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Abstract

In this paper we study a finite-depth layer of viscous incompressible fluid in
dimension n > 2, modeled by the Navier-Stokes equations. The fluid is assumed
to be bounded below by a flat rigid surface and above by a free, moving interface.
A uniform gravitational field acts perpendicularly to the flat surface, and we
consider the cases with and without surface tension acting on the free interface.
In addition to these gravity-capillary effects, we allow for a second force field
in the bulk and an external stress tensor on the free interface, both of which
are posited to be in traveling wave form, i.e., time-independent when viewed
in a coordinate system moving at a constant velocity parallel to the rigid lower
boundary. We prove that, with surface tension in dimension n > 2 and without
surface tension in dimension n = 2, for every nontrivial traveling velocity there
exists a nonempty open set of force and stress data that give rise to traveling
wave solutions. While the existence of inviscid traveling waves is well-known,
to the best of our knowledge this is the first construction of viscous traveling
wave solutions.

Our proof involves a number of novel analytic ingredients, including: the
study of an overdetermined Stokes problem and its underdetermined adjoint
problem, a delicate asymptotic development of the symbol for a normal-stress to
normal-Dirichlet map defined via the Stokes operator, a new scale of specialized
anisotropic Sobolev spaces, and the study of a pseudodifferential operator that
synthesizes the various operators acting on the free surface functions. © 2022
The Authors. Communications on Pure and Applied Mathematics published by
Wiley Periodicals LLC.

1 Introduction

1.1 The equations of motion in Eulerian coordinates

In this paper we study traveling wave solutions to the free boundary Navier-
Stokes equations, which describe the dynamics of an incompressible, viscous fluid.
We posit that the fluid evolves in an infinite layer-like domain in dimension n > 2.
Of course, the physically relevant dimensions are n = 2 and n = 3, but our
analysis works equally well in all dimensions n > 2, so we present it in this form
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for the sake of generality. In order to state the equations of motion and describe
the physical features, we must first establish some notation needed to describe the
fluid domain and its boundaries.

We assume throughout the paper that 2 < n € N, and we make the standard con-
vention of writing points x € R” as x = (x, x,) € R”~! x R. The fluid domains
of interest to us in this paper are layer-like, with fixed, flat, rigid lower boundaries
and moving upper boundaries. We will assume that the moving upper boundary
can be described by the graph of a function. Given a function ¢ : R*~! — (0, 00),
we define the set

(1.1) Qe ={x = (" x,) eR" |0 < x, <C(x")} CR",
and we define the ¢ graph surface
(1.2) ¢ = {x € R" | x, = {(x) for some x’ € R" 1},

In particular, with this notation we have that if  is continuous, then the upper
boundary of Q¢ is X¢, while the flat lower boundary is o = {x € R" | x, = 0}.

With this notation established, we now turn to a description of the equations of
motion for time # > 0. We assume that in quiescent equilibrium with all external
forces and stresses absent, the fluid occupies the flat equilibrium domain

(1.3) Qp={xeR"|0<x, <b}

for some equilibrium depth parameter » € (0, co). We further assume that when
perturbed from its equilibrium state the fluid occupies the moving domain €25 1 ¢(. 1),
where ¢ : R?~! x [0, 00) — (—b, o0) is the unknown free surface function.

We describe the evolution of the fluid for # > 0 with its velocity field w(-,1) :
Qpie(.,r) — R" and its pressure P(-,1) : Qp1¢(.r) — R. We posit that the
fluid is acted upon by five distinct forces, two in the bulk (i.e., in €2 b+¢(-,r))s and
three on the free surface (i.e., on Xpy¢(. s)). The first bulk force is a uniform
gravitational field pointing down: —pge, € R”, where p > 0 is the constant fluid
density, g > 0 is the gravitational field strength, and ¢, = (0,...,1) € R" is the
vertical unit vector. The second bulk force is a generic force described for each
t > 0 by the vector field hf’( 1) Qpyec.n) — R™. The first surface force is
a constant (in both space and time) external pressure applied by the fluid above
Qpy¢(- 1), Which we write as Pexy € R. The second surface force is generated by
an externally applied stress tensor, which we describe for each # > 0 by a map
7~‘(-,t) : Epte(-n) — R, where

sym °

(1.4) R = (M € R™" | M = MT}

sym

denotes the set of symmetric # x n matrices. Note that symmetry is imposed to
be consistent with the fact that stresses are typically symmetric in continuum me-
chanics, but it is not essential in our results and could be dropped. The third surface
force is the surface tension generated by the surface itself, which we model in the
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2476 G. LEONI AND I. TICE

standard way as —oH({), where 0 > 0 is the coefficient of surface tension, and
(writing V’ and div’ for the gradient and divergence in R”~1)

(Ve
1.5 HE) =div | —=
(1.5) (©) = div ( 1+|sz|2)

is the mean-curvature operator.
The equations of motion are then

p(0;w + w-Vw) — uAw + VP = —pge, —i—ﬂfv inQpiec 0
divw =0 inQpiec 0
(1.6) (PI — uDw)v = —0HQEW 4+ (P +T)v o0 i)
It =w-vy1l+ V2 on Xpyz(- )
w=20 on X,

where p > 0 is the constant fluid density, i > 0 is the fluid viscosity,

(1.7) Dw = (Vw) + (Vw)T € RET
is the symmetrized gradient of w, and
-V'g, 1
(1.8) V= —( ¢ e R"
1+ [V

denotes the outward-pointing unit normal to the surface Xp¢(. ;). The first two
equations in (1.6) are the incompressible Navier-Stokes equations: the first is the
Newtonian balance of forces, and the second enforces mass conservation. The third
equation in (1.6) is called the dynamic boundary condition, and it asserts a balance
of the forces acting on the free surface. The fourth equation in (1.6) is called the
kinematic boundary condition, as it dictates how the surface evolves with the fluid;
note that it may be rewritten as a transport equation in the form

(1.9) 0:¢ + V’? : w/|2b+§(-,t) = wn|2h+§(-,z>’

which shows that ¢ is transported by the horizontal component of velocity, w’, and
driven by the vertical component wy,. The fifth equation in (1.6) is the usual no-slip
condition enforced at rigid, unmoving boundaries.

It will be convenient to eliminate three of the physical parameters in (1.6). This
may be accomplished in a standard way by dividing by p, rescaling in space and
time, and renaming b, ¢, and the forcing terms. Doing so, we may assume without
loss of generality that p = u =g = 1.

Given an open set @ # U C R”, a scalar p € L?(U), and a vector field
u € H'(U;R"™), we define the associated stress tensor

(1.10) S(p,u) ;= pI —Du € RE"

sym °

where I denotes the n x n identity and Du is defined as in (1.7). The stress tensor
is of fundamental physical importance, but it also allows us to compactly rewrite
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terms in (1.6). Indeed, the left side of the third equation in (1.6) is S(P, w)v, and
if we extend the divergence to act on tensors in the usual way, then

(1.11) divS(P,w) =VP — Aw — Vdivw,
so the first equation may be rewritten as
(1.12) dw + w-Vw + divS(P, w) = —ep, + 7.

Our focus in this paper is the construction of traveling wave solutions to (1.6),
which are solutions that are stationary (i.e., time-independent) when viewed in an
inertial coordinate system obtained from the Eulerian coordinates of (1.6) through
a Galilean transformation. Clearly, for the stationary condition to hold, the new
coordinate system must be moving at a constant velocity parallel to 3g. Up to a
single rigid rotation fixing e,, we may assume, without loss of generality, that the
moving coordinate system’s velocity relative to the Eulerian coordinates is ye; for
e1 = (1,0,...,0) € R" and y € R\{0}. Then |y| > 0 is the speed of the traveling
wave and sgn(y) determines the direction of travel along the e;-axis.

In the new coordinates the stationary free surface is described by the unknown
n: R"™1 — (=b, o0), which is related to ¢ via £(x', 1) = n(x’ — yte;). We then
posit that

U)(X,[) = U(x _Vtel)» P(x’t) = q(x _Vtel) + PCXI_ ('xl’l _b)’

(1.13) - -
f(x,t) = f(x — yter), and T (x,t) = T (x — ytey),

where v : Qpypy = R", ¢ 1 Qpyy —> R, §:Qppy > R and T : Zppy —
R are the stationary velocity field, (renormalized) pressure, external force, and
external stress, respectively. In the traveling coordinate system the equations for

the unknowns (v, ¢, 17), given the data f and T, become

(v—ye1) - Vv—Av+ Vg =+ inQpyy,
divv =0 in Qp4,,
(1.14) (gl —=DVN = —oHMIN +TN on Zpiyp,
—yoin=v-N on Xpqy.
v=20 on Xy,

where here we have written
(1.15) N =(-V'n,1) e R"

for the non-unit normal to X4 ,. Note in particular that the renormalization of the
pressure has shifted the gravitational force from the bulk, where it manifested as the
force vector —ey,, to the free surface, where it is manifested as the term n/\ on the
right side of the third equations of (1.14). The renormalization has also completely
removed Pey from the equations, which makes it evident that the external pressure
only serves to adjust the dynamic pressure by a constant.
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2478 G. LEONI AND I. TICE

To provide some context for our result we now consider some of the basic fea-
tures of the system (1.14) under some modest assumptions on the solution. Sup-
pose we have a solution for which n € H3/2(R?~1), 5 is bounded and Lipschitz,
and infgn—1 1 > —b. Note that when n € {2, 3} the latter two conditions can
be verified via the Sobolev embeddings and a smallness condition on ||| z5/2, but
for higher dimensions this is an auxiliary assumption that would need to be verified
through a higher regularity argument, which we ignore for the purposes of the dis-
cussion here. The latter two assumptions on 1 guarantee that €25 1, is well-defined,
open, and connected, and that the surface X5, is Lipschitz and thus enjoys a
trace theory. We further suppose that v € H2(9b+,7;R”) N L®(Qpyn: R,
q € H'(Qpin). f € L2(Qpyy:R"), and T € HY2(Spyp: REXM); in other
words, we posit that we have a strong solution and that v is bounded. Note again
that the boundedness of v follows from Sobolev embeddings when n € {2, 3} but
is an auxiliary assumption for n > 4. Then an elementary computation, which we
record in Proposition A.1 of the appendix, shows that

1
(1.16) / fov— va:/‘ —|Dv|?.
Qp+n Zh4n Q4 2

This has a clear physical meaning: the right side is the viscous dissipation rate,
and the left side is the power supplied by the external surface stress and bulk force.
These must be in perfect balance for a traveling wave solution to exist.

In particular, if there are no sources of external surface stress and bulk force,
T = 0 and f = 0, then (1.16) requires that Dv = 0 a.e. in Qp,. In turn this
implies (see, for instance, lemma A.4 of [57]) that v(x) = z + Ax for z € R”
and A € R™" such that AT = —A, but since v € H1(9b+,7; R”™) this requires
that v = 0. Plugging this into (1.14) then shows that = 0 and ¢ = 0. The
upshot of this analysis is that within the functional framework described above,
nontrivial stress or forcing is a necessary condition for the existence of nontrivial
solutions to (1.14). We emphasize, though, that this argument depends crucially
on the assumed Sobolev inclusions and thus does not eliminate the possibility of
nontrivial solutions to (1.14) with 7 = 0 and f = 0 in other functional frameworks
(e.g., Holder spaces).

In this paper we identify a Sobolev-based functional framework appropriate for
constructing solutions to (1.14), and we prove that for every nontrivial wave speed
there exists a nonempty open set of forcing and stress data that generate solutions to
(1.14). While the existence of traveling wave solutions to the free boundary incom-
pressible Euler equations (the system (1.6) with 4 = 0 and the no-slip condition
replaced with no-penetration) is well-known with and without external sources of
stress and forcing (see Section 1.2), to the best of our knowledge this paper is
the first to construct traveling wave solutions to the free boundary incompressible
Navier-Stokes equations. It is important to account for the viscous case because,
while many fluids have small viscosity (or more precisely, the fluid configuration
has large Reynolds number), small does not mean zero, so all fluids experience
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some viscous effects. Developing the viscous theory also opens the possibility
of connecting the viscous and inviscid cases through vanishing viscosity limits,
which could potentially yield insight into the zoo of known inviscid solutions. In
particular, it could lead to a selection mechanism for physically relevant inviscid
solutions.

1.2 Previous work

The problems (1.6) and (1.14) and their variants have attracted enormous atten-
tion in the mathematical literature, making a complete review impossible. We shall
attempt here only a brief survey of those results most closely related to the present
paper, which in particular means that we will focus exclusively on incompressible
fluids in single-layer geometries and neglect the expansive literature on other geo-
metric configurations and on compressible fluids. For more thorough reviews of the
literature we refer to the works of Toland [93], Groves [43], and Strauss [86] for
the inviscid case and Zadrzyniska [109] and Shibata-Shimizu [83] for the viscous
case.

The oldest results in this area concern traveling wave solutions to the free bound-
ary Euler equations, the inviscid analogues of (1.6) and (1.14). In this case it is
possible to posit that the flow is irrotational, a condition that propagates with the
flow. The rigorous construction of the first periodic solutions was completed in 2D
by Nekrasov [72] and Levi—Civita [66]. Large amplitude 2D periodic solutions, in-
cluding those with angle 27r/3 satisfying the Stokes conjecture, were constructed
later by Krasovskii [61], Keady-Norbury [60], Toland [92], Amick-Toland [17],
Amick-Fraenkel-Toland [16], Plotnikov [80], and McLeod [69]. For more recent
work on Stokes waves, see Plotnikov-Toland [81] and Gravina-Leoni [41,42] and
the references therein. Solitary nonperiodic solutions in 2D were constructed by
Beale [20].

Progress on the 2D Euler problem with rotation came much more recently, start-
ing with the construction of periodic rotational traveling waves by Constantin-
Strauss [33]. Wahlén [95, 96] then constructed periodic solutions with surface ten-
sion, and Walsh [97-99] built solutions with density stratification and with surface
tension. Hur [51], Groves-Wahlén [45], and Wheeler [102] constructed solitary
traveling waves, and Chen-Walsh-Wheeler [30, 31] recently constructed infinite
depth solitary waves with and without stratification. In these results the only forces
are due to gravity and surface tension. Recent work of Walsh-Biihler-Shatah [100]
and Biihler-Shatah-Walsh-Zeng [28] included effects modeling forcing by wind
above the fluid, and Wheeler [103] studied an applied spatially localized pressure
force.

In 3D much less is known in the inviscid case. Periodic irrotational solutions
without surface tension were constructed by Iooss-Plotnikov [56]. Irrotational soli-
tary waves in 3D with surface tension were first constructed by Groves-Sun [44],
and then by Buffoni-Groves-Sun-Wahlén [26] and Buffoni-Groves-Wahlén [27]
with different techniques.
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2480 G. LEONI AND I. TICE

There has also been considerable recent progress on the fully dynamic inviscid
and irrotational problem. For the infinite depth problem Wu [105, 106] constructed
local solutions in 2D and 3D, showed almost global existence in 2D [107], and
then proved global well-posedness in 3D [108]. Lannes [62] developed a local
well-posedness theory in finite depth in 2D and 3D. In infinite depth Germain-
Masmoudi-Shatah [39, 40] proved global well-posedness with gravity only and
with surface tension only in 3D, Deng-lonescu-Pausader-Pusateri [34] established
global well-posedness with gravity and surface tension in 3D, and Ionescu-Pusateri
[54,55] proved global results in 2D with and without surface tension. Wang [101]
produced global solutions in finite depth with gravity but no surface tension. Local
existence in arbitrary dimension with surface tension was studied in a series of pa-
pers by Alazard-Burg-Zuily [11-13]. Alazard-Delort [14, 15] obtained 2D global
solutions with scattering, while Hunter-Ifrim-Tataru [50] and Ifrim-Tataru [52] ob-
tained 2D global solutions in an alternate framework. To the best of our knowl-
edge, the only result for layer geometries without the irrotationality assumption is
by Zhang-Zhang [110], who obtained a local existence result in 3D.

We now turn our attention to the literature associated to the dynamic viscous
problem (1.6) in 3D. In contrast with the inviscid case, irrotationality is not pre-
served along viscous flow, so the challenges of vorticity are inherent to the vis-
cous problem. Beale [21] proved local well-posedness without surface tension and
global well-posedness with surface tension [22], and Beale-Nishida [23] derived
algebraic decay estimates for the latter solutions. Solutions in other functional
frameworks were produced with surface tension by Tani-Tanaka [89], Bae [18], and
Shibata-Shimizu [84] and without surface tension by Abels [6]. Guo-Tice [47,48]
and Wu [104] proved global well-posedness without surface tension and derived
decay estimates for solutions. Masmoudi-Rousset [67] proved a local-in-time van-
ishing viscosity result with infinite depth. For related work on the linearized
problem and resolvent estimates in various functional settings we refer to Abe-
Shibata [1,2], Abels [4,5,7], Abels-Wiegner [8], and Abe-Yamazaki [3].

Much is also known about periodic solutions to the viscous problem in 3D.
Nishida-Teramoto- Yoshihara [73] constructed global, exponentially decaying so-
lutions with surface tension. Without surface tension, global solutions with a fixed
algebraic decay rate were constructed by Hataya [49] and with almost exponential
decay by Guo-Tice [46]. Tan-Wang [88] established the vanishing surface tension
limit for global solutions. Remond-Tiedrez—Tice [82] proved global existence of
exponentially decaying solutions with generalized bending energies, and Tice [90]
constructed global decaying solutions with and without surface tension for flows
with a gravitational field component parallel to the bottom.

Stationary solutions to 3D viscous problems, which correspond to traveling
waves with zero velocity (y = 0 in (1.14)), have been constructed in various
settings. Jean [58] and Pileckas [76, 77] constructed solutions with a partially
free boundary, corresponding to a reservoir lying above an infinite channel. Gell-
rich [38] constructed a solution with a completely free boundary and with an
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affine external pressure. Nazarov-Pileckas [70, 71], Pileckas [78], and Pileckas-
Zaleskis [79] built solutions in domains that are layer-like at infinity. Bae-Cho [19]
found stationary solutions for incompressible non-Newtonian fluids.

To the best of our knowledge, there are no results in the literature establishing
the existence of traveling wave solutions to the free boundary problem (1.6) with
nonzero velocity. In fixed domains there are a few results for viscous fluids. In
full space Chae-Dubovskii [29] constructed a family of traveling wave solutions
to Navier-Stokes, and Freistiihler [37] constructed solutions for a Navier-Stokes-
Allen-Cahn system. Kagei-Nishida [59] studied traveling waves bifurcating from
Poiseuille flow in rigid channels. We refer also to Escher-Lienstromberg [36] for
traveling wave solutions to a related thin-film problem.

Our goal in the present paper is to construct traveling wave solutions to (1.6) by
solving (1.14) in the presence of bulk forces § and surface stresses 7. A simple
version of the forcing occurs when we take f = 0 and 7 = ¢/ for a scalar function
¢. In this case ¢/ can be thought of as a spatially localized external pressure
source translating in space with velocity ye; above the fluid. This is a configuration
that has been realized in recent experiments in which a tube blowing air onto the
surface of a viscous fluid is uniformly translated above the surface, resulting in the
observation of traveling waves on the free surface. For details of the experiments,
some numerical simulations, and approximate models we refer to Akylas-Cho-
Diorio-Duncan [32, 35], Masnadi-Duncan [68], and Park-Cho [74,75].

