x € R™T" € (0,1] convergent



Indeed, we can say the following:

Proposition 3.2. Given ¢ € (0,1) and K(¢) as defined above, the collection € (e, K)
contains K% (e, K) and satisfies the assumptions of Lemma 3.1.

The proof of this Proposition is also contained in Section 10. It remains to show that
oo as in Lemma 3.1 satisfies ag < m — 2 for this compact family (e, K).
First of all, by extracting a subsequence, we may assume that given any K € (e, K),
we have
T — X and Tk — T,
for the corresponding blow-up scales and centers.
Notice that if » > 0, then

K® c Sing(T, ) n By,

since B,, (7x) A, B, (x). Thus in this case the existing dimension estimate (1) due to
Almgren [14] tells us that H™=27%(K®) = 0 for each a > 0. So we may assume that
TEk l 0.

The main result Theorem 1.2 can now be concluded from the following:

Theorem 3.3. There exists € € (0,1) sufficiently small such that the following holds for
any compact K () < A(e).

For any K% in the family ‘g(e,f() of Proposition 3.2, we have the following di-
chotomy. Fither

(a) there exists an m-dimensional area minimizing integral current S in R™T™ such that
K® c SingS;

(b) there exists an m-plane T, < R™T™ and a non-trivial Dir-minimizer u : T =
R™ x {0} o Bs — Aq with

K* c Ag(u) = {ZEB% s u(z) =Q[[0]]}.

In particular, applying Almgren’s dimension estimate (1) in case (a) and [18, Prop. 3.22]
in case (b), we arrive at

H™E(K®) =0 for every a > 0.

Unless otherwise mentioned, we will henceforth fix an arbitrary choice of ¢ > 0 and
a compact set K(g) c A(e), and will omit dependencies on ¢ and K for all the sets
defined above. The following section is dedicated to reducing ourselves to the second
alternative (b) in Theorem 3.3, by characterizing the blow-up limit along a sequence
with varying centers.

4. REDUCTION TO THE SECOND ALTENATIVE IN THEOREM 3.3

We hope to use Almgren’s center manifold construction to prove the above theorem.
Unfortunately, in our reduction to merely establishing a uniform Hausdorff dimension
bound of m — 2 for our whole family of compact sets %, we have been forced to include
blow-ups with varying centers. Therefore it is necessary to check that singularities still
persist along such diagonal blow-up sequences.

Firstly, for any K* € ¢, we would like to ensure that the blow-up centers are singular
@-points of T', so that the sheets of our current are not collapsing around the centers.
This will be important in order to ensure that our blow-up limit is non-trivial.

Proposition 4.1. Let T and X be as in Assumption 1.1. Then for any K® € € as
in Theorem 3.3, we may assume that the centers of the corresponding blow-ups ngﬂ‘k
satisfy

Tk € KO.
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Proof. Consider the original sequences of centers xy € R™*" and blow-up scales i, | 0.
We may without loss of generality assume that (for k sufficiently large) K° N Ba,, (7)) #
&, so we can find p_oints 2z € K9 n By, (zx). But now we can_instead consider the
blow-ups K?, 3, N By, the support of which contain sptKy, ,, n Bi. For k sufficiently
large, -
K° A Bs,, (2x) C A,

for A = A(e) as in (5). This completes the proof, after replacing K by a slightly larger
compact set contained in A if necessary. (I

Notice that since K° is compact, Proposition 4.1 allows us to assume that for any
K € €, the corresponding blow-up centers xj, satisfy x, — = € K° up to subsequence.
In particular, we have

(6) Q<O(Tx)<Q+e.

Remark 4.2. Observe that (6) holds because we are blowing up a compact subset
of Sing[Q,Q T Without this, up to the author’s knowledge, it remains unknown
whether it is possible to rule out the situation that O(T,zx) < @ + ¢ for each k, but
O(T,z) > Q+e¢, even under the assumption that xj € SingT. We will see the importance
of (6) when we investigate the structure of these blow-ups in the limit as k — oo.

We will henceforth assume the property (6) for any given K € ¥. Another key
assumption that we impose throughout will be the following:

Assumption 4.3. Let T and X be as in Assumption 1.1. Given K € ¥ and z =
limy_,c0 Tk, we may assume that X n By /() is the graph of a C*<0 function ¥, :
Tp% nBr m(z) — T,X*+ for every pe & n By /m(z). We may further assume that
c(X) = sup [D¥, |20 <E,
peXNB; /()
where € will be determined later. This in particular gives us the following uniform
control on the second fundamental form of 3:

A = [As|cos) < Coc(X).

Unfortunately, due to the fact that the centers of the blow-ups are varying, we cannot
necessarily deduce that the tangent current obtained in the blow-up limit is a cone; the
monotonicity formula is only valid for a fixed center. Nevertheless, we are still able to
deduce the following about the limit:

Proposition 4.4. Suppose that T and % satisfy Assumption 1.1. Then we may choose
e > 0 sufficiently small such that the following holds for any K* € € (e, f() with corre-
sponding blow-up centers xy € KO(E,f() and blow-up scales i, | 0, satisfying Assump-
tion 4.3 for & = &(x) > 0 small enough.

There exists an m-dimensional integral area minimizing current S in R™T"  such
that up to subsequence,

(7) Topir — 8, 1T, | (B) — [S](B) for any open ball B,

and either
(a) K c Sing. S,

(b) S =Q[rw] for some plane 7y .

Remark 4.5. An important consequence of this proposition is that the limiting set K *
is determined by the structure of a tangent current obtained as a weak-* limit of the
blow-ups. Indeed, we demonstrate in the proof that



The first possibility is that the tangent current Reg> S = &, which leads to the con-
clusion of case (a). This case covers the first alternative in Theorem 3.3, where the sin-
gularities persist to the tangent S. The conclusion of the Minkowski dimension estimate
in Theorem 1.2 then follows immediately from Almgren’s Big Regularity Theorem (1).

In case (b), there is a flat tangent current. This can be considered as a first order
approximation for 7" near z, which captures the regular behaviour of T" there, meanwhile
the singularities vanish in the limit. We thus need to show persistence of singularities
at the level of a harmonic approximation to T' at an infinitesimal scale around x. This
approximation is constructed in such a way that the regular behaviour is absorbed into
the domain, and so singularities do indeed persist.

Proof. First of all, by the definition of K°, x is an interior point of 7" and (6) tells us
that we can find § > 0 sufficiently small such that

T|(B
W O™

We claim that for any open ball B  R™"" centered at the origin, we have

Sl}i‘p Hle,Tk H (BR) < Q+ 3e.

Indeed, due to the pointwise convergence of xj to x,

ITI|Br(zr) — [T|(Br(2)).

for all but a countable collection of radii R. This can be easily verified by approximating
the mass of T' on balls via a pairing with appropriate m-forms, and exploiting the
continuity property of T'. Combining this with (8) and the fact that T is m-dimensional,
and by using monotonicity formula around z;, when k is large enough such that Rry < 4,
we have

1o [(Br) _ TBrry(@r)) _ ca@-rn) ITIBs(zr)) _ |T1(Bs(z))

wm R™ Wi (Rrg)™ W O™ T w,0m

provided that we choose € sufficiently small, only dependent on .
Since x is an interior point for T', we may further choose k large enough such that

(9) 0Ty, r,LBr =0, for k sufficiently large.

+ 3¢,

Thus, the Federer-Fleming Compactness Theorem (see, for example [23, Theorem 32.2])
for normal currents tells us that we can extract a subsequence and an m-dimensional
area minimizing integral current S on R™*" for which

*
Ty v — S as Radon measures.
ksTk

Moreover, 0S = 0, due to (9) and the continuity of the boundary operator with respect
to weak-* convergence.

To establish the convergence of masses, firstly observe that the lower-semicontinuity
of the mass tells us that for any ball B,

[S1(B) < lim inf [T, r, | (B).

Now suppose that for some ball B we have ||S|(B) < liminfy, | Ty, . ||(B). For k suffi-
ciently large 0SB = 0T, », LB = 0, so this contradicts the area minimizing property
of T and all its rescalings. We can therefore extract a subsequence for which we indeed
have

| Ty i [(B) — [[S](B).
In particular, we deduce that for any R > 0,
S|(B
(10) ISIBR) 4 4.

wm R™
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Furthermore, one can show that
(11) K* c D=S.

Indeed, given any y € K® and any p > 0, the local convergence of the masses (7) tells
us that for any 1 > 0, we can find k sufficiently large such that

1S1Be()) o [Toer[Boy)
Wy, P Wy P
Tk + Bor, (rky)
Won (i)™

Taking p | 0, we deduce that
O(S,y) = O(T,xy, + rry) —n for k sufficiently large

But now, since xx + ryy — x, we can exploit the upper-semicontinuity of the density
to deduce that ©(S,y) = Q — n. Since 7 is arbitrary, we conclude that O(S,y) = Q.
However, we cannot deduce that O(S,y) < @ + ce for some constant ¢ > 0; the density
might increase in the limit.

Thus, in order to try and determine the size of K®, it makes sense to investigate
the structure of the set of high multiplicity points in sptS. There are two possibilities:
either there exists a regular point

20 € Reg=q S,

or all points in D>¢(S) are singular. If the latter holds then (11) tells us that we must
necessarily have K < Sing. S and so we are in case (a).

Suppose on the other hand that there exists a point 2o € Reg> S. First of all, let
us assume that O(S, zg) = . We want to show that this implies S is flat. We plan to
use Allard’s Regularity Theorem [17, Section 8] to see that S = Q[I'] for some smooth
surface I', and that T' is flat at both infinity and locally around zg, so is in fact an
m-dimensional plane. In order to see this, we will need to apply Allard to % However,
we do not even know that this object makes sense a priori. Thus, define

E:={weRegS:0(Sw) =Q},

and let S := SL E. By definition, F is a C»*-submanifold of ¥ for some o € (0,1). We
proceed to show that S = S.

Notice that E\F < SingS. Indeed, given any z € E\E, we know that ©(S,z) > Q by
upper-semicontinuity of the density. If z € Reg S, then in fact we could further conclude
that ©(S,z) = Q, because there is an open neighbourhood of z on which the density
agrees with ©(S, z), but also z; — z for some sequence {z}  E.

Again exploiting the dimension estimate (1) on the singular set of S, we deduce that

H™ 2 (E\E) =0  Va > 0.
But recall that 05 = 0 and E is a smooth manifold, so

spt(0S) = spt(SLIE) c E\FE,
and hence

H™ 2% (spt(05)) = 0 Va > 0.
However, 05 is an (m — 1)-dimensional integral flat chain, so by a well-known result of
Federer, we deduce that
05 =0= 2085,

and moreover S is area minimizing, since S is. Now since ©(S,-) = @, we can consider
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By virtue of (10), for any R > 0 we have

[SI(Br(20) _ [SIBrij=)

Rm™ h R™
- Wm(R+ |20))"(Q + 4e)
< OR™

—wn(1+ 20" (14 5).

Hence, we have a uniform upper bound over R > 0 on the masses |S,, r|(B1). When
combining with the zero boundary condition, this allows us to again use the Federer-
Fleming Compactness Theorem to extract a sequence Ry T o0 and an m-dimensional
area minimizing cone (with vertex at the origin) S, such that S_’ZO, Ry A 5, and
IS0, |(B1) — | Sec]|(By). )

The fact that this tangent at infinity So is a cone follows from the monotonicity
formula, in the same way as for a tangent at a fixed point.

By considering (12) at scales Ry 1 00, we have

(12)

- 4e
1 1(B1) < wm (14 %)
Q
Since O(S,-) = O(S,-) = 1, we can choose e > 0 sufficiently small in order to apply
Allard’s Regularity Theorem and deduce that Sy is a C La_graph locally near the origin.
Since Sy is a cone, we conclude that

S = [r] for some m-plane 7.

Note that we can conclude this for S, regardless of the center that we take for the
blow-down limit. Now if ©(S,29) = Q, we can combine this with the regularity of S
near zy to deduce that in fact S = [r n E] and hence S = Q[r n E]. Indeed, since
S| (B1) = wpm, we have

(13) 1imw —1= lim IS1(B . (0))

10 W, T k—o0 Wm RZL ’

so the monotonicity formula allows us to conclude.
It remains to check that S = S. Due to (10), we have

IS — S|(Bg) < 4ewmR™ for any R > 0.
Thus, for any y € spt(S — S) and any R > 0, we have
IS = SIBr(y)) < wne(R + |y))™,

as well as
|S = S|(Br(y)) = wmR™,

simply because the density at any point in the support of an integral current is at least
1. Taking R > |y| and then e < 3 (if this is not already the case), we indeed have S = S.
Finally, we explain why we cannot have z € Reg> . S. Note that the density at any
regular point must be integer-valued, due to the dimension estimate [23, Theorem 35.3]
for the set of points with non-integer densities. If ©(S, z9) > Q + 1, then (13) instead
becomes
18I0 @1 SI(Br, (0)

0 W™ Q k—0 W R

This, however, contradicts the monotonicity formula, so cannot occur. ([l
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We have therefore successfully reduced the problem to that of deducing that the sec-
ond alternative of Theorem 3.3 holds true whenever we are in case (b) of Proposition 4.4.
The remainder of the article will be dedicated to proving that this is indeed true.

Before continuing, recall that the ezcess E(T, B) on a ball is defined as follows. Given
any m-dimensional plane 7, denote by 7 the unit m-vector orienting this m-plane. Then

1 3}
E(T,B,7) == 38| JB |T —®*d|T|  for any m-plane m < R™*";

E(T,B):= inf E(T,B,n),
m-planes 7
The definition of the cylindrical excess E(T, C) for a cylinder C(z,7) = B(z,7) x 7t is
analogously defined.
Applying Propositions 4.1 and 4.4 to the sequences xj and rj, we can assume that the
weak-= limit S of our blow-up sequence is an m-plane with multiplicity . In summary,
we henceforth make the following assumptions:

Assumption 4.6. Let T and ¥ be as in Assumption 1.1 and let &, > 0 be given by
Proposition 4.4. We assume that we have an arbitrary fixed set K € € (e, K ) satisfying
Assumption 4.3. For this set K®, we have associated blow-up centers zj, and scales
7t | 0 such that for any arbitrarily fixed y € K%, there is a sequence of points y; with

(i) zg, e KO, Ty — T,
(i) yo € K, nB1, i =,

(i) E(T, By, (zx)) = E(Ty, r.,B1) — 0 as k — 0.

