
No Privacy Among Spies: Assessing the Functionality and
Insecurity of Consumer Android Spyware Apps

Enze Liu
UC San Diego

La Jolla, CA, USA
e7liu@eng.ucsd.edu

Sumanth Rao
UC San Diego

La Jolla, CA, USA
svrao@ucsd.edu

Sam Havron∗

Cornell Tech
New York, NY, USA

havron@cs.cornell.edu

Grant Ho
UC San Diego

La Jolla, CA, USA
grho@eng.ucsd.edu

Stefan Savage
UC San Diego

La Jolla, CA, USA
savage@cs.ucsd.edu

Geoffrey M. Voelker
UC San Diego

La Jolla, CA, USA
voelker@cs.ucsd.edu

Damon McCoy
New York University
Brooklyn, NY, USA
mccoy@nyu.edu

ABSTRACT

Consumer mobile spyware apps covertly monitor a user’s activities
(i.e., text messages, phone calls, e-mail, location, etc.) and transmit
that information over the Internet to support remote surveillance.
Unlike conceptually similar apps used for state espionage, so-called
łstalkerwarež apps are mass-marketed to consumers on a retail
basis and expose a far broader range of victims to invasive moni-
toring. Today the market for such apps is large enough to support
dozens of competitors, with individual vendors reportedly monitor-
ing hundreds of thousands of phones. However, while the research
community is well aware of the existence of such apps, our un-
derstanding of the mechanisms they use to operate remains ad
hoc. In this work, we perform an in-depth technical analysis of 14
distinct leading mobile spyware apps targeting Android phones.
We document the range of mechanisms used to monitor user activ-
ity of various kinds (e.g., photos, text messages, live microphone
access) Ð primarily through the creative abuse of Android APIs.
We also discover previously undocumented methods these apps use
to hide from detection and to achieve persistence. Additionally, we
document the measures taken by each app to protect the privacy
of the sensitive data they collect, identifying a range of failings on
the part of spyware vendors (including privacy-sensitive data sent
in the clear or stored in the cloud with little or no protection).

1 INTRODUCTION

Consumer mobile spyware Ð software that covertly gathers in-
formation on a mobile device and transfers that information to a
remote server Ð has existed for at least two decades, but has grown
significantly in popularity in recent years. In one recent study from

∗Work done while this author was affiliated with Cornell Tech.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1ś18

© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

Norton Labs [1], the number of devices identified with spyware
apps increased by 63% between September 2020 and May 2021. A
similar report from Avast saw a 93% increase in the use of spyware
apps in the UK over a similar period [2].

Sold under a wide variety of brand names Ð TheTruthSpy, mSpy,
Flexispy and so on Ð these apps are marketed directly to the general
public. They are relatively cheap (typically between $30 and $100
per month), easy to install and do not require specialized technical
know-how to deploy or operate. Indeed, the only requirements for
such software is temporary physical access to the target device and
the ability to install an off-store app.1 After installation, the owner
of the target device may have no knowledge that anything has
changed. But the intimate details of their life can now be sent to
another party, including the contents of their text messages, email
messages, photos taken and received, and even live recording from
their microphone and camera. Unsurprisingly, such łstalkerwarež
has been implicated in a range of abuses including intimate partner
violence [3] and cyberstalking [4].

Moreover, privacy failures in the łback endž software used to
store and display exfiltrated datameans that exposure of the victims’
private information is not limited to just the abuser who installs
the software, but also to miscreants who exploit the insecure de-
sign and/or implementations of these apps. Indeed, a plethora of
reports indicate that a broad range of consumer spyware cloud
services have been breached, exposing hundreds of thousands (if
not millions) of users’ private data [5ś14].

However, while the existence of such software, and the threat it
poses, is well documented in mass media, the technical methods
that these apps use to pervasively mine and exfiltrate private data
is not well understood. How does such software hide on the target
device? How does it acquire the contents of text messages or of
third-party applications? How do these apps monitor a victim’s
camera or microphone without notifying the user? Are there a
small number of common techniques for bypassing protections or

1Because their features violate store policy, app stores like Google Play do not permit
the sale of popular spyware apps.

1

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

does each vendor innovate independently? Understanding these
issues, as well as the nature of the cloud services used to store the
most sensitive data captured from target devices, is the motivation
for this work.

In particular, our paper describes a broad technical investigation
into 14 leading consumer spyware apps for Android-based smart
phones. Specifically, we seek to answer two key questions:

• How do spyware apps achieve their advertised functional-
ities? We focus on stealthy features that facilitate noncon-
sensual tracking.

• What are the measures taken by spyware apps to protect the
data they collect?

To address these questions empirically, we reverse engineered
14 of the most popular consumer spyware apps. In analyzing their
behavior we make three primary contributions:

• We performed the first comprehensive and in-depth analysis
of mechanisms used by consumer spyware apps to bypass or
trick system level isolation across a range of different feature
categories.

• In addition to confirming the broad use of some techniques
identified in the mobile malware literature (e.g., abusing łac-
cessibilityž APIs), we identified two novel abuses of Android
APIs (new techniques of invisible camera access and hiding
app icons). We also document that Android’s threat model
does not include abuses of their APIs that allow apps to
conceal their icon.

• We tested spyware apps in situ in a carefully monitored
environment and analyzed their communications with the
cloud service components. We believe our work is also the
first academic effort to document in detail a range of privacy
deficiencies (e.g., data sent in plaintext and cloud services
with insecure direct object references (IDOR [15, 16]) for the
contents of phone data).

Together, we believe that this work further sharpens the com-
munity’s understanding of consumer mobile spyware, providing
guidance both for phone OS vendors and regulators in their efforts
to mitigate the use and availability of such software.

2 SPYWARE

To provide context for our study, we first describe how spyware
is used in general and then describe how we selected the specific
spyware apps we investigate.

2.1 Spyware Use

Spyware enables an adversary to surreptitiously record the activi-
ties, behavior, and location of a victim based on the victim’s phone
usage. These invasive apps have a wide range of capabilities for
monitoring the victim, and do so using existing Android APIs with-
out needing root access.

To install these apps, the adversary first creates an account on
the spyware’s web portal interface and purchases a subscription,
if required. The adversary then requires physical access to the
victim’s device to download and install the spyware app. When
installing, the app requests an extensive set of Android permissions
as the basis for performing its monitoring activity. The adversary

readily grants these permissions to the app, a step which entirely
undermines the Android app permission model. The adversary
then signs in to the app on the device, typically using the same
credentials used by the web portal, and links the victim’s device
with the adversary’s account on the spyware portal.

Subsequently, the adversary no longer needs physical access to
the victim’s device, and can remotely control the actions of the
app via the online spyware portal. The spyware app both passively
collects data on the victim’s device (e.g., location, text messages,
calls, etc.), and also allows the adversary to perform on-demand
remote actions like covertly recording audio and video, taking app
screenshots, etc.

Although spyware authors exhibit tremendous effort and creativ-
ity in subverting Android sandbox protections to implement their
capabilities, many apps spend much less effort in protecting the
data that they exfiltrate and store on their backend servers. Later,
in Section 4 we describe several vulnerabilities in spyware apps
that put the victim’s data at risk to a third-party attacker.

2.2 Spyware App Selection

For our analysis, we chose 14 distinct leading consumer Android
spyware apps.2 We focus on Android-based spyware because most
of the mobile spyware market appears to be focused there. Since
curated app stores like Google Play do not permit the sale of such
apps, in practice they must be side-loaded off-store, a process that
Apple does not support. As a result, consumer mobile spyware
only operates on łrootedž iPhones. Rooting an iPhone can be a
technically involved operation (one popular guide to jailbreaking
the iPhone involves 41 distinct steps [17]) and one that can take
significant time to complete Ð both requirements at odds with the
broad, non-technical customer base such apps are marketed to. We
also focus on leading spyware apps as they are the apps that more
people are exposed to and they are more likely to be innovative
(new features could potentially bring them more customers).

In our selection process, we started with the 18 off-store spyware
apps identified by Chatterjee et al. [3]. We augmented our set of
apps by taking the intersection of two major industry reports ([18]
and [19]) that listed spyware apps.3 Next, we sorted all the apps
based on the Tranco ranking [20] of their website domain (snapshot
taken on May 5th, 2022). We filtered out apps that were distributed
via Google Play (since, to appear in the store, they do not have
compelling spyware capabilities) or broken (e.g., not reachable or
no longer accepting payments). For apps that are rebranded versions
of other apps, we consider them duplicates and did not examine
them separately (Appendix A.2 details how we detect duplicate
apps).

From the top 25 most popular apps, we identified 14 distinct apps
which we used in our study. The apps in this set are produced by a
wide spectrum of vendors, with a broad array of capabilities, and
cover the majority of apps identified in prior work [3] (10 out of the
14 apps that are still alive). Moreover, we find significant overlap
in the low-level technical implementation of spyware capabilities:

2Often the same spyware app is available under multiple names. Appendix A.2 de-
scribes how we identify and avoid choosing duplicate apps.
3We take the intersection of both reports because (a) the definition of consumer
spyware is vague; and (b) the collection process is ad-hoc and differs for each report.
Apps in the intersection represent consensus among these disparate classifications.

2

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

App Name Website Domain Ranking Portal Domain Ranking Target SDK Package Name

mSPY mspy.com 46k mspyonline.com 220k 25 core.update.framework
Mobile-tracker-free mobile-tracker-free.com 54k mobile-tracker-free.com 54k 28 mobile.monitor.child2021
Clevguard clevguard.com 69k clevguard.com 69k 28 com.kids.pro
HoverWatch hoverwatch.com 87k hoverwatch.com 87k 28 com.android.core.mntw
Flexispy flexispy.com 107k flexispy.com 107k 22 com.fp.backup
Spyic spyic.com 152k spyic.com 152k 22 com.sc.spyic.v3
Spyhuman spyhuman.com 179k spyhuman.com 179k 22 m.mobile.control
TheTruthSpy thetruthspy.com 214k thetruthspy.com 214k 28 com.systemservice
iKeyMonitor ikeymonitor.com 230k emcpanel.com 1.1m 23 com.sec...service.im20190419∗

Cerberus cerberusapp.com 251k cerberusapp.com 251k 23 com.lsdroid.cerberus
Spy24 spy24.app 284k spy24.net 2.4m 29 net.spy24.wifi
Spapp spappmonitoring.com 421k spappmonitoring.com 421k 26 com.monspap.alarm
Meuspy meuspy.com 485k meuspy.com 485k 32 br.com.sistema.aplicativo
Highstermobile highstermobile.com 590k evt17.com 1.5m 30 org.secure.smsgps

Table 1: The 14 spyware appswe study, their website domain and its corresponding Tranco ranking, their portal domain and its

correspondingTranco ranking, and theirAPK’s target SDKversion andpackage name. Tranco rankings taken onMay 5th, 2022.

Shading added to improve readability. ∗iKeyMonitor’s full package name is ‘com.sec.android.internet.im.service.im20190419’.

all but three techniques described in Section 3 are discovered after
reverse engineering the top five most popular apps (in terms of
website domain ranking), and no new techniques are found after the
11th ranked app (Spy24).4 The lack of new techniques discovered
among less popular apps in our set suggests that the apps we study
capture a representative set of techniques used in practice.

Table 1 shows the list of spyware apps we chose, their website
domain and its corresponding Tranco ranking, their web portal
domain and its corresponding Tranco ranking, and their APK’s
target SDK version and package name. Table 6 in Appendix C
provides additional information (version code and SHA-1 hash)
about their APK files.

3 SPYWARE ABUSE OF ANDROID APIS

In this section, we explain how spyware apps implement various
privacy invasive capabilities using existing APIs supported by the
Android OS.We start by discussing our methodology for identifying
these capabilities and uncovering their associated implementations.
We then summarize the set of basic capabilities (ğ 3.2) that either
do not require any permissions or are enabled just by acquiring
permissions, and group all of the other capabilities that we study
into three categories based on their goals: stealthily collecting a
victim’s information (ğ 3.3), hiding the app’s presence on the phone
(ğ 3.4), and persistently spying over a long period of time (ğ 3.5).
For each category, we describe each capability in the category and
its associated implementations, and end the category by discussing
potential mitigations.