1.3 Reformulation

A central difficulty in studying (1.14) is that the domain €25, ,, on which we
seek to construct the unknowns v and g, is itself unknown since 7 is unknown. To
bypass this difficulty we follow the usual path of reformulating (1.14) in a fixed
domain, which comes at the price of worsening the nonlinearities. To this end
we reformulate the problem in the equilibrium domain (1.3); in the interest of
notational concision, throughout the rest of the paper we will typically drop the
subscript b and simply write

(1.17) Q=Q, =R"!x(0,b).

Given a continuous function 1 : R*~! — (—b, co) we define the flattening map
5:Q > §b+,, via
!
(118§ = (a1 + (/b)) = x4 2D
When we need to emphasize the dependence of this map on 1 we will often write
&y in place of §. By construction we have that F(x’,0) = (x’,0) and F(x'.b) =
(x',b + n(x')), so Flx, = Ids, and F(Xp) = Zp,. Moreover, § is a bijection
with inverse given by 7 1(y) = (¥, ynb/(b + (")) for y € §b+,,. Thus F is a
homeomorphism that inherits the regularity of 7 in the sense that if 5 is Lipschitz,
then § is a bi-Lipschitz homeomorphism, and if n € C*¥(R"™1), then § is a C¥
diffeomorphism.

én.
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2482 G. LEONI AND I. TICE

Provided that 7 is differentiable, we may compute and define the following:

_(Tn-vxt—1)  O@m-1)x1
(19 Vg(’“)—(xnw(x/)/b 1+n(x’)/b)’

and so we define the Jacobian and inverse Jacobian J, K : & — (0, c0) via
(1.20) J=detVF=1+n/b and K =1/J =b/(b+ 1),

and we define the matrix A : Q — R™*" via

Alx) = (V3(x) T = (I(n—l)x(n—l) —K(X)an/n(x’)/b)

(1.21) 01x(n—1) /K(?,C) /
_ (I(n—l)x(n—l) —xnV'n(x")/(b + n(x )))
01x(n—1) b/(b 4+ n(x")) '

We now have all of the ingredients needed to reformulate (1.14) in 2. We as-
sume that 7 € C2(R"~!) satisfies n > —b and define the functions u : Q — R”,
p:Q2—>R f:Q—>RYandT : 2 - RET viau =vof, p=gqo3,

f =fogF,and T =T o3F. Then (1.14) is equivalent to the following quasilinear
system in the fixed domain :

(u—vye1) - Vau—Aqu+Vyp=f in 2,
divaqu =20 in €2,
(1.22) (pI —Dpu)N =(n—cHO)IN + TN on Zp,
u-N+ydn=0 on Xp,
u=>0 on Xo.

Here we introduce the differential operators V 4, div 4, and A 4 with their actions
given via

n n
(Vay)i = Y Aijdjy, divaX = ) A;di X,
(1.23) e =l
and (AygX); = Z Z Z A0 (AjmamX,-)

for appropriate ¥ and X. We also write

n
(X -Vau); = Z XjAjroru;,
(1.24) Jike=1

n
(Dgu)ij = Z (Aikakuj + Ajkakui), and Sq(p,u) = pl —Dyu.
k=1
Allowing div 4 to act on symmetric tensors in the usual way, we arrive at the iden-
tity
(1.25) divg Sa(p,u) = Vap — Aqu —Vdivyu.
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This allows us to rewrite (1.22) as

(u—yer) - Vau+divgSa(p,u) = f inQ,
divqu =0 in 2,
(1.26) Sa(p, N =(m—cHM)IN + TN on Xp,
u-N+ydn=0 on Xp,
u=20 on Xo.

1.4 Statement of main results

In the inviscid and irrotational case, a typical strategy for producing traveling
wave solutions (see, for instance, [56, 60]) involves a sophisticated change of un-
known that relies on conserved quantities and the irrotationality assumption. In the
resulting reformulated equations, it is then possible to identify a parameter to which
bifurcation and degree theory can be applied to produce a curve of solutions. In
contrast, the viscous problem with forcing does not admit useful conserved quanti-
ties, and irrotationality of the data is not preserved along the flow. As such, we are
forced to analyze (1.14) directly in €2 after the reformulation (1.22). The domain €2
is unbounded, has infinite measure and noncompact boundary, which precludes the
application of many standard tools in the theory of boundary value problems, in-
cluding compactness and Fredholm techniques. The problem (1.22) is quasilinear
but has no variational structure, so we are left with the option of constructing solu-
tions by way of the implicit function theorem. This turns out to be rather delicate
because the underlying spaces are nonstandard.

Our first main theorem establishes the solvability of (1.22) with surface tension
(0 > 0) in dimension n > 2 and without surface tension (¢ = 0) in dimension
n = 2. Before giving the precise statement, a couple of comments on how we treat
the bulk forcing and surface stress data are in order. Our ultimate goal is to solve
(1.14) by way of (1.22), so in the final part of our analysis we will want to have
bulk forcing in (1.22) of the form § o §§,, where §, is the flattening map defined in
terms of 7 via (1.18), so that when we compose with S;l we have bulk forcing §
in the first equation of (1.14).

The minimal assumption on § is that it is defined in the domain €215, but this
formulation is inconvenient for our analysis because it requires a priori knowledge
of 1, which is one of the unknowns we are solving for in terms of f. We thus
assume that § is a priori defined in a fixed larger set that we can guarantee always
contains €254, which without loss of generality (thanks to extension operators),
we can assume is actually all of R”. This is consistent with the usual physical
understanding that bulk force fields are defined globally, not just within the set
currently occupied by a continuum. Since we employ the implicit function theorem
in our proofs, we then need to show that the map (f,n) + fo Fp is C, and it is
well-known (see [53] and references therein) that in the context of standard Sobolev
spaces this requires the domain for { to enjoy one order of regularity more than the
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2484 G. LEONI AND I. TICE

codomain (i.e., H5*! for the domain but H* for the codomain), and we prove in
Section 5.4 that this holds in our nonstandard Sobolev context as well.

In some settings it may be advantageous to maintain the minimal regularity for
the bulk force (H*® for domain and codomain), and we have identified a special
structural assumption on a bulk force field that allows for this. Indeed, if f €
HS(R"*"1;R") and we define the bounded linear map Lg, : HS(R"L;R") —
H*(Q¢:R™) via Lo, f(x) = f(x') (see Lemma A.10), then Lg, f o 5;1()6) =
f(x') = Lg,_, f(x). In other words, bulk force fields with no x,, dependence are
invariant under composition with 8;1 and thus stay the same as we change from
(1.22) to (1.14). The map f +— Lg, f is also linear and thus smooth without any
augmentation of regularity in its domain.

In our formulation of the existence result for (1.22) we have thus chosen to in-
corporate both types of forces, taking the right side of the first equation in (1.22)
to be of the form fo §, + Lg, f forf € H*T1(R";R") and f € H5(R"1;R").
A similar analysis applies to the surface stresses, and we have chosen to con-
sider stresses in the third equation of (1.22) of the form 7 o §y|s, + SpT for
T € HST2(R"; R, T € Hs"'l/z(R”_l;R?yfé’), and SpT(x',b) = T(x') (see
Lemma A.11). Here we need to increase the regularity count to s + 2 for 7 so
that the map (7,71) = T o Fyp is C! with values in HS+1(Q; R"X"), which then

sym
allows us to take a trace to arrive in H5T1/2(%,; Rm)- Optimal regularity is
maintained for 7', though. Note also that in the following statement we will refer
to the spaces le, Cé‘, and o H°(2; R™), defined later in Section 1.6, as well as the
nonstandard Sobolev space X5 defined in (6.19), which is built from new types of
anisotropic Sobolev spaces X*1t5/2(R”~1) and Y*+1(Q), as defined in (5.6) and

(5.34), respectively.

THEOREM 1.1 (Proved later in Section 7.2). Suppose that either 6 > 0 andn > 2
oro =0andn = 2. Assume thatn/2 < s € N, let X’ be as defined by (6.19),
and let Lo = Lq, be as in Lemma A.10 and Sy, be as defined in Lemma A.11.
Then there exist open sets

US C (R\{0}) x HTFP2(R"; R x HS V2 (R R
x H*TH(R™;R") x H*(R"™':R")
and O% C XS such that the following hold:
(1) (0,0,0) € OF, and for every (u, p,n) € O° we have that
u € Cb2+Ls_n/2J(Q;Rn), pe Cbl-l-Ls—n/ZJ (Q),

n e CS“‘LS_”/ZJ (Rn—l)’

(1.27)

(1.28)

lim 0%u(x) = 0 forall @ € N" such that |a| <2+ |s —n/2],

|x/|—>00

lim 0%p(x) = 0forall « € N" such that || <1+ |s —n/2],

|x/| =00
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TRAVELING WAVES FOR NAVIER-STOKES 2485

maxgn—1|n| < b/2, and if §y, : Q- §b+n denotes the map from (1.18),
then §y is a bi-Lipschitz homeomorphism and is a C 3+ls—n/2] diffeomor-
phism.

(2) We have that (R \ {0}) x {0} x {0} x {0} x {0} C U".

(3) For each (y,T,T,§, f) € U®, there exists a unique (u, p,n) € O° classi-
cally solving

(u—ye1) Vau—Aqu+Vyp=foF,+Laf in Q,
divgqu =0 in 2,
(130) 3 (pI —~Da)N = (n— 0 HEDN + (T o Fylz, + SsTIN  on .
u-N+ydn=0 on Xyp,
u=20 on Xy.

4) The mapU* > (y, T, T.f, f) = (u, p,n) € O is C' and locally Lipschitz.
Note that if n = 2 in Theorem 1.1, then in fact (see Proposition 5.2)
(1.31) O° C X% = H*T2(Q;R?) x HT(Q) x HST2(R),

and so the solutions belong to standard Sobolev spaces. It is only in dimension
n > 3 that we need the specialized spaces X*+t5/2(R"~1) and Y5t1(Q).

With Theorem 1.1 in hand, we turn our attention back to the original Eulerian
problem (1.14). Recall from the discussion at the end of Section 1.1 that Proposi-
tion A.1 implies that under some mild Sobolev regularity assumptions on solutions,
there cannot exist nontrivial solutions without a nontrivial stress and forcing. When
n = 2, (1.31) shows that our functional framework enforces these mild conditions,
and we conclude that there cannot exist nontrivial solutions

n € HT/2(R) with inf 7 > —b,
R7—
(1.32) v e oH  2(Qpyy: R?),
q € HS+1(Qb+n)

to (1.14) with 1 = n/2 < s € N, f = 0, and 7 = 0. However, when n > 3
the space X (defined in (6.19)) is built from our specialized Sobolev spaces, and
so Proposition A.1 is inapplicable. Our first result on (1.14) thus addresses the
question of whether traveling wave solutions exist within our functional framework
without stress and forcing when n > 3. In the statement we recall that the spaces
Y*(Q2¢) are defined in (5.34).

THEOREM 1.2 (Proved later in Section 7.3). Suppose that y € R\ {0}, 0 > 0, and
n>3.Lets = |n/2|+1 € N. There exists r > 0 such that if n € XS+t5/2R"1),
v € o H* T 2(Qpyys R"), and q € YTV (Qpyp) satisfy g —n € HS TN (Qp4y), the
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2486 G. LEONI AND I. TICE

bound infgn—1 n > —b, and

(v—ye1) - Vv—Av+ Vg =0 inQpiy,
divv =0 inQpiy,
(1.33) (g1 —=DV)N = (n—ocHMIN on Zpiy,
—yom=v-N on Sy,
v=20 on Xy,

then either v =0, q = 0, and n = 0, or else
(1.34) [vllyms+2 + lgllys+r + Inllxs+s2 + lg —nllgs+1 = 1.

The upshot of this theorem is that if a nontrivial traveling wave solution (v, g, 1))
exists without forcing (i.e., f = 0 and 7 = 0 in (1.14)), then either the solution
does not belong to the stated function spaces, or else it does but must exist outside
a ball of known radius. In particular, we cannot rule out the possible existence
of large nontrivial unforced solutions in X%, though we do not expect them to
exist. We emphasize that this result implies nothing about the existence of unforced
solutions in other functional frameworks, such as those built from Holder spaces.

Finally, we turn our attention to the existence of forced solutions to (1.14). Note
that we continue to consider generalized bulk forces of the form f+ Lg, | f where
Lg, ., is as in Lemma A.10, and we consider generalized surface stresses of the
form Tx,,, + Sp4yT, where we write S, T (x) = T(x').

THEOREM 1.3 (Proved later in Section 7.3). Suppose that either 60 > 0 andn > 2
orc =0andn = 2. Assume that n/2 < s € N, and let U5 and O5 C X* be the
open sets from Theorem 1.1. Then for each (y, T, T,f, f) € U’ there exist:

() afree surface functionn € XS+t5/2(R"1) ﬂC§+ Ls=n/2] (R"~1) satisfying
the bound maxgn—1|n| < b/2 and such that §y, defined by (1.18), is a bi-
Lipschitz homeomorphism and C315=1/21 giffeomorphism,

(i) a velocity field v € o HS 2 (Qp1,: R") N CFTE2 (@ iR,
(iii) a pressure g € YS+1(Qb+,,) N CbH_Ls_n/2J (Qp49),
(iv) constants C, R > 0

such that the following hold:

1) (v,q,n) classically solves

(v—ye1)-Vv—Av+Vg=f+Lq,  f inQpiy,
divv =0 inpyyp,
(1.35) (@I =DVN = —=oHMIN + (Tls,,, + Sp4yTIN  on Zpyy,
—youn = v N on Sy,
v=20 on Xy.

(2) WoFy.goFy.n) €O C A
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() If (ys» Taes T, x5 f5) € U° and

(1.36) [y = val + IT = Tullgs+2 + IT = Tl grs+172
FNF = Fell s+ +1F = fullms < R,

then for the corresponding solution triple (V«, qx, Nx) we have the local Lips-
chitz estimate

”(U © @n,q © 677’ T}) - (U* © en*’Q* © e77>(<’ TI*)”XS
(1.37) <C(ly =yl + I T = Tallgs+2 + IT — Tl ggs+1/2
+ If = Fellgs+1 + I1Lf = fallas).

We conclude with a couple of remarks about Theorem 1.3. First note that the
functional framework requires that n — 0, § — I, v — 0, and ¢ — 0 as
|x’| — oo. This means that our traveling wave solutions correspond to what are
called solitary waves in the inviscid traveling wave literature. Second, note that
solutions with different free surface functions, say 7 and 74, have velocities and
pressures defined in different domains, €25, and €2, respectively, so there is
no natural way to compare the velocities and pressures with Sobolev norms. In the
local Lipschitz estimate of the third item we have chosen to measure the difference
in velocity and pressure by pulling back to the flattened domain €2 and using the
X® norm, which we believe is a reasonable metric given how our solutions are con-
structed. Third, note that while we have treated the bulk force and surface stress as
distinct, in some cases it is possible to shift terms from one to the other in the same
way that we shifted the gravitational force from the bulk to the boundary. Indeed, if
f = fo + V¥, then the potential gradient term can be shifted to the boundary by re-
defining the pressure via ¢ — ¢ — ¥ and the stress via 7 + T — I, which leaves
fo in place of § in the bulk forcing. The regularity requirements for ¥ are the same,
though: we need ¥ € H*T2?(R") to guarantee that the bulk force term satisfies
Vy € H¥T1(R"; R") and the stress term satisfies ¥/ € HST2(R”; R"<"

sym /*
1.5 Strategy for proof

We now turn to a discussion of our strategy for producing solutions to (1.14) by
way of (1.22). This begins with the observation that for f = 0, T = 0, and any
y € R, atrivial solution to (1.22) is given by the equilibrium configuration ¥ = 0,
p = 0, n = 0. Linearizing (1.22) around this solution yields the Stokes system
with traveling gravity-capillary boundary conditions:

divS(p,u) —you = f in 2,
divu = in Q
(138) ivu=g / in Q,
S(p.u)en —(n—0A'n)en =k, u, +ydin=~h onXy,
u=20 on X,

where here we recall that the stress tensor S(p, u) is defined by (1.10) and satisfies

(1.11), and A’ = div' V' = Z;?;} 8]2. is the Laplacian on R”~!. With this in
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hand, we can state our strategy for solving (1.22): prove that (1.38) induces an
isomorphism (u, p,n) — (f, g, h, k) between appropriate spaces, and use this in
conjunction with the implicit function theorem.

The first key to this strategy is the linear problem (1.38). To better understand
the coupling between 7, u, and p in this system, it is instructive to consider what
happens when we view 7 as given and absorb the 7 terms into the data. This leads
us to study the overdetermined problem

divS(p,u) —ydu=f inQQ,

(1.39) divu =g in 2,
S(p,u)e, =k, u, =h onZXZp,
u=20 on Xo.

The problem (1.39) is overdetermined in the sense that we specify too many,
namely n + 1, boundary conditions on X3, when only »n are needed to uniquely
solve the problem. Indeed, as a starting point for understanding (1.39), we first
analyze the Stokes system with stress boundary conditions:

divS(p,u) —you = f inQQ,

(1.40) divu =g in 2,
S(p,u)e, =k on Xp,
u=20 on X,

in Section 2 and show that it induces an isomorphism (u, p) — (f, g, k) between
appropriate L2-based Sobolev spaces (see Theorem 2.6 for the precise statement).
Consequently, when we specify the extra boundary condition u, = h on ¥ in
(1.39), we should not expect solvability in general.

In Section 3 we endeavor to precisely characterize for which data (f, g, h, k)
we can uniquely solve (1.39). If everything were integrable, then a clear necessary
compatibility condition would follow from integrating and applying the divergence
theorem:

(1.41) /g=/divu=/ Uy = h.
Q Q Zp Zp

However, since we’re working in L2-based spaces in the infinite-measure set £,
we cannot guarantee integrability, and so this compatibility condition manifests in
a more subtle way. In Theorem 3.1 we show that the L? formulation of (1.41) is
that

b
(1.42) h —f g(-,xp)dx, € H YR,
0

where H~!1(R”1) is the homogeneous Sobolev space of order —1 (see (1.61) for
the definition). In order to see the connection to (1.41) note that if we formally
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TRAVELING WAVES FOR NAVIER-STOKES 2489

rewrite this as

b
(1.43) O=[ h—/ g =[ (h(x/)—/ g(x/,xn)dxn)dx’,
Zp Q Rn—1 0

then this tells us that the Fourier transform of the function s — fé’ g+, xpn)dxy
vanishes at the origin. The inclusion of this function in H ~L(R”~1) does not
require the Fourier transform to vanish at the origin, but it does require that the
Fourier transform is not too large near the origin, which is a sort of weak form
of vanishing at the origin. This behavior has been seen before in the analysis of
viscous surface waves: we refer, for example, to [23,47,91].