The assumption (iii) is a consequence of the weak-# convergence and the convergence
of masses. Indeed, for any open (m + n)-dimensional ball B and any m-plane 7, we
have:

1 - N
B(T., 0 B.7) = 37 f o — 712 d|Top e

|Te i (B
= k|Bk| |B| < $k77‘k’7r> dHTZk,Tk H’
and so, taking k — o0, we arrive at
IS](B .
(14) E(Tzkﬂ'k’B’ﬂ-) —)E(S’Ba ) = |B| |B| <S >dHSH

Before we continue, we must first ensure that our setup will allow us to approximate
our current well by a -valued map at the scales of the blow-up procedure (see [20]). In
view of this, we will assume the following:

Assumption 4.7. Let T and ¥ be as in Assumption 1.1, and suppose that Assump-
tions 4.6 and 4.3 hold. If we replace € from Assumption 4.6 by min{e, 3}, then for each
xj we can find an m-plane 7, such that

pﬂ_le_ Cll\/mrk (.’L'k, 7Tk) = Q[[Bu\/szwk (.’L'k,ﬂ'k)]], oT L Cll\/;T”‘k (ZC]C, 7Tk) = 0.

From now on, we will work under Assumptions 1.1-4.7.

5. OVERVIEW OF THE REMAINING ARGUMENT

Let us now discuss the overall approach towards proving the second alternative in
Theorem 3.3. Our goal is to show that K < Ag(u), where u is some Dir-minimizing
Q-valued map defined over (an open ball in) an m-dimensional plane. We would like to
argue as follows:
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Step 1. Approximate our blow-up sequence Ty, ,, by ‘almost’ Dir-minimizing W12-
maps uj parameterized over m-dimensional planes;

Step 2. renormalize and recenter the uy appropriately so that, up to subsequence, we
have strong convergence to some non-trivial Dir-minimizer u in L ;

Step 3. Check if u is a viable candidate for the map in Theorem 3.3.

This proposed scheme, however, does not work. The main problem is that the limit u
could potentially be trivial. Thus, the singularities at z; and y; will not have persisted
in the limit. Such a phenomenon would occur whenever T' has a prominent regular part
of higher polynomial order coming into contact with its branched singular structure,
locally around the blow-up centers. This regular behaviour would dominate in the limit,
thus leading to disappearance of singularities.

We overcome this problem via the center manifold construction of Almgren, origi-
nally used to estimate the Hausdorff dimension of the singular set. Center manifolds
provide a good replacement for m-planes as the objects on which we build our approx-
imations in (1) of the above desired scheme. The reason for this is that the center
manifolds capture the regular behaviour of 1" around the points x;. We may then con-
struct graphical approximations over the normal bundles of the center manifolds; these
graphical approximations should only capture the singular behaviour of T" locally.

We can then instead choose u to be an appropriately normalized limit of these graphs
over the center manifolds. The singularities should now persist to this limit; uniform
bounds on the frequency function along our sequence of approximating graphs will allow
us to conclude this. This will allow us to use the information about the size of the
singular set for Dir-minimizers to achieve the claimed dimension bound.

Section 6 is dedicated to the set up of our sequence of center manifolds. In Section 7,
we will then discuss the frequency function and its key properties, including the uniform
bounds that are then proved in Section 8. We conclude with the final persistence of
singularities argument in Section 9.

6. ALMGREN’S CENTER MANIFOLD CONSTRUCTION

6.1. The Refining Procedure. In order to build the sequence of center manifolds
along the scales of our blow-up sequence, we require the refining procedure and Whitney
decomposition from [22, Proposition 1.11] for each T}, ,, , constructed via stopping time
criteria based on the size of the excess and the height of T, ,, .

In view of [21], we will be taking this sequence over small intervals containing the
scales 1. These intervals will detect the scales at which the current T stops being suffi-
ciently flat (and thus when a given center manifold no longer approximates T sufficiently
well), allowing us to rescale and build a new center manifold and normal approxima-
tion which will approximate T better at the new scale. We restate these necessary
preliminary results here for the convenience of the reader:

Fix w € sptT\spt(0T') and r < ﬁ dist(w, spt(0T')). Define

T =Ty, L Bg/m: Y=ty (2).

We will later choose w to be our blow-up centers x; and the corresponding r to be scales
close to rp,.

Let ¢ = U jen %7 be the collection of all closed dyadic m-dimensional subcubes of
[—4,4]™ < 7p. Namely, €7 consists of all cubes inside [—4, 4]™ of side length 2177 with
vertices in 21 79Z. Given L € €%, let £(L) := 2'~7 denote the side length of L. We call
J € €7 an ancestor of L if L < J and we call J a parent of L (or L a child of J) if
furthermore J € 7. We denote the center of L by xr.

Given a cube L € ¢, Assumption 4.7 allows us to find y € Span{zy}* such that

pr = (xr,yL) = xp + yr, € sptT".
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Notice that the choice of yy, is not unique (since we assume @ > 1), but for each L we
fix a choice.

Moreover, for any Mg > 0, let r1, :== Myy/mé(L) and let By, := Bgy,, (pr). Let 7y, be
the optimal plane for the excess of 7/ in By, namely

E(T',BL) = E(T", By, #1).

Since we wish to remain to also remain within ¥ when approximating 7" graphically, we
further find a plane 77, < 7T}, % such that

|7TL77ATL|= inf |7T*7?FL|.
€Ty, 2
or equivalently, E(T',Bp,7L) = infrer, = E(T',Bp, ). The planes 7, will orient the
cylinders in which we construct the local Lipschitz approximations from [20, Theo-
rem 2.4]. This will be discussed in more detail in Section 6.2.

Fix Ny € N. We now construct our refining procedure using a Whitney decomposition
of [—4,4]™ < mp as follows. We first choose constants By = 4d2 as in [22, Assump-
tion 1.8], and fix constants C, and C} to be determined later with the dependencies
of [22, Assumption 1.9].

Given j > Ny, we set up three subfamilies of cubes #J, 7/,3, W < W and place
cubes L € € into these families inductively, starting from j = Ny, as follows:

(EX) Let L e #J it E(T",By) > Comiol(L)?>2%;
(HT) Let L € Whj if L¢ %j and h(T/,BL) < Chmngg(L)lJrﬁz;
(NN) Let Le #;] if L¢ #) o Whj but L intersects an element of #7771,
Here

o = max{e(S), BT, Boyy) < 2

and g9 is a small positive constant to be determined later, with the dependencies of [22,
Assumption 1.9]. If one of these conditions holds for L, then STOP refining. Define

Wj:=7/eju7ﬁhju7ﬂnjc‘5j and W o= UWj.
j=No
Otherwise, place L in the family .#7 < €7 and apply the above stopping conditions to

the children cubes I’ € €7+! of L. Furthermore, place all cubes L € €7 with j < Ny in
= U;>n, 7+ In other words, .7’ is characterized by

Je — J € € and either J has a child L e # or £(J) > 217,

Continue this refining procedure inductively.

Observe that given any x € [—4,4]™ < 7o, this refinement procedure either stops on
some L € # containing x, or we can continue refining indefinitely around x. We denote
by T" the set of points where the latter occurs:

r—[-44™ Jr=) U L

Lew j=No Le.#i

Notice that for any x € T, there exists a sequence of cubes L; € .7 with = € L;.
Moreover, we make the obvious but important observation that

(15) Le#’, j>Ny — the parent cube of L lies in .#771.

We recall the following result from [22], which tells us that the above construction indeed
gives a Whitney decomposition.
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Proposition 6.1 (Whitney decomposition, [22], Proposition 1.11). Provided that As-
sumptions 1.8 and 1.9 from [22] hold and &4 is sufficiently small, we can conclude that
(T, %) is a Whitney decomposition of [—4,4]™ < my. More precisely,

(wl) | XV U L =[—4,4]™ and T does not intersect any cube L € #;
Lew
(w2) any pair of cubes L, L' € # have disjoint interiors;
1
(w3) if L, L'e W and L ~n L' # &, then §£(L) <L) < 2¢(L).

These conditions further imply that
(16) sep(T, L) :==inf{ |z —y|:x € L,ye T} = 2(L) for every Le ¥ .

Moreover, for any choice of My and Ny, there exists C* = C*(My, No) such that when-
ever Co = C* and Cy, = C*C,, we have

(17) W =@  for every j < Ny + 6,

and

(18)  E(T',By) < Cemol(J)2"2%2, h(T',By) < ComZ (J)*P2  for J e ;
(19)  E(T",Br) < Cmol(L)*>*2, h(T',B1) < Cmglﬁe(L)HBz for Le W,
where C = C (B2, d2, Mo, No, Ce, Ch).

Note that we do not require an upper bound on the separation in terms of the size
of the cube, despite the fact that this additional condition is usually included in the
criteria for a Whitney decomposition. The choices of My and Ny will be determined
by Propositions 6.10 and 6.12. When combined with the stopping conditions, observe
that (19) tells us that for any L € #/, the excess of T” over the ball By, is comparable

to mof(L)?72% and the height is comparable to mO%’" ((L)1 5z,

The first two conditions (w1l) and (w2) are an automatic consequence of the construc-
tion. The validity of the remaining conditions relies on the observation (15) mentioned
above and a quantitative control [22, Proposition 4.1] on the tilting of the optimal planes
for the excess. We omit the details, and instead refer the reader to [22, Section 4].

6.2. The Center Manifold M. Given any cube L € % U # ', we wish to consider
Almgren’s strong Lipschitz approximation fr from [20, Theorem 2.4] locally for 7" L
Csar, (pL, 7). Let us recall this result here (with the proof omitted), for the benefit of
the reader.

Theorem 6.2 (Almgren’s strong approximation, [20], Theorem 2.4). There exist con-
stants C,y1,e1 > 0 (depending on m,n,n,Q) with the following property. Assume
that T is area minimizing, satisfies [20, Assumption 2.1] in the cylinder Cy-(p) and
E = E(T',Cy-(p),7) < €1 for some m-plane m < R™*™.  Then, there is a map
72 Br(p) > Ag(mt) with spt(f) = X and a closed set K < B,.(p) such that

Lip(f) < CE™,
G/L(K x7t)=T'L(K x7) and |B.(p)\K| < CE"(E +r*A?)r™,

1

IT"(Cor(p)) — Qum (o)™ — 3 JB o |IDf|?| < CEM(E +r?A?)r™ Vo e (0,1).
or (P

If in addition h(T’,Cu(p),m) = sup{ |pt(w) — pt(2)| : w,z € sptT' n Cyr(p) } < 1,
then

(20) osc(f) < Ch(T’,Cur(p), m) + C(E? + rA)r.
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In addition, let us recall that provided the excess is sufficiently small, there is the
following persistence of @-points from the current to the strong Lipschitz approximation
f in Theorem 6.2.

Theorem 6.3 (Persistence of Q-points I, [20], Theorem 2.7). For every 5,C* > 0, there
is § € (0, %) such that, for every s < s, there exists é(s,C*,g) > 0 with the following
property. If T' is as in Theorem 6.2, E = E(T",Cy.(p),7) < &, r?A%2 < C*E and
O(T, (wo, 20)) = Q for some (wo, 29) € (7 x ) N C:(p,m), then the approzimation f
of Theorem 6.2 satisfies

(21) jB L GUQIne S < B

We omit the proof here, but we make the following important observation, that will
be useful at a later stage. Notice that (21) can in fact be improved to the height bound

(22> JB (wo) g(fa Q[[n o) f]])2 < CSm+’YTm+2E7

where v > 0 is a geometric constant given by [15, Lemma 5.2] and C' is independent of
s. This improved estimate is a consequence of the alternative proof in [15, Section 5.3],
which crucially uses the improved height bound [15, Theorem 1.5].

From now on, we refer to such an approximation fr, as a 7y, -approzimation. In order
to construct the 7y -approximations, the assumptions of Theorem 6.2 must be satisfied.
Namely, we require that E(T”, Cso,, (pr, 7)) remains below a given small threshold,
independently of the choice of L.

Let px == A™™p(5), A > 0, denote the Ll-invariant rescaling of a smooth bump
function p € CX(B1(0,7)) with {p =1 and §|z|*p(z) dz = 0. Define the average of the
sheets mo f of a Q-valued map f = >, [fi] to be o f = é > fi- Then we have the
following:

Lemma 6.4 ([22], Lemma 1.15). Let the assumptions of Proposition 6.1 hold, and
assume C. = C* and Cp = C*C,.. For any choice of the other parameters, if o
is sufficiently small, then the current T' L Csa,, (pr,71) satisfies the assumptions of
Theorem 6.2 for any Le W v ..

Moreover, if f1, : Bsy, (pr,71) — Ag(ni) is a mr-approzimation, denote by hr
Bqr, (pr,71) — ﬂi its smoothed average hr = (mo fr) * pecry and by hy the map
prLz(iLL), which takes values in the plane wy = Tp, X N wi. If we let hy be the
map z — hp(2) = (h(2), ¥, (2, h1(2))) € wr x Tp, XL, then there is a smooth map
g1, : Bary (pr,m0) — 75 such that G,, = Gy, L Carp (pr,m0)-

We refer to the maps hy, and gy, as tilted L-interpolating functions and L-interpolating
functions, respectively. Thus, the mp-approximations are indeed well-defined for all
cubes L € # u ., provided that we choose €5 sufficiently small (dependent on &7).

We omit the proof of Lemma 6.4; see [22] for this. Roughly speaking, the latter part
of this Lemma tells us that for each cube L € # U ., we can take the 7p-approximation
fr and average the sheets, smooth out and correct the image to lie within X, to give a
smooth map that can be reparameterized over the original reference plane my. This is
possible due to the control [22, Proposition 4.1] over the tilting of the optimal planes;
we refer the reader to [22, Lemma B.1, Proposition 4.2] for the details.