3.1 Methodology

We gather a list of privacy invasive capabilities from two sources:
(1) capabilities advertised and offered by spyware apps; and (2) prior
academic papers and industry reports described in Section 5 that

4While we do continue to find different variants or implementation of the same
technique, we view these as minor details.

look at how theAndroid API can be used to achieve such unintended
functionality. Table 2 summarizes the capabilities we study and
shows which spyware apps implement them. To understand how
the spyware apps implement their nefarious capabilities, we reverse
engineered and analyzed each app. Our approach consists of three
steps.

Preparation.We acquire the latest APKs of spyware apps by di-
rectly downloading them from their websites. We use APKTOOL [21]
to disassemble the APKs and obtain the corresponding manifest
and smali code.5 We also decompile the APK to Java source us-
ing JADX [22]. Identifiers and even strings in the Java code are
often obfuscated, and Appendix B provides more details about the
obfuscation used by various apps.

Manual Investigation. For each capability, we manually ana-
lyzed the app manifest and the decompiled Java code to determine
how each capability was implemented using the standard Android
API: we manually located the API primitives associated with each
capability, examined the relevant control flow, and confirmed that
the primitives we identified were reachable. While we primarily
used the decompiled Java code for analysis, we reviewed the smali
code when necessary (e.g., when a function fails to decompile).
Since the variable and method names were often obfuscated, we
renamed them to human-readable ones as we examined the de-
compiled Java code (our naming annotations are available upon
request).

Once we discovered an implementation for a particular capabil-
ity and the API primitives one app used, we expedited our search
process for other apps by searching for use of the same API primi-
tives, and manually reviewed the results to remove false positives.
If this API similarity approach did not yield results, we reverted
back to manually inspecting the code.

5Smali is a human-readable represenation of the Dalvik bytecode used by Android
apps.

3

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

Category Capabilities m
SP

Y

M
ob
il
e-
tr
ac
ke
r-
fr
ee

C
le
vg
u
ar
d

H
ov
er
W
at
ch

Fl
ex
is
py

Sp
yi
c

Sp
yh

u
m
an

T
h
eT
ru
th
Sp
y

iK
ey
M
on

it
or

C
er
be
ru
s

Sp
y2
4

Sp
ap
p

M
eu
sp
y

H
ig
h
st
er
m
ob
il
e

Basic Capabilities (ğ 3.2)

Ambient Recording ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Calendar ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Call Logs ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Clipboard ⋆ ⋆ ⋆ ⋆

Contacts ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Info of Other Applications ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Location ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Network Info ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Phone Info ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

SMS or MMS ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Shared Media Files ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Data Gathering (ğ 3.3)

Invisible camera access ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Invisible microphone access ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Accessing protected data ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Taking screenshots ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Hiding the App (ğ 3.4)
Hiding app icon ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Launching a hidden app ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Hide from recents screen ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Persistence (ğ 3.5)
Obscuring the uninstallation process ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Creating "diehard" services ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Table 2: Summary of capabilities studied. A star denotes that an app implements a particular capability.

We use two heuristics to guide our manual investigation process.
First, many apps can receive remote commands (e.g., using third-
party libraries such as Firebase [23]). The method responsible for
dispatching remote commands is a useful top-down starting place
for identifying the underlying implementation (e.g., following the
methods it calls in response to remote commands). For apps that do
not receive remote commands, they operate as background services
to covertly collect user data. These background services often are
responsible for dispatching various tasks and contain useful leads.
Second, for any capability, there are limited ways to implement it
using Android API primitives, and many of them are publicly docu-
mented (e.g., capturing audio through MediaRecorder). Searching
for these API primitives in the code helps to quickly locate methods
associated with a capability. Additionally, once we identified an
implementation of a capability, we examined its control flow in a
bottom-up fashion to identify the operation that would trigger its
execution (typically leading back to dispatch methods).

Confirmation. For each implementation of a capability (and
related API primitives) we discover, we verified our analysis con-
clusions by developing an app using the same API primitives and
testing it on a Pixel 4 phone running Android 11. We also installed
and ran each spyware app to ensure the capabilities we observed
were indeed enabled. Since the majority of the apps we study have
been implemented using Android APIs up to Android 11, we discuss
their implementations in that context. However, we also discuss
the impact changes in Android 12 can have on the spyware apps.

Code Release. Our code that implements all the API primitives
discovered in this paper is available upon request. Similarly, the an-
notated class and variable names are available upon request (which
can be used to reproduce our results after independently acquiring
the corresponding APK files). To avoid potential copyright infringe-
ment risks, we do not provide the decompiled and annotated source
code itself.

3.2 Basic Capabilities

As seen in Table 2, all spyware apps support a large, common set
of basic capabilities for collecting sensitive user data. These ca-
pabilities either do not require any permission (e.g., clipboard) or
are easily enabled after obtaining particular Android permissions
(e.g., reading SMS messages, contacts, call logs, etc.). Spyware apps
can obtain these capabilities simply by requesting the associated
permissions in the manifest at installation or their first run. Addi-
tionally, by design most of these capabilities (except for location
and ambient recording) do not provide any notification to the user
and are straightforward to implement.

3.3 Data Gathering

Spyware apps seek to stealthily collect a victim’s information with-
out being noticed. In this section, we describe how they covertly
access the camera, the microphone, and protected data of other
apps, as well as how they take screenshots all without the victim’s
knowledge.

4

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

Capability #1: Invisible Camera Access. Spyware apps use a device’s
camera to take pictures, record videos, and stream live videos. To re-
main hidden from the victim, spyware apps need to access the cam-
era without being noticed. The apps we studied use three methods
to achieve surreptitious camera access: (1) using an invisible pre-
view; (2) intercepting raw frames without a preview; and (3) using
an invisible browser. While the first technique is well-documented
in the malware literature (e.g., Yan et al. [24]), the second and third
techniques have not been reported before and reflect the creativity
that spyware authors continue to apply in abusing the Android API
to implement their capabilities.

Invisible Preview. One way to use the camera is to create a
preview that displays an image or video to users. Once a preview is
started, apps can take pictures or record videos. Benign apps (such
as selfie apps) use a preview so that users can see the current status
of the camera. Spyware apps, in contrast, seek to hide this preview
by setting the preview to an invisible size (typically a 1x1 pixel) or
making the preview transparent.

Raw Frames Without a Preview. Spyware apps can also ac-
cess the output of the camera without displaying a preview using
advanced camera features supported by Android [25]. For exam-
ple, apps can capture raw frames from the camera with either an
ImageReader [25] or SurfaceTexture [26], neither of which re-
quires showing a preview on the screen. Benign apps (such as
photo apps) use these features for advanced operations such as
frame-by-frame processing. Spyware apps, on the other hand, use
these features to capture raw frames, either saving the frames lo-
cally or streaming the frames to a remote server, all without the
victim noticing. While the expectation for such advanced features
is that the processed frames will be displayed to users eventually
(which is normally the case for benign apps), this by no means is en-
forced. Finally, we note that four apps rely on the third-party library
WebRTC (or its variants) to achieve this functionality (WebRTC
uses both ImageReader and SurfaceTexture).

Invisible Browser. Unique to Spy24, this app uses an invisible
WebView [27] (an in-app browser) with a 1x1 pixel size for stream-
ing live videos. While the browser may be invisible, the app can
stream full camera resolution to a Spy24 server. WebView allows
users to browse web content in an app while providing advanced
configuration options to developers. Spy24, in this instance, pro-
grammatically sets the user agent, enables JavaScript, and disables
the cache. This configuration flexibility provided by WebView is
necessary for streaming via a web browser.

Once the browser is configured, it accesses the camera via a
JavaScript version of WebRTC (loaded dynamically) and streams
live video back to a Spy24 server. This approach evades static anal-
ysis that examines API calls in the APK file, as the JavaScript file
is loaded during runtime. Listing 1 shows a snippet of code that
demonstrates how Spy24 streams video with an invisible browser.
First, it adds the 1x1 WebView as an overlay. It then sets a spe-
cific user agent to act as a trigger. Upon contacting the server,
the WebView loads a JavaScript file that activates the camera if the
WebView has the specified user agent.

Capability #2: Invisible Microphone Access. Spyware apps use the
microphone to covertly record ambient sound, phone calls, and
voice calls (calls made in third-party apps like WhatsApp). Ambient

// xml layout for the webview

<WebView id="@+id/wv" layout_width="1dp"

layout_height="1dp"/>

// Java code that configures the webview

WebView webView = findViewById(R.id.wv);

webView.getSettings ().setUserAgentString("

some_user_agent");

// Javascript code that activates the camera when

loaded by the webview

userAgent.includes('some_user_agent '){

camera.start()

}

Listing 1: Code snippet that demonstrates how Spy24

streams live video.

recording is enabled after acquiring the Android permission to
record; below we focus on how apps achieve phone call recording
and voice call recording.

Phone call recording on Android has evolved over time. Prior
to Android 6, apps could easily use MediaRecorder to record phone
calls [28]. Specifying MediaRecorder.AudioSource.VOICE_CALL,
an app can receive both uplink and downlink audio for a call. Since
Android 6, VOICE_CALL is protected by a permission reserved for
system apps and cannot be requested by third-party apps [29].
Spyware apps (and other recording apps) use native code via the
Android NDK to circumvent this limitation, specifying VOICE_CALL
by calling functions defined in libmedia.so [30]. Android 9 subse-
quently prevented this workaround by filtering out unauthorized
attempts to set AudioSource [31, 32].

After Android 9, spyware apps started recording phone calls
using Microphone, which nominally only captures uplink audio.
However, spyware apps employ several workarounds to also cap-
ture downlink audio. For instance, some spyware apps turn on the
speaker and turn off noise-cancelling during a phone call so that
the microphone can potentially capture downlink audio via the
speaker.

Voice call recordingÐ recording calls made in third-party apps
such asWhatsApp Ð became possible with Android 10 for apps that
register as an accessibility service. Prior to Android 10, recording
voice calls was not possible, as Android only allowed one app to
access input audio at a time [33]. Android 10 relaxed this restriction,
allowing two apps to access input audio concurrently if one of
them is an AccessibilityService. This feature was intended to
allow an accessibility service to perform voice recognition, however
spyware apps quickly abused it. To detect that a voice call is active
or a voice message is being played, spyware apps use side-channels
such as listening for specific notifications triggered by voice calls
or looking for specific actions (e.g., users clicking on the OK button
to start the voice call) on the screen via the accessibility interface.

Capability #3: Accessing Protected Data. A core feature of spyware
apps is the ability to collect data that they are not supposed to read,
which includes reading protected data of other apps (e.g., WhatsApp
messages) and recording keystrokes to other apps. Accessing this
data is normally impossible as each app runs in its own sandbox.
Spyware apps achieve these capabilities primarily by abusing the
accessibility permission which does not require rooting, echoing

5

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

prior literature [34ś40] that investigates how accessibility can be
abused.

Reading protected data of other apps can be performed in
two ways: through accessibility or notification. Most academic liter-
ature has focused on accessibility, and only a few reports [41] have
examined the use of notification. Accessibility services are expected
to read what is rendered on the screen as they are designed to help
disabled and impaired users. Spyware apps abuse this capability
to read information displayed by other apps and extract sensitive
information when an app (e.g., WhatsApp) is used.

Notification, on the other hand, allows spyware apps to read
sensitive information even if the spyware app is not active. While
reading from a notification has limitations (e.g., a spyware app
cannot read images), nine spyware apps abuse it. Finally, we note
that, like accessibility, both benign apps and malicious apps make
use of notifications as a side-channel for accessing information:
benign apps (an example is [42]) do so to avoid triggering the
łRead Receiptž feature, which notifies the sender if the recipient has
read the message, of other apps (e.g., Signal and WhatsApp), while
malicious apps do so purely to extract information.

Recording keystrokes is done via accessibility. Prior work [34,
36, 40] has demonstrated how the accessibility framework in An-
droid can be abused for recording keystrokes. Spyware apps simply
use the getText method, part of Android’s accessibility frame-
work, to track all key presses from the user in any app. While
there are built-in mechanisms to prevent getText from reading
sensitive information such as credentials (e.g., by setting the at-
tribute importantForAccessibility to false), past work [40] has
shown that these defenses are not widely adopted. Additionally,
mitigations like setting importantForAccessibility to false also
reduces the usability of benign apps such as screen readers.

