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Abstract

Humans can learn complex functional relationships between variables from small amounts of data.
In doing so, they draw on prior expectations about the form of these relationships. In three experiments,
we show that people learn to adjust these expectations through experience, learning about the likely
forms of the functions they will encounter. Previous work has used Gaussian processes—a statistical
framework that extends Bayesian nonparametric approaches to regression—to model human function
learning. We build on this work, modeling the process of learning to learn functions as a form of
hierarchical Bayesian inference about the Gaussian process hyperparameters.

Keywords: Function learning; Gaussian process; Hierarchical Bayesian models; Learning-to-learn;
Bayesian nonparametrics

1. Introduction

Many problems humans solve, from learning causal relationships to reasoning about
physics, are examples of function learning, or learning continuous relationships between
inputs and outputs. Human function learning has been extensively studied, resulting in a
number of classic models based on the idea that people learn simple rules that character-
ize functional relationships (Carroll, 1963; Kohn & Meyer, 1991) or form generalizations
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based on similarity (DeLosh et al., 1997). Recently, rational models of function learning
based on Gaussian processes (GPs)—an extension of Bayesian nonparametric approaches
to regression—have been used to unify these two perspectives (Lucas, Griffiths, Williams, &
Kalish, 2015). GPs make explicit the expectations that learners have about the forms of the
functions they might encounter, defining prior distributions over functions that can incorpo-
rate assumptions about properties, such as linearity, periodicity, symmetry, and smoothness
(Brehmer, 1974; DeLosh et al., 1997). These expectations are typically encoded through a
kernel function that specifies the covariance between two function values, as determined by
their inputs. For example, a kernel that assigns high covariance to inputs that are close implies
a prior that favors smooth functions. GPs have been shown to capture a range of behavioral
phenomena in human function learning experiments (Wilson, Dann, Lucas, & Xing, 2015;
Lucas, Griffiths, Williams, & Kalish, 2015; Wu, Schulz, & Gershman, 2019). Since the kernel
naturally encodes learners’ expectations, previous work has primarily focused on understand-
ing which kernels best capture human behavior (Wilson, Dann, Lucas, & Xing, 2015; Schulz,
Tenenbaum, Duvenaud, Speekenbrink, & Gershman, 2017; Wu, Schulz, Speekenbrink, Nel-
son, & Meder, 2018; Wu, Schulz, & Gershman, 2019). However, this previous work charac-
terizes humans’ expectations for functions prior to learning; it does not study how humans
adapt their expectations based on previous data.

While choosing an appropriate family of kernels is important when applying GPs to regres-
sion problems, it is also crucial to choose hyperparameters appropriate for data. Kernel hyper-
parameters significantly impact the structure the GP can capture, including the average func-
tion value, the existence of global trends (e.g., linearly increasing), and the extent to which
one can extrapolate from the data (Dowling, Zhao, & Park, 2020; Murray & Adams, 2010;
Rasmussen & Williams, 2006; Shahriari, Swersky, Wang, Adams, & de Freitas, 2016; Snoek,
Larochelle & Adams, 2012). To learn different kinds of structure, humans must adapt their
expectations in ways consistent with learning different hyperparameters—effectively learn-
ing to learn functions; this type of learning has not been previously explored in the function
learning literature.

For example, consider Fig. 1, which illustrates our experimental task. Participants observe
a sequence of scatter plots of functions and are asked to predict the function value at a location
in the input space for which the function value has not been observed. After experience with
this task (the Training Task, shown in Fig. 1A), they are asked to make a prediction about the
function value at the input location indicated by the vertical blue line given the information
provided by the single data points (the Test Task, Fig. 1B). Intuitively, their predictions in
this task will depend strongly on their expectations. If they experience functions with a lin-
early increasing trend during the Training Task (top row, Fig. 1A), they may learn to expect
an increasing global trend (purple). In contrast, if they experience functions with a linearly
decreasing trend (bottom row, Fig. 1A), they may expect a decreasing global trend (orange).
The data they have previously seen affect how they predict in the Test Task.

In this paper, we capture this process of learning to learn through hierarchical Bayesian
inference (Austerweil, Sanborn, & Griffiths, 2019; Kemp, Perfors, & Tenenbaum, 2007;
Lucas & Griffiths, 2010). In this model, kernel hyperparameters are inferred through expe-
rience with one function and used to inform learning about the next. This model offers a
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Fig. 1. Task demonstration. (A) Participants are shown the black dots and are asked to predict the function value
at the query point. After predicting, their prediction is plotted along with the true function value. (B) We predict
that training data will shape participant expectations in a way that will manifest on the test task.

computational-level account of learning to learn functions: in the spirit of Marr (1982) and
Anderson (1990), we formulate the problem of learning to learn functions abstractly, explore
solutions to this problem from statistics and machine learning, and compare these solutions
to human behavior to gain insight. In this case, this hierarchical Bayesian approach reveals
whether people are appropriately sensitive to the statistics of previous experience when form-
ing expectations about functions. To evaluate the predictions of this model, we conduct three
experiments using the task illustrated in Fig. 1. In each experiment, we present two groups
of participants with functions generated from GPs with different hyperparameters. We then
compare their predictions on test trials where both groups see the same data. Across all three
experiments, we find that participants in different groups make systematically different pre-
dictions, providing experimental evidence that people adapt their expectations in ways con-
sistent with hierarchical Bayesian inference.