The divergence structure div S(p, u) in (1.39) and the appearance of S(p, u)e,
on X, suggest that another compatibility condition should hold, but it is more
subtle since we have no information about S(p, u)e, on Xg. To get our hands on
it, we take a cue from the closed range theorem and identify the formal adjoint of
the overdetermined problem as the underdetermined problem

divS(g,v) + ydiv=f inQ,

divv = in 2,
(1.44) ivv =g , , in

(S(q,v)en) =k on Xp,

v=20 on X,

which only imposes n — 1 boundary conditions on Xj. The compatibility condition
can then be derived by integrating solutions to (1.39) against functions in the kernel
of (1.44). From our theory of the Stokes problem with stress boundary conditions,
developed in Section 2, we know that this kernel can be exactly parametrized by
augmenting (1.44), with f = 0, g = 0, and k' = 0, with the extra condition

(1.45) S(g,v)ep-ep =9

for ¢ belonging to an appropriate Sobolev space. This leads us to Theorem 3.3,
which shows that the data ( f, g, &, k) must satisfy the second compatibility condi-
tion,

(1.46) /Q(f-v—gq)—/z(k-v—hw)=0

for all appropriate ¢, where (v, g) are in the kernel of (1.44) and satisfy (1.45).

Remarkably, the two necessary compatibility conditions identified in Theorems
3.1 and 3.3 are sufficient as well. We prove this in Theorem 3.4, which establishes
that (1.39) induces an isomorphism into a space of data satisfying the compatibility
conditions.

The formulation of the second compatibility condition (1.46) is hard to work
with directly, so the next step is to reformulate it on the Fourier side and elimi-
nate ¢. We do this, among other things, in Section 4 by studying the horizontal
Fourier transform of the problem (1.40). This leads to a second-order boundary-
value ODE system on (0, b) with the horizontal spatial frequency £ € R”"! as a
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2490 G. LEONI AND I. TICE

parameter. The ODE is not particularly easy to work with, and an interesting fea-
ture of our work with it is that we use the solvability of the PDE (1.40) to deduce
some key information about the ODE, which is backward from the usual approach
of using the ODE to solve the PDE via Fourier synthesis. In Proposition 4.12 we
reformulate (1.46) as

b ~ —_—
(1.47) /0(f(é,xn)'V(E,xn,—)/)—§($,xn)Q(E,xn,—V))dxn

—k()-VEDb,—y) +h(E) =0

for almost every £ € R”~!, where Q and V' are special solutions to the ODE (see
(4.37) for the precise definition), and ~ denotes the horizontal Fourier transform.

With the solvability criteria of the overdetermined problem and (1.47) in hand,
we return to (1.38). If a solution (u, p, n) to (1.38) exists for given data ( f, g, h, k),
then (u, p) solve the overdetermined problem (1.39) with data (f, g, h—yd1n, k +
(n — oA’n)ey), and so (1.47) requires that

(1.48) p(E)NE) = (&) forf e R"™,
where ¥, p : R”~1 — C are given by

b _~ —_—mmm
(1.49) V() = /0 (f(g’xn) -V xn,—y) — §(§,xn)Q($,xn, —y))dxn

— k(&) - V(E b, —y) + h(®),

and

(1.50) p(§) = 2miyEr + (1 + 4n20|E[P)Va(E, b, —).

Here for any y € R, the function V,, (-, b, y) is the symbol associated to the pseu-
dodifferential operator corresponding to the map

(1.51) H*(Zp) 3 ¢ > un|x, € HT(Zy),

where (u, p) € HST3/2(Q;R") x H5T1/2(Q) solve (1.40) with f = 0, g = 0,
and k = @e, (see Remark 4.6). This can be thought of as a Stokes system ana-
logue of the Neumann-to-Dirichlet operator associated to the scalar Laplacian (see
Remark 4.8), which one might call the normal-stress to normal-Dirichlet opera-
tor. This reveals a remarkable fact: the two boundary conditions for n combine
via the compatibility condition into a single pseudodifferential equation on R” 1,
p(V/Q2ri))n = 1}, where the symbol of the operator is a synthesis of the symbols
for ydy, I —oA’, and the symbol of the normal-stress to normal-Dirichlet operator.

Clearly, for there to be any hope of solving the pseudodifferential equation
(1.48), we need detailed information about V' and Q. We obtain this in Section 4,
where in addition to deriving (1.47), we show that V}, (&, b, —y) = 0 if and only if
& = 0, and we obtain asymptotic developments of V and Q as § — O and § — oc.
The latter is particularly tricky as it is predicated on the daunting task of working
out closed-form expressions for V' and Q. The asymptotics of V (&, b, —y) reveal
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TRAVELING WAVES FOR NAVIER-STOKES 2491

(see Lemma 6.1 for a precise statement) that for y # 0 we have that p(§) = 0 if
and only if £ = 0 and that

§1 + [&1* for £ < 0,

1.52 2 =
(1.52) lo(®)] L4 (62 for 8] = co.

if o > 0, while

€17 for |§] < 0,

1.53 2 =
(1.53) lo(®)] 1452 for |§] = co.

if 0 = 0 and n = 2. Here the condition y # 0 is essential: the asymptotics are
worse near 0 if y = 0.

Having derived detailed information about V' and Q, we can resume the study of
the pseudodifferential equation (1.48). The first observation is that since p vanishes
exactly at the origin, 7 is entirely determined via 7 = v/p. The second is that
the asymptotics (1.52)—(1.53) dictate the form of the estimates we get for 77 when
y # 0: for 0 > 0 these read

2 4
f N CIRE +/ A+ [EPYF2176) 1 dg
Bo,1) &l B(0,1)¢

1 2
= — d
/B(O,l) |§|2|W(5)| g+/B(01

s

(1.54)
BRI @R g,

while for 0 = 0 and n = 2 these read

[ @Pass [ g aeRds
,1 B(0,1)¢

(155  “BOD | 1

= — 2d
/B(O,l) €|2 WOF e+ /B(O 1

Iy @ de.
Fortunately, the asymptotics of V' and Q, together with the low frequency bounds
provided by (1.42), allow us to control the right-hand sides of these expressions
(see Lemma 6.2). Unfortunately, while in the case n = 2 the bounds (1.54) and
(1.55) do provide standard H5+5/2(R"~1) estimates of n,whenn >3ando > 0
the bound (1.54) does not provide standard Sobolev control due to the poor low
frequency control. In this case it’s not immediately clear that the resulting n will
be regular enough to use in the nonlinear analysis of (1.22) or, much less, even
define a function. We are thus forced to build specialized Sobolev spaces based on
the left side of (1.54) and to study their properties.

To the best of our knowledge, the specialized Sobolev spaces defined via (1.54)
have not been studied previously in the literature, so we turn our attention to their
properties in Section 5. In order for these spaces (and in turn the estimate (1.54))
to be useful, they must satisfy three mandates. The first is that the objects in these
spaces must be actual functions and not just tempered distributions or equivalence
classes of functions modulo polynomials. The source of this mandate is clear: the
n determined by the pseudodifferential equation (1.48), and thus satisfying (1.54),
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2492 G. LEONI AND I. TICE

is meant to serve as the free surface function whose graph determines the fluid
domain. The second is that these spaces must have useful properties such as good
embedding and mapping properties. In particular, as s is made large we need to
guarantee at the very least that the functions in these spaces are continuous and
decay at infinity. Third, the spaces have to be well-suited for the nonlinear analysis
needed to invoke the implicit function theorem. For this we need good product-type
estimates and composition estimates.

Remarkably, these spaces, which we call X*(R”~!) in Section 5, satisfy the
above three mandates. We show in Proposition 5.2 that X*(R) = H*(R), so
when n = 2 these spaces are actually the standard L2-Sobolev spaces. However,
when d > 2 we prove that HS(R?) c X(R?), so the new spaces are strictly
bigger than the standard spaces. The Fourier multiplier defining X* (R?) ford > 2
is anisotropic at low frequencies, with a special role played by the e; direction,
which is the direction of motion of the traveling wave. We prove that this induces a
strong anisotropy in the space, which manifests itself in the space not being closed
under composition with rigid rotations (see Remark 5.3). In addition to the spaces
XS(R™1), in Section 5 we also define and derive the basic properties of the spaces
Y$(Q) = H*(Q)+ X*(R"1), where here by abuse of notation we view functions
in XS(R"~1) as being defined in € in the obvious way. We need these spaces due
to a complication with the pressure that we will describe below.

The importance of y # 0 here is worth emphasizing. It is precisely this condi-
tion that yields the asymptotics (1.52)—(1.53) and in turn guarantees the inclusion
n € XS(R™*1). Without it we would only get inclusion in a space for which we
could not guarantee the three mandates, and in particular in which we could not
guarantee the objects in the space were actual functions. This all highlights the
interesting fact that our technique is capable of producing genuine traveling wave
solutions with y # 0 but is incapable of producing stationary solutions with y = 0.

Armed with the spaces X*(R”~!) and Y*(2) and our analysis of (1.40), we
characterize the solvability of (1.38) in Section 6. To do so we first define two
Banach spaces for s > 0. The first, X* defined in (6.19), is built from the spe-
cialized spaces X*(R"~!) and Y*(Q2), and is the container space for the solutions:
(u, p,n) € X%. The second, ) defined in (3.13), is the container space for the
data: (f, g, h,k) € V5. This space contains the data space used for the overdeter-
mined isomorphism (see Theorem 3.4). We prove that (1.38) induces an isomor-
phism from X to )° for each s > 0 when y £ 0. This is proved in Theorem 6.6
when o > 0 and in Theorem 6.7 when o0 = O and n = 2.

The reason the dimension plays a role without surface tension (i.e., 0 = 0)
can be seen by examining p, the symbol of the pseudodifferential operator given
in (1.50). When n = 2 we can take advantage of the fact that yd; is an elliptic
operator with symbol 2ziy&; = 2mwiy€ in R to get the asymptotics listed in (1.53)
for |£| =< oo. However, when 1 > 3 the operator yd; is not elliptic on R”~!, and
since 0 = 0, the asymptotics of V; (&, b, —y) derived in Theorems 4.7 and 4.10
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only yield

£+ IE1* for £ < 0,

2 _
(1.56) P = 1+ 512 for |&| < oo.

This induces a second, high-frequency anisotropy in the analogue of (1.54). Our
linear techniques can readily extend to this case through the definition of another
further specialized scale of spaces beyond X*(R”~!). Unfortunately, the spaces
defined in this manner do not meet the second or third mandates described above,
and we are unable to use them to solve the nonlinear problem (1.22). As such, we
have declined to record this extension of our linear analysis in the present paper.

The space Y *(2) appears in these isomorphisms to handle an issue with the
pressure. Indeed, our proofs show that for (u, p, n) solving (1.38) for the data
(f.g.h.k) € Y5, we have the inclusions p € YST1(Q), n € X5T5/2(R""1),
and p —n € HST1(Q). Thus, while the pressure is in the nonstandard space
YSHHQ) = HSTH(Q) + XSTI(R”1), we characterize precisely the source of
this abnormality: p = 1 + ¢ for ¢ in the standard space H*!($2). From this we
see that the the source of low-frequency bad behavior in the pressure is identified
as exactly the bad behavior of 1 at low frequencies, and so if it happens that 7 is
actually well-behaved at low frequencies, p must be as well.

We now arrive at the second key to our strategy: the spaces X' and ) are
amenable to nonlinear analysis. While the isomorphisms associated to the lin-
earized system (1.38) are interesting in their own right, they are useless in the study
of (1.22) if we cannot prove that the nonlinear map from X5 (or really an open sub-
set thereof) to J* defined by (1.22) is C'!. The first difficulty is seen immediately
upon examining the requirements of the space )*, which in particular require that
the linearized compatibility condition (1.41) holds. This clearly does not hold for
the g and / defined by (1.22). However, in Proposition 7.2 we identity a nonlinear
variant of (1.41) that allows us to switch to an equivalent formulation of (1.22) for
which the linear compatibility condition holds. This allows us to show that the map
defined by this slight reformulation of (1.22) is indeed well-defined from XS to )5,
Then the special nonlinear properties of the spaces X*(R”~1) and Y *(R2) allow us
to prove in Theorem 7.3 that this map is indeed C'. Upon combining these tools,
we can then prove the main theorems.

Remark 1.4. An obvious alternate strategy for attacking (1.38), at least for small y,
is to employ a technique used in many of the references on the viscous problem
from Section 1.2, which proceeds as follows. First we would develop the well-
posedness of the linear Stokes system with Navier boundary conditions:

divS(p,u) —you=f in 2,
divu =g in 2,
(S(p.wen) =k', up=nh onZXp,
u=20 on Xo.

1.57)
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2494 G. LEONI AND I. TICE

Then we would use this to define a map (v, g, {) — (u, p) for (u, p) solving (1.57)
with data f, g,h —y9:1¢, k’, and then we would solve for 7 via the elliptic problem

(1.58) n—olA'n=S(p.ue,-ey +kn =p—20,u, +k, onX.

We would then seek to show that the map (v, q, ) — (u, p,n) is contractive on
some space.

Unfortunately, this strategy encounters a serious technical obstruction: while the
elliptic system (1.57) provides control of V p, it fails to provide control of p itself.
In a bounded domain this can be easily dealt with by simply forcing p to have zero
average, which gives control of p via a Poincaré inequality, but this technique is
unavailable in the unbounded domain €2. Without control of p, the best we can
hope for is that the pressure belongs to a homogeneous Sobolev space, in which
case solving (1.58) presents a problem due to the appearance of the trace of p
onto ¥p. This is indeed a serious problem: in recent work [64] we extended an
earlier 2D result due to Strichartz [87] and proved that the trace space associated
to homogeneous Sobolev spaces on €2 is not a standard Sobolev space, and so not
only is the elliptic theory for (1.58) unavailable in the literature, it has no hope of
producing an 1 amenable to the necessary nonlinear analysis.

1.6 Notational conventions

Here we record some notational conventions used throughout the paper. We
always write 2 < n € N for the dimension of the fluid domain 2. We will also
need to talk about function spaces defined on other sets, and in particular on subsets
of 0R2. To avoid confusion and tedious appearances of n — 1, we will often describe
these other sets as subsets of R¥ for 1 < d € N. In other words d > 1 is a generic
dimensional parameter, and n > 2 always refers to the dimension of the fluid.

We write . (Rd) for the usual Schwartz class of complex-valued functions and

7' (R?) for the space of tempered distributions. We define the Fourier transform ™~

and inverse Fourier transform ~, on ]Rd, via

(159)  f) = /R ., F(x)e 27 gy and f(x) = /R . fE)e2mixE g,

By employing the Parseval and Tonelli-Fubini theorems, we extend (1.59) to hori-
zontal Fourier transforms acting on functions defined on €2 via

7€) = / P ) E Y fork € R,
(1.60) R

fv(x) = f(x',xn) = /Rnl f(s,xn)eznix/'f dt.

For k € N, an open set @ # U C R4, and a finite-dimensional inner prod-
uct space W, we define the usual L2-Sobolev space Hk(U; w)y={f .U —
W | 0% f e L2(U; W) for |a| < k}, where 3% denotes distributional derivatives.
For 0 < s € R we then let H*(U; W) denote the fractional spaces obtained by
interpolation. In the event that U = R¢ we take the norm on these spaces to be the
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standard one defined on the Fourier side, and we also extend to s € (—00,0) C R
in the usual way. When the target is W = R we will usually drop this in the no-
tation, writing simply H*(U). For 0 < r € R we define the real-valued negative
homogeneous Sobolev space to be

H7RY) ={f e SR | f=f.f €L ®)and [f]5-, < oo}

for [/1,_, = fR d |§|12,|f(s>|2ds-

Suppose now that ¢ : R?~! — R is Lipschitz and satisfies inf ¢ > 0. For 1/2 <
s € R we can use trace theory to define o H*(Q2¢; R") = {u € H(Q¢;R") |u =
0 on X}, where the equality ¥ = 0 on X is in the sense of traces. We will mostly
employ these spaces in the case Q¢ = Q (i.e., { = b), in which case we will need
the following extra definitions. Recall that the symmetrized gradient D is defined
by (1.7). We endow o H ! (©2; R") with the inner product

1
(1.62) (U, v) g1 = —/ Du : Dv,
2 Ja

which, thanks to Korn’s inequality (see Lemma A.4), is indeed an inner product
and generates the same topology as the standard H! norm. We define the closed
subspace of solenoidal vector fields to be

(1.63) oHI(QR™) = {u € g H' (Q;R™) | divu = 0}.

(1.61)

Then ¢ H (} (2;R"™) is a Hilbert space with the same inner product. In what follows
we will often use the fact that by the symmetry of Du,

1
(1.64) /Du:sz—/ Du : Dv
Q 2 Ja

forall u,v € H'(Q;R").
Given k € N, a real Banach space V', and an open set & # U C R?, we define
the Banach space

(1.65) CKU;V)={f:U—>V|

[ is k-times continuously differentiable and || f ”C,’f < oo},
where ”f”Cz]f = Z\alsk sup,ep 0% f(x)|ly. When V' = R we will typically
write Cé‘(U) = C]f(U; R). We also define Cé‘(]R{d; V) C le(Rd; V) to be the
closed subspace

(1.66) CEFRY;V)=1{feCF®R?; V)| | l|im 9% f(x) = 0 for all |a| <k},
X|—>00

which we endow with the norm from Cli‘ (R%; V). Again we will typically write

CER?) = CF(R;R). We also write CP(RY; V) = Nrey CERY; V).
Finally, we introduce a convenient abuse of notation that we will use throughout

the paper. The hyperplane X, = {x € R” | x, = b} is canonically diffeomorphic
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2496 G. LEONI AND I. TICE

to R?~! via the map X5 > (x/,b) — x’ € R""!. Using this, we can identify
HS(Zp; W) with HS(R"~1; W) for any finite-dimensional inner product space
W . This abuse of notation is justified by a gain in brevity, as it allows us to write
f(x) in place of f(x',b) for x’ € R"™1, etc. It also allows us to use the Fourier
transform on X in a natural way.

1.7 Plan of the paper

In Section 2 we study the Stokes problem with stress boundary conditions (1.40)
and characterize its solvability in standard L2-based Sobolev spaces. In Section 3
we study the overdetermined problem (1.39), derive its compatibility conditions,
and characterize its solvability in Sobolev spaces. In Section 4 we turn our at-
tention to an ODE associated to the horizontal Fourier transform of the problem
(1.40). We study some special solutions to this ODE and derive their asymptotic
developments. In Section 5 we study some specialized Sobolev spaces. Section 6
concerns the analysis of the linearized problem (1.38). We characterize its solv-
ability in terms of the specialized spaces from Section 5. In Section 7 we employ
nonlinear analysis to prove all of the main theorems. The appendix contains some
analysis tools used throughout the paper.

2 The y-Stokes Equations with Stress Boundary Conditions
In this section we study the linear problem

divS(p,u) —yoju = f inS2,

2.1 divu =g in 2,
S(p,u)e, =k, on Xp,
u=20 on X,

where f € (oH'(Q:R™)*, g € L2(Q), and k € H~1/2(Z}; R") are given data.
A related problem with y = 0 was studied in [7] in L?-Sobolev spaces. Here we
work only in L2-based spaces but also go to higher regularity than [7] by using the
results of [10].