Capability #4: Taking Screenshots. Spyware apps can also extract
sensitive information by taking screenshots. We observe two ways
the apps in our set take screenshots: via MediaProjection and
AccessibilityService. For MediaProjection to work, an activity
is required [43]. This approach is nominally a challenge for spyware
apps since they generally run as services and do not have an activity.
As a result, some spyware apps create temporary activities that
are transparent and not visible to users. These invisible activities
are then removed after the screenshot is taken. Android 10 limited
apps that can start activities to a few scenarios [44] (e.g., if an app
is an accessibility service or has the SYSTEM_ALERT_WINDOW per-
mission). Such restrictions make it harder for spyware apps to use
MediaProjection to take screenshots, but still leaves a loophole
as spyware apps can register as an accessibility service and request
the SYSTEM_ALERT_WINDOW permission.

However, Android 11 (and later) has made it simple for spyware
apps to take screenshots by adding the takeScreenshot API to
AccessibilityService [45]. This method requires no activity and
is easy for spyware apps to implement.

3.3.1 Mitigations. Android has used a variety of approaches to
mitigate some of the issues mentioned in this section.

The first approach is to pose additional restrictions on apps that
seek to access certain information. One type of restriction is to
require apps to be in a certain state: Android 10 restricted access
to the clipboard information to apps that are either the default

input method editor or is the app that currently has focus [46].
As a result of this patch, none of the spyware apps were able to
acquire clipboard information6. Another type of restriction is to
require apps to possess additional permissions: besides requiring
the permission to record audio, Android 10 further demands an
app to be an accessibility service to capture audio input during
phone calls. However, we note that permission-based restrictions
are unlikely to be successful, as the abuser has physical access to
the device and can grant arbitrary permissions.

A second approach is to provide a visible indicator to the user
that cannot be dismissed while a granted permission is being used
by any app. For example, Android has a visible persistent indicator
for location and screen recording use, and Android 12 introduced a
visible indicator for microphone and camera use. Such an indicator
confirms to the user when they expect it to be used, and alerts the
user when they do not.

This approach can also fail depending on the use case. For ex-
ample, a persistent indicator is useful to alert users to long-lasting
actions such as recording. However, a persistent indicator is unlikely
to be helpful for sub-second operations (e.g., taking a screenshot
and taking a picture), and users can sometimes miss these indicators
(e.g., if the phone is in a pocket or purse). Moreover, benign use
cases will also trigger persistent indicators, which can then mask
simultaneous spyware activity. For example, the indicator for the
microphone will be displayed when a call is ongoing regardless of
whether a spyware app is performing call recording in the back-
ground or not. In this case, spyware apps can safely record calls in
the background, as the indicator is always on. Indeed, sophisticated
spyware can reduce suspicion by carefully timing their actions (e.g.,
only performing an action when the associated indicator is already
triggered by another app).

A third approach is to provide a convenient way for users to
review the permissions that have been granted to all installed apps.
Android 12 takes this approach by introducing a privacy dashboard,
which displays the accesses in the last 24 hours to sensitive in-
formation such as location, microphone, and camera. While such
a dashboard does require users to proactively take action, it is a
potentially useful tool for users to quickly identify suspicious apps
based upon the plethora of invasive permissions they have been
granted. We recommend that all actions to access sensitive data
should be added to the privacy dashboard and users should be peri-
odically notified of the existence of apps with excessive number of
permissions.

Lastly, Android also employs various mechanisms that alert users
of sensitive actions or potentially malicious activities. The most
straightforward example is the deployment of Google Play Pro-
tect, which warns users when a potentially malicious app is being
installed. As well, Android 9 requires a persistent notification for
background apps that seek to access the camera and microphone:
these apps need to run as a foreground service, which triggers a

6We are aware of a workaround [47] that can circumvent this restriction. However,
it requires extensive user interaction and is not adopted by any of the spyware apps.
We also note that iKeyMonitor attempted to evade this restriction by trying to ac-
quire focus with an invisible EditText of size 1x1. However, this attempt appears to
be unsuccessful: both iKeyMonitor and our cloned implementation fail to read the
clipboard.

6

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

persistent notification that cannot be dismissed by the apps them-
selves. Finally, Android uses audio cues (e.g., a shutter sound) to
notify users of operations such as audio and video recording. Sadly,
we note that all these mechanisms can fail, as they can be turned off
either programmatically (e.g., audio cues normally can be turned
off after acquiring permissions to manipulate audio settings7) or
by a malicious user (e.g., as mentioned in Appendix A.1, spyware
apps require that their notification be disabled by the abuser upon
installation).

The research community has also proposed various defense
mechanisms when studying some of issues mentioned in this sec-
tion. Huang et al. [39], for instance, seek to constrain accessibility
misuse with the assumption that the user is benign, which unfortu-
nately does not hold in the context of spyware apps. Another ex-
ample is Petracca et al. [49], who proposed requiring user approval
before an app can record to stop malicious apps from eavesdrop-
ping. However, we note that this defense is unlikely to be successful
as the adversary generally has physical access to the target device.
On the one hand, this defense will only work if user approval is
requested every time, which leads to significant usability issues. On
the other hand, if user approval is only requested once when an app
tries to record, it is unlikely to be successful as the abuser will have
physical access to the phone and can grant the consent. Lastly, Yan
et al. [24] developed a system for detecting overlay-based Android
malware. However, their system is deployed on an Android app
store and does not defend against spyware apps that are sideloaded.

3.4 Hiding the App

In addition to surreptitiously spying on victims, spyware apps also
use a variety of methods to keep the existence of the app hidden
from the victims. These tactics include hiding the app icon from the
app launcher, launching a hidden app, and hiding from the Recent
screen.

Capability #5: Hiding App Icon. To hide their presence, spyware apps
hide their app icons from the app launcher that lists the available
apps [50]. Figure 1 shows an example of the app launcher, and 13
of the 14 spyware apps in our study include code to hide their app
icons from the app launcher using two methods: (1) hiding the app
icon at runtime, and (2) specifying no launcher activity.

Hiding the app icon at runtime can be implemented by invok-
ing the method setComponentEnabledSetting() and disabling
the launcher activity. Previous work [51] examined hiding app
icons in this way, and this approach works on devices that run An-
droid 9 or below. An activity of category LAUNCHER indicates that
it should be displayed in the app launcher [52], and disabling the
launcher activity removes the app icon from the app launcher. Since
the app is no longer displayed in the app launcher, though, spyware
apps need a different way to launch themselves. We detail different
ways to launch apps that are not present in the app launcher in
Capability #6 below.

Since Android 10, an app’s icon will appear in the app launcher
even if the launcher activity is disabled at runtime. In reaction to
this change, most spyware apps now use innocuous names and
icons to disguise the spyware app, such as łWi-Fiž (as in Figure 1),

7One exception is Japan, where muting the shutter sound when taking pictures or
videos is not possible due to legal requirements [48].

Figure 1: App launcher that displays app icons. The Spyhu-

man app installed itself as the innocuous łWi-Fiž icon.

łSyncServicež and łInternetServicež.8 Overall, 11 apps hide their
icons in this way.

Specifying no launcher activity lets spyware apps hide app
icons even in the latest Android 12 and has not been noticed in any
prior work. Android 10 effectively stopped apps from hiding their
icons at runtime, it still leaves a loophole. An app that meets any
of the following three requirements can still hide their icon from
the launcher [53]: (1) it is a system app; (2) it does not request any
permissions; or (3) the app does not have a launcher activity that
is enabled by default (a launcher activity has an intent containing
the ACTION_MAIN action and the CATEGORY_LAUNCHER category).
Spyware apps abuse the third requirement and hide their app icons
by specifying no launcher activity.9

We observe two spyware apps (Spy24 and Meuspy) that imple-
ment this technique: Spy24 only has an activity with an intent
containing action ACTION_MAIN and LEANBACK_LAUNCHER (used by
TV apps); Meuspy only has an activity with an intent containing the
ACTION_MAIN action. Since both apps do not have an icon displayed
in the app launcher, they cannot easily be started by a normal user.

8iKeyMonitor even offers the ability to build apps that have customized icons and
names.
9We note that, for a short period of time (Android 10 builds r1 to r14 [54]), the third
requirement was łthe app does not have any componentsž, which should stop the
abuse described in this section (as spyware apps cannot operate without components).
Unfortunately, this requirement was changed to the current form since Android 10
build r15.

7

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

As a result, both Spy24 and Meuspy use a loader to start the app
(as described in Appendix A.1).

We have disclosed the abuse of the LEANBACK_LAUNCHER intent
on phone apps to Google, and Google determined that this abuse
was not a security vulnerability.10

Capability #6: Launching a Hidden App. When spyware apps hide
by excluding themselves from the launcher (Capability #5), they
need an additional mechanism to launch.11 One mechanism is to
provide a way for the abuser to unhide the app icon on demand.
We observed two ways apps unhide their app icon: by sending a
command from the web portal or an SMS text from a phone. Apps
can monitor SMS text messages by acquiring the RECEIVE_SMS

permission, and can receive commands using third-party libraries
such as Firebase [23]. Once launched, the abuser can send a similar
command to hide the app icon again.

A second mechanism is to have apps launch themselves based on
an external trigger, keeping the app icon hidden. This mechanism
is generally achieved by receiving a predetermined signal from
another app in the system via the Intents abstraction. We observed
two main ways to do this signalling: (1) entering a hidden code
via Android’s dial pad, which is the predominant approach; and (2)
entering a URL in the browser.

Apps that launch by entering a hidden code with Android’s
dial pad register a system broadcast receiver that listens for the
NEW_OUTGOING_CALL intent. This intent is automatically broadcast
by the system when there is an outgoing call, which in turn invokes
the receiver registered by the app. Apps can monitor outgoing
dialed numbers and launch themselves after a specific code (e.g.,
*1234#) is entered in the dial pad. Launching an app via a browser
URL can be done by adding an intent filter for a specific URL (e.g.,
www.myapp.com/launch) in the manifest (e.g., as described in [55]).
This intent filter specifies how to route an intent that has the match-
ing URL.

Unique to Hoverwatch, besides implementing the mechanisms
mentioned above, it also supports launching itself by entering a code
through a widget: a miniature app view that can be embedded in
other applications such as the home screen [56]. Upon installation,
Hoverwatch creates a widget that has an EditText control that
takes user input. If users enter the correct code, it launches itself.

Capability #7: Hide From the Recents Screen. Android lists recently
accessed activities and tasks in the Recents screen [57] (see Fig-
ure 2 for an example). Past literature [51, 58] has documented that
the android:excludeFromRecents attribute can be abused to hide
app activity, and this abuse is trivial to implement. It can be done
via setting the android:excludeFromRecents attribute to true for
relevant activities in their manifest [59] or programmatically adding
the flag FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS [60] to an activ-
ity.

10They note that such łicon hidingž is against Google Play policy, but since none of
the apps we studied are deployed via Google Play this restriction has no impact.
11We note that two apps, mSPY and Clevguard, do not provide ways to unhide icons
even though they can hide icons. These two apps do not interact with users after
hiding their icons upon installation, and configuring them post-installation is done
remotely through the web portal. Additionally, while mSPY has implemented functions
to unhide its icon via a remote command, it does not offer such an option on its web
portal.

Figure 2: A screenshot of Recents screen showing that

Chrome is recently accessed. However, a spyware app will

not appear in the recent screen (if it chooses to hide from the

recent screen), despite that one of its Activities is recently

created and displayed.

3.4.1 Mitigations. For apps that seek to hide their icons, our rec-
ommendation is that Android should enforce stricter requirements
on what apps can hide icons (e.g., the three requirements from
Android 10 build r1 to r14 mentioned in footnote 9). Most apps
that run on Android phones should be required to have an icon. In
the case of exploiting TV app features, while we understand that
running apps with only LEANBACK_LAUNCHER activities on Android
phones increases compatibility, such a feature leads to abuse as
Spy24 has already demonstrated.

Launching apps by predetermined signal from another app is
not only used for malicious purposes but also for benign purposes

8

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

(e.g., dial pad can be used for testing and numerous benign apps
use a browser link to open themselves). While browser links can be
easily tracked by examining the manifest, currently users have no
way to discover if apps can launch themselves with hidden codes.
The difficulty is in part because hidden codes are used dynamically
during runtime: the outgoing dialed number is sent to apps, and
apps can freely decide what actions to perform based on the num-
ber received. This design makes it hard for the Android system
to identify what hidden numbers are being tracked by each app.
One possible mitigation is to allow users to review apps that can
receive predetermined signals (e.g., a list of apps that listen for
the NEW_OUTGOING_CALL intent or have intent filters for specific
browser links, perhaps as part of the privacy dashboard).