We are now ready to patch together these L-interpolating functions over DI =
SZAVIg No W' for each fixed level j in our partition of [—4,4]™ < 1. More precisely,

let ¥ € C¥ ([—1£,42]) and given any L € 927, define 9, = 19(%). Then take the
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corresponding partition of unity function
ZLeg’f I

This is well-defined and indeed forms a partition of unity over L € 27, because of the
nature of the cubes L. Now consider

Pj = Z 1§L7ng on (—4,4)™ < m.
Lezi

19L,j:

We have almost finished constructing the center manifold; it remains to once again
correct these interpolations ¢; to ensure that the images remain within ¥. To be more
precise, we let ¢; be the function constructed from the 7 components of ¢; that live
within TpX N ﬁé‘ and we define the glued interpolation

i) = (¢, (), oly, #;(y),  ye (44" cm.
This iterative construction over j € N enables us to get compactness in the C3-topology;
leading to the existence of the center manifold. This is summarized as follows:

Proposition 6.5 (Existence of the center manifold, [22], Theorem 1.17). Assume that
the hypotheses of Lemma 6.4 hold and let x := min{<, %} Provided that €5 is suffi-
ciently small, for any choice of the other parameters we have
1 1
(Z) ‘|D90jHC2v*‘ < Cmg and H‘pj”CO < Cm(fim Jor C' = C(BQa(SQ’MO’NOa Ce, Ch));
(it) if L€ #" and H is a cube concentric to L with ((H) = 34(L), then ¢; = ¢) on
H for any j, k =i+ 2;

(i) @, <, @, and M = Gr(p|(_a,4ym) is a C*"-submanifold of X.

See [22, Section 4.4] for a proof of this. The general idea is that the operations
of smoothing out and averaging the sheets preserve the ‘almost harmonicity’ of the
graphical approximations for 7", resulting in uniform elliptic estimates over j € N for
single-valued maps over my. Note that the optimal regularity of the center manifold is
governed by the regularity of ¥. We only require C3*-regularity in order to get the nec-
essary variational estimates for the M-normal approximations appearing in Section 6.3;
this was noticed by De Lellis & Spadaro in their simplified proof of Almgren’s dimension
estimate (1). In conclusion, we may define:

Definition 6.6 (center manifold). We call M the center manifold for T” relative to .
Letting ®(y) := (y, p(y)), we define the contact set to be ®(I'), where the pair (T, #")
is the Whitney decomposition associated to M.

Intuitively, the contact set is the part of M constructed above the places in [—4, 4]™
where we are able to refine indefinitely as a result of both excess and the height remaining
sufficiently small at every scale. On the contact set, we expect that

T'L&(T) = QIM] L &(T).

Given L € #, let H be the cube concentric to L with ¢(H) = {Z¢(L), and define

L=L(L)=®&(Hn[-7/2,7/2]")
to be the Whitney region of L on M.

6.3. The M-Normal Approximations. Now that we have constructed our center
manifold M, we need to better approximate T” in those regions where M is not a
sufficiently good approximation for T’; namely, away from the contact set. We do this
by building an approximating graph for T” over the normal bundle of the center manifold.
This is what we will refer to as an M-normal approximation. Before we state the precise
definition, we need to introduce the notion of an orthogonal projection map to M:
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Assumption 6.7. Let U be the 1-tubular neighbourhood of M, namely
U:={zeR™": 3 w=p(z) e M with [z —w| <1 and z —we (T,M)"* }.

Then, for any choice of the other parameters, we choose €5 to be small enough such
that p : U — M extends to a C%* map on U and p~!(w) = w + (B (0, (T, M)1)) for
every w € M. For each w € M, p*(w,-) : R™*" — R™*" will denote the orthogonal
projection onto (T, M)*.

Definition 6.8. An M-normal approximation of 7" is a pair (K, F) such that F': M —
Ag(U) is Lipschitz and has the form

Q
F(z) = 2[[2: + Ni(2)], Ni(z) € (T.M)* and z + N;(z) € ¥ for every z and i,
i=1

and K c M is closed, contains <I><1" o) [ -1 %]m) and TpLp }(K)=TLp }K).
We will often abuse notation by referring to the normal part of F

N = Z[[NZ—]] t M — Ag(R™F™)

as the M-normal approximation.

We want to see that it is possible to construct an M-normal approximation for 7"
in a way that the approximation still behaves well outside of the contact set. We want
to have local estimates on our M-normal approximations on each Whitney region £ in
terms of the size of the corresponding cube L. Indeed this can be done by again using
the properties of the mwp-approximations fr from Theorem 6.2. We recall the estimates
here, for the benefit of the reader:

Theorem 6.9 (M-normal approximation). Let vz := 4, where v1 is as in Theorem 6.2.

Then, under the hypotheses of [22, Theorem 1.17], for eo sufficiently small there exists an
M-normal approzimation (K, F) such that the following estimates hold on every Whit-

ney region L associated to a cube L € W, with constants C = C(B2, 2, My, No, Ce, Ch):

(3 Lip(N|e) < Cm* (L), | N|eler < Cmme(r) %,
(24> |£\/C| -+ HTF — T’” (pfl(ﬁ)) < Cmé-ﬁ-’yzg(L)erQJr'm,
(25) J- IDN|? < Cmgl(L)" 27202,

c

Moreover, given any a > 0 and any Borel subset V < L, we have
m+3+5 2+732 ¢ 2472
(26) InoN| < Cmg({(L) s +al(L)*T2|V]) + " G(N,Q[noN]).
v v

For this M-normal approximation, the set K consists of those points in M above
which (with respect to p) T is graphical.

The main idea behind the proof of this theorem is to show that T" can be approximated
by a Lipschitz map that comes from the graphical approximation in Theorem 6.2, but is
reparameterized over M. This is again first done locally, over the Whitney regions £ of
the cubes L; see [16, Theorem 5.1]. One can easily check the compatibility of these local
graphical approximations over the region K where they agree with T”. To construct F
away from C, we follow these steps:

Step 1. First extend F to a Lipschitz map (with little increase in the Lipschitz constant)
F taking values in Ag(U), using [18, Theorem 1.7];
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Step 2. then modify F' to take the form F(z) = 3,[z + Ni(2)] with Ni(z) € (T.M)*
for each z, by replacing N(z) with the projection

N(z) = YIp* (e N(2)]

to the normal bundle;

Step 3. finally, let w, = T.% A (T.M)* and replace each component N;(z) with
Pw. (Ni(2)) to reach the desired extension F(2) = Y[z + N;(2)] with N;(z) €
(T,.M)* and 2 + N;(z) € X for each 2.

When combined with the verification of numerous technical details, this scheme indeed
gives the result of Theorem 6.9; see [22, Section 6.2] for a full proof.

6.4. Properties of Center Manifolds. Let us now recall some important properties
of center manifolds from [22] that will be useful in the succeeding sections. We omit the
proofs here.

We begin with the following splitting before tilting phenomenon, which tells us that
whenever we stop our refining procedure on a cube L € %#,, the lower excess bound
passes through to the M-normal approximation N and is comparable to the Dirichlet
energy of N.

Proposition 6.10 (Splitting before tilting, [22], Proposition 3.4). There are functions

Cy = C1(02), Co = Co(My,02) such that if My = Ci, C. = Ca, if the hypotheses of

Theorem 6.9 hold and if €5 is chosen sufficiently small, then the following holds.
Suppose that for some center manifold M with corresponding rescaled current T', we

find a cube L € #., q € mo with dist(L,q) < 4y/ml(L) and Q = ®(By(r)/4(q,m0)). Then
Comol(L)" 2722 < Y(L)™E(T',By) < cf |DN?,
Q

f IDN|> < CU(L)"E(T',Bz) < C3£(L)_2f |N|2.
L Q
Here, the constants C' and Cs are dependent on (2,2, My, Ng, Ce, Ch,.

We will further require the following persistence of Q-points result from a current 7"
to the M-normal approximation when we stop refining due to large excess.

Proposition 6.11 (Persistence of Q-points II). Assume the hypotheses of Proposi-
tion 6.10 hold. For every ny > 0, there are constants 5,{ > 0, depending upon 12, B2,
02, My, No, Ce and C}, such that, if €2 is sufficiently small, then the following holds.
IfLeW., (L)<, O(T",p) = Q and dist(pr, (p), L) < 4y/ml(L), then

)™ |

Bsory (P(p))

G(N.QIno N < ;= IDNP.

(L)™2 I8y, (o))

Another vital consequence of the center manifold construction is the following result.

It tells us that if we are able to immediately restart a new center manifold after stop-

ping the previous one (because the excess has remained sufficiently small), then we can
compare the two center manifolds.

Proposition 6.12 (Comparison of center manifolds, [22], Proposition 3.7). There is
a geometric constant Cy and a constant ¢; = ¢5(B2, 02, Mo, No, Ce, Cr) > 0 with the
following property.

Assume the hypotheses of Proposition 6.10, Ng = Cy and €5 is sufficiently small. If
for some 7 € (0,1),
(a) U(L) < csp for every p > 7 and every L € W with L n B,(0,my) # &;
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(b) E(T',Bg/m,) < €2 for every p > 7;

(c) there is a cube L € W with (L) = cs7 and L n Br(0,7m0) # &,
then
(i) the current T" := (T")o,7L.Bg /m and the submanifold X" := 1o 7(¥') "By s satisfy
all of the necessary assumptions for Proposition 6.1 for some new plane Ty in place
of mo;
(i) for the center manifold M of T" relative to Ty and the M-normal approximation
N, we have

(27) fﬂ IR > 6 max(B(T By o)1)
B2

Let us also recall the height bound [22, Theorem A.1l], which tells us that for 7"
satisfying all of the previous assumptions, as long as E = E(T",C,(w,7)) < &g for
€9 sufficiently small and some m-plane 7, one can decompose T’ into k > 1 pairwise
disjoint horizontal ‘strips’ parallel to 7 over B,.(w, ), each one of height rCo E Bl

Furthermore, if ©(7”,w) > @ then we necessarily have k = 1, and so this realizes as
the following height bound for 7”:

h(T', C,(w, 7)) < CEzw pi 52 for any r > 0 sufficiently small.

In fact, the improved height bound [15, Theorem 1.5] tells us that around any point
w € sptT’ with ©(T", w) = Q, there is the sharp height bound

(28) h(T’,C,(w, 7)) < CE*r + CAr? for any r > 0 sufficiently small.

Since this result uses the Hardt-Simon inequality, note that the improved height bound
only holds around points of density @ (or higher). This allows us to improve the height
bound in Theorem 6.9 to the following:

Lemma 6.13. Suppose that T' satisfies all of the prior assumptions with o sufficiently
small. Then for any choice of center manifold M with corresponding rescaled current
T', M-normal approzimation N and any interval of flattening (s,t] around center p(w)
with O(T', w) = Q, we have

(29) [ < ooy,
L

forany Le W .

This Lemma will be used in the final contradiction argument within the proof of the
lower frequency bound of Theorem 7.8.

Proof. The proof relies on passing the improved height bound (28) for the current 7"
through to the graphical approximations.

By virtue of a scaled version of the estimate [15, Lemma 1.8] that gives the improved
height bound (28), for L € # u . we have

1
W(T’, Csr, (pr, 7)) < CriE(T", Caayy (pr,71))? + CriA < Cmgri o,

as long as we choose e3 sufficiently small. Via the oscillation bound (20) in Theorem 6.2
for the graphical approximations fr, this in turn gives

1
osc(fr) < Cmg¢ r%_‘h on Bsg,, (zr,7L).

We may now substitute this improved bound into the computations for the estimates on
the M-normal approximations in [22, Section 6] to conclude the desired improvement
on the existing C° and L? estimates on the M-normal approximations in Theorem 6.9.
We omit the details. O
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6.5. Intervals of Flattening. We are now ready to take a sequence of center manifolds
and corresponding M-normal approximations along our blow-up sequence of currents
Ty, r.- We begin by introducing intervals of flattening around the blow-up centers xy.
These will contain the scales ry, but will be chosen to detect the scales at which we need
to replace an existing graphical approximation with a new, improved one.

Given any fixed k € N, and e3 € (0, e2), set

Ry = {re(0,1] : B(T,Bg i, (z1)) <3 }.

Notice that Ry is closed under left-hand limits. Now construct a family Fj, = {I j(-k)} j of

intervals I j(-k) = (sg-k), t;k)] inductively as follows. Let ték) be the largest element of Ry.

Given t;k) , define

TkJ =T t;k) l—BG\/ﬁa Ek,j = [’mk,t;k)(z) (@) B7m.

Tk

Let 7, ; be the m-plane satisfying

E(T,j, Bems k) = E(Tk 5, Bom)

for each k, j. Namely, 7y ; is the plane 7y for the rescaled current 77 = T}, ;.

Let My, ; be the center manifold from Section 6.2 for T/ = T} ; and ¥ = Xy ; with
respect to the m-plane 7 ;. Let N (k:7) be the corresponding M|, j-normal approxima-
tion.

We denote by ¢y ; @ mp; D [—4,4]" — Wtj the map from Proposition 6.5, whose
graph is My, j, meanwhile ®y, ;(2) := (z, ¢y, ;(2)) is the corresponding parameterization
of My, ; over g ;. We use the usual notation py, ; for the orthogonal projection to
the plane 7y ;, meanwhile py ; (or simply p when there is no ambiguity) will be the
projection map from Assumption 6.7 to My ;. We will use the notation B for the
geodesic balls on our center manifolds.

Consider the Whitney decomposition # (%) of bad cubes from Proposition 6.1 for
T},; and define

sg-k) = t;k) max ( { (L) : Lew ™) and ¢; (L) = dist(0, L) } U {0}),

where ¢g = ﬁ.

Thus, for the center manifold My ;, we call (s§k),t§k)] the (centered) interval of
flattening around xy.

If sgk) = 0, then stop refining. Otherwise, let tyjr)l be largest element of Ry N (0, sgk)],
and continue as above. By construction, our stopping conditions are characterized as
follows:

s _
(Stop) It sgk) > 0 and F§k) = %, then there is a cube L € # %) with
t
J
L) = csf§k) and L B (0,74;) # &.
RE
(Go) If p> 7" = 2= then
£

(L) < csp for every L e #' ¥ with L~ B,(0,74 ;) # .
Moreover, letting
mék’” = maX{C(Zk,j)Qv E(Tk; Beym)},

we recall the following additional vital properties of the intervals of flattening.