2.1 The specified divergence problem and the pressure
as Lagrange multiplier

Before addressing (2.1) we need to develop a couple of auxiliary tools related
to the divergence operator. We develop these now. The first allows us to solve
the specified divergence problem, which is useful in reducing to the case g = 0
in (2.1) and is essential in dealing with the pressure in the weak formulation. The
following proof is adapted from theorem 2 in [25].

PROPOSITION 2.1. Let g € L?(2). Then there exists v € o H'(Q2;R") such that
divv = g in Q and

(2.2) [vllymr = cligllz2
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TRAVELING WAVES FOR NAVIER-STOKES 2497

for some constant ¢ = c¢(b,n) > 0.

PROOF. Let U = R"~! x (=3b, b) and define g; € L?(U) via

g(x) in L,
23 x) =
23 g1(x) {0 inU\ Q.
Consider the Dirichlet problem
Ap=g1 inU,

2.4)

=0 on dU.

The unique weak solution ¢ € HO1 (U) to this problem is given by the minimizer
of the functional

1
(2.5) HJ(U)> v / E|Vv|2 + giv.
U

This functional is coercive thanks to the Poincaré inequality (see Lemma A.3 for
the result in €2, but the bound continues to hold in HO1 (U) via a translation and
scaling argument) and the Cauchy-Schwarz inequality. Moreover, using v = 0 as
a comparison, we find that

1 1
6) [ 31veP+ g1 = [ S1v0P+ g0 =0,
U2 U2
and so again by Poincaré’s inequality,

Q7 Vel < 2lellwlligilzw) < c®IVelw) gl
which yields the estimate |V 2@y < c(D)|Igll12(q)- Using standard regularity
results we deduce that ¢ € H?(U) and

(2.8) lell 2@y < cllgllize)

for a constant ¢ = ¢(n,b) > 0.
We now define v : 2 — R” via

2.9) v'(x) = Vio(x', xp) + 3V'0(x", —xn) — 4V 0(x’, —2x,),
Un (X) = In@(x', Xn) = 300 (X", —xn) + 200 (x', —2x5).
Then, using the fact that g; = 0in R?~! x (—3b,0), we find that

divv(x) = Ap(x) + 3Ap(x’, —x,) — 4A@(x’, —2x,) = g(x) forx € Q.

Moreover, v = 0 on X by construction, so v € o H 1 (£2; R™). The estimate (2.2)
then follows directly from (2.8) and the definition of v. Il

Next we aim to use Proposition 2.1 to perform the usual trick of introducing
the pressure as a Lagrange multiplier associated to the divergence free condition.
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2498 G. LEONI AND I. TICE

Given p € L?(R2), consider the linear functional Ly:oH 1(Q:R") — R defined
by

(2.10) Lyv =[ pdive forv e oHY(Q;R").
Q
Then ||Lpl|(, 1)« < c(n,b)| pllL2, and so the Riesz representation theorem shows
that there exists a unique w, € oH1(Q;R") such that lwpllgmr = I Lpllr1)*
and
(2.11) / pdivv = (wp,v) gi(q) forallv e oH'(Q2:RY).
Q

We then use this to define the bounded linear operator Q : L?(Q) — o H ' (Q;R")
via Qp = wp. The next result records some essential properties of Q.

PROPOSITION 2.2. Let Q : L*(Q) — oH(Q;R") be as above. Then Q has
closed range, and (Ran Q)1 = oHL(Q;R"), where o HL(Q;R") is defined in
(1.63). Consequently, we have the orthogonal decomposition

(2.12) oH'(Q:R") = g H (Q:R") ® Ran Q.
PROOF. We divide the proof into two steps.

Step 1. Closed range. Forevery p € L?(2) we have 19pll,m1 = lwplloH! <
c(n,b)| pllL2. On the other hand, by Proposition 2.1 there exists vo € o H ! (£2; R™)
such that divvg = p and [|vol|, g1 =< cl|pllz2- Hence, by (2.11),

2.13) plz- =/deivvo = (wp. vo)ymt = [wpllomtllvollya

= 19pl,atllvollymr = cllQplloa1lpllL2
and so [ pllz2 < cl|Q(p)ll,z- Hence, we have shown that

(2.14) cHplz 10y < Vallpllz:

for all p € L?(S2), which implies that Q has closed range.

Step 2. Orthogonal decomposition. From the first step we know that Ran Q is
closed, and so we have the orthogonal decomposition o H!(Q;R”) = Ran Q &
(Ran Q). We now endeavor to identify the subspace (Ran Q)=

Let v € (Ran Q)™, that is, (Qp, V) Hi() = Oforall p € L?(Q). Then by
(2.11), fQ pdivv = 0 for all p € L?(R2), which implies that divv = 0, and
hence that v € oH!(Q;R"). Conversely, if v € oHJ(Q;R"), then divy = 0
and so by (2.11), (Q(p),v),m1 (@) = 0 forall p € L?(R2), which implies that
v € (Ran Q)L. This shows that (Ran Q)+ = o H1(Q2;R™), which completes the
proof. 0

The following corollary is essential in introducing the pressure in the weak for-
mulation of (2.1).
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TRAVELING WAVES FOR NAVIER-STOKES 2499

COROLLARY 2.3. Suppose that A € (o H'(Q2:R™))* is such that (A,v) = 0 for
every v € g HL(S2; R™). Then there exists a unique function p € L*(Q) such that

(2.15) (A,v) = / pdive forallv e gH'(Q:;R").
Q
Moreover, there is a constant ¢ = c¢(n,b) > 0 such that || p|lp2 < c||Allp1)*-

PROOF. The Riesz representation theorem provides w € o H1(2; R”) such that
(A, v) = (w,v) g1 forallv € gH'(2;R") and ||w]|,z1 = Al g1y Then
by hypothesis, w is orthogonal to o H ! (€2; R™), and so Proposition 2.2 implies that
w € Ran Q, which provides us with p € L?(2) such that Qp = w. It follows
from (2.14) that

(2.16) P2 = cllQP)lgmr = clwllymr = cllAllgay~
Moreover, p is unique since Q is injective by (2.14). The conclusion now follows
from (2.11). O

2.2 Solving (2.1)

We are now ready to prove the existence of solutions to (2.1). We begin with
weak solutions. Employing the identity (1.64), a simple computation reveals that
the weak formulation of (2.1) is to find a velocity field u € ¢H'(Q;R") and a
pressure p € L2(R2) satisfying divu = g in Q as well as

1
2.17) [ E]D)u:ID)v—pdivv—yalu-vz(f,v)—(k,v)zb
Q

for all v € o H'(2;R"), where here ( f,v) denotes the dual pairing between f €
(0HY(2;R™* and v € ¢H'(Q;R"), and (k,v)x, denotes the dual pairing of
ke HV2(2,;R™) = (HY2(Zp; R")* and v|g, € HY2(Zp; RY).

THEOREM 2.4 (Existence of weak solutions). Let f € (oH(Q;R")* g €
L2(Q), and k € H™Y2(Zy;R"). Then there exist unique u € oH'(S2;R")
and p € L*(Q) satisfying divu = g in Q and (2.17). Moreover,

(2.18) lullymr + IPlz = el fllany +cllgliz +clklig-1/2
for some constant ¢ = c(b,n) > 0.
PROOF. We divide the proof into three steps.
Step 1. Setup. Consider the bilinearmap B : o H ! (Q; R")xoH(Q;R") — R
given by
(2.19) B(u,v)zjs;%]l)u :Dv —ydiu-v.

In light of Korn’s inequality, Lemma A.4, B is well-defined and continuous. Note
that

2
(2.20) /81u u—/ 31|”|
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2500 G. LEONI AND I. TICE

and hence
1
(2.21) B(u,u) = 5/9 IDul® = fJul|2 .

which shows that B is coercive. The Hilbert space OH; (£2;R™), defined in (1.63),
is a closed subspace of o H!(2;R"), so this analysis also shows that B is well-
defined, continuous, and coercive on OH(} (2; R™).

Step 2. A special case. Assume now that g = 0. Thanks to the first step, we
are in a position to apply Lax-Milgram to find a unique u € o HJ} (Q; R") such that
B(u,v) — (f,v) + (k,v)y, =0forallv € o H1(Q2;R™). Moreover,

(222) lullgmr < cllflorrys + cllkllg-172

for some constant ¢ = ¢(n,b) > 0.

The functional A € (o H'(Q;R"))* defined by (A, v) := B(u,v) — (f,v) +
(k,v)yx, forv e o H(2; R") vanishes on ¢ H! (€2; R"). Then according to Corol-
lary 2.3 there exists a unique function p € L?(2) such that B(u,v) — (f.v) +
(k,v)s, = Jg pdivu forallv e oH1(2;R"), and we have the estimate

P2 < cliMlmny = clullgmr +cll flloanys + cllkllg-12
< cllf loany + clikllg-1/2,

where in the last inequality we used (2.22).

(2.23)

Step 3. The general case. Finally, given g € L?(S2) we use Proposition 2.1 to
find w € oH!'(Q;R") such that divw = g and lwll,z1 =< cllgllz2. We define
f1 € (oHY(Q;R™)* via (f1,v) := (f.v) — B(w,v) and apply Step 2 with f
replaced by f1 to find ug € o H!(Q2;R") and p € L?(S2) such that

1
/(—Duozﬂ)v—y31u0'v)—(ﬁv)
o \2
1
+/ —Dw :Dv—ydw-v |+ (k,v)g
Q \2 ’

=/ pdivy
Q

forall v € g H'(Q2;R"), and

luollymr + NIpllLz < cllfillmny + cllkllg-1/2

(2.24)
<cllflary- +cligllz +cllkllg-1/2,

where in the last inequality we used the fact that ||w|| g1 < c||gllz2- Then the
function u := ug + w € o H(Q;R") satisfies divy = g in Q and

(2.25) /(lID)u:Dv—yalu-v)—(f,v)—i-(k,v)zb2/pdivv
Q\2 Q

auie)) Aq 78022 edo/Z001°01/10p/wiox Kot Aeaqriautjuoy/:sdny woxy papeoumod ‘01 ‘€20T ‘TIE0L60T

QATU[) UO[[] 15

auruQ Ao “Ansi

JO san1 10§ KIRIQIT QUI[UQ AS[IA UO (SUONIPUOI-PUEB-SULIA} WO K3[im KIeIqrjaur[uoy/:sdny) Suonipuo) pue suwia [, oyl 228 ‘[€207/01/+¢] uo Areiqr

P VO fasn

1

Qe §9)

28UQDIT suowwo)) aAnear) a[qesridde ayy Aq pausoros



TRAVELING WAVES FOR NAVIER-STOKES 2501

for all v € o H'(Q2;R"), which gives (2.17). In view of (2.24) and again the fact
lwll,z1 < cllgllL2, we have that the function u satisfies (2.18). The uniqueness
of the pair (u, p) then follows the uniqueness component of Step 2. U

Next we record some regularity results.

THEOREM 2.5 (Regularity of weak solutions). Suppose s > 0, f € H(Q2;R"),
g € H'PY(Q), and k € HSTVY2(Sp:R™). Ifu € H (2 R") and p € L(RQ)
satisfy divu = g in Q and (2.17), thenu € oHT2(Q;R") and p € HST1(Q).
Moreover, we have the estimate

(2.26) lullgs+2 + Iplgs+r = cll fllas +clliglgs+ + clkllgs+2
for a constant ¢ = c(b,n,s) > 0.

PROOF. This may be derived from the well-known regularity results for elliptic
systems proved in [10]. See also theorem 2.5 in [65] for an elementary and self-
contained proof.

O

We are now ready to record the main theorem of this section.
THEOREM 2.6. For everyy € R and every s > 0, the bounded linear operator

®, : o H¥T2(Q;R") x HST(Q) —

HS(Q:R™) x HTH(Q) x HSTV2(2,;:RY)

givenby @y (u, p) = (div S(p,u)—yoru,divu, S(p,u)enls, ) is an isomorphism.

PROOF. Theorems 2.4 and 2.5 show that the bounded linear operator ®,, is sur-
jective. Theorem 2.4 shows that it is injective. 4

3 The Overdetermined y-Stokes Equations

In this section we study the overdetermined problem

divS(p,u) —you = f inQ,

G.1) divu =g in 2,
S(p,u)en, =k, up =h on Xp,
u=20 on X,

where, for s > 0, the data satisfy the inclusions f € H*(Q;R"), g € HST1(Q),
k € HST1/2(2,:R?), and h € HS1t3/2(Z}). In view of Theorem 2.6, the value
of u, on Xj is completely determined by f, g, and k. Hence, in general the
problem (3.1) is overdetermined and admits no solution. In this section we identify
compatibility conditions on the data ( f, g, &, k) that are necessary and sufficient
for solutions to (3.1) to exist, and we prove a corresponding isomorphism theorem.
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2502 G. LEONI AND I. TICE

3.1 Divergence compatibility

In the overdetermined problem (3.1) we seek to specify both divuy = g in Q2
and the boundary conditions u, = 0 on ¢ and u, = h on X;. If we were
to posit integrability of g and A, then the divergence theorem would require the
compatibility condition

(3.2) /g= h.
Q =

The functional framework we employ in this paper is built on subspaces of L2(2),
and €2 has infinite measure, so in general we cannot verify these integrability con-
ditions. As such, the form of compatibility between g and % is somewhat more
subtle than the condition stated above. We record this condition now.

THEOREM 3.1 (Divergence-trace compatibility condition). Let u € o H'(Q2;R"),
and define g = divu € L*(Q) and h = u,|s, € H'?(Zp;R). Then

b
(3.3) h —/ g(-, xp)dx, € HY(R"™ 1)
0
and
b
(3.4) [h—/ g(-,xn)dxni| <27 vb|ul|z2.
0 H-1

PROOF. Since u,, € H(2), we have that u, (x’, -) is absolutely continuous for
almost every x’ € R”~1 (see, for instance, theorem 11.45 in [63]). Since ¥ = 0 on
Yo and divu = g in 2, we may then compute

b b
(3.5) uy(x',b) = / Onttn (X', xp)dxy = / (g(x', xp) —div' u' (X', x))dxy,
0 0

for almost every x” € R"~1. Hence,

b b
(3.6) un(x’,b) —/ g(x', xp)dx, = —div’/ u' (x', xp)dxy.
0 0

Write R € H'(R"~1; R*~1) for R(x") = f: u'(x’, xp)dx,. Then we may use the
Cauchy-Schwarz inequality, Parseval’s identity, and Tonelli’s theorem to bound

avRE = [ ommie REPdE <4 [ REP S

= 4n2/ |R(x")|? dx’ < 4n2b/ ' (x)|* dx = 47b|u |3,
R7—1 Q

which proves (3.3) and (3.4). O
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TRAVELING WAVES FOR NAVIER-STOKES 2503

3.2 Adjoint problem and compatibility

In the spirit of the closed range theorem, we seek to understand when the over-
determined problem (3.1) admits a solution in terms of a corresponding adjoint
problem. To motivate the form of the adjoint problem we first present the following
calculation.

LEMMA 3.2. Suppose thatu,v € g H*>(Q;R") and p,q € H' (). Then

/(diVS(p,u)—yalu)-v—(divu)q—/ u - (divS(g,v) + yod1v) — pdivv
Q Q

= / S(p,u)en-v—u-S(q,v)ey.
Zp
PROOF. We simply integrate by parts to see that

/ (divS(p,u) — yodiu) - v — (divu)g
Q

:/ —S(p,u):Vv—i—yu-alv—(divu)q—i-/ S(p,u)ey - v
Q p

3.7) |
= / EDM :Dv — pdive 4+ yu - d1v — (divu)g
Q

+/ S(p.u)en - v,
Zp

and similarly,

/ u - (divS(g,v) + yd1v) — pdivv

(3.8)

:/ E]Dm:ID)v—(divu)q+)/u-81v—pdivv+[ u-S(q,v)ey.
Q

Zp
The result follows by subtracting these expressions. U

This lemma shows that the formal adjoint of the overdetermined problem (3.1)
is the underdetermined problem

divS(g,v) + yojv=f inQ,

divv = in 2,
(3.9) ivv =g / , in

(S(g,v)en) =k on Xy,

v=20 on Xo.

Note that this is underdetermined in the sense that on X; we only specify n —
1 boundary conditions instead of the standard n. Taking a cue from the closed
range theorem, we then examine the space of solutions to the homogeneous under-
determined problem, i.e., (3.9) with f = 0, g = 0, and ¥’ = 0. In light of
Theorem 2.6 (with y replaced by —y) the solution to this problem is completely
determined by the boundary condition S(p,u)e, = Y¥e, on X;. In other words,
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2504 G. LEONI AND I. TICE

we may parametrize the space of homogeneous solutions to the underdetermined
problem (3.9) with ¥ by way of the (—y)-Stokes problem

divS(g,v) + ydjv =0 1inQ,

(3.10) divv =0 in 2,
S(q,v)en = Yrey on Xp,
v=20 on Xo.

Using this parametrization, we arrive at a convenient formulation of the second
compatibility condition associated to the overdetermined problem.

THEOREM 3.3 (Overdetermined compatibility condition). Let s > 0 and suppose
f e HS(S:RY), g € HSTY(Q), h € HSP3/2(Sy), and k € HSTV/2(Z,; R).
Assume that the problem (3.1) admits a solution u € ¢HSY2(Q;R") and p €
H5tY(Q). Foreveryy € HSTV2(Zy) letv € g HST2(Q2;R™) and g € H*T1(RQ)
be the unique solution (given by Theorem 2.6) to the adjoint problem (3.10). Then
the following compatibility condition holds:

G.11) [v=gn~ [ @o-—np) =0
Q Zp
PROOF. In light of Lemma 3.2, (3.1), and (3.10) we have that
(3.12) [f-v—gq:/ k-v—u-ye, = k-v—hy.
Q Zp Zp
Then (3.11) follows by rearranging. 0

3.3 Some function spaces and the overdetermined isomorphism

With the compatibility conditions of Theorems 3.1 and 3.3 in hand, we may now
completely characterize the solvability of the overdetermined problem (3.1). To do
so, we first need to introduce a pair of function spaces for the data.

For s > 0 we define the space

(3.13) YV ={(f.g.h.k)e H*(Q:R") x HT1(Q)
x H5T3/2(2y) x HSTV2(Z,;R™) | hand g satisfy (3.3)}.
We endow )* with the norm defined by

ICf g h S = 1Lf s + gl zpssn + 1217432
2

b
+ ||k||%{s+l/2 + |:h _/ g(',xn)dxn:| )
0 H_l
which clearly makes ) into a Hilbert space (with the obvious inner product asso-
ciated to the norm). Similarly, for s > 0 we define the subspace

(3.15) 2% ={(f.g.h. k) € Y* | (3.11) holds for every Y € H*T1/2(z,)}.