One potential fix to stop apps from hiding from the Recents
screen is to enforce having at least one activity per app in the
Recents screen.

3.5 Persistence

This section describes the methods used by spyware apps to persist
on the target device by obscuring the uninstallation process and
creating łdiehardž services (automatically restarting themselves
after stops and reboots).

Capability #7: Obscuring the Uninstallation Process. One way to pre-
vent users from stopping and uninstalling an app is by disabling the
Force Stop and Uninstall buttons (see Figure 3 in the appendix). For
Android versions below 7.1, these buttons can be disabled simply by
registering the app with Device Administrator (DA) privileges
(as detailed in prior work [61]). To enable these two buttons, the
user would have to deactivate the device administrator privileges
for the app. Since Android 7.1, while the Force Stop button is dis-
abled for DA apps, the Uninstall button will remain enabled even if
the app registers as DA. As a result, users can uninstall DA apps
directly [61]. Overall, we observe 11 apps that register as DA.

Two apps, Cerberus and Mobile-tracker-free, directly interfere
with the uninstallation process, a behavior often observed in An-
droid malware [61, 62]. Cerberus employs a series of mechanisms to
stop users from deactivating it as a DA app or uninstalling it. These
include trying to lock the device by invoking the lockNow method
of the DevicePolicyManager class and starting an activity that
blocks users from clicking on any buttons. Mobile-tracker-free, on
the other hand, tries to stop users from uninstalling it by starting
an Activity that blocks the uninstallation screen and requests a
password set by the abuser to proceed.

Capability #8: Creating Diehard Services. Spyware apps strive to
always be executing on the target device so that they can collect as
much information as possible. We focus on the łdiehardž mecha-
nisms that apps use to automatically restart themselves after being
stopped by the Android system (e.g., due to low memory) or after
device reboots. Echoing the diehard implementations discovered
in prior work [58, 63], we observe two main ways used by spy-
ware apps to create diehard services. We also note a third approach
that appears to originate from the spyware ecosystem and be a
byproduct of other capabilities.

Leveraging Scheduling Frameworks. Scheduling frameworks
such as JobScheduler [64] and AlarmManager [65] enable apps to

System Broadcast # of Apps

BOOT_COMPLETED 10
SMS_RECEIVED 9
NEW_OUTGOING_CALL 9
PHONE_STATE 6
ACL_DISCONNECTED 1
ACL_CONNECTED 1
LOCKED_BOOT_COMPLETED 1
WAP_PUSH_RECEIVED 1

Table 3: System broadcasts and number of apps monitoring

them.

repeatedly restart. Apps can schedule to be restarted either when
they are first started or when they are being terminated by the
system. To schedule themselves to be restarted shortly after they
are terminated, they override the onDestory function, which is
called before the app is terminated by the system.

Monitoring System Broadcasts. Monitoring system broad-
casts offers another way to wake up apps if they are not running
already. Android sends broadcasts when various system events
occur [66], and apps that monitor these system broadcasts will
be woken up if they are not running already. Table 3 lists var-
ious systems broadcasts and the number of apps that monitor
them.12 The spyware apps in our study predominantly use the
BOOT_COMPLETED broadcast. Monitoring BOOT_COMPLETED allows
spyware apps to restart themselves after the device reboots: the
Android system will send a BOOT_COMPLETED system broadcast
upon reboot, and spyware apps that listen for this broadcast will
automatically restart themselves. While NEW_OUTGOING_CALL and
SMS_RECEIVED are also popular, we note that they serve dual pur-
poses (NEW_OUTGOING_CALL can be used to launch a hidden app
and SMS_RECEIVED can be used to monitor SMS messages).

Listening forAccessibility orNotificationEvents.Apps that
register as an AccessibilityService or NotificationListener-
Service can also survive device reboots. However, unlike the two
techniques described above, AccessibilityService is less reli-
able because it can be turned off by Android for battery saving
reasons [68, 69].

3.5.1 Mitigations. Apps that seek to persist by registering as de-
vice administrator will no longer be successful as users can uninstall
them on most devices running Android 7.1 or above. For apps that
seek to interfere with the uninstallation process by creating activi-
ties or locking the device, past literature onmalware defense [62, 70]
has suggested improving attack detection and introducing system
level support for detecting and reacting when an app window is
covered.

Prior work [58] has investigated various ways of creating diehard
apps. According to the authors, the diehard mechanisms we observe
are very resilient and can only be effectively stopped via a force
stop. Additionally, the fact that many spyware apps register as
device administrator creates another layer of complication Ð while
apps registered as DA may be uninstalled directly after Android

12Only a small number system broadcasts can be used to wake up apps after the
restrictions introduced in Android 8 [67]. We only consider these system broadcasts.

9

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

Spyware Apps
Eavesdropping
Sensitive PII

Cross-account
Request
Forgery

Unauthenticated Access
to Victim Data

Poor Data Retention
Practices

Unauthenticated
SMS Commands

mSPY Images
Mobile-tracker-free Streaming
Clevguard Images*
HoverWatch Audio*
Flexispy Images/Audio*
Spyic Images*
Spyhuman Images/Audio
TheTruthSpy Images/Audio
iKeyMonitor
Cerberus Audio
Spy24 Streaming*
Spapp Images/Audio/Streaming
Meuspy Images/Audio
Highstermobile Images

Table 4: Systematization of commodity spyware vulnerabilities. Circles denote the severity level of the insecurity. indicates

at least one instance of the insecurity; indicates all app functionality is insecure; * indicates URLs are temporary and expire.

Shading added to improve readability.

7.1, the force stop option is disabled, making it difficult for users
to stop the spyware apps (unless they uninstall it). However, even
if apps prevent a force stop, users can still uninstall them. We
also recommend adding a dashboard for monitoring apps that will
automatically start themselves.13

4 SPYWARE USER DATA PROTECTION

In this section we assess how well spyware apps secure the user
data they exfiltrate and store. For this assessment, in addition to
the victim and the abuser, we consider a third actor: an external
attacker who seeks to undermine the security of the spyware app.
The attacker’s goal is to exploit any integrity, authorization, and
authentication issues with the spyware app to access victim data
as a third party.

We start by describing our methodology for investigating the
data protection practices of the spyware apps, and then discuss
each of the vulnerabilities we uncovered (summarized in Table 4).

4.1 Methodology

For each app we analyzed, we obtained an account (providing pay-
ment information when necessary) and registered the app on a
Pixel 2 XL Android phone running Android 10.

To identify apps sending data from the device to the backend
servers via unencrypted connections we used tcpdump, listening
on a Windows 10 machine interface configured as a mobile hotspot,
to capture and inspect app traffic over the network. We configured
the Android phone to connect to the PC and recorded all traffic
exchanged with the app servers, without any proxy in between
(avoiding any potential TLS handshake failures due to certificate
pinning).

13We note that some Android phones (e.g., Xiaomi) have a built-in dashboard for
managing apps that can automatically start themselves [71].

To study the interactions between the spyware web portal inter-
face and the spyware backend servers, we used the open-source
MITMProxy tool to decrypt HTTPS traffic. This configuration gave
us access to authentication tokens (session cookies, secrets, etc.)
for conducting forgery attacks on our test accounts. We were able
to login to all portals without error (e.g., there were no issues with
certificate pinning). We also analyzed the HTML content displayed
via the spyware web portal interface, extracting the URLs linked
to uploaded user media (images, audio, etc.). We then performed a
sequence of experiments that tested and verified each insecurity
listed in Table 4.

4.2 Results

Table 4 summarizes the threats we investigated and shows which
apps are susceptible to them.We describe each of the threats in turn,
summarizing its context, its associated threat model, any additional
methods we employed, and the specific results we discovered for
the vulnerable apps.

Insecurity #1: Eavesdropping sensitive personally identifiable informa-

tion (PII). Some spyware apps transmit highly sensitive victim data,
such as photos, texts, and location, from the victim device to the
spyware backend servers using unencrypted HTTP connections.
A MITM attacker who eavesdrops on the same communication
channel (e.g., same WiFi network) could collect all data and creden-
tials sent unencrypted over the network. Furthermore, credentials
leaked over the network enable an attacker to login to the abuser’s
account and gain access to all of the victim’s data exfiltrated by the
spyware.

Threat model.We assume that the attacker can eavesdrop on
all messages sent by the mobile device infected with spyware (e.g.,
the attacker uses the same WiFi network as the victim, and the
WiFi network is not using link-layer encryption).

10

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

Experimental setup.We filtered the captured traffic to observe
network activity from each app over insecure channels like HTTP,
and used a combination of search and manual inspection to analyze
the recorded traffic for sensitive data such as leaked credentials
(user names, email addresses, passwords), text messages, etc.

Results. Four spyware apps in our study leak at least some of
their data using vulnerable communication channels. TheTruthSpy
submits all of its data over HTTP, and it leaks the abuser’s creden-
tials for TheTruthSpy servers (abuser email address and password)
in the authentication request during app setup. mSPY leaks only
the upload path for its images in an HTTP response back to the
victim’s device when the image upload succeeds. Clevguard up-
loads its images over HTTP, making it is possible for an attacker to
reconstruct the image from the payload. Flexispy uses HTTP for
all of its communication, but it implements a custom encryption
protocol for the data it sends. However, a previously discovered
flaw in Flexispy’s encryption makes it possible to intercept personal
data sent over the network [72].

Insecurity #2: Cross-account request forgery. Knowing a particular
user identifier, or a file path that provides access to images, audio,
or video on the server, an attacker can use valid cookies from one
spyware account to access data or perform actions in the accounts
of other spyware users.

Threat Model. The attacker can register a spyware account and
log into it. Using a MITM traffic inspector (similar to our proxy
described in Section 4.1), an attacker can intercept and replay au-
thenticated requests from their account. We assume the attacker
knows the ID of the targeted user’s account Ð either through enu-
meration, or from the ID being leaked over the network or in a
public data dump [5ś7, 9, 10].

Experimental setup. We used two accounts for each app, one
for the attacker and the other as the targeted spyware user. We then
recorded and replayed authenticated requests from the attacker’s
account to the targeted user’s account, substituting the ID of the
targeted user’s account in the requests without changing autho-
rization tokens provided by the attacker’s account (e.g., session
IDs, API keys). We only replayed requests to our test accounts, and
made no attempt to access content belonging to any other account.

Results. Only one of the apps in our study is vulnerable to
cross-account request forgery. With TheTruthSpy, it was possible
to access all data (messages, contacts, locations, images, etc.) in the
targeted account using a cookie provided by the attacker’s account,
and simply swapping the attacker’s device ID with the targeted
account’s device ID in requests to TheTruthSpy server. Furthermore,
when we registered multiple test accounts in succession, we noticed
that the device ID that TheTruthSpy assigns to a new device is a
six-digit integer which increases incrementally when new devices
are registered. The combination of insecure access controls across
accounts and predictable device IDsmakes it possible for an attacker
to retrieve data from other accounts without needing to identify
the device ID beforehand.

Insecurity #3: Unauthenticated access to victim data. Many of the
spyware apps use different backend infrastructure to store and
deliver media data that is distinct from the servers that abusers use
to access the app dashboard (e.g., abusers login to the dashboard via
the website domain in Table 1, but the app may use a CDN to deliver

images and videos). This separate infrastructure includes cloud
storage (e.g., AWS S3 buckets), content distribution networks, and
other shared hosting services, all of which are presumably cheaper
to use for serving media data. Some of the spyware apps are less
careful about protecting the data that they store on this hosting
infrastructure, often allowing unauthenticated access to the URLs
they generate to stored media data. Further, we observed user data
stored in predictable URLs that make it possible to access data across
different accounts, protected solely through security by obscurity
and vulnerable to enumeration. Table 4 lists the kinds of data leaked
in public URLs for the apps studied. Failure to authenticate access
to user media (images, audio, etc.) using mechanisms like cookies
is a common example of this category of vulnerability.

Threat model.We assume that the attacker has knowledge of
the media upload path for the app based on studying media paths
revealed using accounts owned by the attacker. For apps that use
the device ID in URL path components, we also assume the attacker
knows the targeted device ID.