2. Learning to learn for GPs

Our key theoretical proposal is that the behavioral patterns demonstrated in Fig. 1 can be
captured by hierarchical Bayesian inference over GP hyperparameters. In this section, we
introduce these ideas, starting with a formal definition of GPs and then demonstrating how
hierarchical Bayesian inference can be used to learn functions.

2.1. Gaussian processes

GPs allow us to define distributions over functions; the GP is defined by the property that
any finite set of NV observations {X,,}f)’:1 induces a multivariate Gaussian distribution on R”,
where the nth of these points is the function value, f(x,), at the input point x,, (Rasmussen &
Williams, 2006). GPs are fully characterized by a mean function m(x) and positive definite
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Fig. 2. Effect of GP hyperparameters. Column 1 illustrates how the posterior mean of a GP depend on different
hyperparameters. Columns 2 and 3 compare functions sampled from the GP prior. The first row varies a constant
prior mean, the second contrasts positive and negative linear functions as the prior mean, and the third varies the
smoothing parameter £.

kernel function k(x, x") giving the covariance between f(x) and f(x’) as a function of x
and x’. Intuitively, the kernel function can be thought of as encoding expectations about what
functions might be represented in observed data. Let D = {(x,, y,)}"_, be a dataset of N pairs
of training inputs and corresponding output. The posterior predictive distribution at f(x,),
conditioned on dataset D, for a new input X,, is Gaussian with mean and variance given by:

E[f(x)|D] = m(x,) + k" (K + oD~ (y — m(x.)), (1)

VIf (%) D] = k(xs, X)) — k./ (K + oT) 'k, 2)

Here, K is an N x N matrix of covariances evaluated at all pairs of training points with
[K; ;] = k(xi, xj), I is the identity matrix, and K, = [k(X{, X,), ..., k(Xy, x,)]” is a vector
of covariances between the training outputs and f(x,) (the superscript 7 indicates that we
take the transpose of the vector). The o terms reflect the assumption that the underlying
function is corrupted with additive Gaussian noise with variance o2.

The mean function m(x) can be set to zero or modeled as a parametric function, whose
parameters are learned from data. Using an explicitly defined prior mean function can capture
expectations about the absolute or relative value of the functions from the prior (Rasmussen
& Williams, 2006). The first row of Fig. 2 shows that the prior mean can control the average
function value and the second row shows that it can control globally linear trends.

There are many possible kernel functions but we focus on the radial basis function (RBF)
kernel which has been used in previous studies of human function learning (Lucas & Griffiths,
2010). The hierarchical Bayesian inference approach we present in this paper can be naturally
extended to other kernels. For the RBF kernel, we have

) 5 |X _X/|2
k(x,x') = O exp ~YHe [ (3)
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where 0?, the signal variance, determines the scale of function values and ¢, the lengthscale
parameter, controls how quickly the covariance between two outputs decays. Larger values of
£ correspond to smoother functions.

The lengthscale ¢ is another hyperparameter that significantly impacts GP behavior, as
Fig. 2 illustrates. In column 1, row 3, we compare two zero mean GP models with the same
kernel (RBF), fit to the same data, but with different lengthscales (1.0 and 8.0). The predic-
tions are nearly identical around the data but, away from the data, the predictions are dras-
tically different. The short lengthscale model immediately reverts to the prior mean because
the kernel function approaches zero in the interpolation region, whereas the long lengthscale
model smoothly interpolates.

2.2. Learning to learn and hierarchical Bayes

The change in expectations through experience in Fig. 1 is a form of learning to learn. Pre-
vious research in machine learning (Baxter, 1998; Grant, Finn, Levine, Darrell, & Griffiths,
2018) and cognitive science (Austerweil et al., 2019; Kemp et al., 2007; Lucas & Griffiths,
2010) has described this process of learning to learn using hierarchical Bayesian inference.
In this approach, rather than having a fixed prior distribution over hypotheses (in the case of
function learning, a prior over functions), the learner infers the prior distribution from data. In
our case, this prior distribution takes the form of a distribution over the GP hyperparameters.
Thus, we model the process of learning to learn functions as inference of a distribution over
GP hyperparameters from data.