(3.14)
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TRAVELING WAVES FOR NAVIER-STOKES 2505

The topology of )* guarantees that Z° is a closed subspace, and so Z¥ is a Hilbert
space when endowed with the inner product from ).

Next we establish the main result of this section, which shows that a necessary
and sufficient condition for the existence of a solution to (3.1) is that f, g, &, k
satisfy the compatibility conditions (3.3) and (3.11) for every ¥ € HSt1/2(x).

THEOREM 3.4. Lety € R, s > 0, and Z°* be the Hilbert space defined in (3.15).
Then the bounded linear operator W, : o HS12(Q; R") x HSTH(Q) — Z° given
by

(3.16) Uy (u, p) = (divS(p,u) — yoru,divu, unls, , S(p,uenls,)
is an isomorphism.

PROOF. First note that in light of Theorems 3.1 and 3.3, the map W, takes
values in Z¢ and is thus well-defined. It is clearly a bounded linear operator. The
injectivity of W, follows from Theorem 2.6. To prove that W, is surjective let
(f.g,h,k) € Z5 Using f, g, and k in Theorem 2.6, we find the unique solution
u € oHST2(Q:R") and p € HST1(Q) to (2.1). Given ¥ € HSTV/2(Z), letv €
oH312(Q;R") and ¢ € H*T1(Q) be the unique solution to (3.10) (the existence
of which is again guaranteed by Theorem 2.6). Applying Theorem 3.3 and using
the fact that ( f, g, h, k) satisfy the compatibility condition (3.11), we then find that

(3.17) /Ebunwz—/g(f-v—ngfzbk-v: Ebhw.

Then be (un —h)y = 0 forall y € HS+t1/2(3y), which implies that u,, = h on
Y. Hence W), is surjective. U

4 Fourier Analysis

In this section we consider the horizontal Fourier transform (as defined in Sec-
tion 1.6) of the linear problem (2.1), where f € H*(Q;R"), g € H*T1(Q), and
k € H**t1/2(,:R"). Note that the boundary condition S(p,u)e, = k on X,
may be decomposed into horizontal and vertical components: —d,u’ — V'u,, = k’
and p — 20,u, = k,. Applying the horizontal Fourier transform to (2.1) then
yields the following ODE boundary value problem for #(£,-) € H?((0,b);C")
and p(£,-) € H'((0,5); C):

(<02 + 4n2|E2) 0 + 2miEp — 2mikyi = [+ 27i€g in (0,D),

(=02 + 472|E2) fiy + 0n p — 2miE1ylin = fu + 008 in (0, b),
4.1) d27mif -0 + plin =2 in (0, ),

— Ol —2mikliy = k', P —20niin = kn for x, = b,

n=0 for x, = 0.
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2506 G. LEONI AND I. TICE

4.1 Generalities about the ODE system (4.1)

We begin our discussion of the ODE system (4.1) by deriving an ODE variant
of (2.17) and proving uniqueness of solutions.
PROPOSITION 4.1. Suppose that F € L*((0,b);C"), G € H'((0,b);C), and
K € C™. Then the following hold.:

(1) Ifw e H%((0,b); C™) and g € H'((0, b); C) satisfy

(—8,21 + 4n2|§|2) w +2mwifqg —2mi&yw’ = F' +27iEG  in (0, D),

(=02 + 47 2|E1%) wp + Ong — 2miErywn = Fy + 0,G in (0,b),
4.2) 27iE-w' + 0wy, =G in (0,b),
0w —2mwifw, = K', ¢ — 20w, = Ky, for x, = b,
w=20 for x, =0,
then for v € H((0,b); C") satisfying v(0) = 0, we have that

b
—K-v(b)+/ F-v+qQ@2mi&-v' + 0,vp)
0

b
4.3) = / —Y2miEQW -V 4 20,wp 0,V + (Opw’ + 2miEwy) - (0,0 4 2wiEvy)
0

+ %/Ob(zmg QU +w ®2mif): QriE Qv + v ® 2wif).
(2) There exists at most one pair (w,q) € H?>((0,b); C™)x H'((0, b); C) solv-
ing (4.2).
PROOF. Using the third equation in (4.2), we compute
(=02 + 4n?|E*)w’ + 2mikq — 2miEG
= (=02 + 4n2|E|?)w' + 2mitq — 2miEQmiE - w' + dpwn)
=27ifqg — QriE QW' +w ®2mi§)2wiE — 3, (0w’ + 2wiEw,)
and
(—07 + 47 %(E1*)wn + Ong — 9,G
= (=0 + 47| wn + 9nq — InQmi& - w' + Jpwy)
= 27i§ - (0w’ + 2miEwy) + 0p(q — 20, wy).
Using these and the first two equations of (4.2), we then find that

b
/F’-?—i—yZm’élw’-F
0
b —
4.4 :/ —@2miE v + QriE @ w + w' Q@ 27wif) :
0

V' @ 2miE — 0y (Opw’ + 2wiEwy,) -V’
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TRAVELING WAVES FOR NAVIER-STOKES 2507

and

b
/ an + VZNiélwnW
(4.5) 0

= /Ob(anw’ + 2miEwy) - 2mi Evy + On(g — 20,w) 0y,

We then integrate by parts and use the boundary conditions in (4.2) to see that
(4.6) —/Ob dn (O +2miEwy,) -V = K'-v'(b) + /Ob(a,,w’ +27iEwy) - 0p v’
and

b b
@7) / 9 (g — 20mw)Ty = K (b) — f (¢ = 2000) 30,
0 0

Combining these then shows that

b
—K-m—i—/ F-v4+qQnui&-v' + 0,vp)
0

b
“45) :/ —yY2mi w -V + 20, Wy 0 vy
. 0

4 O + 2iEwy) - Gp0’ £ 27 iEvy)
b —
—I—/ Qrit@w +w ®27if) v Q2mik,
0

and we conclude the proof of the first item by using the symmetry of 2mié @ w’ +
w’ ® 2mwi§) to rewrite

Qrit@w +w ®2mif) v @2mif
4.9)

1
= 5(2711'5 RQw +w ®2mif): QuiE v + v ®2mwif).

We now prove the second item. If w/ € H?((0,5); C")andg’/ € H'((0,b);C)
for j = 1,2 solve (4.2), thenw = w! —w? € H2((0,b);C")and g = q' —¢? €
H'((0,b);C) solve (4.2) with F = 0, G = 0, K = 0. The first item with v = w
then implies that

b
/ —y2miEs|w]? + 203pwnl? + [9pw’ + 2iEwnl?
(4.10) 0

b
1
—I—/ §|2m'§ Quw +w ®2rig|?> =0.
0
Taking the real part of this identity then shows that
0w, =0 and d,w +2mifw, = 0in (0, b).
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2508 G. LEONI AND I. TICE

Due to the boundary condition w, (0) = 0, we then have that w, = 0, which then
implies that d,w’ = 0 and hence that w’ = 0 since w’(0) = 0. The second and
fifth equations in (4.2) then require that d,q = 0 and ¢(b) = 0, which imply that

g = 0. Hence w! = w? and ¢! = ¢2, which proves the second item. U

In order to analyze the system (4.1) it is convenient to decompose it into a pair
of decoupled subsystems. We present this decoupling now. In the following result
we suppress the functional dependence on £ for the sake of brevity; i.e., we write
simply % (xy,) in place of (&, x,), etc.

PROPOSITION 4.2. Suppose that f € L2((0,b);C"), & € H((0,b):C), and
k € C". Further suppose that i € H?((0,b);C"), p € H'((0,b);C), ¢,V €
H?2((0,0);C), g € H'((0,5);C), and & € H?((0,b); C"~1). Then the following
are equivalent for every £ € R"~1\ {0}:

(1) u, p solve (4.1).

(2) We have that

4.11) p=gq, i = —iwé—| + 9, and fip = ¥,

where @, V¥, q solve

(<02 + 4n2|E2) ¢ — 2 |Elq — 2mikiyp = i f' - €/|E| — 2n|E|g in (0,D),

(<02 + 472|E2) Y + dng — 27iE1y Y = fu + 008 in (0,b),
(4.12) Y2nlglp+dny =2 R in (0.b).
—0np +2m|ElY = ik'-E/IE], q— 20,y = kn for x, = b,
o=y¥=0 for x, =0,
and ¥ solves
(4.13) {02 +4n16P) ® —2mit1yd = (1 - § ® &/|EP)H

In either case (and hence both), the solutions are unique.

PROOF. First note that if ¢ solves (4.13), then taking the dot product with &
reveals that y := £ -1 € H?((0,b); C) solves

(=02 + 4n2|§|?) x —2mik&yx =0 in (0.D),
(4.14) Oy =0 for x, = b,
x=0 for x, = 0.

We then multiply the first equation by y and integrate by parts over (0, ») to con-
clude that

b
@.15) / 9 x? + (@r2(E[? = 2miEry) |l = 0.
0

Taking the real part of this equation then shows that y = 0 on (0, b), and hence
v-£=0.
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TRAVELING WAVES FOR NAVIER-STOKES 2509

Now suppose i, p solve (4.1). Then we define ¢ = p, ¢ = itt' -£/|E|, ¥ = Uy,
and ¥ = (1 — £ ® £/|€|%)@t’, which implies (4.11). Then (4.12) follows from (4.1)
by taking the dot product with i&/|&|, and (4.13) follows by multiplying by the
projector matrix (1 — £ ® £/|£]?).

On the other hand, if ¢, ¥, g solve (4.12) and ¥ solves (4.13), then we define %
and p via (4.11). We then multiply the first and fourth equations in (4.12) by i & /|£|
and combine with (4.13) and the remaining equations in (4.12) to obtain (4.1).

The uniqueness claim follows from the uniqueness result of Proposition 4.1. [

It is also convenient to reformulate the coupled system (4.12) as a first-order
equation. We present this equivalent formulation now. Note that in this result we
present the system with slightly more general data and we allow for § = 0 as well.

PROPOSITION 4.3. Suppose that F € L*((0,b);C?), G € H'((0,b);C), and
K € C?. Further suppose that y € H'((0,b); C*), ¢, € H*((0,b);C), q €
H'((0,b); C). Then the following are equivalent for every £ € R"~1:

(1) @, ¥, g solve the second-order boundary value problem

(02 + 4n2(E|?) @ — 27|Elg — 27i&1yp = Fi —2n|€|G  in (0. D),
(—02 + 472 |EI?) Y + Ong — 27iE1y Y = Fa + 9,G in (0, 5),
(4.16) (2n|éle + 0y =G in (0,b),
—Onep + 27|y = K1, q—20,¥ = K> for x, = b,
o=y =0 for x, = 0.
2) y = (¢, ¥,q,0,¢) and y solves the first-order two-point boundary value
problem
0,y = A in (0,b
(417) ny y +Z ll’l( ’ )’

My(0) + Ny(b) =d,

where A € C**4 is given by

0 0 0 1
(@18 4= Ik P ity 0 el |
4m2lE|? - i2mEry 0 —oxlg 0
z € L%2((0,b);C*), and d € C* are given by
0 0
@z =g GO e [mae=| g |

—F1(xn) + 27[§]G (xn) K3 +2G(b)
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2510

and M, N € C*** are given by

0
(4.20) M =

SO O -

1
0
0

0

0
0
0

0

S O O

G. LEONI AND I. TICE

O 0 0 0
0 0 0 0
and - N=|"o  org 0 —1
axlel 0 10

PROOF. Suppose that ¢, v, and g solve (4.16) and let y = (¢, V¥, q, 0,¢).
Note that y1, yo € H?((0, b); C). We differentiate the third equation to obtain the

equation

4.21) 02y, = 02y = 0,G — 27 |E|0pp = 0,G — 27|€|y4.

From this we readily deduce that y solves the system

an)’l = )4

(4.22)

Omy2 = 27lé|ly1 + G
Inys = —(4n2|E12 = 2mik1y)ys — 27||ya + Fa +20,G  in (0,b),
Onys = (4n2[§> — 2mik1y)y1 — 27|élys — F1 + 27|§|G  in (0, D),
—ya + 27|E|y2 = K1,
y1=0, y»2=0

in (0, b),
in (0, ),

y3+4nl§|y1 = K2 +2G for x, = b,
for x, = 0,

which may be compactly rewritten as (4.17).

Now suppose that y solves (4.17), which is equivalent to (4.22). Define ¢ = yq,
V¥ = y,, and ¢ = y3, all of which then belong to H1((0, b); C). However, ,¢ =
dny1 = ya € H'((0,5);C) and 3,y = dpy2 = G —27|é|p € H'((0,b):C),
so @, € H?((0,b); C). In turn this implies that we may differentiate the second
equation in (4.22) to see that (4.21) holds. Then the second equation in (4.22)
corresponds to the third in (4.16), the fourth in (4.22) corresponds to the first in
(4.16), and the third in (4.22) corresponds to the second in (4.16) in light of the
identity (4.21). The equivalence of the boundary conditions follows similarly. [

Consider the matrix A € C**4 given by (4.18). Given z € L?((0,b); C%), the
unique solution y € H1((0,5); C*) to the ODE

4.23) ony = Ay +z in(0,D),
y(0) = yo,
is given by
(4.24) ¥ () = exp(n A) o + / " exp((vn — N A)Z(1)dr.
0

Let M, N € C*** be given by (4.20) and define the boundary matrix

(4.25)

B := M + N exp(bA) € CH4,
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TRAVELING WAVES FOR NAVIER-STOKES 2511

Thus the solvability of the two-point problem (4.17) reduces to solving for yo € C*
such that d = Myo + Ny(b), which in light of (4.24) is equivalent to

b
(4.26) Byo = Myo + N exp(bA)yo = d — N/ exp((b —t)A)z(t)dt.
0

Our next result establishes that B is invertible for every £ € R”~!, which then
allows us to make various conclusions about (4.17). An interesting feature of our
approach is that we establish the invertibility of B by using the isomorphism from
Theorem 2.6 rather than through direct computation. We do this because although
det B can be computed by hand (and we will do so later in Section 4.3), the result-
ing expression is quite cumbersome, and it is rather tricky to prove directly that it
never vanishes.

THEOREM 4.4. Let £ € R" ™! and A, M, N, B € C*** be given by (4.18), (4.20),
and (4.25), respectively. Then the following hold:
(1) The boundary matrix B has the block structure

_ (Iax2 O2x2
4.27) B = ( oy )

where Bz, By € C?*2 are given by

27 |§[ exp(bA)21 —exp(bA)ar  27|§[exp(bA)2a — eXp(bA)4z)

428) By =
(4.28) B3 (4n|s|exp(bA)u+exp(bA)31 41| exp(bA)12 + exp(bA) 32

and

(4.29) By = 27 |&|exp(bA)2z — exp(bA)az  27|E|exp(bA)24 — exp(bA)aa
. 47 \4n || exp(bA)13 + exp(bA)33  4x|E|exp(bA) 14 + exp(bA)zs )

(2) B4 € C?*2 s invertible.
(3) B is invertible, and we have the identities det B = det B4 and

I 0
-1 __ 2x2 2X2
(4.30) B! = (_ BB, B4_1) .

(4) For every z € L*((0,b);C*) and d € C* there exists a unique solution
y € HY((0,b); C*) to the problem

{Bny = Ay +2 in (0. b)

(4.31)
My(0) + Ny(b) =d,

which is given by

b
y(xn) = exp(xp A)B~! <d — N/ exp((b — I)A)Z(t)dt)
(4.32) 0

+ / " exp(Con — A2 (1),
0
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2512 G. LEONI AND I. TICE

PROOF. The first item follows from a direct calculation, using the block struc-
ture of M, N:

_ (I2x2 0O2x2 _ (02x2 0O2x2
(4.33) M = (02X2 O2x2) and N_(N3 N4)

for N3, N4 € C?*2. The third item follows from the second and a simple calcula-
tion. The fourth item then follows from the third item, combined with (4.24) and
(4.26). It remains only to prove the second item.

Suppose initially that &€ = 0. In this case we may readily compute

(4.34) By = Ny = ((1) _(1))

to deduce that By is invertible. In the case £ € R”~1 \ {0} the value of det B4 can
be computed explicitly from the first item, but the resulting expression is rather
complicated. To avoid working directly with det B4 we will instead employ The-
orem 2.6 to show that By is invertible. Let m € N and pick a radial function
¢ € CRMR" ) such that { = 1 on B(0,2™) \ B[0,27™]. For j = 1,2 let
k', k? e Z(R"1;C") be given via

(4.35) k(&) = (—iC(®)E/IE,0) and  k*(§) = L(E)en.

Then by construction ki &) = k7 (—£), and so Lemma A.2 shows that k/ actually
takes values in R”.

We may thenuse f =0,g =0,andk = k/ € Ny=o H (Zp;R™) for j = 1,2
in Theorem 2.6 to produce (u/, p’) € (N0 0 H*T2(Q; R™) x HST1(Q) solving
(2.1). For £ € R\ {0} define y/ (£,-) € C°([0, b]; C*) via

4.36) ¥/ (£, xn) = (10 (€. xn) - E/|E|. 0} (5, xn), D7 (E.xn). 100007 (€, Xn)).

Since (17, p7) satisfy (4.1), Propositions 4.2 and 4.3, together with (4.26) and
(4.35) and the fact that z = 0, imply that if 27 < |£| < 2™ then By’ (£,0) =
ex4j. Since y/(£,0)-e; = y/(£,0)-e; = 0 for all £ # 0, we may write
y7(£,0) = (0,0,v7 (£)) for v/ (£) € C2. Then the identity By’ (§,0) = ep4; is
equivalent to B4v/ (£) = ej for j = 1,2, and we deduce that for 27" < |&] < 2™
the matrix B4 € C2*2 has rank 2 and is thus invertible. Since m € N was arbitrary,
we then conclude that By is invertible for all £ € R?~1\ {0}, which concludes the
proof of the second item. O

4.2 Some special functions

With Theorem 4.4 in hand we are now in a position to introduce some functions
that will play a fundamental role in our subsequent analysis. For £ € R”~! and
y € Rwrite A€, y), B(£,y) € C*** for the matrices defined by (4.18) and (4.25),
respectively. In light of Theorem 4.4 we may then define Q : R”~! x [0,h] xR —
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TRAVELING WAVES FOR NAVIER-STOKES 2513
C,V:R" ! x[0,h]xR - C", andm : R" ! xR — C via

Q€. xn.y) = exp(xn A(E.y))B (€. y)es -3 € C,

VI ) = =1 (XpnAE DB (6 es - e1) € " forg 20,

437 V'(0,x,,y) =0eC" L,

Va(§,xn,y) = exp(xn A(§, )/))B_l(é, y)eq-ez € C,
m(E,y) = Va(£,b,y) = exp(bAE.y))B~ (£, y)es - e2 € C.

The following result records some essential properties of these functions.

THEOREM 4.5. Let Q : R*“ ! x[0,)] xR — C, V : R*""! x [0,h] x R — C",
andm : R*~! x R — C be as defined in (4.37). Then the following hold:

(1) O, V, and m are continuous, Q and V are smooth on (R"~1\ {0}) x [0, b] x
R, and m is smooth on (R"~1\ {0}) x R. Also, for each € € R*~! we have
that Q(&,-) and V (&, -) are smooth on [0, b].