22 A. SKOROBOGATOVA

Proposition 6.14 ([21], Proposition 2.2). Assuming €3 > 0 is sufficiently small, the
following holds for any centered interval of flattening on any center manifold My, ;:

(i) s(k) §5 and each family Fy is either countable wztht l 0 as j — o0, or finite

with s( )
(1) U; I;k) = Ry, and for each k sufficiently large, we can find an interval (sgk) ,tg.k) ]

around xy for which

= 0 for the largest j;

oy
L € (_a ]7
(k)
t

() .
(i) if r € ( s 3) and J € #, ) intersects B = Pr., (Br(®r;(0))), then J is in the

domain of influence #;* J)( H) (see [22, Definition 3.3]) of a cube H € w59 with
((H) < 3cyr, max{dist(H, B), dist(H, J)} < 3v/ml(H) < i’_g;

(k)
() E(Ty,;;Br) < 00537“2_252 for every r e (j{—k),S) R
i

(v) sup{dist(m My ;) + zesptTy; 0 p;; (B (®4,;(0))) } < Co[mék’j)]%mrHB? for
o)
every r € ( (k) ,3)

In particular, (i) tells us that I ](k) # & for each k, j. We will need analogous stopping
criteria for scales around other points w # xx. In particular, we will be interested
in considering the points w = y, when we show persistence of @-points. We hence
introduce the following definition:

Definition 6.15 (Non-centered intervals of flattening). Let M be a center manifold
with a given centered interval of flattening (s,¢] and corresponding rescaled current 7”.
Let w € sptT’ n (Bg,5\{0}). Then, let ¢ = t(w) be the largest element of

{r e (0,dist(w,0By)] : E(T", Bg, /. (w <&},

5 = 3(w) == fmax ( {c7' (L) : Le# and ¢; (L) > dist(p(w), L) } U {0}),
we call (3, 7] the (non-centered) interval of flattening around w (corresponding to (s, t]).

Observe that conditions (Stop) and (Go) still hold for any such non-centered interval
of flattening, only for balls centered at pr, ;(w). Moreover, the appropriate analogues
of the conclusions of Proposition 6.14 hold, but we will not use this so we do not discuss
this in detail here.

In many of the following arguments, we will be taking diagonal sequences of center
manifolds and intervals of flattening around varying centers. Thus, it will be beneficial
to simplify notation as follows.

Whenever we have a diagonal sequence of blow-ups T}, ;) for T', My, iy is a diag-
onal sequence of center manifolds with corresponding M, j)-normal approximations
N#3(k) centered flattening intervals (sﬁ.]g,)c),ty(cl)c)] and rescaled currents T}, ;x), we will
use the notation

Ty =T} ) My == My s N® = Nk Xk = Xk ik

for the blow-ups of T" and the associated center manifolds, normal approximations and
rescaled ambient manifolds. We will use the notation

® (i)
Sk Sy = by,
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for the endpoints of the interval of flattening corresponding to My, and we let

k k,j(k . . .
mé )= mé 4N Dy = Py k), Pr = Phi(k) Pk = Pk,j(k)-

We will also use the notation
Th ™= Th j(k)s (k) . W(k,j(k)), k) . y(lw’(k)),

when discussing the Whitney decompositions for My. We are now in a position to
introduce the frequency function and investigate its properties around @-points of T'.

7. THE FREQUENCY FUNCTION

As previously mentioned, this section is dedicated to uniformly bounding the fre-
quency function for our My, j-normal approximations /N (k:7) . Morally, we expect the
frequency function to capture the ‘dominant frequency of oscillation’ for each map N (*:7)
at a prescribed scale around pg ;(zx).

Before continuing, let us recall the ultimate goal. We would like to take a sequence
of center manifolds M, approximating our current 7" at scales 7 around xp. We wish
to show that the corresponding Mj-normal approximations N*) (after normalizing
appropriately) converge to the graph of a non-trivial Dir-minimizer u in a sufficiently
strong sense to ensure persistence of Q-points. This will in turn enable us to conclude
the alternative (b) in Theorem 3.3. In order to conclude that the limit u is non-trivial
and that singularities persist, we will need to establish both upper and lower uniform
bounds on the frequency function.

We begin by introducing the frequency for Dir-minimizers on an open subset of R™;
this, along with its key properties, will play an important role in the proof of Theorem 7.8
and the concluding persistence of @-points argument in Section 9.

Let Q < R™ be an open subset, and let v : @ — Ag. For r € (0,dist(y, 0Q)), we
define

rDy (7
(30) Dyu(r) = J |Dul?,  Hy.(r) = J u)?, Tyu(r) = Hy, ( )
Br(y) 2B (y) yu(T)

Note that these quantities are well-defined for Dir-minimizers; see [18, Remark 3.14].
Moreover, the frequency I, , is monotone non-decreasing, so the limit

To = lim (1)
is well-defined. We refer the reader to [18, Section 3.4] for further details on the frequency
function for Dir-minimizers and its properties.

A particularly important property of Dir-minimizers is the way their L2-height scales
on balls centered around @-points:

Proposition 7.1. Suppose that Q@ < R™ open and that u € W'2(Q; Ag) is Dir-
minimizing. If for some y € Q, u(y) = Q0] and Iy := lim, oI, .(r) denotes the
frequency of u at y, then Iy > 0 and for every p < r < dist(y, 02), we have

m+21
(31) | (B e
Bp(y) r Br(y)
Conversely, if for some y € Q0 and some ¢ > 0 one of the following alternatives holds:
(a)

J. lu|?> < Cp™t2e for every p < dist(y, 0Q) sufficiently small;
B, (y)

(b) Io = c,
then u(y) = Q[0].
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Remark 7.2. In fact, the alternatives (a) and (b) are equivalent; this can easily be
checked via a contradiction argument.

The proof of this can be inferred from [18, Corollary 3.18], but we repeat it at the
end of this section for convenience.

Definition 7.3 (Almgren’s frequency function). Let M be a center manifold with
corresponding M-normal approximation N and rescaled current 7", let w € sptT”’, and
let (s,t] be an interval of flattening around w.

Let r € (%, R] be an arbitrary scale. Then for a Lipschitz cutoff ¢ : [0,00) — [0, 1]

that is identically 1 on [0, 3], and vanishes on [1, o0).we define

Dp(w) v (r) = fM ¢ (M) |DN?(p) dp,

_ [ dlp—p(w))\ [N]*(p)
R R G P K2

"Dp(uw),n (1)
Hp (), v (r) °
where d(gq) denotes the geodesic distance between ¢ and ®(0) on M. Let

Lp(w),n(r) =

Qp(w), v = max{log I, v, logco},
for cp to be determined later. Observe that the above functions are regularized versions
of the analogous functions defined for @Q-valued harmonic maps (see (30)), and so it is
easy to check that they are absolutely continuous.

When it is clear from context, we will omit N and/or w from the notation for the
above quantities. Moreover, whenever we take center manifolds My, ; at varying scales
[s§k), tgk)] with varying centers xy, we will let

Dy ;=D i, Hg,=H b, I ;=M_
ki = Do @y Hig=Hp ) v, Li(r) T, (1)
For diagonal blow-up sequences as discussed in Section 6.5 with varying centers pg (wy,) =
Pk,j(k) (Wr) (Where wy are not necessarily ) we will let

rDy(r)
Hk(r) ’

(32) D = Dpk(wk),N(k,j(k)), H, = Hpk(wk)7N(k,j(k)), Ik(r) =
We use the analogous notation for €2 also, when necessary.

Before we continue, we henceforth fix the following useful notation. Given an arbitrary

center manifold M = My, ; with a corresponding rescaled current 7" = ka RO) and a
ot

point w € sptT”, we define
(33) R = R(w) := dist(p(w), 0Bs(xk)).
This regularized frequency function exhibits a convenient almost monotonicity property,

which can be compared with the monotonicity [18, Theorem 3.15] of the frequency for
Dir-minimizers:

Theorem 7.4. There exists a bounded function f : [0,00) — R with lim, o f(r) = 0
such that the following holds.
Suppose that we have a center manifold M = My ; with a corresponding rescaled

current T' = ka & » M-normal approzimation N = N®D) and an interval of flattening
12

(s,t] around any center p(w). Then

Qp (), N (@) < Qp(uwy,n(b) + f(b) for every [a,b] E,R].
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Remark 7.5. Note that the function f is independent of the choice of center manifold,
choice of point around which we take the interval, and the interval itself. Moreover,
observe that this almost-monotonicity estimate tells us that

(34) Ly w) v (@) < ef® max{co, Iy v (b)}-

The proof of this theorem is the same as that of [21, Theorem 3.2], with merely
a sharper final estimate. Nevertheless, we reproduce the argument at the end of this
section. The proof is based on calculating variation estimates; the main idea is to
compare the frequency with that of homogeneous maps which share boundary values as
N3) | since the frequency of homogeneous maps is constant and equal to their degree
of homogeneity. This is analogous to the proof of the monotonicity of the mass ratios for
a current T' (around a fixed center p with O(T,p) = @), which comes from comparing
T with m-dimensional cones T L B, (p)XQ[p], which have constant mass ratios.

The almost-monotonicity of the frequency will be crucial for establishing uniform
bounds on the frequency function.

As explained above, we would firstly like to show uniform upper bounds on the
frequencies Iy, ;, independently of the center:

Theorem 7.6. There exists J € N such that the following holds. For the center man-
ifolds My, ; with corresponding normal approxzimations N (k:3) | rescaled current Tk =

ka 0 and centered flattening intervals (s§k), tgk)] around x, we have
2

(35) sup sup I ;(r) < 400,
k,j 50
TE(tZTmJ%l]
J

and

. 7,2 SB |DN(k,j)|2
(36) sup sup 3] min Ikd‘(?‘), W < 400.

k,j re( 2‘]371

In particular, given any point wy € sptly; N B, for each center manifold My ; and

corresponding non-centered interval of flattening [§(k) Q)

5t ) around wy, we also have

sup sup I j(r) <o
k.j 500
re (EZT),S)“]']
J

and

P DN (k.9)|2
I, | | < +o0,

sup sup min{ I ;(r), —————
kd €SB ] { ’ [, INGD[2

where

b = dist (Prs (), 0B_ (Brs (1)) )

271

and Ry, ; is as in (33) for pg ;(wk).

For the version of this result for a sequence of center manifolds with a fixed center,
see [21, Theorem 5.1].

Theorem 7.6 will allow us to disregard the possibility that as we blow up, the mass of
T accumulates around 0B Re gt (wy), creating a locally trivial blow-up limit. Indeed,
this kind of phenomenon could Jonly occur if the frequency were unbounded at the scales
t;k), due to ‘infinite order of collapsing’ at these scales.

Note that for the larger scales r € (2,%, 3] around z; on our center manifolds, we
are satisfied with a cruder estimate of the form (36). This is because it suffices to have
a uniform frequency bound up to some uniform scale independent of k£ and j, which in
itself gives us the desired conclusion.
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We will be using this upper frequency bound in the form of the following reverse
Sobolev inequality (see [21, Corollary 5.3]), which will be a key tool for our concluding
argument.

Corollary 7.7. There exists a constant C = C(T) such that the following holds.
Suppose that M = My, ; is any center manifold with corresponding rescaled current
T = Ty; and M-normal approzimation N = N3) . Then for any point w € sptT’
with O(T",w) = Q and any interval of flattening [s,t) around p(w), for every r € (%, 1],
there is S € (%7’, Rr] such that

J pnp < © NP2,
Bs(p(w)) T JBs(p(w))

In the case where w = xj, for the center manifold My, ;, the proof is in fact ezactly
the same as that for a fixed center in [21, Corollary 5.3]. This is because we recenter our
planes 7 ; in such a way that p j(zx) = 0. For non-centered intervals of flattening, the
argument is still analogous, since we are once again making use of the upper frequency
bound of Theorem 7.6, which is independent of the center. We omit the proof, since it
is merely a simple application of the coarea formula, Fubini’s Theorem and some basic
calculus.

We also have the following uniform lower frequency bound for all scales sufficiently
close to where we stop the center manifolds. This is to be expected, since at the stopping
scales, we inherit the behaviour of T around the @-point. Namely, there is a height
bound on N coming from concentration of mass of T" around the @Q-point, which should
be inconsistent with the splitting that arises if we did not have a uniform lower frequency
bound.

Theorem 7.8. It is possible to choose cy appropriately to ensure that the following
holds.

One has the following lower bound on the frequency for any center manifold M with
corresponding M-normal approzimation N, rescaled current T', and any point w € sptT’
with O(T',w) = Q that is the center of the interval of flattening (s,t):

r
Qp(w),N(g) > 1Og(60),
for every 5 > 0 sufficiently small in (%, R].
Remark 7.9. Note that w needn’t be the center of the center manifold construction.
This will be important, since we will later choose w to be py, j(x)(yx) in order to show
that the Q-points persist in the blow-up limit.

Remark 7.10. Observe that the claim of Theorem 3.3 is stronger than the blow-up
argument used in [21] and [14] to show the inheritence of singularities of the limiting
map. There, for a fixed blow-up center x, the contradiction relies on a delicate capacitary
argument. More precisely, after obtaining a non-trivial limiting Dir-minimizer u as
above, the authors there conclude that Hausdorff limit K™ of the sets Singq(T%) for
Ty =Ty, L Bg /sy satisties

Hmo2 (K*\{points sufficiently close to SingQu}) = .
This may then be passed through to T} via upper semi-continuity:
(37) H T (Singg (Th ) \{points close to Singgu}) = 7.
However, for any point p € Singg(7%), there exists p = p(p) arbitrarily small and

Zp € My, near p such that:

() IV 20, 0,002 < | LIV
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In other words, there is a quantitative control on the frequency from below, coming from
the persistence of singularities from T}, to N*). One can now use this estimate to apply
a covering argument to Sing (Tx), contradicting (37).