We describe our modeling approach formally. For tractability, we represent the prior on the
hyperparameters using a discrete set of means and variances, each of which parameterizes a
Gaussian distribution, with fixed mean and variance, that represents a distribution over hyper-
parameters (we describe these choices in detail in the Supplementary Materials). Let random
variable ¢ index a particular Gaussian distribution. Let ¢ ~ Categorical(c; . ..oy ) and take
supportin {1, 2, ..., k}; each element in its support will correspond to a Gaussian distribution
with fixed mean and variance. The model is represented as:

¢ ~ Categorical(o; . . . ) 0l¢ ~ N(ug.0,),

where 6 denotes the GP hyperparameter, 114 and oy are the mean and standard deviation of a
Gaussian distribution and are indexed by ¢.

Given this model, we now describe how to infer a distribution over ¢ (i.e.,
learning weights o;...q;) from data (initially, we assume o) = oy = --- = o). Let
(¥1, X1), (y2, X2), ..., (yn, Xy) be data observed on N training trials. Then, we have:

N
P(@1(y1, X1), (¥2, X2), ..., (yn, X)) /0(1_[ P(ynl X, 6))P(0]p)P(p)d0,

n=1

where P(y,|X,, 6) is the GP marginal likelihood of the data for a particular hyperparameter
and has a closed-form expression. Given the prior P(¢), we can obtain P(6) = )", P(0|¢ =
k)P(¢ = k).'The discretized prior makes this expression computationally tractable. P(6)
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is a mixture of Gaussians with weights inferred from training data. In models considered
hereafter, we utilize this learned prior distribution over hyperparameters, P(6). Note, we
have described our model assuming a distribution over a single hyperparameter 6 is being
inferred, but this straightforwardly extends to multiple hyperparameters by letting ¢ index
a multivariate Gaussian. In some of our analyses, we will also infer joint distributions over
hyperparameters.

2.3. Generating model predictions from learned prior distribution

Given a learned prior distribution P(8) from the training trials, how do we generate pre-
dictions at a test input x"**' given test dataset D'**'? Let i (xes pest gy denote the posterior mean
of a GP at x'**', fitted with data D', and with hyperparameter 6. One approach is to “aver-
age” the posterior mean of the GP over P(0), the distribution learned from training trials.
Another approach is to average the posterior mean of the GP over an updated learned dis-
tribution P(6|D"**"), which is proportional to P(D**|0)P(0) where P(0) is the learned prior
distribution. We will refer to the former approach as the hyperparameter prior model:

M
1
M Z M(Xtestptestﬁ,), 9] ~ P(H)
j=I
and the latter approach as the hyperparameter posterior model:
| M
27 D Hoes D, 6 ~ POID).
j=1

The hyperparameter prior model accounts for data only on training trials, whereas the hyper-
parameter posterior model also accounts for data on a test trial D**'. In both cases, we use a
Monte Carlo approximation to a “fully Bayesian” treatment of GP hyperparameters in which
they are integrated out (Filippone & Girolami, 2014; Lalchand & Rasmussen, 2020; Murray
& Adams, 2010).

This formulation of hierarchical Bayesian inference over functions makes it possible to
generate precise predictions about the consequences of receiving experience with particular
classes of functions for the predictions people are likely to generate. In the remainder of the
paper, we test these predictions, examining whether people are able to update their expecta-
tions about the form of functions and then use those new expectations to generate meaningful
predictions about the properties of new functions.

3. Experiment 1: Learning a constant prior mean

One simple GP hyperparameter is the prior mean. In Experiment 1, we assess participants’
ability to learn the prior mean of a GP using a task similar to that shown in Fig. 1.
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Fig. 3. Experiment 1 results. Rows 1 and 2 correspond to data shown during five training trials, which are vertical
translations of each other. Row 3 plots average participant predictions and standard error of mean on test trials
against various model predictions (GP predictions with true means, hyperparameter posterior model, and hyperpa-
rameter prior model). Participants are influenced by training and are better captured by a model that incorporates
the influence of both training and test data. Note that the horizontal positions of the model predictions are jittered
to improve legibility; all predictions were made for the x value indicated by the human data.

3.1. Methods

3.1.1. Participants

Eighty-one participants were recruited on Prolific (42 in high mean group, 39 in low mean
group). They received $0.45 along with a performance-dependent bonus of up to $0.20. The
average pay rate was $10.27 per hour.