2) V(0,xn,y) =0, Q0,x,,y) =1, and m(0,y) = 0.

(3) For each § € R"™!, x, € [0,b], and y € R we have that V(£,xp,y) =

V(_S’ Xn, y)r Q(E’ Xn, ]/) = Q(_g’ Xn, V)» and m(g’ )/) = m(—é, V)
(4) For each & € R*~! we have that Q(§,-,y), V(E,-,y) solve

(=02 + 4x2|E12) V' + 2miEQ — 27iE yV' =0 in (0,b),
(02 + 472|E12) Vi + 9,Q — 2mi&1yVu =0 in(0,b),

(4.38) 27i& -V +0,Vy, =0 in (0,b),
V=0 for x, = 0.

(5) If (u, p) € oH?*(Q;R™) x HY(RQ) solves (2.1) with f = 0, & =0 and
k = ten fort € HY2R"Y), then i = LV (-,-.y) and p = Q(-,-.7).

6) Rem(£,y) < OforallE € RV andy € R, and Rem(§,y) = 0 if and
only if ¢ = 0.

PROOF. Define y : R*~! x [0,h] x R — C* via
(4.39) V(€ xn.y) = exp(xn A, 7)) B~ (£, y)es.

Theorem 4.4 shows that y is continuous, smooth on (R”~1\ {0}) x [0, 5] x R, and
that for & fixed y (&, -,-) is smooth on [0, b] x R. We have that 0 = y3, V,, = y2,

= y2(-.b,-), and for § # 0, V'(€.xn.y) = —iy1(§. xn,y)§/I€|. Thus, to
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2514 G. LEONI AND I. TICE

complete the proof of the first two items it suffices to notice that

lim y(E.1.7) = exp(xa A(0, ¥0)) B~1(0, yo)es
(Satyy)ﬁ(oaxn ,VO)

1 0 —x, 0\ /0 0
o1 o oflfo] Jo
o0 o 1]fofT 1]
00 —1 of\1 0

and hence y(§,7,y) — e3 = (0, xu, y0) as (§,1.7) = (0,xn, y0).

To prove the third item we note that A(—£, y) = A(&, y), and if we write N(§) €
C**4 to emphasize the £ dependence of the matrix defined in (4.20), then N(—§) =
N(&). From this we have that B(—§,y) = M + N(—§)exp(x, A(—£,y)) = M +
N(£)exp(xn A(£,7)) = B(£,y), and hence that B—1(—£,y) = B~1(£, y). Hence
y(E Xn,y) = y(—E,xn,y) forall £ € R*! x, € [0,b], and y € R. The third
item then follows directly from this and the definitions of V, Q, and m in terms
of y.

The fourth item follows immediately from Propositions 4.2 and 4.3 when & # 0,
and from the second item and a trivial calculation when £ = 0. The fifth item
follows from the fourth and Proposition 4.2.

We now turn to the proof of the sixth item. In light of the fourth item and
Proposition 4.1 we have the identity

b
/ (—y 2 E1|V(E. X )P+ 2180 Vi (€. X2 7) P
0
b
+[ 00V (€2 X y) + 271 E V(€. s 7)o
0

b
+3 / 20E ® V/(Exm. ) + V', Xn y) ® 272 dovn = —m(E. 7).
0

Taking the real part of this identity yields
—Rem (E’ V)

b
= /(; (2|anVn(§»xn» J/)lz + |8nvl(évxn9 J/) + 2ni§Vn(§,xn, J/)lz)d-xn

1 b
45 [ 12§ @ VI xn ) + V6 0 y) © 2 i
0

which immediately implies that Rem(£,y) < O for all £ € R*" ! and y € R.
Moreover, if Rem (&, y) = 0 for & # 0, then this identity and the sixth equation in
(4.38) show that V(§,-,y) = 0, and so the first and fifth equations in (4.38) show
that Q(&,-,y) = 0but Q(&,b,y) = 1, a contradiction. Hence Re m (£, y) < 0 for

§#0. O
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TRAVELING WAVES FOR NAVIER-STOKES 2515

Remark 4.6. The fifth item of Theorem 4.5 shows that m(-, y) is the symbol of
pseudodifferential operator corresponding to the normal-stress to normal-Dirichlet
map given by (1.51).

We know that V(0, x,,y) = 0, (0, x,,y) = 1, and m(0, y) = 0 from Theo-
rem 4.5. Later in the paper we will crucially require a finer asymptotic development
as |&] — 0. This is the content of the following theorem.

THEOREM 4.7. Let Q : R*71 x [0,h)] xR — C, V : R*"1 x [0,b] x R — C?*,
and m : R" 1 x R — C be as defined in (4.37). Then for |£| < 1 we have the
asymptotic developments

V(& xn,y) = —in€Qxnb — x7) + O(IE),

ValE.xny) = 20262 (3 = b) + O(&P),
(4-40) 47T2|E|2b3
m(E.y) = ———— + O(lg),

Q(E’xn’ J/) =1 + 0(|$|2)’
where here we write F (£, x,) = O(|€]F) to mean that

| F(§, xn)|

441 limsup sup T

|€l—>0 0=<x,=<b

PROOF. Fix y € R. Throughout the proof we will suppress the functional de-
pendence on y in A and B, writing A(§) and B(§) in place of A(&, y) and B(§, y).
Write P (&, x,) = exp(x, A(£)), and introduce the block form

42 P = (N Fieam)
for Pj(&,xn) € C?*2for 1 < j < 4. Using the block form of B~!(£) from
Theorem 4.4, we may compute
exp(x, A(§)) B~ (§) =
(4.43) (P1 (8, xn) — P2(E,xn) By (§) B3 () Pz(E»xn)BZI(S))
P3(&,xn) — Pa(§, xn) By 1 (§)B3(§)  PaE,xn)By ' (8))

Since |A(§)] = O(1) and |A(§)®] = O(|€|?), we deduce that A =

O(€[?) for k > 6. Then exp(xp A(§)) = P(§,xn) = Y 0o AE) /j! + O([&]?),

and we may compute 216-=0 A(£)7 /71 by hand (or with a computer algebra system)
and truncate to second order to write

Py(§, xn) =
2; 2062 2,242
(444) —JT|E|X,% +x:ﬂ 11’6|$|'§1 Xn +x’3l4ﬂ €] ; wiyé) _XYSL” ;’051 N 0(|S|3)
: 3272 €2 -~ 2 am2iy|€l§
Xn—3 ml€|xy + xy 6

=: 02(E.x) + O(IE])
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2516 G. LEONI AND I. TICE

and
Pa(&, xn)

1 +272|€?x2 —2m|&|x
- 32n2’;y|§\$1 20421612 . ; any2g | T O(l&*)
=27 |Elxn + x;, 550 1+ x; (AncfE|° —wiyEr) — x,—%

=: Q4(£,x2) + O([E]*).

Using this, the expression for B4 from Theorem 4.4, and the block form of (4.33),
we may then compute B4(£) = N4y + R(§) + O(|€]?), for

. 2(_ 2112 4.,2£2
_27t2b2|§|2 ﬂb|§|(6—‘;ﬂb2il’§1) ’

(4.45) R(¢) = (

Then for || < 1, we have the expansion
By'(€) = (I + Ny'RE) + Ny o(lgP) ™' Ny
= (I = N7'RE) + (N7 RENN; ' + 081
2fg] (1+ =48 ) 1—2m2b2|g 2
B (—1 + 2107207 — wiyer) + T omfelp (14 —“b?yél))
+ O(&P)
= W) + O(&P).
Returning to (4.43), we compute

-1
Y(E %) 1= exp(in A() B (E)ea = (ﬁigﬁiggi—lggii)

[ 0aE ) W(Ee
= (Qi(s,xn)W@ei) +OEP).

From these we then compute

Y16, xn) = P2(§,x0) By (E)ez - e1 = m[§|Q2xnb — x7) + O(IE]),

(446) y2(6.x0) = Palkxa) By (©)e - e2 = 27522 (= b) + O(&P).
y3(E.xn) = P4(§.x) B (E)ea-e1 = 1+ O([E).
Then (4.40) follows from this and the definitions (4.37). O

Remark 4.8. Naively, one might expect that m( -, y), the symbol for the normal-
stress to normal-Dirichlet operator, should have the same essential behavior as
the Neumann to Dirichlet operator defined via the scalar Laplacian, i.e., the map
H%(Zp) > ¥ > ulyg, € HST1(Zp), where

—Au =0 1in £,
(4.47) 0pu =19 onXp,

u=20 on Xo.
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TRAVELING WAVES FOR NAVIER-STOKES 2517

However, the symbol for this operator is

sinh(27|€|b)
27 |€| cosh(2r|€|b)’

(4.48)

47218122
which behaves like b (1 - ﬂ)

3

for |¢| < 1, and the lack of vanishing at the origin makes this operator significantly
easier to work with. Note, though, that the asymptotics of m (-, y) exactly match
the second term in the above development.

4.3 Asymptotics of the special functions (4.37) as |§| — oo

We now turn our attention to the question of the asymptotics of the functions
defined in (4.37) as |§| — oo. Unfortunately, due to the essential singularity of the
exponential map at infinity, we cannot employ a simple Taylor expansion at co, as
we did at 0 in Theorem 4.7. Instead we must employ a more delicate strategy in
which we actually compute exp(x, A) B~ !e4. Doing this directly is prohibitively
difficult, so we first introduce a reparametrization that makes the algebraic manip-
ulations more tractable. We begin our pursuit of this strategy with the following
lemma, which introduces the reparametrization.

LEMMA 4.9. Lets : [0,00) x R — C be defined via

r2 4+ Art +r2e2 rk
—i
2 V2V + e
forr > 0and s(0,x) = 0. Then the following hold:

(1) (s(r,k))?> = r? —irk for every (r,k) € [0,00) x R.
(2) s is continuous on [0, 00) X R and smooth on (0, 00) x R.
(3) Forall (r,x) € [0,00) X R we have the bounds

(4.49) s(rk) = \/

2
(4.50) 0 <Re(s(r,k))—r < g—r and 0 < —sgn(k) Im(s(r,«)) < %

(4) There exists ¢ > 0 such that if |k| < r, then
2

4.51) |Re(s(r,k)) —r — —
8r

4 3 5

and ‘Im(s(r, K)) + F_K d

<c — | <c—.
- 2 16r2|— r4

73

PROOF. The first two items are trivial. To prove the third item we first note that
since r2x2% > 0,

4
(4.52) Re(s(r,k)) > % =r.
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2518 G. LEONI AND I. TICE

On the other hand, we have that

2
Re(s(r.x)) <r + —
8r
Kz K4
4. oVt F e < =
(4.53) rt+rok r+2+322
ety (S (1 2
r r K r r - ~ ’
2 32r2 2 32r2

and the final inequality is trivially true, which means that the first estimate of (4.50)
holds. In turn this implies that
2

205 X <@y <<
K — <Im(s(r,k)) < ————— <0,
- 2~ 28r2 + k2
(4.54) ,
c0m0<—5_ 8" i) <=8
K —_—— -,
282 442 = 2

which implies the second estimate of (4.50).
Finally, for the fourth item we note that if r = 1/p for p > 0, then Taylor-
expanding around p = 0 shows that

Re(s(r,k)) = L\/1 + 1+ (kp)?

(4.55) Sateo)?

vr («/_ + = ( L 0((Kp)4))
and

-1/2

__ / 2

wso Im(s(r,x)) = 7 (1 + /14 (kp) )
2
S G . ("1”6) + 0((Kp)4)) .

Hence there exists ¢ > 0, depending only on the smooth maps

Roz—V1I++VI+2z2eR
Roze>1/\1+V1+2z2€R,

such that if |k| < r, then

2

Re(s(r,k)) —r — = :
8r

K

3 5
< cr(K,O)4 =c—, ’Im(s(r K)) + l
- r

K K K
<c—-.
1612 ré

3 0

We now aim to reparametrize the matrices A, N, B € C**4 as defined in (4.18),
(4.20), and (4.25), respectively. To this end we first note that for given & € R7-1
and y € R, each of these matrices only depends on |£| and y&;. This suggests that
we introduce the reparametrization R”~1\ {0} 3 £ — (r, k) € [0, 00) x [—|y]. |¥]]
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TRAVELING WAVES FOR NAVIER-STOKES 2519

given by r = 2x|&| and k = y§&;/|€|. We then introduce the function s : [0, c0) X
[—|vI,|y|] = C defined as the restriction to [0, 00) x [—|y|, |y|] of the function
defined in (4.49); by construction (s(r,k))? = r? —irk = 4n?|§|> — 2mwiyé,
s €{z € C|r <Re(z),|Im(z)| < |«k|/2 < |y|/2}, and s = r if and only if
k = 0. We then reparametrize A, N, B in terms of r and s via

0O 0 0 1 0O 0 0 0
—r 0 0 0 0O 0 0 0
Ars)=1o _2 o — |0 YO =g + o |
(4.57)
s2 0 —-r 0 2r 0 1 0

and B(r,s) = M 4+ N(r)exp(bA(r,s)).

Written in this form, for s # r (i.e., when k # 0) we have that A(r, s) is diag-
onalizable with spectrum {s, —s, r, —r}. Exploiting this, we may readily compute
the columns exp(an(r,s))(J) eChforj =1,...,4

cosh(xys)
__rsinh(x,5)
(4.58) expLinA(r.s) M = 7 s |

s sinh(x; s)

325 (=1 sinh(x,s) + s sinh(xp 7))

1 2 2
——— (r= cosh(xys) — s~ cosh(x,r))
459 explrad(rs)@ =" 52 sinh(x,7) :
r
—rzsirsz (— cosh(xys) + cosh(x,r))

——5(cosh(xys) — cosh(xnr))
460)  explopA(r.s)@ = | 5G2= (77 sinhxns) + s sinh(xar))

’

cosh(xy,r)
53 (s sinh(xps) — r sinh(xp 7))

and
ﬁ(—s sinh(x,s) + r sinh(x,r))
—5-—5(cosh(x,s) — cosh(x,7))
—sinh(x,r)
—1— (—s% cosh(xps) + r? cosh(x,r))

4.61) exp(x, A(r, S))(4) —

Note that when s = r (i.e., k = 0) A(r,r) fails to be diagonalizable (though it
still has a nice Jordan form), but we may recover the value of exp(x, A(r,r)) by
sending s — r in these expressions.

We then define the reparametrized form of

(4.62) V(E, Xn, ) = exp(xn A€, 7)) B~ (€, y)ea,
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2520 G. LEONI AND I. TICE

as used in the definition of the special functions in (4.37), to be
(4.63) Y(r,k,x,) := exp(x,,A(r,s(r,/c)))B_l(r,s(r, K))es € C2.

Employing Theorem 4.4, for 1 < j <3 and r # s we may explicitly compute:

(4.64) Yj(r,k,xy) =

det B [exp(xn A)jz(exp(bA)aa +r exP(bA)24)]

[exp(xn A)4(r exp(bA)2s — exp(bA)az)] = —

+ dtB'

det B

Using the identity s> = r? — ikr simplifies the resulting expressions for n j and

det B, and after some elementary, if tedious, calculations, we arrive at
(4.65)
ny = —ﬁ[(r + 8)(2r —ik) cosh(bs — xur) + 2s(r 4+ 5) cosh(br — x,s)
—2s(2r —ix) cosh(s(b — xp)) — 4rs cosh(r (b — xz))
—(r —s)(2r —ix) cosh(bs + x,r) + 2s(r — s) cosh(br + xns)],

1
ny = —[ — (r + 5)(2r —ik) sinh(bs — xp7r) —2r (r 4 s) sinh(br — x,s)

2K2s
(4.66) + 2r(2r —ik) sinh(s(b — xy)) + 4rs sinh(r(b — xp))
— (r —s5)@2r —ik) sinh(bs + xpr) + 2r(r — s) sinh(br + xns)],
4.67) nalx,=p = L [r sinh(bs) cosh(br) — s cosh(bs) sinh(br)],
KS

n3 = g [ (r +5)2r —ik)cosh(bs — x,r)

(4.68) 2K
+ 4rscosh(r(b — x,)) + (r —s)(2r —ik) cosh(bs + xnr)],
and
—1
det B = —[s(8r% — k% — i4kr) cosh(br) cosh(bs
e 5 [ ) cosh(br) cosh(bs)

—r(8r% — k2 — i8«r) sinh(br) sinh(bs) — 4rs(2r — iIC)].

The value of Y;(r, 0, x,) may then be obtained by sending s — r in these expres-
sions:
Y1(r,0,xp,) =
@4.70) (b — xu)(sinh(r (b + x)) — sinh(r (b — xp,))) + 2brx, cosh(r(b — xn))
2(cosh(2rb) + 1 + 2b2r2)
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TRAVELING WAVES FOR NAVIER-STOKES 2521

Ya(r, 0, xp)
—sinh(r (b 4+ x,)) — r(b — xp) cosh(r (b + x5))
@71y 2r(cosh(2rb) + 1 + 2b2r2)
(1 + 2br2x,)) sinh(r (b — x,,)) + (b + x,) cosh(r (b — xp))
2r(cosh(2rb) + 1 + 2b%r?) ’

Y3(r, 0, xn)
4.72) _cosh(r(b + xn)) + cosh(r(b — x)) + 2rb sinh(r(b — xn))
N cosh(2rb) + 1 + 2b2r2

With all of these computations in hand, we are now ready to derive the asymp-
totics as |€| — oo.

THEOREM 4.10. Let Q : R" 1 x[0,b)] xR — C, V : R*71 x [0,h] x R — C?*,
andm : R"™! x R — C be as defined in (4.37). Then for each y € R there exist
constants ¢ = ¢(y,b) > 0 and R = R(y,b) > 0 such that if x, € [0,b] and
€] > R, then

V(& xn. 7)) < (M +(b- x,,)) e 2mEIb—n) 4 cem2mIElD

HE
1
V(€ x5, b — e 27 |E1(b—xn) —27lElb.
1
+ T 9
6D+ g =

|Q (&, xn, y)| < ce™ 278103 o2l

PROOF. We will present the proof under the assumption that y # 0. The proof
when y = 0 is simpler and can be readily extracted from the first two steps of the
following argument, so we omit the details. We divide the proof into steps.

Step 1. A claim and its consequences. We claim that there exist constants ¢ > 0
and R = R(y,b) > 0 such that

|Y1(r.k,xp)| < ¢ (| d +(b—xp )) —r(b—xy) +Ce_br,

1
|Ya(r,k,xp)| <c (— + (b - xn)) e T(0=xn) 4 pombT
r

1
Yao(r,k,b) + —‘ <c—
2r

|Y3(r,k, xp)| < ce Tb=xn) 4 op=br

forall |k| <y, x, €[0,b],and r > R.
Once the claim is established we consider

474)  y(E xn.y) = exp(en A, y) BT (5, v)ea = Y|, v&i /], xn)
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2522 G. LEONI AND I. TICE

and simply plug into the definitions in (4.37) to deduce (4.73). It remains only to
prove the claim. We break it down to two cases: kK = 0 and « # 0.