Unfortunately, such an argument is insufficient in our case, since we require a dimen-
sion estimate for all of K™, rather than just those points that are far from Singgu. The
easiest way to demonstrate the desired dimension estimate for K® is hence by showing
the set containment claimed in Theorem 3.3, for which the lower frequency bound of
Theorem 7.8 is crucial. It will allow us to get an improvement on previous persistence
of singularities arguments.

Before we proceed to prove the above results, let us show the following local estimate
for the Dirichlet energy of the M-normal approxiamtions at scales within the flattening
intervals, which will come in useful later.

Proposition 7.11. Suppose that 3 is sufficiently small. Then for any choice of center
manifold M with corresponding rescaled current T', M-normal approzimation N and
any interval of flattening (s,t] around w € sptT’, the following estimate holds for every

TE (%, R] :
Dy (r) < J- IDN|? < Cmgr™+2-202
B (p(w))

where C = C(f2, 62, My, No, Ce, Ch) is independent of the choice of center manifold,
flattening interval, and center p(w).

Proof. We use the same notation as in Section 6. Choose €3 sufficiently small such that
for each r € (£, R], the geodesic ball B,(p(w))) is contained in @(Fgr(p,m (w))). Fix a
radius r in this range. The first inequality is trivial due to the nature of the map ¢. We
can cover B B +(Pro(w)) by T and the concentric cubes }—ZL of some subcollection .Z of
cubes L € #'. Note that since FgT(p,m (w))\I' is relatively compact in [—4,4]™, this
subcollection must be finite (and its cardinality can be controlled independently of r).
Now by construction, N =0on T n E%T(p7r0 (w)). Moreover, for each L € # with

Ln Egr(pﬂo (w)) # &, the condition (Go) tells us that £(L) < Zc,r. Hence, by the

estimates on the M-normal approximation established in Theorem 6.9, we deduce that
J B IDNPP < )] J IDNP < ¢ Y. mol(L)™ 720 < emgr™ 2720,
®(BRrr/2(Prg(w))) LeF YL LeZF

The result follows. 0
We now prove the characterization of J-points in Proposition 7.1.

Proof of Proposition 7.1. We will henceforth omit the dependency of the quantities
in (30) on w and y, for simplicity. Moreover, we will assume without loss of gener-
ality that y = 0. We begin by showing that as long as H(r) > 0,

38 —
(38) dr

Firstly, note that H € W! since u € W'2. Moreover, the distributional derivative of
|u|? coincides with its approximate differential, so the chain rule [18, Proposition 2.8]
applies and thus one can compute H’'. These facts justify the elementary computation
(at almost-every 7 > 0) that

(1) - _mt
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d 2
- wEP
dr B\B. /s |2|

d 2
T e PN
dr B1\Bi /2 ||

1 Q B
— 9;m—1 J‘l st LBS ;<ui(7‘z), vzui(TZ)> dem—l(Z) ds + (m 1)H(T)
1 Q
= orm wu; (T2 wi (T2 m=1(.y qs (m—1) i,
i jLBZ< (r2).d,us(r2)) () ds + =D )

Q —
= QJB Z<ui,6uui> + (mT 1)H(T)

\Brj2 =1

—oni) + "Ly,

From this differential identity, we infer that
H I
d log (1)) _ Qﬂ_
dr Tm—1 T

By continuity, (38) follows when we evaluate 7 at some r > 0.
Integrating (38) from p to r and using the fact that I is monotone increasing, we have

(39) log (fniz) ~log (fm—@> - QJ-T @ dr = 21y log (g) ,

p

or equivalently,

S P TP
p’!TL*lJrQIU Bp\Bp/z |Z| pmflJrQIo

H{(r)

= rm—1+2Io

1 E
T pm—1420 B |z| ’
T\Br/z

More generally, for any k € N, this rescales as

Hm2y) [ )l o, 2t [ L0
— = - ,
pm—1+2Io B, \B, s H rm—1+2Io B,k \B, ok +1 |2|
and thus
1 2 d 1 2 d
prm+21o B |u(z)| #s TWTIO |U(Z)| -
o2k \B ok +1 B, ok \B, k1

Summing over k, this yields

1 2 1 2
WJB lu(z)]” dz < WTIOL lu(z)|” dz,

P T

as required. It remains to show that Iy > 0, but this follows easily from the inequality
1
H(r) < CrD(r) for every r € (0, 3 dist(0, 69)),

which comes from the Hélder-regularity [18, Theorem 3.9] of @Q-valued W12-maps and
the fact that u(0) = Q[O0].

Now we show the converse. Suppose that Iy > ¢ for some ¢ > 0, but that u(0) #
Q[0]. Then, u(0) = T € Ag for some T with d(T) > 0, where d(T') is defined as



29

in [18, Definition 3.4]. However, the lower frequency bound allows us to conclude that
the assumptions of [18, Proposition 3.6] hold for = B,., for r > 0 sufficiently small.
This would enable us to decompose u locally around 0 into two simpler functions. One of
these must necessarily take a value other than zero at the origin, thus contradicting the
height decay which comes as a consequence of the lower frequency bound. Indeed, (39)
and the succeeding computations tell us that we must have

. 2 1 2 1.
e f ) ul® < Tmtac J-BT [ul for any p <r < 3 dist(0, 092).

The argument under assumption (a) follows analogously. (]
We shall now prove the almost-monotonicity in Theorem 7.4. We must first introduce

following quantities, centered at any point w € sptT’, with corresponding M-normal
approximation N:

Buwyn() = [ o (MDY Yo, om0
Goturv(r) = = [ o (LR 0N ) o~ plu)
Tp(w),n(r) = JM ¢ (M) [NI*(p) dp,

Note that for a given point w, the quantities Ej,) N, Gpw),n and Xp,),n are all
classically differentiable. By considering the inner and outer variations of the current
T along convenient choices of vector fields, the following estimates arise:

Proposition 7.12. For every vs sufficiently small, there exists C = C(v3) > 0 such
that if s € (0,¢e2) sufficiently small, the following holds.

Let M be a center manifold with corresponding rescaled current TV, M-normal ap-
prozimation N, interval of flattening [s,t] centered at x = p(w) and any [a,b] < |2, R|
with I = ¢o on [a,b]. Omitting the dependency on N and x for Dy n,Hy n and all
related quantities for simplicity, we have the following for any r € [a,b]:

(40) B (r) ~ " HL () - 2B()| < CH(),
(41) D() - %E(r) < CD(r)"* + C33(r),

m—2

(42) D) - "=2D(r) - 2G0)|

< C(D(r) + D(r)»D’'(r) + %D(T)H'VS),
(43) S(r) +r¥'(r) < Cr*D(r) < Cr™*2e3.

We refer the reader to [21] for the proof. We are now ready to prove the almost-
monotonicity.

Proof of Theorem 7.4. First of all, notice that since ¥’ > 0 (due to the nature of ¢),
(43) tells us that also 3(r), r¥'(r) < Cr?D(r).

Note that we may assume that I > ¢p on [a,b], since I(a) > ¢o (otherwise there is
nothing to prove) and if I(r) < ¢y at some point ¥’ € (a,b), we can replace b by V'. Fix
v3 and e3 small enough so that the above estimates hold. By (41), (43) and the fact
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that r < 3, we have

D(r) < @ + CD(r) 7 + e23(r)

< B0 oagpr) o +47]

_E()

+ CeiD(r).

Rearranging and decreasing €3 further if necessary, we conclude that

D(r) _ Blr)

An analogous argument yields that

so E > 0 on (a,b) and ﬁ is thus a well-defined quantity. Now let

Let us now estimate the derivative of €2, in the hope that we can then integrate to obtain
the almost-monotonicity. Observe that

0= 4
_ H(r) [D(r) rD’(r) B rD(r)H’(r)]
rD(r) | H(r) H(r) H(r)?

1 D'(r) H((r)

r  D(r) H(r)
1 H(r) ,
=—_ 7 =) —D'(r)F(r) —

Now let us further estimate each of the terms on the right-hand side. By (40), we have

H((r) m-1 2E(r)
H(r) T * rH(r)

+C.

E(r)

Furthermore, by (40) and the comparability of D(r) and , we can achieve the bound

70 - [5e7me7 (PO - 780)
< of (D(r)**s + 3(r))

D(r)E(r)

cofpers 2],
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Combining this estimate with (42), (43), and again by comparing EG) to D(r), we

T
conclude that

_rD'(r) _ rD(r) <C _m— 2) ~ 2G(r) N CrD(r)"“"D’(r) + D(r)tt7s

E(r) — E(r) r rE(r) E(r)
m—2 D()|F(r)] 2G(r)
sO- T +c r B rE(r)
+C DD () + D(:)%]
__m= 2 2G(r)
Sy rE(r)
[ D(r)’)’s E(T) Ys—11y/ y3m—1
+C_1+ . —I—TD(T)—i-D(r) D'(r) +r ]
< - 2 ig(:)) +C[14DE) D (r) + rom 1],

Now observe that Cauchy-Schwartz (applied first to the inner product, then to the
integral) yields

and thus

< .
rH(r) ~ rE(r)
Bringing everything together, we obtain

p 1 m-1 2E(r) m-2 2G(r)
—(n) < o * T * rH(r)  r  rE(r)

+C [1 +D(r)*"'D'(r)

+
+
3
3
3
|
I

<C [1 +D(r) D (r) +
<C [1 + 0 [D(r)"*] +

Integrating over the interval [a, b], we deduce that

a) - (0) <€ |0+ D) - D) - [ 2090, (55) dr]
)

[ b v/
<C 7b+D(b)73 + EEZ; = [2)8 +L ZD((:) dr]
<C|b+D(D) + EEZ; +Jbr dr}

<C[b+ b +b7].
Note that the constant C' depends only on the dimension. Thus, setting
firy=c=C [7’ + T4 T2] ,

for C as above, the proof is complete. O



32 A. SKOROBOGATOVA

8. UNIFORM BOUNDS ON FREQUENCY FUNCTION

We now prove Theorem 7.6. Before we proceed, we recall the following result from [21],
which infers height decay from excess decay for the M-normal approximations:

Lemma 8.1 ([21], Lemma 5.2). Using the notation of Section 6.5, suppose that { My}
is a sequence of center manifolds with corresponding My-normal approzimations N*),
rescaled currents T, = Ty, 1, and centered intervals of flattening (sk,tx] around my.
Suppose that for some sequence ny € (f—’;, 3], we have
J IN®2 0 as k — oo..
Bnk(Pk(zk))\BﬁQg_(Pk(wk))

Then we must necessarily have E(Ty, By, (x1)) — 0.

Although we have varying centers, the proof is analogous to that in [21]. Nevertheless,
we repeat it here for the purpose of clarity.

Remark 8.2. Recall that we already have decay of the excess at scales r; around x.
This lemma will allow us to deduce that the excess also decays at any other scales along
which the height decays.

Proof. Firstly, note that if n; | 0, then by Proposition 6.14, we automatically have
E(1}, B, (1)) — 0.

Thus, we can assume that limsup, nx > 0. We prove this result by contradiction.
Suppose that the statement of the lemma is not true. Then up to subsequence, there
exists § > 3 such that for As = Bs(pk(zx))\Bs (Pr (7)) = My, we have

(44) f IN®I2—0  but E(Ty, Bs(x)) = ¢(8) > 0,
As

Now project this annulus As from the center manifold to the reference plane 7. For
e3 sufficiently small, this projection contains the annulus As := B 1 s\B 25 Consider
the family of Whitney cubes #(®) for the center manifold My. If no cube from this
family intersects As, then by construction, N*) = 0 there. Otherwise, for each k € N let
Li, € #(F) be the largest cube that intersects the annulus As and let dj, := (Ly) < ¢gd.
We will now use the height decay in (44) to show that the sizes of these bad cubes shrink
to zero.

By Proposition 6.14, we may replace any cube in Wn(k) with a cube in either V/e(k)
or %(k) of comparable size, in its domain of influence. Thus, we may assume that
Lk € V/e(k) ) Wh(k)

Now since Ly n As # & and ¢ is sufficiently large in comparison to £(Ly), we can find

a ball B¥ ¢ A; of radius Y2% with dist(B¥, Ly,) < Y2%. Then B¥ ¢ By i, (¢1,),
so we can apply [22, Proposition 3.1(S3)] to deduce that if Ly € %(k), the height bound

forces splitting for N *):

J |N(k)|2 > J |N(k)|2 > C[mék)]#dzl+2+2ﬁ2.
As @, (B*)

Observe that our choice of B further ensures that the center g of B* satisfies dist(Lyg, gr) <
4y/mdy,, so whenever Ly, € V/e(k), Proposition 6.10 can be applied to show that the split-
ting of N is instead forced by the large excess:

J |N(k)|2 > J |N(k)|2 > Cmgk)d']rvn+472§2.
As & (Bg,i(qk))
1

In both of these estimates, C' = C(82, d2, Mo, No, Ce, Cp). We thus conclude that dj, | 0.
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Another important consequence of the height bound [22, Lemma A.1] is that locally
above every cube L € # (%) on each fiber (with respect to p;) one has the following
control on the separation between T}, and the center manifold My, (see [22, Cor. 2.2(ii)]):

SPE(T iy @1(0) < {y ¢ [@a(q) =yl < Ol 0(L) +% | for each g € L,

where C' = 0(52, 52, Mo, No, Ce, Ch)

Now since Ly is the largest Whitney cube with Ly n As # &, this allows us to contain
sptTk N N, (a,) My inside a C[mgk)]%md,?m-tubular neighbourhood of My. Again,
for e3 sufficiently small, we can find s < ¢ independently of k such that

Bt\BS (@) ./\/lk c <I’k(A5).

On the other hand, we can argue analogously to that in the proof of Proposition 4.4 to
find an m-dimensional area minimizing current S in R™*" with Tj, =~ S and |T}|(B) —
[S](B) for any open ball B (up to subsequence), such that either S = Q[x] for some
m-plane 7, or all points in D>¢S are singular points. But our assumption (44) tells
us that E(S,B3) = ¢(d) due to convergence of the excesses as in (14), ruling out the
possibility that S is flat.