3.1.2. Stimuli

We constructed two sequences of 10 functions to produce two different sets of training
trials, one for each for participant group. To do this, 10 samples were drawn from a zero
mean GP with an RBF kernel (¢ = 2.0, sz = 200). To manipulate the mean function value
between groups, a constant value of 95 is added to the samples in one group and a constant
value of 45 is added to the other group. The test set consists of five functions corresponding
to samples from a GP with varying means. The practice set consists of four functions. Two
functions are produced by adding 95 to samples from a GP and the other two are produced by
adding 45. The top and middle panels of Fig. 3 present example functions from the training
trials. The blue dot indicates the true function value where participants were queried and
the black dots indicate the data they were shown. The data in different groups are vertical
translations of each other.
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3.1.3. Task, design, and procedure

Participants completed 19 trials (first 4 “practice,” next 10 “training,” and last 5 “test”) in
which they were shown a scatter plot of noiseless (one-dimensional) function values and were
asked to predict the function value at a point in the input space for which the function value
had not been observed. Participants were randomly split into two groups whose training trials
consisted of functions generated by samples from GPs with different prior means. The test
trials consisted of a set of functions common across all participants. These test trials control
for the test data and thus can highlight different inductive biases across groups of participants.

The experiment was presented in a web browser using PsiTurk. See online Supplementary
Materials for screenshots. The instructions read:

In this experiment, you will be shown data from functions. Some of the data will be
drawn as black dots on a graph. Other data is hidden. Your job is to make predictions
about the hidden data. We will ask for one prediction per graph. The more accurate you
are, the higher bonus you will receive.

Participants were shown four functions during practice trials. Participant responses on prac-
tice trials are excluded from all analysis. This text appeared throughout the practice trials:

Below, you see a graph of black dots. The black dots represent data from a function.
Move your cursor along the blue line and click your mouse to place your prediction.
After you place your prediction, your prediction will be drawn as a blue dot. For the first
10 functions, the hidden data will also be revealed and drawn as a black dot. Remember,
you will get a higher bonus if your predictions are more accurate.

On both training and test trials, participants were shown function values plotted on a graph.
Participants were then asked to make a prediction at an unseen location. Participants made a
prediction by navigating their cursor and clicking. On training trials, after making a predic-
tion, the true function value at the unseen location was plotted as a black dot. Participants
were awarded a larger bonus for more accurate predictions. On test functions, no feedback
was given. There were 10 training trials, corresponding to 10 different functions, and five
test trials, corresponding to five different functions. Training functions appeared before test
functions. However, the presentation order of functions within training and test trials was ran-
domized.

Importantly, the same y-axis and x-axis are used to display scatterplots for all participants
across both groups. The distance between the maximum y-value and the average of the func-
tion values in the first condition is the same as the distance between the minimum y-value and
the average of function values in the second condition.

This task is different from those in early studies of function learning, where data or func-
tions were not explicitly visualized. However, this style is common in recent papers (Schulz
et al., 2017; Wilson et al., 2015) and allows us to characterize human behavior separately
from limitations of human memory.
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Fig. 4. Comparing GP models on Experiment 1. MSE (mean squared error) of various GP models aggregated
across groups and test trials. The GP posterior model that learns a mean hyperparameter and adapts to each test
trial performs the best.

3.1.4. Modeling approach

We consider the following GP models (see Section 2.3 for details): a hyperparameter prior
model that infers just the prior mean (e.g., GP mean prior), a hyperparameter prior model that
infers both the lengthscale and the mean (e.g., GP lengthscale+mean prior), a hyperparameter
posterior model that infers just the prior mean (e.g., GP mean posterior), a hyperparameter
posterior model that infers both the lengthscale and the mean (e.g., GP lengthscale+mean
posterior), and a GP model whose lengthscales and means are set to the true mean and length-
scales (e.g., GP true).”> The hyperparameter prior model accounts for data only on training
trials, whereas the hyperparameter posterior model also accounts for data on each test trial.
The contrast between our models will allow us to investigate how training and test data col-
lectively influence participant predictions.

3.2. Results

We hypothesized that participants in the high mean group (offset of 95) would predict
higher function values than participants in the low mean group (offset of 45) even when shown
exactly the same data. Indeed, in all five test functions, the average prediction in the high mean
group is higher (bottom panel, Fig. 3). A mixed effects regression with participant predictions
as the outcome variable and random intercepts for each test trial and subject and a fixed
effect for the group (high vs. low mean) was performed. The effect of group was statistically
significant (8 = 7.165,¢(79) = 3.67, p < .001; tests of significance were performed using
Satterthwaite’s approximation).

Fig. 3 plots the predictions of the hyperparameter posterior and hyperparameter prior
models that infer just the prior mean. The hyperparameter posterior model predictions appear
as pink and green crosses (corresponding to models fit with high and low mean group
training data, respectively) and the hyperparameter prior model predictions appear as pink
and green triangles. The hyperparameter posterior model matches mean human predictions
more closely than the hyperparameter prior model, a result that is confirmed in Fig. 4
which quantitatively compares the mean squared error (MSE), aggregated across groups
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and test trials, of several different models. Both hyperparameter posterior models drastically
outperform a simple baseline GP model (i.e., GP true) that uses a fixed lengthscale and mean
set to the values that generated the data for each group.