Experimental setup. To discover sensitive data leakage, we fo-
cused primarily onURLs used to storemedia artifacts (images, audio,
video, etc.). We extracted these URLs by examining the browser-
generated HTML content when accessing the dashboard in the
spyware account. We only attempted to access media upload paths
from our test accounts, and made no attempt to access content
belonging to any other account.

Results. Six of the apps in our study store their data in public
URLs accessible without authenticated access. We disregarded apps
which store data in URLs that, although public, expire after a short
duration (e.g., Spyic’s links to images expire after 1,800 seconds).

Highstermobile stores its images with a URL scheme as a con-
catenation of the image upload timestamp (UNIX timestamp with
seconds precision) and a double digit random number, with no other
per-device ID in the path (e.g., https://domain.com/path/photo_
<timestamp><00-99>.png). Since an attacker could plausibly iter-
ate over a short range of timestamps and random digits, this naming
scheme makes it straightforward for an attacker to gain unautho-
rized access to media stored on the server for other accounts.

Cerberus and Spyhuman use public URLs that are a combina-
tion of device ID and Unix timestamp (e.g., https://domain.com/
<DeviceID>-<timestamp>.ext). While both of them require the at-
tacker to know the device ID before hand, an attacker could for
instance obtain the device ID from data dumps made public in
breach attacks [5ś7, 9, 10] or with physical access to the device.
Cerberus stores audio insecurely using the device IMEI as the device
ID. Spyhuman stores both its images and audio insecurely using the
Android serial number as its device ID. With both apps, an attacker
knowing the device ID could plausibly iterate over a short range of
timestamps to retrieve data stored on the server.

Three other apps store data on servers using public URLs that
rely on security through obscurity, but they generate URLs that
are neither enumerable or predictable. For instance, Spy24 allows
WebRTC remote streaming through a public URL based on a request
ID generated by the app, Spapp requires two alphanumeric keys to
access image and audio files on the server, and Meuspy generates
unguessable URLs to store images and audio. Although certainly
not good security practice, the risk associated with unauthenticated
access is lower than for the other apps we discussed.

11

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

Insecurity #4: Poor data retention practices. Some spyware apps have
poor data retention practices that prevent victim data from being
deleted from the spyware servers. These data retention issues pose
serious security and privacy risks [73]. A data breach could expose
residual victim PII which has persisted even if, for instance, the
abuser has deleted their account.

Threat model. Data uploaded to the spyware servers and never
deleted poses a long-term risk to being made public in data dumps
associated with breach attacks.

Experimental setup. To discover poor data retention practices,
we analyzed network traffic generated after the app license expired,
but with the victim device still logged in. We also tested access to
media on deleted accounts using their public URLs up to seven days
after deletion of the account.

Results. Four of the apps in our study demonstrate poor data
retention practices.

Consistent with its other data vulnerabilities, TheTruthSpy also
has data retention issues. It continues to send data from the victim’s
phone (e.g., text messages, images, keylogger activity) to its servers
after the app license expires. Further, it persists some data after the
abuser deletes their spyware portal account and the data associated
with it. In particular, images uploaded from the victim device persist
after account deletion, and the images remained accessible through
the public URLs used to access them (Section 4.2).

Spyic has a data retention issue resulting from its trial usage
model. When installed for trial use, Spyic uploads data from the
victim device to the server. But it only allows access to its portal
after the abuser has purchased a subscription. If the abuser decides
not to purchase the spyware, victim data persists indefinitely on
Spyic’s servers (presumably in anticipation of the spyware user
eventually deciding to pay for a license).

Lastly, both Spapp and Meuspy persist data from an abuser’s
account after deletion. Images in particular continue to be accessible
through the public URLs used to access them.

Insecurity #5: Unauthenticated SMS commands. Four of the spyware
apps we studied accept commands in the form of SMS messages.
This capability enables the abuser to control the spyware app on
the victim device even if it is disconnected from the Internet, or as
a secondary form of control to the web portal accessible via the
abuser’s account.

Threat model.We assume that the attacker knows the phone
number of the target device (or can enumerate it). We also assume
that the attacker knows the list of commands available by referenc-
ing online app documentation for SMS commands, such as [74, 75].

Experimental setup. For each app, we systematically tested
their SMS commands on our test device, focusing in particular on
their method of authenticating commands.

Results. Two of the four apps that accept SMS commands re-
quire a strong password or license key to authenticate SMS com-
mands, and so we disregarded them from further analysis. The
remaining two apps fail to check if the text message is from an
authorized sender, and execute the commands regardless.

Spapp executes highly-sensitive SMS commands, such as re-
motely wiping the victim’s phone, effectively unauthenticated. Dur-
ing app setup, the app generates a random two-digit number that
serves as a passcode, and only allows SMS commands that include

the correct passcode to execute on the device. However, this simple
passcode provides little security since a methodical attacker can
send redundant commands enumerating all possible passcodes.

Mobile-tracker-free authenticates its SMS commands, but uses
a default constant as its password. Unless the abuser explicitly
changes this SMS password, an attacker can successfully send com-
mands using the default. However, the set of commands it sup-
ports via SMS is more restricted than Spapp (e.g., the command
MobileTrackerFreeSMS--getlocation returns device location in-
formation in an SMS response).

4.3 Disclosure

We disclosed the findings in this section to all the affected vendors
on June 14th, 2022. No vendor has replied to our disclosures as of
the date of publication (three months after our disclosure).

5 RELATED WORK

There exists a rich literature from both academia and industry that
examines various aspects of spyware apps (e.g., their usage in the
context of intimate partner violence).

Most related to our work, several prior studies have examined
the technical capabilities of spyware apps, including both indus-
try reports [41, 72, 76ś85] and academic papers [86ś91]. However,
many of these efforts focus on documenting the functionalities
supported by the spyware apps and do not shed light on the imple-
mentation used to achieve different functionalities (mostly because
they focus on other facets instead of the technical implementation
challenges). The ones [41, 72, 79, 80, 82, 83, 86] that do study the
implementation, either examined only one or two apps or a small
subset of the mechanisms employed. Our work builds on these
studies by systematically and comprehensively analyzing the un-
derlying technical methods that apps employ to acquire different
spying capabilities.

Also related, but orthogonal, is work focused on identifying
and detecting spyware apps, both industrial reports listing such
apps [18, 19, 92] and academic efforts to characterize and build
detection algorithms for them [3, 89, 93ś100]. Yet another related
body of work examines spyware apps’ presence in different contexts
such as intimate partner violence and cyberstalking [4, 101ś112].
We believe our findings, particularly characterizing the data access
mechanisms used by spyware, will be of use to those implementing
detectors, but detection is not itself a goal of our work.

Outside the context of spyware, another related research domain
has focused on how various kinds of malware (including spyware)
can abuse Android APIs to achieve abusive functionality. In par-
ticular, several papers have also identified abuse of the Android
Accessibility APIs, starting with Kraunelis et al. [35]. Following
this line of work, Fratantonio et al. [34], Kalysch et al. [38], Diao et
al. [37], and Naseri et al. [40] have documented how Accessibility
can be abused in various contexts. While several of these papers
suggest potential fixes, Huang et al. [39] is the first to describe a
comprehensive framework for mitigating misuse in the accessibil-
ity API. Others have explored other forms of API abuse, including
Audio and Video APIs [49, 113], screenshot API [114], device ad-
ministration APIs [61], WebView-related APIs [115ś118], the use of

12

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

overlays in malware [24], and mechanisms for app hiding, discov-
ery [51, 119] and persistence [58]. Our work builds on all of these
efforts, but rather than exploring these issues abstractly, focuses
specifically on how they manifest in consumer mobile spyware in
the wild. Our detailed analysis not only confirmed that the con-
sumer spyware sector exploits similar techniques documented in
broader mobile malware, but also uncovered two new forms of API
abuse (invisible camera access and hiding app icons) that appears
to have originated from within the spyware ecosystem.

Finally, spyware companies have a long history of poor secu-
rity hygiene. Numerous media reports describe data breaches at
various spyware companies, including Spyhuman [5], TheTruth-
Spy [6], mSPY [7, 8], Cerberus [9], Flexispy [10], Mobistealth [11],
Spyfone [12], Retina-X [13, 14], among others. These breaches have
exposed hundreds of thousands (if not millions) of users’ sensitive
personal information (e.g., location, videos, etc.) to the broad public.
Our work is responsive to these events and seeks to explore the
nature of the security protections provided by spyware vendors
and the extent to which these breaches have led to improved prac-
tices. While recent, contemporaneous report from ESET [18] also
investigated similar issues, our work is distinct in analyzing the
security of each app from the context of protecting user data and
presents a detailed, documented, and reproducible methodology.

6 CONCLUSION

Consumer mobile spyware persists because it exists in a gray area:
not clearly legal, but not canonically illegal; not allowed in the app
store, but broadly available via side loading; not supported by APIs
but able to achieve its ends through manipulation and trickery;
repeatedly breached, but able to maintain market power because
those injured are not its customers.

For example, the use of such software to monitor arbitrary indi-
viduals without consent is clearly illegal Ð both due to violations of
the Computer Fraud and Abuse Act (18 USC 1030) and provisions
of the Wiretap Act (18 USC 2511). However, contemporary mobile
spyware companies argue that they do not support or encourage
such uses. Indeed, since the Department of Justice brought a crim-
inal indictment against the makers of StealthGenie [120] in 2014,
spyware vendors have generally restricted their public marketing
to focus on the monitoring of minor children (whose consent is
abdicated to their guardians) or the monitoring of employees (such
monitoring can be viewed as consensual when the equipment is
owned by the employer and employees are clearly informed about
the policies around monitoring). However, this shift in łofficialž
marketing has done little to undermine the large market for using
this software illegally and a broad array of sites and forums provide
detailed direction on how to use such apps to covertly monitor a
spouse or partner.

Similarly, while curated app stores, such as Google Play Store,
now disallow such apps from being sold, Android’s default support
for sideloading makes this limitation only a minor obstacle for
someone seeking to surreptitiously install spyware on a phone.

Moreover, the fact that spyware abusers are able to obtain phys-
ical access to a device (at least temporarily), renders Android’s
finer-grained permissions checks ineffectual as well. The one-time

łconsentž provided by the spyware installer provides largely unfet-
tered capabilities that the true user may never be aware of. The
Accessibility API offers a particularly large consent loophole, as its
intended function necessitates almost complete mediation of I/O
activities. Moreover, even when the API itself has been changed
to restrict certain capabilities we have repeatedly found spyware
authors creatively abusing APIs or their implementations to gain
capabilities that were not meant to be available to third-party apps
(e.g., the range of mechanisms described in Section 3.3 for covertly
performing audio recording in spite of multiple OS changes in-
tended to prevent such abilities). We uncover Android’s incomplete
threat model with our discovery of their unwillingness to fix what
we consider to be a vulnerability in their API that allows spyware
apps to hide their icon.

The privacy deficiencies we uncover in Section 4, on the other
hand, demonstrated the unfortunate truth about consumer mobile
spyware apps: that they prioritize covert collection over protect-
ing user data. As an example, Spapp shows signs of significant
developer effort: it implements most of the technical collection
capabilities we have described and carefully obfuscates its code to
hinder reverse engineering efforts. However, the same app places
little investment in protecting the data it has collected, incorrectly
handling data retention after deletion and executing highly sensi-
tive SMS commands without authentication. Sadly, this situation is
far from the exception Ð and the range of past data breaches are
testament to this asymmetry. Moreover, because it is victims who
suffer here and not spyware customers, there are no market forces
that will correct this state of affairs.

All of these challenges highlight the need for a more creative,
diverse and comprehensive set of interventions from industry, gov-
ernment and the research community. While technical defenses
can be part of the solution (and particularly OS improvements that
make users aware of their current exposure, like the new privacy
dashboard in Android 12), consumer spyware’s persistence and
growth suggests that a broader range of measures including pay-
ment interventions [121], regulatory crackdowns (e.g., FTC recently
banned SpyFone from operating [122]) and further law enforce-
ment action may also be necessary to prevent surveillance from
becoming a consumer commodity.