However, due to the uniform C3*-estimates on the center manifolds, we can use the
Arzela-Ascoli Compactness Theorem to deduce that, up to subsequence, M — M in
C3. Combining this with the decay dj | 0 for the sizes of the tubular neighbourhoods,
we arrive at the conclusion that sptSL (B¢\Bs) € M n (B¢\Bs).

Now one can apply Allard’s Constancy Theorem to see that

SL (B:\B;s) = Qo[M n (B{\B;)] for some Q.

Recalling that each T}, is a Q-fold cover of My, n (B;\B;) (see [22, Corollary 2.2(i)]), we
may further deduce that Qy = @, contradicting the fact that any @Q-point of S should
be singular.

[l

8.1. Proof of the upper frequency bound. We are now in a position to show the
uniform upper frequency bound of Theorem 7.6. Note that by [21, Theorem 5.1], we
know that this result holds when all of the blow-ups have the same fixed center. The
argument for varying centers and non-centered flattening intervals is essentially the
same, since the estimates used are independent of the center. Nevertheless, we repeat
it here for clarity, with some minor modifications that simplify the argument slightly.

Proof of Theorem 7.6. Observe that the second part of this Theorem follows immedi-
ately from the first part, so we just need to prove the uniform boundedness around the
points x; that we center our center manifolds around.

Suppose, for a contradiction, that the statement of the theorem is false. First of all,
suppose that (35) fails. Then, for an arbitrary choice of J € N, up to subsequence (using
the notation in Section 6.5) we can find scales £ € (‘;—:, 777 | around z;, such that

(45) lim Ik(ﬁ) - .

k—00 tr
By the almost-monotonicity (34) of the frequency, we may assume that p, = %ET for
each k € N. There are three possibilities to consider, based on the size of the scales
along which the frequency blows up. Due to Proposition 7.11, unboundedness of the
frequency along given scales corresponds to the collapsing of the sheets of N*) along
these scales. Either

(a) limsupy, ty > 0;
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(b) limsupy tx = 0, but there exists a subsequence (not relabelled) along which each

]) k)

starting scale t;, comes immediately after a flattening interval (5, tx] = (Sj(k)—l’ j(k)_l],

centered at the same point z; namely t; = 3g;
(c) limsupy tx = 0 and for every k (sufficiently large) we have t < 3.

Let us begin with case (a). Extract a subsequence for which 535 > n for some 1 > 0.
By Proposition 7.11, for every r € (ik, 3], the Dirichlet energy estimate

(46) Dy (r) < Cmgk)rm+2_262 < Ce3.
holds. Hence, the unboundedness of Iy (2,%) tells us that for
Ay = B_a_(pre(e)\B_z_ (Pr(zr)),
2¢ 2¢

we have

J |N(k)|2 — 0 ask — o0
A

We can now use Lemma 8.1 to deduce that

Since 2?’}5,’“1 > n and zp — x, we can thus conclude that

E(T,

vy B1) = E(T,B,(2)) < cliliriiorole(T,B;j_fl(xk)) =0.

However, this contradicts the fact that z € Sing> 7"

We now move on to case (b). In this case, the excess is still below the threshold &3
at scale §; = t, but we must restart the center manifold because it no longer serves as
a good approximation for the current at that scale.

As a result of the condition (Go) in the flattening procedure, we encounter a cube
L e w®Fitk)=1 of sige (L) = cs‘g—: =: ¢T with Ln Bj, # & at which the refinement for
My, stops. We then restart the center manifold My, and the Mj-normal approximation
N®) immediately at this scale, since the total excess remains below the threshold €2,
but locally near the center zj the excess becomes too large.

The splitting observed at the stopping scale of the previous center manifold must
then propagate to the new starting scale, so by the comparison of center manifolds in
Proposition 6.12 and the control on the Dirichlet energy in Proposition 7.11 (at scale
R), we deduce that

f INR 2 > af IDN®)2,
Br Br
where ¢ is a geometric constant, independent of k£ and of the center zy.

It remains to deal with the technicality that in our definition of the frequency, we are
considering the L2-mass of N*) on annuli rather than balls. This is where the choice of
J becomes important. We now revert back to our full collection of center manifolds. For
any J € N and any &, j € N, we may apply Holder’s inequality and a Sobolev embedding
for g € [2,2*] if m > 2 and any ¢ € [2, ) otherwise, to deduce that

q

) 1-2 .
INFD 12 < [H™(Bs )| ° |N k-9 |a
J
By 2 B
2J 2J
< co-Im(1-2) f NG +J DN (k)2

B3 B3
2J 2J
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Here, we have again used the uniform curvature bounds in Proposition 6.5(i) for My ;
to compare the volume of geodesic balls in My, ; with that of Euclidean ones. We can
thus choose J sufficiently large, independently of both k and j, such that

f |N(k,j)|2 > CJ- |DN(k7j)|2_
53\5% B3

By decomposing this large annulus dyadically, we can find a small annulus A, =
B%\B% for some ¢ = {(k,j) < J — 1 with
2 2

3 . C . C 3
47 H (—) > |NkD2 > —f DNEIP2 > S p (—)
( ) k,j 22 J‘AE | | 2.] B | | 2] k,j 22

where c is a geometric constant. Combining this with the almost-monotonicity of the
frequency, we thus have Ik(Q%) < CIy (2‘,3,1) < C(J), contradicting (45).

This brings us to the final case (c), where for every k sufficiently large, we consistently
restart the center manifolds around x;, because the excess exceeds the threshold £3:

E(Tk, Bg /mn, (T1)) > €3 for some 7 € (1,min{3, j—:}]

But then Lemma 8.1 tells us that
lim inf Hy (ng) > 0.
k—o0

Combining this with the uniform boundedness of Dy () from Proposition 7.11 and the
almost-monotonicity of the frequency, we achieve uniform bounds for Iy on (‘;—:,nk].
Since 1 = 1 for every k, we can further choose J such that 2,3—,1 < 1. This once again
gives the desired contradiction and so (35) indeed holds for J sufficiently large.
Finally, we check that (36) for the choice of J given by the validity of (35). Here, we
simply observe that by (47), for any r € (2J3—,1, 3] we have
J, VDR B (5 ) 2 ) | IDNEDE 2 D 0),

where the presence of the factor r? can be verified by scaling. O

8.2. Proof of the lower frequency bound. We now demonstrate the uniform lower
frequency bound of Theorem 7.8, which will be vital for the persistence of singularities
in the blow-up limit along the scales ry.

Firstly, we require the following result, which tells us that frequency decay forces
excess:

Lemma 8.3. There exists €3 sufficiently small such that the following holds. Using the
notation of Section 6.5, suppose My, is a sequence of center manifolds corresponding
to rescaled currents T), = Ty, 1, satisfying Assumptions 1.1-4.7, with given intervals of
flattening (sg,tx] around wy € Do o4e1Tk 0 B1. Suppose that there exists a sequence
of scales ’z—: € (f—:,Rk] for which
lim Ik(ﬁ) -0
k—o0
Then
lim E(Ty, Bex = 0.
dim B(T, B ()

Here 1), and all related quantities are centered around py(wg).

Proof. We argue in an analogous way to that in the proof of Lemma 8.1. Once again, we
may assume that the scales 7y, = % satisfy limsupy, ni = 6 > 0. Firstly, we distinguish
between two possibilities. Either

(a) liminfy Hy(0) = 0;
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In the first scenario, we immediately apply Lemma 8.1 to conclude. So let us assume
that (b) holds (up to subsequence). We again argue by contradiction. If the statement
of the lemma is false, then the almost-monotonicity of the frequency tells us that

(48) Ik((S) — 0 but E(Tk, B%(wk)) > 0(5) > 0.
tk
Combining this with (b), we have

(49) D (0) = f IDN® 2 — 0.
Bs(pr(we))

Projecting Bs(px(wg)) € My to the reference plane 7y, we may assume that €3 > 0 is
small enough to ensure that Biss(pr, (wk)) © Pr, (Bs(Pr(wk))). Consider the family of
Whitney cubes #(¥) on ;. If no cube in this family intersects B%é(pwk (wy)), then by
construction, N*) = 0 there, which we have assumed is no the case.

Thus, for each k € N we may select L € # (*) to be the largest cube that intersects
B}—ga(Pm (wy)). Letting dy = ¢(Ly) < ¢, we proceed to show that dj, | 0.

We may assume that each cube Ly is in %(k). Indeed, the fact that © (T, wy) = Q
ensures that the only stopping condition is (EX), up to replacing any cube in Wn(k) by
a nearby one in V/e(k) of a comparable size. The fact that we do not stop refining due
to (HT) can be ensured by choosing the constants C. and C}, appropriately, due to the
height bound [22, Theorem A.1].

Now since L N B%é(pm (wr)) # & and § > ¢; (L), we may choose a ball B
Biss(Pr, (wi)) of radius y/mdj, with dist(B*, Ly,) < v/mdy.

Since Lj, € %(k), then the center g, of B¥ satisfies dist(Ly, q) < 44/mdg, and so we
may use the splitting before tilting of Proposition 6.10 to deduce that

(50) J IDN®)2 > J IDNW2 > em{) dip+2-20,

Bs(pr(wk)) @ (Ba,, /a(qr))
where ¢ = ¢(82, 62, My, No, Ce, Ch,). Combining this with (49), we deduce that dy, — 0.
We then proceed exactly as in the proof of Lemma 8.1 to extract an m-dimensional area
minimizing integral current S that is a weak-# limit of the currents Ty, with S = Q[n]
for some m-plane 7, contradiction our large excess assumption. ([

Let us now prove Theorem 7.8.

Proof of Theorem 7.8. We will once again prove this by contradiction. We again adopt
the notation in Section 6.5, and we let Iy := ka(wk)7N(k) and we use analogous no-
tation for all related quantities. If the statement of the theorem is false, we can find
rescaled currents 1), = Ty, +, L Bg Jm» center manifolds My, My-normal approximations
N®)and flattening intervals (sx,tx] around pg(wy.) for wy € Dig g+ Tk such that the
frequency I satisfies

(51) L (2) —o0 for some £ ¢ S—k,R .
tr t 123
with
R:= 1imkinf dist(pr(wk), OBs(pr(xk)).

Observe that R > 2, since wy € B1(xx). Up to selecting a subsequence, we may further
assume that wy — w. We now have three possible cases to consider; either

(a) sk > 0 for every k and limsup,,_,,, & > 0;

(b) sk > 0 for every k and limsup,,_,, %ﬁ =0;

(c) sk =0 eventually.
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In all three cases, we rescale the blow-ups of the current so that we are blowing up at
the scales py instead of t;. Let f—’; € (M M] be the scale at which the reverse Sobolev

2t 7 tg
. . . 2 2
inequality of Corollary 7.7 holds for r = p—:. Then let 7y, = Rst’; (’t)—:, tL:] Let

t

Ty = (kaik)ﬁTk = ((l’wk7’7‘ktk)ﬁT) LBMa ik = lwy, T, (Ek)’ Mk = Lwg, T, (Mk)’
o

and let

= (k) ._ S )2 I

my = max{c(X)”, E(Tk, Bgm)}-

Since the ambient manifolds ¥ converge in Cp%° to T,,% = R™*" x {0}, we have

c(Zy)? F2%, 0. Moreover, we we have 6+/mTy, € (% %], so Lemma 8.3 tells

)

us that
(52) E(Tk, B /m) < CE(Tx, Basymo, (wi)) — 0.
Tk

Thus, m" — 0.

By an analogous argument to that in the proof of Proposition 4.4, we may thus
extract a subsequence for which Ty A Ty for some m-dimensional plane 7o,. We will
let po, denote the orthogonal projection to this plane. We will use the notation py for

the projection map in Assumption 6.7 for the rescaled center manifold M.
Define

_ _ _ 1
N® o My — R™™, N® (p) = aN<’€> (pr(wi) + 7).

and let

N()
Vg = %, Vg - T DBRHAQ(R"H'"),
k

where ey, is the exponential map at p = @;_’EO) € My, defined on Br C 7y ~ Tpkﬂk

and hy, = [ Ny|L2 (5 )-
Notice that

pPr(wr) — Poo(w) as k — 0.

This decay of the excesses at our chosen scales ’z—: further allows us to conclude that
Mk"”oo in Cgﬁg(B%R); e, — id:mey, D B > Br in 273,

The former is an easy consequence of the estimates in Proposition 6.5, whereas the latter
is a technical result coming from the regularity of My; see [21, Proposition A.4] and the
proof of [22, Lemma 6.1] for more details.
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Now we may pass the reverse Sobolev inequality that holds at scale f—: around wy to
the maps vy:

f log |2 = Ch,ff IN®) 2 dH™
Br

R

2

— hy%? L N (p () + )2 A (p)
R

—2-—m—2

= h; %7, IN®)|2 qpm

ol

Bi;&(pk(wk))

_ h;QF;m—QJ |N(k)|2 de
Bz (Pk(wk))

r«k‘\

k

> Chy 2r,™ |IDN®) 2

J-B%&(pk(wk))

k

=>C |D’Uk|2.

Br
2

Here and in all that follows, we use the notation B for both the balls on the original
center manifolds My, and the rescaled and recentered ones My. It should always be
clear from context which of these the ball lies in. Thus,

1imksup Hkawl,z(B%) < o0,
and so by the Banach-Alaoglu weak-+ compactness theorem and the reflexivity of the
space W12, we can extract a subsequence for which
vy — v in W1’2(B§;AQ(RW+”)).
Furthermore, Rellich-Kondrachov tells us that
vy —> v strongly in LQ(Bg s Ag).