The gap between hyperparameter posterior model predictions, for each group, is significant
but smaller, a pattern that is qualitatively similar to human predictions. The hyperparameter
posterior model provides better fits because its predictions are influenced by both training
and test data. Since it is influenced by training data, it gives a qualitative account of the dif-
ferences in predictions between participant groups. Since it is also influenced by test data, it
accounts for the smaller differences observed between groups compared to the hyperparam-
eter prior model. Interestingly, the hyperparameter posterior model still underpredicts how
much participants are influenced by test stimuli. In Section 3 of the Supplementary Materials,
we show that the hyperparameter posterior model performs competitively against GP models
with fixed parameters optimized for the participant data.

The results indicate that learning has occurred on the training trials that influences how
participants predict on test trials. Exposure to a particular prior mean influences partici-
pant predictions.

4. Experiment 2: Learning a linear prior mean

Experiment 1 illustrated participants’ ability to learn a constant prior mean. A natural fol-
lowup is investigating whether participants can learn a more complicated parametric prior
mean. In Experiment 2, we assessed if participants’ can learn the slope of a GP with a linear
prior mean.

4.1. Methods

4.1.1. Participants

A total of 105 participants (54 in negative slope group, 51 in positive slope group) were
recruited on Prolific. For participation, they received $0.55 and a performance-dependent
bonus up to $0.30. The average pay rate was $11 per hour.

4.1.2. Stimuli

We draw 10 samples from a zero mean GP (¢ = 1.0, a]% = 75). For one group, we add a
linear function with a positive slope to each of the 10 samples. For the other group, we take
the mirror reflection. The top two rows of Fig. 5 give some examples of the data shown to
participants in the training trials. The data can be described as having a global trend with
GP residuals. Functions in the training set are presented in randomized order. Participants are
randomly assigned to either to a positive slope group or negative slope group.

The test set consists of five single data points (Fig. 5, bottom panel, black points). The
motivation behind using a single point is that there is not enough information in the data to
infer the slope and so any differences in predictions can be attributed to an inductive bias
(for either a positive or negative slope) developed through the training trials. No feedback is
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Fig. 5. Experiment 2 results. Rows 1 and 2 present training data, which exhibits either an increasing or decreasing
trend. Row 3 compares average participant prediction and standard error of mean to various models. Participants
in each group exhibit a slope bias consistent with training. GP with a linear prior mean and slope set to the true
slopes or GP with linear prior mean with sampled slopes can capture this bias.

shown during test trials and test trials appear in randomized order. The practice set consists
of four functions, two with a positive slope and two with a negative slope.

4.1.3. Task, design, and procedure
These are all identical to Experiment 1.

4.1.4. Modeling approach

We consider three models for Experiment 2. For the first model, we adapt the hyperparam-
eter prior model introduced earlier to infer a distribution over the slope and intercept of a GP
with RBF kernel and linear prior mean. For the second model, we fix the slopes of a GP with
RBF kernel and linear prior mean to the ground truth values used to generate training trials
data. The third model is a zero-mean GP whose kernel is the sum of an RBF kernel and linear
kernel (which we call the RBF+linear kernel).

4.2. Results

We predict that participants will learn to expect either a positive or negative slope depend-
ing on their condition. The difference in expectations should be reflected on test trials as fol-
lows. To the left of the single data point, linear functions with positive slopes passing through
the single data point have lower function values than linear functions with negative slope. The
opposite relationship will hold to the right of the data point.

We observe the predicted trend in participants’ predictions in Fig. 5 (mean predictions
appear as purple and orange circles for the positive and negative slope groups, respectively).
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Fig. 6. Comparing GP models for Experiment 2 MSE (mean squared error) of various GP models aggregated across
groups and test trials. The linear RBF model attains the lowest MSE but fails to capture the group differences.

On test trials where participants are asked to make predictions to the left of the single data
point, the average participant prediction in the positive slope group is lower. On test trials
where participants are asked to make predictions to the right of the single data point, the aver-
age participant prediction in the positive slope group is higher. We performed a mixed effects
regression with participant predictions as the outcome variable and for independent vari-
ables we use an interaction term between the group and a binary indicator variable indicating
whether the trial asked for a query to the left or right (trial type) and a random effect for each
test trial. Our estimate for the coefficient on the interaction term between condition and trial
type indicator is statistically significant (8 = —39.590, 1(518) = —7.310, p < .001) and our
estimate of the coefficient on condition is also statistically significant (8 = 22.299, t(518) =
5.315, p < .001).

The bottom panel of Fig. 5 plots the model predictions described in the Methods section.
The orange and purple triangles correspond to predictions produced by the hyperparameter
prior model, in which GP predictions are averaged over the learned distribution over slopes.
Participants in different groups have a bias toward either a positive or negative slope. If we
force the GP with RBF+linear kernel (green sideways triangle) to pass through the revealed
data point,? it cannot produce a bias toward positive slopes. The GP prediction will be a flat
line, as illustrated by green sideways triangles in Fig. 5. On the other hand, we can capture
this slope bias by inferring a distribution over the slope and intercept of the linear prior mean.