ACKNOWLEDGMENTS

We thank our shepherd Alastair Beresford and anonymous review-
ers for their insightful and constructive suggestions and feedback.
We thank Cindy Moore and Jennifer Folkestad for their operational
support. We thank Thomas Ristenpart and Nicola Dell for helping
shape this project in its early stage. We thank Nishant Bhaskar
and Ariana Mirian for supplying test phones. We thank Brad Chen
for collecting and providing feedback from Google. We thank Ear-
lence Fernandes for his feedback on this paper. Funding for this
work was provided in part by National Science Foundation grant
CNS-1916126, the UCSD CSE Postdoctoral Fellows program, the
Irwin Mark and Joan Klein Jacobs Chair in Information and Com-
puter Science, and operational support from the UCSD Center for
Networked Systems.

13

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

REFERENCES
[1] N. Labs. (2022, 02) A year after lockdown: Stalkerware on the rise. [Online].

Available: https://www.nortonlifelock.com/blogs/norton-labs/stalkerware-rise
[2] Avast. (2022, 02) Use of stalkerware and spyware apps in-

crease by 93% since lockdown began in the uk. [Online]. Avail-
able: https://press.avast.com/use-of-stalkerware-and-spyware-apps-increase-
by-93-since-lockdown-began-in-the-uk

[3] R. Chatterjee, P. Doerfler, H. Orgad, S. Havron, J. Palmer, D. Freed, K. Levy,
N. Dell, D. McCoy, and T. Ristenpart, łThe Spyware Used in Intimate Partner
Violence,ž in Proceedings of the 2018 IEEE Symposium on Security and Privacy,
2018, pp. 441ś458.

[4] D. Woodlock, łThe Abuse of Technology in Domestic Violence and Stalking,ž
Violence Against Women, vol. 23, no. 5, pp. 584ś602, 2017.

[5] J. Cox. (2022, 02) Hacker steals customers’ text messages from android
spyware company. [Online]. Available: https://www.vice.com/en/article/
qvm44m/hacker-steals-text-messages-android-spyware-company-spyhuman

[6] Waqas. (2022, 02) Company that sells spyware to domestic abusers hacked.
[Online]. Available: https://www.hackread.com/company-that-sells-spyware-
to-domestic-abusers-hacked/

[7] B. Krebs. (2022, 02) mspy breach krebs on security. [Online]. Available:
https://krebsonsecurity.com/tag/mspy-breach/

[8] Cyber Insurance. (2022, 02) mspy - cyberinsurance.com. [Online]. Available:
https://www.cyberinsurance.com/breaches/mspy/

[9] Rithvik. (2022, 02) Cerberus acknowledges data breach, states some usernames
and encrypted passwords stolen. [Online]. Available: https://www.droid-
life.com/2014/03/26/cerberus-data-breach/

[10] L. Franceschi-Bicchierai. (2022, 02) Stalkerware company flexispy calls cata-
strophic hack ’just some false news’. [Online]. Available: https://www.vice.com/
en/article/xyjwpw/flexispy-calls-catastrophic-hack-just-some-false-news

[11] J. Cox. (2022, 02) Hacker strikes ’stalkerware’ companies, steal-
ing alleged texts and gps locations of customers. [Online].
Available: https://www.vice.com/en/article/7x77ex/hacker-strikes-stalkerware-
companies-stealing-alleged-texts-and-gps-locations-of-customers

[12] C. Osborne. (2022, 02) Spyware firm spyfone leaves customer data, recordings
exposed online. [Online]. Available: https://www.zdnet.com/article/spyware-
firm-spyfone-leaves-customer-data-recordings-exposed-online/

[13] Z. Zorz. (2022, 02) Retina-x admits they have suffered a data breach - help
net security. [Online]. Available: https://www.helpnetsecurity.com/2017/05/02/
retina-x-data-breach/

[14] L. Vaas. (2022, 02) Hacker claims spyware maker retina-x has been breached,
again. [Online]. Available: https://nakedsecurity.sophos.com/2018/02/23/hacker-
claims-spyware-maker-retina-x-has-been-breached-again/

[15] Wikipedia. (2022, 08) Insecure direct object reference. [Online]. Available:
https://en.wikipedia.org/wiki/Insecure_direct_object_reference

[16] CommonWeakness Enumeration. (2022, 08) Cwe - cwe-813: Owasp top ten 2010
category a4. [Online]. Available: https://cwe.mitre.org/data/definitions/813.html

[17] Z. Whittaker. (2022, 02) How to jailbreak your iphone or ipod touch.
[Online]. Available: https://www.digitaltrends.com/mobile/how-to-jailbreak-
your-iphone/

[18] L. Stefanko. (2021, 05) Android stalkerware vulnerabilities. [Online].
Available: https://www.welivesecurity.com/wp-content/uploads/2021/05/eset_
android_stalkerware.pdf

[19] Te-k. (2022, 01) Te-k/stalkerware-indicators: Indicators of stalkerware apps.
[Online]. Available: https://github.com/Te-k/stalkerware-indicators

[20] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, andW. Joosen,
łTranco: A Research-Oriented Top Sites Ranking Hardened Against Manipula-
tion,ž arXiv preprint arXiv:1806.01156, 2018.

[21] Apktool. (2022, 01) Apktool - a tool for reverse engineering 3rd party, closed,
binary android apps. [Online]. Available: https://ibotpeaches.github.io/Apktool/

[22] skylot. (2022, 01) skylot/jadx: Dex to java decompiler. [Online]. Available:
https://github.com/skylot/jadx

[23] Google. (2022, 02) Firebasemessagingservice. [Online]. Avail-
able: https://firebase.google.com/docs/reference/android/com/google/firebase/
messaging/FirebaseMessagingService

[24] Y. Yan, Z. Li, Q. A. Chen, C. Wilson, T. Xu, E. Zhai, Y. Li, and Y. Liu, łUnder-
standing and Detecting Overlay-Based Android Malware at Market Scales,ž
in Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services, 2019, pp. 168ś179.

[25] Google. (2021, 08) Camera capture sessions and requests. [Online]. Available:
https://developer.android.com/training/camera2/capture-sessions-requests

[26] ÐÐ. (2022, 02) Surfacetexture. [Online]. Available: https://developer.android.
com/reference/android/graphics/SurfaceTexture

[27] ÐÐ. (2022, 02) Webview. [Online]. Available: https://developer.android.com/
reference/android/webkit/WebView

[28] ÐÐ. (2021, 08) Mediarecorder.audiosource. [Online]. Available: https://developer.
android.com/reference/android/media/MediaRecorder.AudioSource

[29] ÐÐ. (2021, 08) Voice_call audio source requires an-
droid.permission.capture_audio_output [37094464] - visible to public - issue
tracker. [Online]. Available: https://issuetracker.google.com/issues/37094464

[30] V. Degtyarev. (2021, 08) Viktordegtyarev/callreclib: Call recorder fix for android
7 and android 6. [Online]. Available: https://github.com/ViktorDegtyarev/
CallRecLib

[31] Bitbucket. (2021, 08) copluk / acr / issues / #2418 - [kb] android 9 (p) call recording
issues. [Online]. Available: https://bitbucket.org/copluk/acr/issues/2418/kb-
android-9-p-call-recording-issues

[32] Google. (2021, 08) services/audioflinger/audioflinger.cpp - plat-
form/frameworks/av - git at google. [Online]. Avail-
able: https://android.googlesource.com/platform/frameworks/av/+/android-
9.0.0_r30/services/audioflinger/AudioFlinger.cpp

[33] ÐÐ. (2021, 08) Sharing audio input. [Online]. Avail-
able: https://developer.android.com/guide/topics/media/sharing-audio-input#
accessibility_service_ordinary_app

[34] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, łCloak and Dagger: From Two
Permissions to Complete Control of the UI Feedback Loop,ž in Proceedings of
the 2017 IEEE Symposium on Security and Privacy, 2017, pp. 1041ś1057.

[35] J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao, łOn Malware Leveraging the
Android Accessibility Framework,ž in Proceedings of the 2013 International Con-
ference on Mobile and Ubiquitous Systems: Computing, Networking, and Services,
2013, pp. 512ś523.

[36] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, łA11y Attacks: Exploiting
Accessibility in Operating Systems,ž in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014, pp. 103ś115.

[37] W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng, K. Zhang, and
X. Wang, łKindness Is a Risky Business: On the Usage of the Accessibility APIs
in Android,ž in Proceedings of the 22nd International Symposium on Research in
Attacks, Intrusions and Defenses, 2019, pp. 261ś275.

[38] A. Kalysch, D. Bove, and T. Müller, łHow Android’s UI Security Is Undermined
by Accessibility,ž in Proceedings of the 2nd Reversing and Offensive-oriented
Trends Symposium, 2018, pp. 1ś10.

[39] J. Huang, M. Backes, and S. Bugiel, łA11y and Privacy Don’t Have to BeMutually
Exclusive: Constraining Accessibility Service Misuse on Android,ž in Proceedings
of the 30th USENIX Security Symposium, 2021.

[40] M. Naseri, N. P. Borges, A. Zeller, and R. Rouvoy, łAccessiLeaks: Investigating
Privacy Leaks Exposed by the Android Accessibility Service,ž Proceedings of
Privacy Enhancing Technologies, vol. 2019, pp. 291ś305, 2019.

[41] R. Gibson. (2019, 10) Countering tech abuse together. [Online].
Available: https://www.virusbulletin.com/uploads/pdf/conference_slides/2019/
VB2019-ZakorzhevskyG.pdf

[42] Read Unread. (2022, 08) Read unread: unseen hide and read, last seenonline.
[Online]. Available: https://play.google.com/store/apps/details?id=com.read.
unread.last.seen.unseen.hidden.chat

[43] Stackoverflow. (2021, 10) android - how to use mediaprojec-
tion to capture screen in a service? - stack overflow. [On-
line]. Available: https://stackoverflow.com/questions/51182557/how-to-use-
mediaprojection-to-capture-screen-in-a-service

[44] Google. (2021, 12) Restrictions on starting activities from the background.
[Online]. Available: https://developer.android.com/guide/components/activities/
background-starts

[45] ÐÐ. (2021, 12) Accessibilityservice. [Online]. Available:
https://developer.android.com/reference/android/accessibilityservice/
AccessibilityService#takeScreenshot(int,%20java.util.concurrent.Executor,
%20android.accessibilityservice.AccessibilityService.TakeScreenshotCallback)

[46] ÐÐ. (2021, 11) Privacy changes in android 10. [Online]. Available: https:
//developer.android.com/about/versions/10/privacy/changes

[47] Joao Apps. (2022, 08) Solved - clipboard monitor/listener no longer works on
android 10. [Online]. Available: https://forum.joaoapps.com/index.php?threads/
clipboard-monitor-listener-no-longer-works-on-android-10.49808/

[48] Google. (2021, 08) How can i turn off camera shutter sound - google pixel
community. [Online]. Available: https://support.google.com/pixelphone/thread/
69083830/how-can-i-turn-off-camera-shutter-sound?hl=en

[49] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli, łAudroid: Preventing Attacks on
Audio Channels in Mobile Devices,ž in Proceedings of the 31st Annual Computer
Security Applications Conference, 2015, pp. 181ś190.

[50] Stackoverflow. (2021, 11) what are the uses of main, default and
launcher in manifest file in android - stack overflow. [Online]. Avail-
able: https://stackoverflow.com/questions/9721030/what-are-the-uses-of-main-
default-and-launcher-in-manifest-file-in-android

[51] Z. Shan, I. Neamtiu, and R. Samuel, łSelf-Hiding Behavior in Android Apps: De-
tection and Characterization,ž in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 728ś739.

[52] Google. (2022, 02) Intent. [Online]. Available: https://developer.android.com/
reference/android/content/Intent#CATEGORY_LAUNCHER

[53] ÐÐ. (2021, 08) Launcherapps. [Online]. Available: https:
//developer.android.com/reference/android/content/pm/LauncherApps#

14

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

getActivityList(java.lang.String,%20android.os.UserHandle)
[54] LauncherAppsService. (2022, 08) Launcherappsservice.java - android

code search. [Online]. Available: https://cs.android.com/android/platform/
superproject/+/android-10.0.0_r1:frameworks/base/services/core/java/com/
android/server/pm/LauncherAppsService.java;l=439

[55] Google. (2022, 02) Create deep links to app content. [Online]. Available:
https://developer.android.com/training/app-links/deep-linking

[56] ÐÐ. (2022, 02) App widgets overview. [Online]. Available: https://developer.
android.com/guide/topics/appwidgets/overview

[57] ÐÐ. (2021, 11) Recents screen. [Online]. Available: https://developer.android.
com/guide/components/activities/recents

[58] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue, and T. Wang, łDemystify-
ing Diehard Android Apps,ž in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 187ś198.