Now let us analyze the properties of this limit v. First of all, clearly v is non-trivial,
since our choice of normalization tells us that |[v|r2p,) = 1.
el

Moreover, the average of the sheets of v vanishes. Indeed, arguing as in [21, (7.4)], the
estimate (26) in Theorem 6.9 for the average of the sheets of N*) allows us to deduce
that

f |’r,oN(k)| < Cmgk)kaf(Li)m+2+772
B rry (Pr(wk)) i
¢ ®) (M)7)2
+ = GIN™,Q[m o N™])
Tk B rry, (Pr(wk))
<< NI,

Tk JBrey (r(wi))

where {L;}ien is the family of cubes corresponding to the collection of cube-ball pairs

£ = {(L,B(L))} from [21, Section 4.1] that intersect pr, (Brr (Pr(wk))). Here, the
2

final constant C' on the right-hand side depends on R and the quantities stated in

Theorem 6.9. The final inequality follows from the arguments of [21, Section 4.1] and

the reverse Sobolev inequality of Corollary 7.7. Rescaling these estimates and using the
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C%-control from Theorem 6.9 for N*) combined with the excess decay (52), we thus
have

J |novk|<Ch;1J Ino N®|
Br
2

Br
2
S| me N®)
B%’& (Pr(wr))
< Ch,;lf;’"—QJ |N®)|2
Brr, (Pr(wk))

< Ch;lf |N®) |2
Br
< Chy
< [m{V177 [H™ (Br(My))]

< O]+ o,

N[

Combining this with the strong L2-convergence of vy to v, we indeed have nov =0
almost-everywhere on B E.

Finally, one can show that v is Dir-minimizing, and that in addition v, converges
to v strongly in VV&)C2 . This is proved by contradiction, using the existence of a better
competitor function for the Dirichlet energy to build a suitable competitor current for
Ty, thus contradicting its area minimizing property. The argument may be found in [21,
Section 7.3], and is omitted here.

In summary, we have shown that the maps vy converge strongly in Wlloi n L2 on
Bg C Ty to a map v such that

e v is non-trivial;
e nowv =0 almost-everywhere on B B;
e v is Dir-minimizing on B%.

Moreover, the assumption (51), rescaled appropriately, tells us that

= 1 = —
(53) I <—> < CT, (f’—k> < CI, <ﬁ> LNy}
2 Tktk tk

where ik = 1071\7(1@.

We will now reach a contradiction by showing that the Q-points wy, for T}y persist to
the limit; namely, that v(0) = Q[0]. We argue slightly differently for each of the cases
outlined previously. We will henceforth let py := ‘;’—:

Case (a). In this case, the stopping condition (Stop) for the intervals of flattening
and Lemma 6.13 tell us that

m+4—202
f N2 < P (j_k) ’

Tk
for a (small) geometric constant o. Moreover, the (localized) Sobolev embedding [18,
Proposition 2.11] and the fact that (up to subsequence) pi € (sx, Csi] tells us that

(54) L N <o vwe g Cﬁif IDN®P2,

5 Bos), B,
27 2

Now the excess splitting of Proposition 6.10 at scale ‘;—: and the comparability of s; and
Pk gives
f IDN®)2 > e prmt2-202

Pl
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Together with (54) this yields

(55) L IN®I? < Cﬁif IDN®? < Cpi Dy ().

i Bog

Finally, one may replace the left-hand side of (55) with Hy(py) via the following esti-
mate:

,J L(Jy (M) |N(k)|2 dx:gf L|N(k)|2 dx<Cﬁ,§1J |N(k)|2.
M d(x) Pk Bﬁk\B%& d(x) ok
This, however, is in contradiction with (53).
Case (b). This case follows similarly to case (a), only now we have to propagate the
lower frequency bound observed at the stopping scale s; up to the blow-up scale py.
Proceeding as in case (a) only at scale %&, we conclude that

10
Ik ( Sk> = m,
tk

where 7 is a small geometric constant. We may now use the almost-monotonicity of the
frequency from Theorem 7.4 (cf. (34)), with a choice of ¢y small enough so that

n— ef(ﬁk)co > 07

to conclude that we have a uniform lower bound for I(py ), once again contradicting (53).

Case (c). Finally, we need to deal with the case where s = 0 eventually along
our sequence of flattening intervals. Let us fix an arbitrary center manifold M and
corresponding M-normal approximation N in our sequence. We will denote the interval
of flattening for this center manifold by (0, ¢], and we will omit dependencies on N for I
and related quantities. In light of the estimates in Proposition 7.12 and a more careful
examination of the proof in [21], we may conclude that

o, log (T*Wl)H(r)) >-C+ %I(r) — CH(r)" — CrI(r),

for every r € (0, 1), irrespectively of the existence of an a priori lower frequency bound.
Thus, for any 0 < p < 1, letting

we have
e2A(p)p*(m*1)H(p) <CH(1) < C.

Combining this with the reverse Sobolev inequality in Corollary 7.7 (or the uniform
upper frequency bound in Theorem 7.6), we deduce that

D(p) < Cpm_Qe_QA(p).
On the other hand, Proposition 7.11 gives the decay rate
D(p) < Cpm+2—262.

This forces the inequality
e2MP) > p2(2-02)

or equivalently
o) > c2-0) Vpe(0,1),
contradicting (53) for k sufficiently large.
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9. PERSISTENCE OF (Q-POINTS

We now construct our limiting Dir-minimizer using our blow-up sequence with varying
centers ry, which we assume converge to some point x. Recall that we wish to blow up
at the scales ri around z, along which 7" has a flat tangent cone as in Proposition 4.4.
Thus, we need to take a diagonal sequence of center manifolds with the intervals of
flattening (s, tx] 3 7 centered at xy, and rescale them appropriately so that the reverse
Sobolev inequality of Corollary 7.7 holds at scale 1, analogously to that in the preceding
section. As usual, we let M}y denote the center manifold at scale t; around x, with
corresponding current Ty, = Ty, +, L Bg /-

Let i—: € (3%’;, %] be the scale at which the reverse Sobolev inequality holds for
r = 3= Then let 7 = ?,% € (;—Z, Qt%] Let

Ty == (t0,7)8 Tk = ((tay, it )sT) L B oy , Sk = 10,7, Sk M = 195, My,
Tk
and let
" < max{e(£)%, E(Tk, Bgym))-
Since the ambient manifolds 3, converge in Cp>%° to T, % ~ R™+" x {0}, for k sufficiently
large we have
C(ik)Q — 0.

We will use the notation pg for the projection map in Assumption 6.7 for the rescaled
center manifold My. Moreover, 6y/m7, € (m %], so Lemma 8.3 tells us that

tr )

(56) E(Tka B6\/ﬁ) < CE(Tk, B24\/ET,€) — 0.
Tk

Thus, m" — 0.

We now argue in the same way as in the proof of Theorem 7.8. Let my be the plane
defining the flat tangent cone of T as in Proposition 4.4. We will let p,, denote the
orthogonal projection to this plane.

Define
N® My, >R NR(p) = %N(k)(ﬂcp),
and let ~
up = %:ek, ug : T © By = Ag(R™"),
where ey, is the exponential map at py := @;_}Eo) € M, defined on Bs < 7, ~ Tpkﬂk
and hy == [N |12(5,). As before, this decay of the excesses at our chosen scales =
further allows us to conclude that
My, — 7y in CB’%(B%), ep —> id: 7y D By — By in C>72.

Now we pass the reverse Sobolev inequality that holds at scale f—: around xx to the maps

Ul -
JB

Once again, this allows us to use both weak-* compactness and the Rellich-Kondrachov
Compact Embedding Theorem to deduce that there exists a map u € WLQ(B% i Ag)
such that up to subsequence,

|uk|2 = CJ |Duk|2.

3 B3
2 2

up — u strongly in L2(B%;AQ).
Combining this with the reverse Sobolev inequality, we can in fact further improve this

strong convergence to that in WLQ(B% s Ag).

loc
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Moreover, by arguing exactly as in the proof of the lower frequency bound, u satisfies
the following properties:
e u is non-trivial;
e nowu =0 almost-everywhere on B 35
e y is Dir-minimizing on Bg.

It remains to show that whenever y, — y, with y, € By n Sing[Q,Qﬁ]Tk, we have
u(y) = Q[0]. We already know that yi is a Q-point for T}, but this does not ensure
that the excess should decay quickly enough close to yi; we might need stop our center
manifolds at scales close to these points. Even in the case where we can refine indefinitely
around each yy, it is still necessary to check that this behaviour persists in the limit as
we take k — 00. We consider cases depending on the non-centered intervals of flattening
for My, around pg(yx). For 5 := s(yx) as in Definition 6.15, there are 3 possibilities:

(a) There is a subsequence of indices k for which §; = 0; namely, px(yr) which lie in
the contact sets ®(T'y) for the center manifolds My,

(b) There is a subsequence of indices k with f—z | 0; namely, we stop refining around
P, (Yr) at scales that decay relative to the blow-up scales 7,

(c) We have lim infy, f—’; > 0; we stop refining around pg, (yr) at scales comparable to
the blow-up scales.

Note that these points yj, are not the centers for our center manifold constructions; they

are simply points lying in B that are ‘captured’ by Tj.

The idea is as follows. We wish to establish persistence of Q-points at the blow-up
scales i, by exploiting the uniform frequency bound of Theorem 7.8.

Unfortunately, the scales rr may be very far from the scales at which we stop refining
around yx and inherit the behaviour from Ty. These stopping scales are those at which
we may use the lower frequency bound to show that the singularities persist. We then
propagate this persistence up to the larger scales r; that we are interested in, via the
almost-monotonicity of Theorem 7.4.

9.1. Case (a). This case can be thought of as case (b) with ‘3, = 0’. More precisely,
we can continue our refinement procedure indefinitely around pr, (yx), so the limiting
frequency of N*) at each vy, exists.

Lemma 9.1. Suppose that we have a center manifold M with corresponding M-normal
approzimation N, rescaled current T' and a point w € sptT” for which p(w) € ®(T).
Then the limit

(57) I ()N (0) := 17}{8 Loy, N (r)  exists.

Proof. The proof of this is a simple consequence of the almost-monotonicity of the
frequency in Theorem 7.4, where we crucially exploit the behaviour of the error function
f. Consider

Qo = lim inf Qp (), (1) € [e0, +0).

Fix € > 0. By the nature of f from Theorem 7.4, we can choose ro > 0 (independently
of the center manifold M and the interval of flattening) such that

€ €
flir)y < 5 for every r < g, and Qp(w),n(10) < Qo + 3
But then by the almost-monotonicity, for every r < rq it holds that
€
Qp(w), N (1) < Qp(u),n(ro) + 5 < Qo +e.
Thus, the limit in (57) indeed exists. O
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Let us now proceed with the proof that u(y) = Q[0] in case (a). We can combine the
result of the above Proposition with Theorem 7.8 to deduce that we have the uniform
lower bound

(58) ka(yk%]v(k)(()) = co > 0.

Furthermore, the Wll(;g—convergence of uy to u allows us to establish convergence of the
frequencies

(59) Lo, (v (1) — Lyu(r)  for each re [0, dist (y,0By)),

where I, ,, is the regularized frequency of u centered at y, defined via the same Lipschitz
cutoff as in Definition 7.3. Notice that we may include r = 0 in this convergence, due
to Lemma 9.1.

Then, a simple consequence of [4, Theorem 9.6] is that for non-trivial Dir-minimizers
u, the limit I, ,,(0) exists and that its value is the homogeneity of any tangent function
g that is the subsequential limit as r | 0 of the blow-ups

L ulytrz)
[Dix(u, By (y))]*
Thus, we must necessarily have
L,u(0) = I,u(0) = co > 0.

This allows us to apply Lemma 7.1 to conclude.

Finally, we deal with the ‘quasicontact’ case. This is proven in essentially the same
way as case (a), but we cannot take the limit of the frequency all the way to zero around
every fixed y,. However, we can use the information of the frequency at zero from the
limiting Dir-minimizer as k& — 0.

9.2. Case (b). In this case, we use the same reasoning as for the case (a), only now we
must stop refining at scales close to yy, that shrink to zero with k. We can still show
persistence of singularities at these stopping scales, asymptotically.

In this case, we proceed as follows. Firstly, observe that there is almost monotonic-

ity (34) for the frequency Lo, (yo), N for all scales r € (f—:, 1], where the function f in
Theorem 7.4 is independent of k.
Due to the nature of f, an analogous argument to that in the proof of Lemma 9.1

yields the existence of the limit

o 25k
IQ = lim ka(yk)ﬁN(k) (K) .

By Theorems 7.6 and 7.8, we can deduce that

0<cy<Iy<Cy< 0.

25y

i indepen-

We may now use the almost-monotonicity of the frequency to choose r¢ >
dently of k such that

co T 25,
5} < ka(yk)7N(k)(T) =I5, (yr), N® (ﬁ) < 2¢p for every r € (;,ro] ,

provided that we take k sufficiently large. But now we can once again use the con-
vergence (59) and [4, Theorem 9.6], combined with the fact that (up to subsequence)
ff 1 0, to deduce that

“ < I,.(r) < 4co for every r e (0, 7:—0] .
4 Tk

We may now once again use Proposition 7.1 to reach the desired conclusion.
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9.3. Case (c). In this case, (up to subsequence) the scales §; at which we stop refining
around pg(yx) are comparable to the blow-up scales r. Take the cubes Ly, € # %) with
((Ly) = 53+ and dist(Lk, pr, (yx)) < 2.

We claim that u(y) = Q[0]. In this case, we are unable to exploit the uniform lower
bound of the frequency over the flattening intervals, since this only tells us that I,, has a
positive lower bound at some scale comparable to lim infy_, 4 f—’; > 0. We instead argue
as follows.

Consider the strong Lipschitz approximations fi : Bsy,, (Prs,7L,) — Ag (wi—k) from
Theorem 6.2 for Ty. Take g : My — Ag(R™T™) to be the reparameterization N
from [16, Theorem 5.1] of f = fi to the center manifolds. We may now rescale and
normalize gj in the same way as the Mj-normal approximations N®*). Namely, we
define gy : My, — Ag(R™*™) and vy, : 1 © By — Ag(R™") by

1(p) = ~—u(Fip) 9o O
= —gi(T v = .
ge\P fkgk kP); k h:

Then, for k sufficiently large, we have

G(vk,u)® < Chi® | G(ge, NW)?