Step 2. Asymptotic development of Y(r,0, x,,). Clearly, for r large the domi-
nant terms in the denominators of (4.70)—(4.72) are the cosh(2rb) terms. Similarly,
since 0 < x;, < b, the dominant terms in the numerators of (4.70)—(4.72) are the
hyperbolic functions with arguments 7 (b + x,). From these observations we then
deduce that

(b — xp)e ™" =)

sup |Y1(r,0,x,) — = O(e_rb),
0<x,<b 2
1 —r(h— —r(b—xn)
sup |Y2(r,0,x,) — [ r(b = xa)le = O(e_rb),
0<x,<b 2r
1 —rb
Y>(r,0,b) + —| = O(e™"?),
2r
sup |Y3(r,0,x,) — e "ET¥)| = O(e7h).
0<x,<b

Step 3. Asymptotic development of Y (r, k, xp) for k # 0. Firstrecall that Lemma
4.9 tells us that s has the asymptotic development

2 3

(4.75) s:r—i§+K—+iK

4,3
gy TiTez TOW/r).

We begin by using the expression for det B in (4.69) together with the asymptotic
development of s to write

det B(r, k)

-1
= 4ic2s |:(S(8r2 — K2 iKr) — r(8r2 — K2 i/cr)) eb(r+s) + O(e—Sbr/z)]
-1 3
=T |:(—/<2r + iK— + KZO(/(Z/r)) eb(rt+s) + 0(8—3br/2):| ‘
di=s 2

This allows us to use (4.65) to write

Yi(r,k, xn)
e—b(r-i-s)
= 5 PE 2042/ [—(V —5)2r — l'K)ebs-i-xnr +2s(r — s)ebr-i-x,,s]
—Kr+is t« K%/r)
+ 0(e™?)

= . KZ_S 20( 2/ )e—r(b—xn) [25_2,. +iKk+2s (e(r—s)(b—x,,)_ 1)]
—Kkr+is +t« K=/r

+ 0(e7tr),
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and so when we plug in the s asymptotics we find that there exist a ¢ > 0 and
R = R(y, b) > 0 such that

(4.76) |[Y1i(r,k, xp)| <c (% + (b — xn)) e"b=Xn) 4 ppmbr

forall 0 < |k| <y, x, €[0,b],and r > R. Arguing similarly with (4.66)—(4.68)
and enlarging R if necessary, we find that

1
4.77) |Ya(r,k,xp)| < c (— + (b - xn)) e " (b=xn) o pombr
r
1 1 —br
(4.78) |Y2(r,k,b) + —| <c— +ce 77,
2r r2
and
(4.79) 1Y3(r.k, xp)| < ce™"%n) 4 cobr

forall 0 < |k| <y, x, €[0,b],and r > R.

Step 4. Proof of the claim. The claim now follows by combining the results of
Steps 2 and 3. O

The asymptotic developments of Theorem 4.10 may be combined with the re-
sults of Theorem 4.5 to deduce some integral bounds. We record these now.

COROLLARY 4.11. Let Q : R™ 1 x [0,b)] x R — C and V : R*7! x [0,b] x
R — C" be as defined in (4.37). Then for each y € R there exists a constant
¢ =c(n,y,b) > 0 such that

b b
(4.80) (1+|s|3)/0 |V(s,xn,y)|2dxn+(1+|é|)[0 10w V)2 don <

forall ¢ € R"1,

PROOF. From Theorems 4.5 and 4.10 we can choose ¢ = c¢(n, y,b) > 0 such
that

1 _— —_—
(4.81) V(X PP <c (—1 et —xn)z) o—471€1(b—x,)
and
(4.82) 10, xn,7)|* <c (e—4n|5|b n e—4n|§|(b—x,,))

for all x, € [0,b] and & € R”~!. The result then follows directly from this and the
fact that fooo Zle 2 dz =T(t + 1)/r*t! forevery r, t € (0, 00). O
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2524 G. LEONI AND I. TICE

4.4 The overdetermined problem

We now write the compatibility conditions (3.11) using the Fourier transform.

PROPOSITION 4.12. Let y € R, s > 0, and suppose that f{ € H5(2;R"), g €
HSYY(Q), h € HSY3/2(3y), and k € HSTY/2(Sy: R™). Then (3.11) holds if and
only if
b . -
|| o) V&) ~ 2650 O
—k(®)-VED.—y) +h(E) =0

for almost every € € R"™1, where Q and V are as defined in (4.37).

(4.83)

PROOF. For ¢ € H5+tY2(%,) and v, q as in Theorem 3.3 we apply Parseval’s
theorem, the fifth item of Theorem 4.5, and Fubini’s theorem to see that

A(f-v—gq)—/z(k-v—hw

b n Y7 N —
- /]Rn—l /0 (f(g’ Xn) ’ ﬁ(g’ Xn) - (/g\(S’ xn)q(gv xn))an ds

“484) - A (k®-3ED) - &Y ©)ds
b 7 Y7 N e — e
= /1;,1_1 |:/(; (f& xn) - V(E xp,—y) — §(E,xn)Q(§,xn7 _y))dxn}w(g)d%-
+ [ RO TER T + b eas

If (4.83) holds, then this implies that (3.11) holds.
Conversely, suppose that (3.11) holds. Let ¢ € C(R"~!;C) be such that

@(E) = @(—E). From Lemma A.2 we then know that v = (@)V e SR 1yis
real-valued. We then use this 1 in Theorem 3.3 to see that the left term in (4.84)
vanishes, which yields an identity of the form

(4.85) 0= fRn_l $E)V(-E)d§

for all fﬁ\ € C(R"1; C) such that 1}(5) = 1}(—5), where ¢ (§) is the left side of
(4.83). According to Lemma A.2 and the third item of Theorem 4.5, we have that
& () = ¢(—&). Since we then know that Re ¢ and Re l’ﬁ\ are even and Im ¢ and
Im I/A/ are odd, the previous identity reduces to

@36 0= [ (Rep@ReT(E) +Imp(©) Im P (©)ds
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TRAVELING WAVES FOR NAVIER-STOKES 2525

for all such ¥. Let y,¢ € C2°(R™!) be such that supp(y). supp(¢) € R =
{xn—1 > 0} and set

(487) I = (M) o (z(s)—z(—s)),

2 2

which satisfies % = @(—S ). Then from the previous identity we deduce that
(488) 0= [ Rep©x) + mpE)( de.
RY

and from the arbitrariness of y, { we then deduce that Re¢p = Im¢ = 0 almost
everywhere in Ri‘l and hence almost everywhere in R”~! as well. Thus (4.83)
holds for almost every £ € R”~1. O

S Some Specialized Sobolev Spaces

In this section we introduce a pair of specialized Sobolev spaces that play an es-
sential role in constructing solutions to (1.14). The first space, X ¥ (R?), is the space
to which the free surface function will belong. It is defined through an anisotropic
Fourier multiplier and is, at least when d > 2, strictly larger than the standard frac-
tional L2-based Sobolev space H* (R?). The second space, Y*(2), is the space
to which the pressure will belong. It is defined in terms of X *(R”~!) and is again
strictly larger than H*(2) when n > 3. Note that throughout this section we
continue the practice described in Section 1.6 of using 1 < d € N for a generic
dimension and 2 < n € N for the dimension of 2.

To the best of our knowledge, neither of these spaces has been previously studied
in the literature. As such, we develop their basic properties here. We will need to
work with these spaces in a nonlinear context, so we also develop a number of
nonlinear tools.

5.1 Preliminary estimate

We record here a preliminary estimate that will play an essential role in defining
the specialized Sobolev spaces.

PROPOSITION 5.1. Let R > 0 and consider the ball B(0, R) C R? ford > 1.
Then

|x|?
(5.1 ———— dx < 0.
B(0,R) X7 + |x|

PROOF. If d > 3 then we simply bound

2 d R
/ —2|x| Ldx 5[ 2 =14 @B, 1))/ rd=3dr
B(O,R) X7 + |x]| B(O,R) |X| 0
d—2

d—-2

5.2)

= H14"1(3B(0, 1)) < 0.
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2526 G. LEONI AND I. TICE

On the other hand, in the case d = 2 we may use polar coordinates and a residue
calculation to compute

/ |X|2 J /R/Z]T ’,.2 104
— _dx = S — r
B(0,R) x% + |x|4 o Jo rZcos2(0)+r4

R 2r do
(5.3) =/ r/ ——dr
0 o 12+ cos?(0)
R R
27 / dr
= r—————dr =27 ———— = 2w arcsinh(R) < oo.
/0 ra/r2 +1 0o V1+7r?
Finally, if d = 1 then
2 R d
(5.4) / %dx = / 4 5 = 2arctan(R) < oo. O
B(O,R) X{ + |X| ~R1+r

5.2 A class of specialized Sobolev spaces on R?
For0 <s e Rand 1 < d € N we define the measurable function wy : RY —
[0, o0) via
£+ 1&1*
§12

Then for s > 0 we define the (real) specialized Sobolev space

(56) X*RY) ={f e R | f=[ feLl (R, and|f]xs <oo}.

(5.5 ws(§) = X8, + 1+ &) Xpo,1)e ()

We endow the vector space X (R4 ) with the norm and inner product
R 1/2
17l i= ([ ool @R ds)
(o= [ o ©F@e
R4

the latter of which takes values in R due to Lemma A.2. Note that we can similarly
define complex-valued analogues of X*(R?) by dropping the condition that f =
f . We will not need these spaces, so we focus on the real case.

We begin our study of these spaces by showing that they contain the usual
Sobolev spaces H* (Rd) and that the containment is strict for d > 2. Here and
in the subsequent statements we recall that the spaces C lf and Cé‘ are defined in
Section 1.6.

PROPOSITION 5.2. For s > 0 the following hold:

(1) We have that X*(R) = H*(R), and ||| xs and ||| gs are equivalent norms.
(2) If d = 2, then we have the strict inclusion

HS(RY) C XS(RY) and | fllxs <2|f|us forall f € HR?).
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TRAVELING WAVES FOR NAVIER-STOKES 2527

(3) Ifd > 2, then X5(R?) is not closed under rotation in the sense that for every
0 € 0(d) such that |Qey - e1| < 1 there exists f € X*(R?) N C(§’°(]Rd)
such that f(Q ) ¢ X5(R?).

PROOF. Clearly wg(£) < 2(1 + |£|?)S forall £ € R4, and hence
G N f1%s = / ws©)|f ()2 dE < 2/ A+ EPIFE)PdE =2|f 1%
R4 R4

for all f € HS(R?). Thus H(R%) € X*(R?). On other hand, if d = 1, then
(E2 4+ |€]Y)/1€1? = 1 + |€]2, and for |§| < 1 we have that

(5.8)

(14" 2571 1] ifo<s<1,
1+ |£]2 [1,2571] if1 <.

Hence, we can choose a constant ¢ = ¢(s) > 0 such that

1 ~ ~
—[ (1 + [EPY|F©)) dt 5/ w0s®)|F©)1 dt
(5.9) ¢ /R R

fcf(l L ERY I A @O de
R

to deduce that ||-|| xs is a norm equivalent to ||-|| gs.

Now assume that d > 2 and let Q € O(d) be such that |Qe; - e;| < 1, which
is equivalent to the existence of 2 < j < d such that |Qe; - ¢j| > 0. We will
construct f € X*(R%) N CS(R?) such that £(Q-) ¢ XS(R?) and f ¢ L2(RY),
which will complete the proof since the latter also shows that f ¢ H*(R%). For
1 <i <d write

1 ifOey-e; > 0.
(5.10) o,~=§ it Q1 -¢; =

—1 if Qe;-e; <O.

For 0 < & < —2— we then define

3/d

d
Ry = 01(¢%/2.3¢%/2) x [ [ 0j(¢/2.3¢/2) C B(0.1).
j=2

By construction, for £ € R, U (—R;) C B(0, 1) we have that

d
Y ikl Qer - i

i=1

5.11) [€- Qey| =

d
=) l&llQer - e

i=1

d
D Ei(Qer-ei)

i=1

and since |Qe - ej| > 0, we readily deduce the equivalences

LTS
(5.12) 0s(6) = Ty + 161 =

84+82+(84+82)X82
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2528 G. LEONI AND I. TICE

and
Te 12
on(@Te) =&k 1 10TeP
. 2
(5.13) _ %Jr £
82
xm+(e4+82)x1+82x1.

Define Fe = yg, + X_g, and note that Fg(—§) = Fe(§) = Fe(§). The above
calculations then show that we have the equivalences

(5.14) / 05 (E)| Fa(§) d = 6 - (62 - 6971 = 443,
Rd

(5.15) [IF8(5)|d§=/ F®)P dE = 1. (2 -e971) = g4+,
R4 R4

and

[ s (©)|Fo(QE)2 dE = / s (0T E)|Fo(6)? dt
R4 R4

=1 (26971 = g F1

(5.16)

Now fix 7 > 3 and K € N such that K logr > log(3+/d /2). Define

o0
(5.17) F=)" rkdtbi2p
k=K

which converges pointwise since the supports of the F,—x are pairwise disjoint
thanks to the bound » > 3. Then (5.14)—(5.16) imply that

2 - k(d+1) .—k(d+3) _ —2k
(5.18) /Rd wsE|FEPdE< Y r r _k;r < 0

k=K
and
(5.19) /Rd|F(g)|dg = Z phd+1)/2,—k(d+1) _ Z pRA+D/2 o
k=K k=K
while
| es@IF©oPas= [ IF@Pas
(5.20)

oo
= 30 KD kEHD o
k=K
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TRAVELING WAVES FOR NAVIER-STOKES 2529

Hence, f := F € X*(RY), but f(Q-) ¢ XS(R?) and f/ ¢ L2(RY). The
inclusion f € Coo(Rd) follows from the fact that f is band-limited and f €
LY(RY). O

Remark 5.3. The third item of Proposition 5.2 shows that X* (Rd) is not closed un-
der composition with rotations when d > 2, which is a strong form of anisotropy.

Next we prove a technical lemma that, in particular, will allow us to show that
the elements of X*(R%) are actually functions and not just tempered distributions.

LEMMA 5.4. Lets > 0 and R > 0. Then there exists c = c(d, R,s) > 0 such that
if f € X5(RY), then

R R 1/2
(5.21) [ If($)|d$+([ ,(1+I$I2)s|f($)|2d§) <clfllxs.
B(0,R) B(0,R)

B

In particular, if s > d /2, then there exists a constant ¢ = c(d,s) > 0 such that
ALy < el fllxs.

PROOF. First note that we have the trivial norm equivalence

2 4 ~ ~
(5.22) 1/ 1% = / SRR Ae2a + / (1 + £ 17 @) dt
B(0,R)¢

BO,R) €I :
where the constants in the equivalence depend on d, R,s. To complete the proof
of the first estimate, we use the Cauchy-Schwarz inequality and Proposition 5.1 to

bound
Je T e
f 17 @ = / £l !
B(0,R

BOR) [e2 1 |¢)4 €]

sz ([ ”2f 4R Aonas)
~ \Jso.p) 67 + 15 BoO.R €I

= ¢(d,R) / le(é)lzdé "
’ Bo,R) €7 '

In the supercritical case s > d /2 we may then further bound

/ F©)lde
B(0,R)¢

G

s

) 1/2 1 1/2
d —d
s =([ asepriferas) ([ )

R 1/2
<o) ([ arlepyifera)

to arrive at the estimate ||f||L1 <cl|lfllxs. g
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2530 G. LEONI AND I. TICE

Next we show that all elements of X*(R?) can be decomposed into a sum of
low and high frequency localizations with certain nice properties. In particular,
the decomposition shows that X5 (R%) € Cs° (R?) + H*(R?) and hence that the
elements of this space are actually functions.

THEOREM 5.5. Let s > 0 and R > 0. For each f € X*(R?) define the low-
frequency localization fi,.r = (f X (o, R))V as well as the high-frequency localiza-
tion fp,R = (fXB(o,R)C)V’ both of which are well-defined as elements of ' (R%)
by virtue of Lemma 5.4. Then the following hold..
(1) fi.r fu.r € X*(RY) and f = fi g+ fn.r- Moreover, || fi rllxs < || f | xs
and || fp,rllxs = || [l xs.
(2) Foreach k € N we have that f; g € Cé‘ R%) c le (R?) and there exists a
constant ¢ = c¢(c¢, R, s, k) > 0 such that

(5.25) IRl cr = D18 firlizee < cll fi,rllxs.
|| <k
In particular, fi g € C(;’O(Rd) = keN C(;‘(Rd).
3) fur € H*(R?) and there exists a constant ¢ = ¢(d, R,s) > 0 such that
I fo.rlEs < cll fo,rl x5

PROOF. Lemma A.2 and the fact that balls are reflection-invariant imply that
the localizations f; g, fp,r € ' (R?) are real-valued. The first item then follows
directly from this. To prove the second item we first note that f; g is band-limited
and hence smooth. The stated estimate then follows from the bound

Z “8afl,R||L°° = Z ”m”Ll < C/ 1+ |$|2)k|f(§')|d§'
(5.26) lel=k la| <k B(0,R)
F(&)d
T G

and the estimate of Lemma 5.4. The fact that 9% f; g — 0 as |x| — oo for any

multi-index « € N¥ follows from the Riemann-Lebesgue lemma. The third item
follows directly from Lemma 5.4. g

Our next result establishes some fundamental completeness, inclusion, and map-
ping properties of the space X*(R?).

THEOREM 5.6. Let s > 0. Then the following hold:
(1) X*(R?) is a Hilbert space.
(2) The subspace { f € X5(R?) | f € CCOO(R‘J) and 0 ¢ supp(f)} C X5(R%)
is dense. In particular, the set of real-valued Schwartz functions is dense in
X5 (RY).
(3) Ift € Rands < t, then we have the continuous inclusion X*(R?) C
X5 (R9).
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TRAVELING WAVES FOR NAVIER-STOKES 2531

(4) For each k € N we have the continuous inclusion X*(R%) C Cé‘ R?) +
H*(RY).

(5) Ifk € N ands > k+d /2, then we have the continuous inclusion X*(R?)
Cé‘ (R?), and there exists a constant ¢ = c(d, k. s) > 0 such that || f ||C§
cll fllxs forall f e XS(RY).

(6) If s = 1, then there exists a constant ¢ = c¢(d, s) > 0 such that we have the
bound |/ —=A f || ggs—1 < c|| f |l xs for each f € X*(R?). In particular, we
have that /—A : X$(R9) — H5~! (Rd) is a bounded linear map.

(7) If s > 1, then there exists a constant ¢ = c(d, s) > 0 such that

(5.27) IV fllgs—1 < cll fllxs for each f € X*(R?).

In particular, we have that V : X*(R?) — HS"Y(R?;R?) is a bounded
linear map. This map is injective.

(8) If s > 1, then there exists a constant ¢ = c(d, s) > 0 such that [01 f] 51 <
el fllxs foreach f € XS(R?). In particular, we have that 91 : X5(R?) —
H* YR N H~Y(R?) is a bounded linear map. This map is injective.