[59] Google. (2021, 11) <activity>. [Online]. Available: https://developer.android.
com/guide/topics/manifest/activity-element#exclude

[60] ÐÐ. (2022, 02) Intent. [Online]. Available: https://developer.android.com/
reference/android/content/Intent#FLAG_ACTIVITY_EXCLUDE_FROM_
RECENTS

[61] Z. Shan, R. Samuel, and I. Neamtiu, łDevice Administrator Use and Abuse in
Android: Detection and Characterization,ž in Proceedings of the 25th Annual
International Conference on Mobile Computing and Networking, 2019, pp. 1ś16.

[62] A. AlJarrah and M. Shehab, łMaintaining User Interface Integrity on Android,ž
in Proceedings of the 40th Annual Computer Software and Applications Conference,
vol. 1. IEEE, 2016, pp. 449ś458.

[63] Y. Shao, R. Wang, X. Chen, A. M. Azab, and Z. M. Mao, łA Lightweight Frame-
work for Fine-Grained Lifecycle Control of Android Applications,ž in Proceedings
of the 2019 EuroSys Conference, 2019, pp. 1ś14.

[64] Google. (2021, 08) Jobscheduler. [Online]. Available: https://developer.android.
com/reference/android/app/job/JobScheduler

[65] ÐÐ. (2021, 08) Alarmmanager. [Online]. Available: https://developer.android.
com/reference/android/app/AlarmManager

[66] ÐÐ. (2022, 06) Broadcasts overview. [Online]. Available: https://developer.
android.com/guide/components/broadcasts

[67] ÐÐ. (2022, 06) Implicit broadcast exceptions. [Online]. Available: https:
//developer.android.com/guide/components/broadcast-exceptions

[68] Accountable2you. (2022, 08) Android accessibility keeps turning
off accountable2you - accountable2you support. [Online]. Available:
https://support.accountable2you.com/article/754-android-accessibility-
keeps-turning-off-accountable2you#:~:text=If%20you%20notice%20that%
20Accountable2You,to%20customize%20these%20battery%20settings.

[69] Stackexchange. (2022, 08) Accessibility services gets disabled
automatically - android enthusiasts stack exchange. [Online].
Available: https://android.stackexchange.com/questions/137195/accessibility-
services-gets-disabled-automatically

[70] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman, Z. M. Mao,
and A. Prakash, łAndroid Ui Deception Revisited: Attacks and Defenses,ž in
Proceedings of the 2016 International Conference on Financial Cryptography and
Data Security, 2016, pp. 41ś59.

[71] P. Mitchell. (2021, 04) How to disable auto-start apps on android - techcult.
[Online]. Available: https://techcult.com/how-to-disable-auto-start-apps-on-
android/

[72] A. Langton. (2019, 12) Stalking stalkerware: A deep dive into flexispy. [Online].
Available: https://blogs.juniper.net/en-us/threat-research/stalking-stalkerware-
a-deep-dive-into-flexispy-2

[73] P. Santhanam, H. Dang, Z. Shan, and I. Neamtiu, łScraping Sticky Leftovers:
App User Information Left on Servers After Account Deletion,ž in Proceedings
of the 2022 IEEE Symposium on Security and Privacy, 2022, pp. 2145ś2160.

[74] S. Monitoring. (2022, 02) Available sms commands for spapp. [Online]. Available:
https://www.spappmonitoring.com/news/display/live_control

[75] Flexispy. (2022, 02) Remote commands for flexispy. [Online]. Available:
https://portal.flexispy.com/help/en/misc/sms-commands.html

[76] J. Dalman. (2015, 07) Commercial spyware Ð detecting the undetectable.
[Online]. Available: https://www.blackhat.com/docs/us-15/materials/us-15-
Dalman-Commercial-Spyware-Detecting-The-Undetectable.pdf

[77] M. Robinson and C. Taylor. (2020, 02) Spy vs
spy: Spying on mobile device spyware. [Online].
Available: https://media.defcon.org/DEF%20CON%2020/DEF%20CON%2020%
20presentations/DEF%20CON%2020%20-%20Robinson-Spy-vs-Spy.pdf

[78] Zscaler. (2019, 11) A new wave of stalkerware apps. [Online]. Available: https:
//www.zscaler.com/blogs/security-research/new-wave-stalkerware-apps

[79] ÐÐ. (2018, 10) Why you shouldn’t trust "safe" spying apps. [On-
line]. Available: https://www.zscaler.com/blogs/security-research/why-you-
shouldnt-trust-safe-spying-apps

[80] M. Grassi. (2014, 10) Reverse engineering of a commercial spyware for ios and an-
droid - speaker deck. [Online]. Available: https://speakerdeck.com/marcograss/
reverse-engineering-of-a-commercial-spyware-for-ios-and-android

[81] Cyberarch Admin. (2021, 11) Your infosec s.w.a.t team. [Online]. Available:
https://cyberarch.eu/our-blog/pegasus-spyware-analysis/

[82] Cyber Merchants of Death. (2017, 04) Flexspy application analysis. [Online].
Available: http://www.cybermerchantsofdeath.com/blog/2017/04/22/FlexiSpy.
html

[83] Diskurse. (2022, 01) diskurse/android-stalkerware: Various analysis of
android stalkerware. [Online]. Available: https://github.com/diskurse/android-
stalkerware

[84] Zscaler. (2022, 05) Spyware presence in enterprise networks blog. [Online].
Available: https://www.zscaler.com/blogs/security-research/spyware-presence-
enterprise-networks

[85] S. Sidor. (2022, 05) Android: apps can take photos with your phone
without you knowing. - mobile security - romanian security team. [Online].
Available: https://rstforums.com/forum/topic/79016-android-apps-can-take-
photos-with-your-phone-without-you-knowing/

[86] C. Parsons, A. Molnar, J. Dalek, J. Knockel, M. Kenyon, B. Haselton, C. Khoo,
and R. Deibert, łThe Predator in Your Pocket: A Multidisciplinary Assessment
of the Stalkerware Application Industry,ž 2019.

[87] D. Harkin and A. Molnar, łThe Consumer Spyware Industry: An Australian-
Based Analysis of the Threats of Consumer Spyware,ž Australian Communica-
tions Consumer Action Network, 2019.

[88] D. Harkin, A. Molnar, and E. Vowles, łThe Commodification of Mobile Phone
Surveillance: An Analysis of the Consumer Spyware Industry,ž Crime, Media,
Culture, vol. 16, no. 1, pp. 33ś60, 2020.

[89] F. Pierazzi, G. Mezzour, Q. Han, M. Colajanni, and V. Subrahmanian, łA Data-
Driven Characterization of Modern Android Spyware,ž ACM Transactions on
Management Information Systems, vol. 11, no. 1, pp. 1ś38, 2020.

[90] Á. Feal, P. Calciati, N. Vallina-Rodriguez, C. Troncoso, and A. Gorla, łAngel or
Devil? A Privacy Study of Mobile Parental Control Apps,ž Proceedings of Privacy
Enhancing Technologies, vol. 2020, no. 2, pp. 314ś335, 2020.

[91] D. Harkin and A. Molnar, łOperating-System Design and Its Implications for
Victims of Family Violence: The Comparative Threat of Smart Phone Spyware
for Android Versus iPhone Users,ž Violence Against Women, vol. 27, no. 6-7, pp.
851ś875, 2021.

[92] Ch33r10. (2022, 02) ch33r10/stalkerware. [Online]. Available: https://github.
com/ch33r10/Stalkerware

[93] M. Almansoori, A. Gallardo, J. Poveda, A. Ahmed, and R. Chatterjee, łA Global
Survey of Android Dual-Use Applications Used in Intimate Partner Surveillance,ž
Proceedings of Privacy Enhancing Technologies, vol. 4, pp. 120ś139, 2022.

[94] Y. Han, K. A. Roundy, and A. Tamersoy, łTowards Stalkerware Detection With
Precise Warnings,ž in Proceedings of the 37th Annual Computer Security Applica-
tions Conference, 2021, pp. 957ś969.

[95] S. Saroiu, S. D. Gribble, and H. M. Levy, łMeasurement and Analysis of Spyware
in a University Environment.ž in Proceedings of the 2004 USENIX Conference on
Networked Systems Design and Implementation, 2004, pp. 141ś153.

[96] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, łDynamic Spyware Analysis,ž
in Proceedings of the 2007 USENIX Annual Technical Conference. Santa Clara,
CA: USENIX Association, Jun. 2007.

[97] K. A. Roundy, P. B. Mendelberg, N. Dell, D. McCoy, D. Nissani, T. Ristenpart, and
A. Tamersoy, łThe Many Kinds of Creepware Used for Interpersonal Attacks,ž
in Proceedings of the 2020 IEEE Symposium on Security and Privacy, 2020, pp.
626ś643.

[98] H. Wang, S. Jha, and V. Ganapathy, łNetSpy: Automatic Generation of Spyware
Signatures for NIDS,ž in Proceedings of the 22nd Annual Computer Security
Applications Conference, 2006, pp. 99ś108.

[99] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy, łA Crawler-Based Study
of Spyware in the Web.ž in Proceedings of the 2006 Network and Distributed
System Security Symposium, vol. 1, 2006, p. 2.

[100] A. Randall, E. Liu, G. Akiwate, R. Padmanabhan, G. M. Voelker, S. Savage, and
A. Schulman, łTrufflehunter: Cache Snooping Rare Domains at Large Public
DNS Resolvers,ž in Proceedings of the 2020 ACM Internet Measurement Conference,
2020, pp. 50ś64.

[101] S. Havron, D. Freed, R. Chatterjee, D. McCoy, N. Dell, and T. Ristenpart, łClinical
Computer Security for Victims of Intimate Partner Violence,ž in Proceedings of
the 28th USENIX Security Symposium, 2019, pp. 105ś122.

[102] D. Freed, S. Havron, E. Tseng, A. Gallardo, R. Chatterjee, T. Ristenpart, and
N. Dell, ł"Is My Phone Hacked?" Analyzing Clinical Computer Security Inter-
ventions With Survivors of Intimate Partner Violence,ž Proceedings of the ACM
on Human-Computer Interaction, vol. 3, no. CSCW, pp. 1ś24, 2019.

[103] E. Tseng, R. Bellini, N. McDonald, M. Danos, R. Greenstadt, D. McCoy, N. Dell,
and T. Ristenpart, łThe Tools and Tactics Used in Intimate Partner Surveillance:
An Analysis of Online Infidelity Forums,ž in Proceedings of the 29th USENIX
Security Symposium, 2020, pp. 1893ś1909.

[104] K. Thomas, D. Akhawe, M. Bailey, D. Boneh, E. Bursztein, S. Consolvo, N. Dell,
Z. Durumeric, P. G. Kelley, D. Kumar et al., łSok: Hate, Harassment, and the
Changing Landscape of Online Abuse,ž in Proceedings of the 2021 IEEE Sympo-
sium on Security and Privacy, 2021, pp. 247ś267.

15

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

[105] D. Freed, J. Palmer, D. Minchala, K. Levy, T. Ristenpart, and N. Dell, łA Stalker’s
Paradise: How Intimate Partner Abusers Exploit Technology,ž in Proceedings of
the 2018 CHI conference on human factors in computing systems, 2018, pp. 1ś13.

[106] C. Fraser, E. Olsen, K. Lee, C. Southworth, and S. Tucker, łThe New Age of
Stalking: Technological Implications for Stalking,ž Juvenile and Family Court
Journal, vol. 61, no. 4, pp. 39ś55, 2010.

[107] A. Shimizu, łDomestic Violence in the Digital Age: Towards the Creation of
a Comprehensive Cyberstalking Statute,ž Berkeley Journal of Gender, Law and
Justice, vol. 28, p. 116, 2013.

[108] C. Southworth, S. Dawson, C. Fraser, and S. Tucker, łA High-Tech Twist on
Abuse: Technology, Intimate Partner Stalking, and Advocacy,ž Violence Against
Women, 2005.