B B

3 3
2 2

< Ch;QFk—m—Qf g(gk,N(k))Q
B

3.
27k

< Chj%F ™2 G(gr, NW)2,

LAB%% \K)

where @, is the map parameterizing the center manifold My, over the plane 7y, as given
in Definition 6.6. Let Ej = E(Tj, ngmk (pL, )7L, ). Notice that since rr, ~ ¢(Lj) ~

71, we have E, — 0. Furthermore, since O (T}, yx) = Q, we necessarily have Lj, € %(k).
Therefore, the stopping condition (EX), the splitting before tilting in Proposition 6.10,
and the improved height bound in Lemma (6.13) tell us that

2—202 —m—2
(k) ( Tk Tk (k)|2 2
(60) B, ~my ™ =\ INY ¢ ~ hy,
k k Bory (Pr(yr))
tk

for some choice of ¢ > 0 that is independent of k. We may now use the L*-estimates (20)
and (23), the height bounds (19), the C**-estimate (i) of Proposition 6.5, and the bound
in Theorem 6.2 for the sets K over which Ty L Cs2,,, (P, 71,) is not graphical, to
achieve the estimate

o 1
f Glgr, N®)? < Cr 2 Bl | By, \Ky| < Or 20 gy +ltm
ék(B%Fk\Kk) 2

Combining this with the above control on the L2-distance between v;, and uyg, the com-
parability (60) of the L? height and the excess, and the excess decay Ey, — 0, we
deduce that

2 =2 =7
G(vg, ur)® < CrkBQEk — 0.
B3z
2

Due to the convergence of uy to u, this further tells us that v, converges in LQ(B% i Ag)
on to the same Dir-minimizer u. It remains to obtain persistence of Q-points for the
sequence of maps vi. Indeed, since © (T}, yr) = Q, Theorem 6.3(22) tells us that there
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exists v > 0 for which

f G Qn o fu])? < Cs™ 12,
Bury (Pry, (1))

for every s > 0 sufficiently small. Applying the estimates in [16, Theorem 5.1], rescaling,
making use of Theorem 6.2(20) and (60), and using the control [22, Proposition 4.1(iv)]
on the tilting between the planes 77, and 7, we have

J lv|* < Chy %, ™2 J lgi © ®x|?
Bs(pr, (yx)) By, (Pry, (Yr))

G(f(p), Qler(p)])?

—2-—m—2
< Ch,. 7y f
Bary, (Pry, (Yx))

—2-—m—2
< Chp 7y

f G(fx(p). Qln o £l
Bsr, (pﬂ‘Lk (yx))

+ ChQQSmf;Q Lip(fi)? el & lgw © ‘I’kH%rﬁ(B;k (Pry (yr)))

285 271+
<O+ ORI ETT

)

for every s < sg, where sq is independent of k. Taking k — o0, again using the excess
decay, and combining with the strong L2-convergence of vy to v, we have

J |v|2 < Cs™t7,
Bs(y)

Thus, applying Proposition 7.1, we are able to conclude that I,(0) > 7 and that v(y) =
Q[O0] as expected.

10. PROOF OF THE RESULTS IN SECTION 3

Let us prove the preliminary results contained in Section 3. We begin with the proof
of Lemma 3.1. The proof of all but (4) appears in [6], but nevertheless we repeat the
argument here.

Before we begin with the proof, let us make the following important observation.
Assuming the validity of Lemma 3.1,

(61) %(C)={a>0:limsupro‘N(K,r):()}_
0 Kew
Indeed, if o € &7(%), then the Work Raccoon Lemma 3.1 allows us to choose 8 €
(a0, @), so we have

N(K,r)yr® < r* PN(K,r)r? <CB)r*? -0 asr | 0.

Conversely, if

lim sup r*N(K,r) =0,
0 Kew

then given any K € %, for any § > 0 we can find a covering %; of K by N(K,§) open
(m 4 n)-dimensional balls of radius §. Then

>} (diam B)* = 26N (K, 6).

Be%s
Taking § | 0, the claim follows from the definition of the a-dimensional Hausdorff
measure.

In view of the above, it is therefore crucial to prove that the half-line is open to
make the identification (61). Hence, in order to estimate the upper Minkowski content
uniformly over the compact family %, it suffices to estimate the Hausdorff dimension
uniformly.
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Proof of Lemma 3.1. The fact that «7(%) is an upper half-line is clear, since it is the
intersection of upper half-lines, so to establish the first statement of the theorem, we
just needs to show that it is open. Fix § € &/(%). We may assume that 5 > 0, since
0 ¢ &7(€). Indeed, the closure under rescalings about all possible centers guarantees
that HY(K) = 0 for every K € ¢ ounly if € = &.

Given any K € € (recall that K is compact), we can then find a finite cover % (K) :=
{B,, (%)}, of K by open (m + n)-dimensional balls such that

N
1
Z T'f < 5
i=1
Letting
N
W(EK) = | By (@),
i=1

we know that we can find a finite collection of sets K7, ..., Kj; such that for any K € €,
there exists j € {1,..., M} such that K < W(Kj). This is due to the compactness of ¢
with respect to the Hausdorff topology.
Now write
U(Kj) = (B, (2)}iy"
to denote the balls from W(K;). Since our collection is finite, we can certainly find

« < [ such that
N(K;)

{7
D, i<
1=1

N =

for each j.

We will show that « € &7 (%) by inductively replacing each cover % (K ;) by improved
covers with reduced overlaps, which satisfy an a-dimensional packing condition. At each
stage we will replace a ball in the cover by a collection of smaller balls that cover K
more efficiently. We will later see how to further improve this efficient covering to one
where the balls have comparable radii at each stage, in order to deduce that the stronger
property (4) holds for the exponent .

Fix any K € ¥, and select K; such that K < W(K,). At the first stage of our
subdivision, let 2 = % (K;).

Assume that we have constructed %. Take any B, (z) € %. Choose j = j(z,r) such
that the blow-up K, , satisfies

Kz,r N B1 c W(Kj(z,r))a
with corresponding family
%(Kj(w,r)) = {B"Aj(a:m),i (Zj(zw),i)}

of balls in W(Kj(z,)). Now we scale these balls back down to the correct size for K
itself, to get a family

L (x,r) = {BTTJ.(I,T)J(.T + T2j(2,r),0) }i-
Then we have
(e} o, 1 «
(62) Z p% = Zr e S 57
B,(w)eS (x,r) %

So indeed, this provides a more efficient covering of the portion of K inside B,.(z), than
B, (z) itself. Doing this for each ball within the family %%, we may thus naturally define

Upin = U L (x,r).

B, (z)e%
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Summing the packing estimate (62) over the entire family %1 yields

Z 7o = Z pa < 1 Z re.

B, (2)e%+1 B, (z)e%; B,(w)eS (z,r) 2 B, (z)e,

Hence, by our choice of %4,

1
o7 —_
E T < 90T 1"
B, (2)e+1

We can continue refining our cover in this way indefinitely, taking ¢ 1 co, which tells us
that H*(K) = 0.

It remains to show the uniform boundedness of the upper Minkowski contents over
the compact family ¥°. We will use the above efficient covering for the sets in our family
and will amend it appropriately using compactness to further ensure that the radii of
the balls are comparable at each stage. This additional improvement will be precisely
what we need in order to obtain the strengthened packing estimate (4).

First of all, find the sizes of the smallest and largest balls among all the covers for all
of the sets K;, j =1,..., M:

7 := min { Tji : Brj,.; (Zj,i) € %(KJ) }i,j s
R = max { Tji* Brj,.; (Zj,i) € %(KJ) }i,j .

Notice that by construction, we necessarily have R < 2=« < 1. For K € ¢ fixed as
before, let p(¢), R(¢) denote the radii of the smallest and largest balls in %4 respectively,
we have

(63) p(0) = Tp(¢ —1),

with equality whenever we refine one of the balls in our covering with a rescaled cover
that includes a rescaled ball of minimal size (among all the % (K;)), between stage £ — 1
and /.
We want to ensure that R(¢) is comparable to p(€). If this is not the case, namely if
R(¢
O _

T )
p(t)
then we subdivide all the large balls B, (w) € %, with 7 > 7 1p(¢), several times if
necessary, to obtain a new covering %, such that
* 2B, (wew T S 3 B
e the radius of the largest ball is at most R¥R(¢) < 7 !p(¢) for k € N sufficiently
large.

Note that the radius of the smallest ball in the cover remains the same in this procedure,
since for any ball that we subdivide, the new balls will have radius at least p(¢£)7=1 > p(¥).
Thus (not relabelling the new covers), we may assume that

R(0) <7 'p(¢) for each £.
Combining this with (63), we further have
p(0) € [, 7).

We claim that this new even more tightly packed family of coverings gives the packing
condition for our arbitrary fixed compact set K € ¥. Choose any r € (0,1]. Find the
smallest £ € N such that R(¢) < r, namely,

R(f) <r < R(L—1).
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We want to consider a covering by balls of radius exactly r, so we may enlarge all
the balls in our cover %, to concentric ones with radius r that still cover K. This in
particular tells us that

N(K,r) < #%.
We may now exploit the comparability of the sizes of all of these balls. Namely, we
obtain

N(K,r)r* < N(K,r)R({ —1)*
N(K,r)i~%p(¢ — 1)*
FOTIN(K, ) p(6)®
(@) >, 7

B (w)e:
C(a).

This concludes the proof. ([

NN N

A
Q

N

Let us now prove the statement of Proposition 3.2, which allows us to apply the Work
Raccoon Lemma 3.1 to the family €(¢, K).

Proof of Proposition 3.2. For ease of notation, we will omit dependencies on € and K.
Clearly € contains K, since one can take x3, = 0 and 7, = 1. The closure under rescaling
property is trivial to check by simply rescaling the convergent sequence accordingly. The
closure under Hausdorff convergence is proven as follows:

Suppose that {K;}; < €, with K 5 K; 25, K. For each 7, we obtain a sequence

O .
Ki, ., with
= d
Ky v "Bl =5 KE
But then for each j, we can find k(j) large enough and a subset f(]Q c ng wi oG, Such
that .

dH(KJO ﬁEl,Kj) < 2—]
Combining this with the convergence of K; to K, we conclude that

dH(f(?mﬁl,K)—»O as j — 0.

In particular, the diagonal subsequence {K? }; of blow-ups can be taken for

3,k (3) T3k ()

K, in order to see that it indeed lies in €'(e, K). O

11. NON-INTEGER MULTIPLICITY POINTS

We give a proof of the preliminary results (m — 3)-rectifiability and (local) upper
Minkowski content bound for those singular points of T that have non-integer multi-
plicities. Before we begin the proof of Lemma 1.3, let us recall some notation from [19].
The (interior) k-th stratum S*(T') (more generally defined for any integral varifold) is
given by

SH(T) := { x € sptT\sptdT : no tangent cone to T at z is (k + 1)-symmetric } .
Observe that this definition coincides with the definition (3). For fixed p > 0 and any
§ > 0, the quantitative k-th §-stratum S¥(T, p) at scale r is given by

k _ F((es)s(Th,s) L B1, VL By) = és Vs e (0,p) and
T, p) = T T: ’

S5 (Tp) { v € sptT\sptd any area-min. (k + 1)-symm. cone V € I™(T,X)
where e,, is the exponential map e, : T, — X, By < T,X2. Recall that we call a varifold
V e I™(R™*™) a k-symmetric cone if (1o,)yV = V for every r > 0 and if there exists a

k-plane m < R™*™ such that (1,)yV =V for each y € .
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Note that for area minimizing currents without boundary, one can replace the varifold
metric in the above definition with the flat metric, since the two are then equivalent.

The result [19, Theorem 1.4] then states that given any p,d > 0 the k-dimensional
upper Minkowski content of the stratum S¥(T',p) is locally bounded and SE(T, p) is
k-rectifiable.

Proof of Lemma 1.3. Fix e > 0, Q € N\{0} and any Q as in the statement of the lemma.
Let

E = S8ing_o,. N Q.
Clearly E is compact, due to the upper-semicontinuity of the density. We will proceed
to show that

Ec S(’S"_P’(T, p) for some scale p and proximity threshold § > 0.

The idea is to show that if T is sufficiently F-close to an area minimizing (m — 2)-

symmetric cone V € I™(T,3) somewhere, this forces the mass ratio of T to remain

sufficiently close to an integer value (since the density of V' is always an integer). This

will be inconsistent with our assumption that we are restricted to points of non-integer

density. More specifically, we claim that there exists a scale p > 0 and a parameter
€ (0,1) for which

(64) IT(Bs(p)) < (Q +1—n)wm,s™ for every p € F and every s € (0, p).

Indeed, if this is not the case then we can extract a sequence of centers pr € E and
scales sg,nx | 0 for which this fails, namely

IT1(Bs, (pr)) > (Q + 1 = ni)wmsy"-
Up to subsequence (not relabelled), we may assume that pj converges pointwise to some
singular @Q-point p € E. The monotonicity formula and the convergence of the masses
ITI(B,(px)) — |T||(B(p)) for all but a countable number of radii » > 0 then tells us
that for any such r» > 0,

T _ o ITUB ) e oni n TUBs ) | cargg 4 1)
Wi T k—o0 W™ k—o0 W SE
In particular, ©(7T,p) > @ + 1, which contradicts the fact that p € E.
Now we may combine (64) with the properties of points in S§* (T, p) to reach a
contradiction as follows. Observe that the following criteria holds:
(a) If V e Z™(T,X) is an (m — 2)-symmetric area minimizing cone, then necessarily
0(5,0) = % is a positive integer;

b) One can choose § > 0 sufficiently small such that if F((e;)s(T% s)LB1, VL By) < s,
gLz,
then
ITI(By(@)) = [S1(BY)| < min {2, = }s™  for any € R™*";
(c¢) By the monotonicity formula, for any 2 € E and any s < p sufficiently small we
have -
IT1(Bs(@)) = e O(T, )wms™ = (Q + 5 )wms™.

The second property follows from the fact that
F(‘/la‘/?):‘F(‘/la‘/?)+F(|V1|a|‘/2|) for any Vlv‘/2€Im-

Thus, choosing 6 > 0 sufficiently small as in (b), if there is a point z € E for which
F((es)y(Ts,s) L B1,V L By) < ds for some s < p and some (m — 2)-symmetric area
minimizing cone V € I™(T,X%), then

|S[(Bs) n

€
- < —— < 1——=.
Q+4 Wy 8™ @+ 2
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This, however, contradicts (a), so the claimed inclusion E < S7*~(T, p) indeed holds
true for p > 0 as in (64) and 6 > 0 as in (b). O
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