In Fig. 6, we compare the aggregated MSEs of the GP linear RBF model, the hyperpa-
rameter prior model (i.e., GP linear prior), and a GP model whose hyperparameters are set to
the parameters that generated the experiment data (i.e., GP true). The hyperparameter prior
model significantly outperforms the GP true model. However, the GP linear RBF model out-
performs the hyperparameter prior model. Since the mean participant predictions are close
to the revealed function values, are participants all just predicting the revealed point? In the
Supplementary Materials, we examine the distribution of participant predictions and show
that this is not the case. Collectively, Experiments 1 and 2 demonstrate that humans’ sensi-
tivity to the mean value and ability to learn global trends, can be captured through the prior
mean.
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5. Experiment 3: Learning the lengthscale

The previous two experiments show that people learn a prior from experience that changes
their predictions on new data. However, in both cases, learning an appropriate prior involves
learning a simple statistical property (i.e., the prior mean) of the data but does not involve
learning how specific data tends to influence a prediction. Here, we consider a hyperparam-
eter that affects how data should be utilized to make predictions. Specifically, we consider
the lengthscale hyperparameter, £, which controls the smoothness of functions sampled from
the GP. From a psychological perspective, the lengthscale is interesting because it determines
how much participants should generalize from observed data (Wu et al., 2018). The length-
scale hyperparameter is also ubiquitous. Other kernels used to model human function learning
(Schulz et al., 2017; Wilson et al., 2015) have analogous lengthscale hyperparameters that also
influence smoothness of functions from the prior.

5.1. Methods

5.1.1. Participants

Hundred participants (51 in short lengthscale group, 49 in long lengthscale group) were
recruited on Prolific. For participation, they received $0.55 and performance-dependent bonus
up to $0.30. The average pay rate was $11 per hour.

5.1.2. Stimuli

We draw two sets of 10 samples from a GP with RBF kernel (u = 60, o? = 200), one
set for each group of participants. The first set of functions is generated by an RBF kernel
with lengthscale of £ = 2. The second set of functions is generated by an RBF kernel with
lengthscale of ¢ = 11. Participants are randomly assigned to the short-lengthscale group or
the long-lengthscale group. The top two rows of Fig. 7 give example functions from the
training trials. The test set consists of four functions, corresponding to four test trials, that are
diagnostic for capturing differences between models with different lengthscales.

5.1.3. Task, design, and procedure
These are identical to Experiment 1.

5.1.4. Modeling approach

We consider the following GP models: a hyperparameter prior model that infers just the
lengthscale (e.g., GP lengthscale prior), a hyperparameter prior model that infers both the
lengthscale and the mean (e.g., GP lengthscale+mean prior), a hyperparameter posterior
model that infers just the lengthscale (e.g., GP lengthscale posterior), a hyperparameter pos-
terior model that infers both the lengthscale and the mean (e.g., GP lengthscale+mean poste-
rior), and a GP model whose lengthscales and means are set to the true mean and lengthscales
(e.g., GP true).
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Fig. 7. Experiment 3 results. Rows 1 and 2 present data shown during training. Row 3 presents average participant
predictions and standard error of mean on test trials versus GP model predictions. Participants in short-lengthscale
group (red circle) revert to the mean, whereas participants in long-lengthscale group (blue circle) smoothly inter-
polate or extrapolate, consistent with learning the correct lengthscales.

5.2. Results

The differences between human predictions in each group are consistent with the differ-
ences between GP predictions with different lengthscales (Fig. 7, bottom panel). The main
difference between the predictions under different lengthscales is the range over which one
generalizes from the data. The short-lengthscale prediction quickly reverts to the prior mean,
while the long-lengthscale prediction will smoothly interpolate or extrapolate. Indeed, partici-
pants in the short-lengthscale group revert to the prior mean, whereas participants in the long-
lengthscale group extrapolate or interpolate from the revealed data (Fig. 7). We performed a
mixed effects regression with participant predictions as the dependent variable and the group
(short or long-lengthscale) as a fixed effect and random effects for each subject and each test
trial. The coefficient on group was statistically significant (8 = 14.206, 1(98) = 4.665, p <
.001). These differences suggest that participants make predictions in a way consistent with
learning lengthscales.