[109] C. Southworth and S. Tucker, łTechnology, Stalking and Domestic Violence
Victims,ž Mississippi Law Journal, vol. 76, p. 667, 2006.

[110] M. Dragiewicz, B. Harris, D. Woodlock, M. Salter, H. Easton, A. Lynch, H. Camp-
bell, J. Leach, and L. Milne, łDomestic Violence and Communication Technology:
Survivor Experiences of Intrusion, Surveillance, and Identity Crime,ž The Aus-
tralian Communications Consumer Action Network, 2019.

[111] R. Mayrhofer, J. V. Stoep, C. Brubaker, and N. Kralevich, łThe Android Platform
Security Model,ž ACM Transactions on Privacy and Security, vol. 24, no. 3, pp.
1ś35, 2021.

[112] Vice Motherboard. (2017, 04) Inside the ’stalkerware’ surveillance
market, where ordinary people tap each other’s phones. [Online].
Available: https://www.vice.com/en_us/article/53vm7n/inside-stalkerware-
surveillance-market-flexispy-retina-x

[113] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. Choffnes, łPanoptispy: Charac-
terizing Audio and Video Exfiltration From Android Applications,ž Proceedings
of Privacy Enhancing Technologies, vol. 2018, no. 4, pp. 33ś50, 2018.

[114] H. Sbai, łThe Threat of Screenshot-Taking Malware: Analysis, Detection and
Prevention,ž Ph.D. dissertation, University of Oxford, 2022.

[115] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin, łAttacks on WebView in the An-
droid System,ž in Proceedings of the 27th Annual Computer Security Applications
Conference, 2011, pp. 343ś352.

[116] E. Chin and D.Wagner, łBifocals: AnalyzingWebview Vulnerabilities in Android
Applications,ž in Proceedings of the 2013 International Workshop on Information
Security Applications, 2013, pp. 138ś159.

[117] M. Neugschwandtner, M. Lindorfer, and C. Platzer, łA View to a Kill:WebView
Exploitation,ž in Proceedings of the 6th USENIX Workshop on Large-Scale Exploits
and Emergent Threats, 2013.

[118] L. Zhang, Z. Zhang, A. Liu, Y. Cao, X. Zhang, Y. Chen, Y. Zhang, G. Yang, and
M. Yang, łIdentity Confusion in WebView-based Mobile App-in-App Ecosys-
tems,ž in Proceedings of the 31st USENIX Security Symposium, 08 2022, pp. 1597ś
1613.

[119] A. Pham, I. Dacosta, E. Losiouk, J. Stephan, K. Huguenin, and J.-P. Hubaux,
łHideMyApp: Hiding the Presence of Sensitive Apps on Android,ž in Proceedings
of the 28th USENIX Security Symposium, 08 2019, pp. 711ś728.

[120] Department of Justice. (2022, 02) Pakistani man indicted for selling ’stealthgenie’
spyware app. [Online]. Available: https://www.justice.gov/opa/pr/pakistani-
man-indicted-selling-stealthgenie-spyware-app

[121] D. McCoy, H. Dharmdasani, C. Kreibich, G. M. Voelker, and S. Savage, łPriceless:
The Role of Payments in Abuse-Advertised Goods,ž in Proceedings of the 2012
ACM conference on Computer and Communications Security, 2012, pp. 845ś856.

[122] FTC. (2022, 02) Ftc finalizes order banning stalkerware provider from spyware
business. [Online]. Available: https://www.ftc.gov/news-events/press-releases/
2021/12/ftc-finalizes-order-banning-stalkerware-provider-spyware-business

[123] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, łDendroid: A Text
Mining Approach to Analyzing and Classifying Code Structures in Android
Malware Families,ž Expert Syst. Appl., vol. 41, no. 4, pp. 1104ś1117, mar 2014.
[Online]. Available: https://doi.org/10.1016/j.eswa.2013.07.106

[124] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, łSemantics-Aware Android Malware
Classification Using Weighted Contextual API Dependency Graphs,ž in Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, 2014, pp. 1105ś1116.

[125] L. Deshotels, V. Notani, and A. Lakhotia, łDroidlegacy: Automated Familial
Classification of Android Malware,ž in Proceedings of the 2014 ACM SIGPLAN on
Program Protection and Reverse Engineering Workshop, 2014, pp. 1ś12.

[126] Guardsquare. (2022, 06) Leader in mobile app security. [Online]. Available:
https://www.guardsquare.com/

[127] MichaelRocks. (2022, 06) Michaelrocks/paranoid: String obfuscator for android
applications. [Online]. Available: https://github.com/MichaelRocks/paranoid

[128] Giacomo Ferritti. (2022, 06) giacomoferretti/paranoid-deobfuscator: Deob-
fuscate "paranoid" protected apps. [Online]. Available: https://github.com/
giacomoferretti/paranoid-deobfuscator

16

No Privacy Among Spies: Assessing the Functionality and Insecurity of Consumer Android Spyware Apps Proceedings on Privacy Enhancing Technologies YYYY(X)

Families App Name App Website APK
Version

Target
SDK

Package Name Discovery
Method

Spyic

Cocospy cocospy.com 16.3 22 com.sc.cocospy.v2

Website
&
APK

Minspy minspy.com 16.3 22 com.minspy.v3
Neatspy neatspy.com 16.3 22 com.sc.spyic.v3
Spyic spyic.com 16.3 22 com.sc.spyic.v3
Spyier spyier.com 16.3 22 com.sc.spyier.v2
Spyine spyine.com 16.3 22 com.sc.spyine.v2
Spyzie spyzie.io 16.4 22 com.dy.spyzie.v4

TheTruthSpy

Copy9 copy9.com 7.85 28 com.systemservice

Website & APK
& Backend

GuestSpy guestspy.com 5.0.1 28 com.systemservice
iSpyoo ispyoo.com 8.80 28 com.systemservice
Mxspy mxspy.com 1.0 22 com.mxspy
TheTruthSpy thetruthspy.com 9.41 28 com.systemservice

HoverWatch
HoverWatch hoverwatch.com 7.2.338 28 com.android.core.mntw Website & APK

& BackendSnoopza snoopza.com 6.1.56 28 com.android.core.mngu

Table 5: App families identified while selecting apps to study. For each app in a family we show its name, website domain, APK

version code, target SDK version, package name, and how we discovered the family connection.

A APP OBSERVATIONS

While examining the spyware apps, we observed that they share
many characteristics. To supplement our main results, we also
describe similarities in their installation configurations and the
families of apps we discovered during our app selection process.

A.1 Installation Configuration

Many spyware apps share common installation configurations.
These configurations help spyware apps stay stealthy and improve
persistence. Broadly, we see the following common configurations
recommended by spyware apps: (1) turn off Google Play protection;
(2) turn off notification of the app; (3) grant various permissions
(e.g., accessibility); and (4) disable battery optimization. Addition-
ally, we note that seven apps (Clevguard, HoverWatch, iKeyMonitor,
Meuspy, Spyhuman, Spy24, and TheTruthSpy) abuse accessibility
to automatically click buttons (e.g., automatically clicking on the
grant permission button when the app is requesting MediaProjec-
tion permission), a behavior much like that of malware. Finally, we
find that three apps (Meuspy, Mobile-tracker-free, and Spy24) use
a loader app to install the actual app, and a loader facilitates the
installation process of the two apps (Meuspy and Spy24) that do
not have a launcher activity (as mentioned in Section 3.4).

A.2 App Family

In the process of selecting the 14 apps in our study, we identified
various families of apps that are connected: apps that are rebranded
versions of others. Table 5 lists the three families of apps we ob-
served. The families we identify echo what is documented by other
industry reports [18, 19]. We name each family using the name of
the app whose website domain has the highest Tranco ranking, as
shown in Table 1.

Spyic is the largest family we find, consisting of seven variants.
After examining their APKs, we conclude that all apps in this family
are rebranded versions of each other with different package names.
We note that websites used by these apps all include a CSS file

(alicdn.com/t/font_xxx.css) hosted at Alicdn (a Chinese CDN),
and some of the debug strings are in Chinese. While it is likely
that this family of apps is operated by a Chinese-speaking group, it
does not seem to operate in China and does not offer Chinese as a
language option on its website, potentially due to legal concerns.

TheTruthSpy family includes five apps: Copy9, GuestSpy, Mxspy,
iSpyoo and TheTruthSpy. Examining the APKs of Copy9 and Guest-
Spy suggests that they are simply rebranded versions of TheTruth-
Spy. Mxspy uses the same backend as Copy9. Snoopza is a rebranded
version of HoverWatch, which can be determined by examining
its APK (similar code), backend (same infrastructure) and website
(generated with the same template).

We also note that Spy24 advocates for Mobile-tracker-free on its
website. However, we observe that the two apps are very different
in their implementation, and we include both of them in our study.

We end by noting that this list is not comprehensive. When
investigating apps to study, our primarily goal was to filter out
duplicate apps that are likely rebranded versions of others to avoid
redundant work and results. Classifying apps more systematically
and comprehensively is a research area in itself [89, 123ś125].

B CODE OBFUSCATION

After decompiling all the APKs with JADX and examining the de-
compiled Java code, we observed that two apps (Highstermobile
and iKeyMonitor) did not protect their code with obfuscation (i.e.,
the names of classes, fields, and methods are preserved). Nine apps
obfuscated the names of classes, fields, and methods, which could
be done easily with tools such as ProGuard [126]. The last three
(Meuspy, SPAPP, and Spyhuman) went a step further and also ob-
fuscated strings (potentially to hinder reverse engineering efforts).
Among these three, Meuspy used paranoid (an open source string
obfuscation tool [127]), and we deobfuscated their strings with
an open source paranoid deobfuscator [128]. We wrote our own
deobfuscators for SPAPP and Spyhuman.

17

Proceedings on Privacy Enhancing Technologies YYYY(X) Enze Liu, Sumanth Rao, Sam Havron, Grant Ho, Stefan Savage, Geoffrey M. Voelker, and Damon McCoy

App Name APK Version SHA-1 Hash of the APK

mSPY 6.3.2 4e675734487baaa93533f5c187c376d37ce28eb3

Mobile-tracker-free 153 e18637c9576a295b02ab3dc8282eb4ca242942dd

Clevguard 4.0.7 e8234174971f4c50964f8b12987f1fa6ce47699a

HoverWatch 7.2.338 33c12f3fbe2b510ceb3111f8198f974040ab05ba

Flexispy 4.16.1 07786dc314f8cab968d0c5a310a71601543bea0e

Spyic 16.3 37ea4d27e3ac25c48b72d99c1503e56853ce7260

Spyhuman 311 f567eff3134b04c0efbc14fa6bc4916bb851ae0c

TheTruthSpy 9.41 d421e9a94c742f80e9ff573b73576eaf1bb8dc25

iKeyMonitor 9.8 2f6f807f2ac1b5a423e006a667db15c3f7229c6d

Cerberus 3.6.9 40345be0287e47224d951cd3644ac0bd7f49e150

Spy24 1.0 324fb89cec42ab67be6b644b62522c89711b53b0

Spapp 16.6 7936fa6cf35cf74b5e156d63849188c28de86d0b

Meuspy 5.20 2eb5bc667a499e44d3c77c9f16c23d278e56e9f7

Highstermobile 3.26 c0d6b1a18a8cc49f7f804451ee992fe0670072ec

Table 6: The APK’s version code and SHA-1 hash of the apps we study. Shading added to improve readability.

C ADDITIONAL FIGURES AND TABLES

Table 6 shows the list of spyware of apps we chose, their APK
version code, and the SHA-1 hash for the corresponding APK we
study. Figure 3 shows an example of an app disabling both the Force
Stop and Uninstall buttons on a phone running Android 6.

Figure 3: An example of an app disabling both the Force Stop

and Uninstall buttons on Android 6.

18

	Abstract
	1 Introduction
	2 Spyware
	2.1 Spyware Use
	2.2 Spyware App Selection

	3 Spyware Abuse of Android APIs
	3.1 Methodology
	3.2 Basic Capabilities
	3.3 Data Gathering
	3.4 Hiding the App
	3.5 Persistence

	4 Spyware User Data Protection
	4.1 Methodology
	4.2 Results
	4.3 Disclosure

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A App Observations
	A.1 Installation Configuration
	A.2 App Family

	B Code Obfuscation
	C Additional Figures and Tables