In Fig. 8, we compare the MSEs of different GP models aggregated across groups and test
trials. The models that learn distributions over hyperparameters significantly outperform the
model that uses the true lengthscales (GP true). We also find that this model outperforms GP
models with fixed parameters optimized for the human data (see Section 3 of Supplementary
Materials). Interestingly, the hyperparameter prior models perform slightly better than the
hyperparameter posterior models, which adapts to the properties of the test trials, in contrast
to Experiment 1. This could suggest that participants are less sensitive to the lengthscale than
they are to the mean.
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Fig. 8. Comparing GP models for Experiment 3 MSE (mean squared error) of various GP models aggregated
across groups and test trials. The GP prior model that learns both a lengthscale and mean hyperparameter performs
the best. Notably, all GP models that learn hyperparameters significantly outperform the model that uses the true
lengthscale. Interestingly, in contrast to Experiment 1, the GP models that adapt to the test data perform slightly
worse, suggesting that people are less sensitive to changes in smoothness on the test data than they are to the mean.
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Fig. 9. Comparing GP model prediction versus human prediction distributions for Experiment 3. For each test
trial, comparison of distribution of human predictions against GP model predictions for (left) £ = 2.0 group and
(right) £ = 11.0 group. In some cases (e.g., Test Trial 4 on left, Test Trials 1, 2 on right), human predictions are
multimodal. This is also reflected in the GP model since its predictions are produced from a learned distribution
over lengthscales and means.

Fig. 9 compares the distributions of the predictions of the hyperparameter prior model that
infers both the lengthscale and the mean with the human distribution. In some cases (e.g., Test
Trial 4 on left, Test Trials 1, 2 on right), human predictions exhibit multimodality. The modes
of this distribution essentially correspond to two different “strategies” on the test trials: revert-
ing to the prior mean or smoothly extrapolating or interpolating. This multimodality cannot
be captured by a GP model with a fixed lengthscale but can be captured by our model which
learns distributions over hyperparameters. One explanation for the multimodality in human
data is the existence of two distinct types of participants who predict consistently with either
a short or long lengthscale through the entirety of the test trials. Another explanation is that
some learners employ a “mixed strategy” and switch between strategies during the test trials.
We show evidence for the latter type of learner in Section 2.2 of the Supplementary Materials.
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6. Discussion

We studied humans’ ability to adapt expectations about functions, modeling this behavior
via hierarchical Bayesian inference of GP hyperparameters. We showed that people can learn
higher-order structure underlying functions drawn from distributions defined by hyperparam-
eters that control the mean, global trends, and smoothness of functions. People’s predictions
were broadly consistent with simple hierarchical Bayesian models that learn distributions over
those hyperparameters given previously seen functions, and use them to inform predictions
about new functions. That is, participants learned to learn new functions through experience.

6.1. Heuristics for function learning

In this work, our main contribution was a computational-level account (Marr, 1982) of
learning to learn functions. However, we do not claim that Bayesian inference is the cogni-
tive mechanism by which humans solve this task. Instead, participants might employ simple
heuristics (Gigerenzer & Todd, 1999). In this section, we evaluate simple heuristics for our
tasks against GP models; we discuss these heuristics in more detail in the Supplementary
Materials (Section 4). There are two aims to this comparison. First, we want to take pre-
liminary steps toward bridging the algorithmic-level and computational levels of analysis for
human function learning (Griffiths, Lieder, & Goodman, 2015). We view these heuristics as
a first step toward developing the algorithmic-level solutions to the computational problem
we presented; we do not claim that these heuristics are approximations of GP models, and we
leave it to future work to explore any potential connections. Second, since the heuristics are
fairly interpretable, we think this comparison gives insight into the relative performance of the
GP models across different settings, which could inform future work. Importantly, in making
this comparison, we are not primarily interested in assessing which model is preferable. These
models are at different levels of analysis and, therefore, offer complementary perspectives on
human function learning.

In Fig. 10, we compare the best-performing (as measured by MSE on human data) GP
model against several heuristic strategies. The best GP model appears in red, and the heuristics
appear in gray. Across all three experiments, the GP model performs comparably or exceeds
the performance of heuristics. In Experiment 1, the GP model outperforms a “predict train
mean” heuristic that assumes participants predict the mean function value on the training
trials and several variations of a heuristic that assumes participants are biased toward more
recently seen data. We implement the latter as an exponential-decay Gaussian model where
lower values of y induce higher weights on more recently seen data, which happen to be the
test trials in our experiments. In Experiment 2, the GP linear RBF model performs marginally
worse than a “truncated Gaussian” heuristic that assumes participants in the negative slope
group learn that predictions on the left-hand side of the plot are higher than the revealed data
point and that those on the right-hand side are smaller; we consider an analogous heuristic
for the positive slope group. In Experiment 3, the GP model significantly outperforms several
variations of spline regression and the predict train mean heuristic.
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Fig. 10. Comparing best GP model against heuristics. (left) For the mean experiment, the best GP model signifi-
cantly outperforms heuristics that predicts the mean of the training data and the exponentially weighted Gaussian
model for two values of . The y = 0.25 outperforms the GP model, suggesting that participants are more sensi-
tive to the statistics of the test data than our Bayesian model predicts. (middle) The truncated Gaussian heuristic
performs marginally better, likely because its predictions are guaranteed to reflect a slope bias. (right) For the
lengthscale experiment, the best GP model outperforms heuristics that predict the mean of training data and sev-
eral variations of spline regression.

The primary purpose of this comparison was not to distinguish between heuristics and
adaptive GP models since these models are at different levels of analysis. However, their rela-
tive performance gives insight into when the adaptive GP models are especially well-suited for
modeling how humans learn functional relationships. For the simpler settings (Experiments
1 and 2), the adaptive GP model and best heuristic perform similarly. For the most complex
setting (Experiment 3), the adaptive GP model outperforms all heuristics. This suggests that
the adaptive GP model is better suited for modeling how humans learn more complicated
aspects of functional relationships. We leave a thorough exploration of this for future work.

6.2. Limitations and future directions

One limitation of our study is that we presented participants with scatter plots of functions
rather than showing the input—output pairs one at a time, as is more common in naturalistic
function learning. Although this paradigm has advantages, motivating its use in recent work
on function learning (e.g., Schulz et al., 2017; Wu et al., 2019; Schulz, Tenenbaum, Reshef,
Speekenbrink, & Gershman, 2015), it differs from earlier work on trial-by-trial learning of
functions (e.g., Carroll, 1963; Kohn & Meyer, 1991; DeLosh et al., 1997). Future work could
explore if similar results hold in more naturalistic settings. Another limitation of our results is
that the GP models tend to predict larger group differences than actually observed in Exper-
iments 1 and 2. For Experiment 1, one explanation is that some participants occasionally
make predictions consistent with learning a longer lengthscale than the true lengthscale. This
would yield predictions that are more sensitive to the test data than our hierarchical Bayesian
model (which learns a shorter lengthscale) predicts. For Experiment 2, the differences may
result from a discrepancy between how we formulate the learning task and the actual learning
task participants solve. In Experiment 2, the test trial data consist of single points, while the
training trial data consist of several points. Our hierarchical Bayesian model assumes that the
prior learned during training trials is relevant for the predictions on the test trials. However,
the learning problem humans face is potentially more complicated. In addition to learning
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a prior from training trials, they also have to recognize that this prior is relevant to the test
trials. Future work may consider how to model this aspect of the task by drawing on ideas
from meta-learning (Zhou et al., 2021). Participants must also determine which kernel(s) to
use and another interesting direction is to model how participants learn this drawing on work
from machine learning (Duvenaud, Lloyd, Grosse, Tenenbaum, & Gharamani, 2013). More
broadly, our emphasis on the computational level limits the extent to which we can capture
human behavior. Another future research direction is to explore how certain forms of approx-
imate GP inference or approximate forms of hyperparameter inference can be realized as
simple heuristics. This line of work could help bridge the gap between computational-level
models of function learning and psychologically plausible algorithmic-level models.
Although our approach has limitations, it also has strengths that could motivate further
investigation. Our hierarchical Bayesian formulation gives rise to heterogeneity in predic-
tions, a phenomenon that is also reflected in human data. Our models that jointly infer the
lengthscale and mean can explain why people primarily learn a lengthscale in Experiment 3
and a mean in Experiment 1: the learned marginal distributions of the varying hyperparameter
differ across groups, while the marginal distributions of the fixed hyperparameter agree.*

6.3. Conclusion

Better understanding how humans learn requires understanding how humans acquire the
expectations that inform their learning. In this paper, we showed that hierarchical Bayesian
inference provides a way to do this in the novel setting of function learning, building on
previous accounts of learning to learn in other settings (Austerweil et al., 2019; Kemp et al.,
2007; Lucas & Griffiths, 2010). These results may also be relevant in machine learning, where
machines can face the same problem as people: reaching strong conclusions from limited data.

Notes

1 We omit dependence on training trials for brevity.

2 Since there are two sequences of training data, we infer a separate distribution over hyper-
parameters for each participant group.

3 We accomplish this by setting the offset parameter in the linear kernel to the input loca-
tion of the revealed data point and set the prior mean to the observed value.

4 See Section 2 in the Supplementary Materials for details.
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Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.
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Figure 1.

:sdny) suonipuo) pue swIR, ay) 3§ *[£20T/01/4T] U0 AreIqUT AuIuQ A1 ‘T9TET STO/ [T 01/10p/wod o[’ Areiqraut[uoy/:sdny woiy papeofumo( ‘4 ‘€20T ‘60L915ST

119)/W0 KI[Im"

P!

ASUDIT suowwo)) aanear) d[qeorjdde ayy £q pauraaoF aIe sa[ANIE Y 2SN JO $A[NI 10] AIRIQIT AUIUQ KI[IAL UO (SUONIf