-
=

PROOF. The first item follows immediately from the completeness of the L2
space on R¥ generated by the measure wg(§)d&. We now prove the second item.
Let f € XS(R?) and ¢ > 0. By the monotone convergence theorem we may
choose 0 < Ry < Ry < oo such that if we define the annulus 2A(R1, Ry) =
B(0, Ry) \ B[O, R1], then

~ 5 82
(528) [ CCICIEES

We then select a nonnegative and radial function ¢ € C° (R?) with supp(¢) C
B(0,1) and [ga ¢ = 1. Then for 0 < § < R;/4 we define the function Fs €

C®(R?) via

1 £ — z) ~
5.29 F, = —¢ | —— )dz
(5:29) i©0=[ o555 Fos
and note that supp(Fs) C A(R1/2, R» + R;) and
Fs(§)

= Lo (552) Tz = Lo(522) fe
_/QL(RI’RZ)de( ) 7z [M@ad“’( ) Feaz
1

1 E+z —£—z\ ~
) /Q‘(R“Rz) 57% ( ) Sz /Ql(Rl Ry 547 ( 8 ) @z

= Fs(=§),

which implies, by virtue of Lemma A.2, that Fg e #(R?) is real-valued. On the
annulus A(R;/2, R1 + R») we have the equivalence wy(§) < 1 (with equivalence
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2532 G. LEONI AND I. TICE

constants depending on d, s, R1, R»), and so the usual theory of mollification (see,
for instance, appendix C of [63]) provides us with 0 < 8o < R1/2 such that

/ w5 (6)] () — Fyy(6)2 dt
(5.30) WR1R:) 5

£
+[ w0 (&) Fiy (67 dE < =
AR /2,R1+R2)\ AR} ,R>) 8

Thus, if we define f5, = Fgo, then f5, € X*5(R?) N L (RY), supp(ngo) C
A(R1/2, R1+ R»), and the estimates (5.28) and (5.30), together with the inclusion
Q[(Rl, Rz) - Q[(Rl/2, R + Rz), imply that

Lf = Fsol%s =/ s (&) f (&) dt

A(R1/2,R1+R2)¢

+/ s ()| (£) — Fy (£)[2 d&
A(R1/2,R1+R>2)

82

i £rey 2
<G [y OO = Fr©F ds

(5.31) s (§)| f (§) — Fs, (€)1 d&

+
2A(R1/2,R1+R2)\2A(R1,R>)
2

& Doen 2
<4 /Q1 oy O = By @ d

+2/ ws(6)| Fyy (§) d§
A(R1/2,R1+R2)\2A(R1,R>)

- &2 &2 &2
w2 o w@If@Pas <2 2T =2
R1,R>)C 4 8 4
which completes the proof of the second item.

The third item follows trivially from the pointwise estimate wy < w;, and the
fourth follows immediately from Theorem 5.5. The fifth item follows from the
fourth and the standard Sobolev embedding H* (R?) < Cé‘ (R%) fors > k+d/2.

We now turn to the proof of the sixth item. Assume s > 1. First note that there
is a constant ¢ = c(s) > 0 such that |£]2(1 4 |£]2)*™! < cawy(§) forall § € R?.
Then for a real-valued f € .7 (R%) we may bound

V=B Vs =4 [ 1620+ 16 F @ ag
(5.32) R R
<arc [ @1 F@P ae = ancl /1.

The sixth item then follows from this and the density result of the second item.
The seventh item then follows from the second and sixth items, together with the
identity |V f||gs—1 = |[V—=Af | gs—1 forall f € S (R%), and the observation
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TRAVELING WAVES FOR NAVIER-STOKES 2533

that V f = 0 if and only if |&]|] fA (¢§)| = 0, which requires that f = 0 almost
everywhere.

2
To prove the eighth item we first note that % < ws(§) for all £ € R”. Then for
f e .7 (R%) we bound

: 5
(5.33) [0 /1%, <c /R s
and we again use the second item to conclude the estimates holds for general f €
X?¥. Injectivity follows since d1 f = 0if and only if |& | f (§)| = 0, which requires
that f = 0 almost everywhere. g

F@PaE=c [ @I F@F e = clf I

5.3 A class of specialized Sobolev spaces on € built from X (R”~1)

For0 <seR,n>2,and ¢ € CI?’I(R"_l) such that inf ¢ > 0, we define the
space

Y*(Q¢)
= H*(Q) + X R"™)
={fe LIIOC(Q;) | there exist g € H*(Q2¢) and h € X*(R" 1) such
that f(x) = g(x) + h(x') for almost every x € Q¢},

(5.34)

and we endow this space with the norm || f||lys = inf{||gllgs + |klxs | f =
g + h}. Note that Q@ = Qp, so in particular this defines a scale of spaces with
functions defined on 2.

Our first result shows that this is a Banach space.

THEOREM 5.7. Lets > 0, n > 2, and { € C,>' (R"™1) such that inf{ > 0. Then
Y*(Q¢) is a Banach space.

PROOF. Let { fu}men C Y*(Q2¢) be such that ) n Il finllys < co. We may
then select {gm fmen C H*(R2¢) and {hp fmen C XS(R™ 1) such that || g || s +
Imllxs < 2| fmllys. which in particular means that ) .nllgmll#s < oo and
Y menlmllxs < oo. Since H*(S2¢) and X$(R" 1) (see Theorem 5.6) are Ba-
nach spaces, there exist g € H*(Q2¢) and h € XS(R" Y suchthatg =", .y &m
and h = ), cn hm. With the convergence of the sums occurring in H*(£2¢) and
XS (R"1), respectively. From this we deduce that f := g +h € Y* (S2¢) is such
that f = Y, . fm, with the sum converging in ¥ *(€2¢). Thus every absolutely
summable sequence is summable, and so Y *(2¢) is a Banach space. O

Remark 5.8. When n = 2 Proposition 5.2 implies that H*(R"™1) = XS(R"™1)
algebraically and topologically, so in this case Y *(2¢) = H*(2¢) + HS(R" 1) =
H*(Q¢). When n > 3, it’s clear that we have the continuous inclusion H*(Q2¢) <
Y3 (82¢), but due to the strict inclusion H* (R"~1) ¢ X$(R""!) from Proposition
5.2, the previous inclusion is strict as well.
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2534 G. LEONI AND I. TICE

Our next result shows that the trace operator may be extended to act on Y *(2)
when s > 1/2. Recall that we employ the abuse of notation for functions on 3
described at the end of Section 1.6.

THEOREM 59. Let s > 1/2 and n > 2. Then the trace map Tr : H*(Q) —
H~Y2(%,) extends to a bounded linear map Tr : Y5(Q) — XS~V2(R"1),
More precisely, the following hold:

() IffeCh(QNYS(Q), thenTr f = fl5,.

Q) Ifp € CLR™! x (0,b)), then

(5.35) / Tr fo :/ On f0 + fOnp fordl f eY5(RQ).
Xp Q

(3) There exists a constant ¢ = c(n,s,b) > 0 such that |Tr f| xs—1/2 <
c|l fllys forall f € Y5(R).

PROOF. Let f € Y®(2) and suppose that f = g1 +h; = go+hyforgy, gz €
H*(Q) and hy, hy € X*(R*™1), which in particular requires that 9,g1 = 0, g2 in
Q. Letp € C(R"™! x (0,5]). From the usual trace theory in H*(£2) and the fact
that 11, hp do not depend on x;, we may compute

(5.36) L (Trg1 + h1)e = /;2(371 +h1)0n@ + 0ng19
b

= /Q(gz + h2)0n@ + 0ngap = /E (Trga + h2)e.
b

Hence Tr gy + hy = Tr g + hy, and so we unambiguously define Tr f = Trg +
h e H™Y2(2) + XS(R"™ 1) ¢ X5~1/2(R"~1). The stated properties of Tr :
H*() — X5~Y/2(R"~1) then follow from the standard trace theory and Theorem
5.6. O

The next result shows that functions in Y *(2) interact nicely with the horizontal
Fourier transform.

PROPOSITION 5.10. Lets > 0,n > 2, and f € Y5(Q). Then the following hold.:
(1) For almost every x, € (0,b) we have that f(-,x,) € XS(R*™1), and
if we write ~ for the Fourier transform with respect to x' € R"™1, then
f(oxn) € LYY 4+ L2,
(2) If s € N, then for almost every & € R"™! we have the inclusion f(f;“, ) €
H3((0,b); C).

PROOF. Since f € Y¥(Q2) we can write f(x) = g(x) + h(x’) for g € H5(RQ)
and i € XS(R"™1). The Parseval and Tonelli theorems imply that g(-,x,) €
L?*(R"=1; C) for almost every x, € (0,b), and Lemma 5.4 implies the inclusion
h e LYR"1:C) 4+ L2(R"~!;C). This completes the proof of the first item.
For the second item we again use the Tonelli and Parseval theorems to see that
if0 < j < s, then 3,2(£,-) € L2((0,b); C) for almost every £ € R*~1. On
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TRAVELING WAVES FOR NAVIER-STOKES 2535

the other hand, ﬁ(g) does not depend on x, and (0, b) has finite measure, so we

conclude that for 0 < j < s we have the inclusion d;, f (§,-) € L?((0, b); C) for
almost every £ € R~ O

Now we record some essential inclusion and mapping properties of Y 5($2).

THEOREM 5.11. Lets > 0,n > 2, and { € C;"" (R"™") such that inf ¢ > 0. Then
the following hold.:
(1) Ift € Rand s < t, then we have the continuous inclusion Y'(Q¢) C
Y¥(Q¢).
(2) For each f € XS(R™ 1) we have that || f|lys < || fllxs, and hence we
have the continuous inclusion X*(R*~1) C Y'* (2¢).
(3) Ifk e N and s > k +n/2, then there exists a constant c = c(n, k,s,¢) > 0
such that ”f”le <c|fllys forall f € Y*(Q¢). Moreover, for { = b (in
which case Q¢ = ) we have the continuous inclusion

(537 Y@ <C{f eCGG@ | fim 0 f(x) = 0forla] <k} C C5(Q).

(4) Ifs > 1, then there exists a constant ¢ = c¢(n,s,{) > Osuchthat |V f || gs—1 <
cll fllys for each f € Y*(Q2¢). In particular, we have that V : Y*(Q2¢) —
HS! (R2¢:R™) is a bounded linear map.

PROOF. These follow immediately from Theorem 5.6 and the usual properties
of the Sobolev space H*(S2¢). d

5.4 Nonlinear analysis tools in the specialized spaces

Later in the paper we will employ our specialized Sobolev spaces to produce
solutions to (1.14). In doing so, we will need a number of nonlinear tools in these
spaces, and our goal now is to develop these. We begin with four important results
about products involving the specialized spaces.

We first investigate how products fg of functions f € XS(R¢) and g €
H*(R%) behave in the supercritical case s > d /2.

THEOREM 5.12. Suppose that s > d /2. There exists a constant ¢ = c(d,s) > 0
such that || fgllas < ¢l fllxsllgllas for all f € XS(RY) and g € HS(RY).
Consequently, for 1 < k € N the mapping

k k
538)  H'RY)x[[X®RY) > fi.....fi)— g [] i € HFRY)

j=1 j=1
is a bounded (k + 1)-linear map.

PROOF. First recall that since s > d /2, Lemma 5.4 provides a constant ¢ > 0
such that || f||1 < c||fllxs forall f € X$(R?). Similarly, || f]l.1 < c|fllas
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2536 G. LEONI AND I. TICE
forall f € HS(R?). Now let f, g € (R?) be real-valued. Then

1+ PP Te@ = [ 10+ 1222 @lRE - 2ldz
(5.39) R

+e [ IF@I+ I = 2P 1gE - olds.

From this, Young’s inequality, the above L1 estimates, and Theorem 5.6, we de-
duce that

I/glles = 1+ [ Fgll .2
(5.40) < clIV=AS g8l + cll Fllzliglas
< cll fllxslgles-
This estimate also holds for all f € X*(R?) and g € H*(R?) due to the density
of real-valued Schwartz functions in both spaces. The boundedness of the mapping

(5.38) then follows from this, the fact that H*(R%) is an algebra for s > d /2, and
an induction argument. 0

Our next product result is a variant of Theorem 5.12 that assumes one of the
factors also has a special product form.

THEOREM 5.13. Letgp € C°(R), n/2 < s € R, and V be a real finite-dimensional

inner product space. Then for 0 < r < s there exists a constant
c=cn,V,s,r,p) >0

such that if f € H'(R™; V), n € XSR"™Y), and onf : R* — V is defined via

(enf)(x) = e(xp)n(x’) f(x), then onf € H"(R": V) and

(541 lenfllar < clnllxs Il fllar

PROOF. We first use Theorem 5.5 with R = 1 to write n = no + n; with
no = n;,1 and N1 = np,p in the notation of the theorem. Then |¢nf||gr =<
leno fllar + llen1 fllzr. By the second item of Theorem 5.5 we can bound, for
any s <k € N,

(5.42)
lpno fllar = clienollck wmylf 1 = clinollcx a1y IF ler = clinlixs |/ o

On the other hand, from Lemma A.9, the Fourier characterization of H*(R"), and
the third item of Theorem 5.5, we can bound

lem fllar < cllemlas@yllfllar < cllnllgs -l /a2
< clnlixsIfllar-

Combining these three estimates then yields the stated inclusion and estimate. [

(5.43)

Next, we turn our attention to establishing an analogue of Theorem 5.12 for the
spaces Y*(Q2¢).
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TRAVELING WAVES FOR NAVIER-STOKES 2537

THEOREM 5.14. Letn > 2, s > n/2, and { € C;" (R"™1) such that inf{ > 0.
There exists a constant ¢ = c(n,s,{) > O such that || fgllgs < c||fllys|gllas for
all f € Y*(Q¢) and g € H¥(2¢). In particular, for 1 < k € N the mapping
k k
(544  H'Q)x[[Y* Qo> fie.. ) g ] fi € H(Qp)
j=1 j=1
is a bounded (k + 1)-linear map.

PROOF. The boundedness of the (k + 1)-linear map (5.44) follows from the
stated product estimate and an induction argument, so we will only prove the es-
timate. Let f € Y*(Q¢) and g € H*(Q¢). Write f(x) = h(x) + ¢(x’) for
he H*(Q¢)and ¢ € XS(R"™1). Then fg = hg + ¢g, but from the standard the-
ory of Sobolev spaces we have that hg € H*(2¢) with ||hg|gs < cllh|asgllas
for a constant ¢ = c(n,s,{) > 0. Thus it suffices to show that g € H*(2¢) and
legllas < cllellxs|lgllgs foraconstant ¢ = ¢(n,s,¢) > 0.

To prove this we first use the Stein extension theorem (see the proof of Lemma
A.5) to pick G = Eg € H*(R") such that G = g almost everywhere in Q¢ and
1Gllgs®n) < cligllmsq,) foraconstant ¢ = c(n, s, ) > 0. Then we use Lemma
A.6 to bound

1
NG s = [ I0OGC sy
(5.45) ¢ R

+ [ A+ IFOIC Doy

where F,, denotes the Fourier transform with respect to the n™ variable. For the
latter term, since ¢ does not depend on x, we can use Theorem 5.6 to bound

[0+ 2 IR0 Dl

= [0+ IR Dyt
(5.46)

< [0+ 19l ey 172G Dl agnyd T
<clolgs [ 1+ |1FG. D7 d
= cllellxs R( + )| FaG( »T)”LZ(Rn—l) T.

For the former term we use Theorem 5.12 for almost every x;, € R to bound

o L1606t oy

< el oty [ IGC 3oy dn

Hence, upon combining these estimates and again employing Lemma A.6, we
deduce that || G||gs®n) < cll@| xs|G | gs®n) for a constant ¢ = ¢(n,s,{) > 0.

auie)) Aq 78022 edo/Z001°01/10p/wiox Kot Aeaqriautjuoy/:sdny woxy papeoumod ‘01 ‘€20T ‘TIE0L60T

QATU[) UO[[] 15

auruQ Ao “Ansi

UONIpUOD) PuE SWIRL, 31 338 “[€207/01/4T) U0 Axeiqry

JO s3[n1 J0§ AIRIQIT QUIUQ A3[IAY UO (SUONIPUOI-PUB-SWLIAYWOY K3[1m* KIeIqI[aur[uoy/:sdny) st

P VO fasn

1

Qe §9)

28UQDIT suowwo)) aAnear) a[qesridde ayy Aq pausoros



2538 G. LEONI AND I. TICE

Since pG = @g almost everywhere in ¢, we may then use Lemma A.5 to con-
clude that [|pgllgs@,) < cll¢llxs|Gllgs®n)- This proves the desired inclusion
and estimate. U

The following is a variant of the results in Theorems 5.12 and 5.14 that works in
more general domains but in a slightly lower regularity class with integer regularity
bounds.

THEOREM 5.15. Let { € CI?’I(R”_I) be such that inf ¢ > 0. Suppose that n €
XKE+2(R? 1) forn/2 < k € N and |n||pe < b/2. For0 < j < n — 1 define
i @ Qe — Rovia po(x) = n(x’) and pj(x) = x,0;n(x’) for j # 0. For
1 < £ € N define My : Q¢ — R via My(x) = (b + n(x")) L. Then the following
hold:

(1) Forevery 0 <s < k + 2 there exists a constant ¢ = c(n, ||§||Cl?,1,k,s) >0

such that ||po fllas < clinllxr+2ll f s forall f e H¥ ().

(2) Forevery0 <s <k + 1 there exists a constant ¢ = c(n, ||§'||Cl()),1,k,s) >0
such that if 1 < j < n —1, then |u; fllas < clnllxx+2|l.f | as for all
f S HS(Q;-).

(3) Forevery0 <s <k + 2and every 1 < £ € N there exists a constant ¢ =
cn. [Cllcor.s k. €) > 0 such that | Me fllgs = ¢+ |nllxe2) |/ s
forall f € H%(Q¢).

PROOF. A direct finite induction argument, employing Theorem 5.6 and Lemma
A.8, shows that there is a constant ¢ = ¢(n, ||{]|;0.1,k) > O such thatif 0 < m <
b

k + 2 is an integer, then |[o f||[gm =< c|nl xx+2|| fllgm forall f € H™(Q¢).
This shows that the linear map H™(2¢) > f + uof € H™(Q¢) is bounded
for each 0 < m < k + 2 with operator norm bounded by c||n|| yx+2. Standard
interpolation theory (see, for instance, [24, 63, 94]) then shows that this map is
bounded on H*(Q¢) for 0 < s < k 42 with operator norm bounded by ¢ ||| yx+2.
This proves the first item.

In light of Theorem 5.6 we have the inclusion u; € H k‘H(Qg) as well as
the bound || pj || gr+1 =< c(n, ||§||CI?1 k) |n|l xx+2. With these in hand, the second

item then follows directly from Theorem 5.14. For the third item we note that for
l1<feNand f € HI(QC) we have the identity

0j (Mg f) = Mgd; f —LMy10;nf.

With this and the trivial bound

M fllr2 < I/ 12

Loo

2 V4
< (5) 1f 11z < e+ Il sl £z

14
(5.48) b+
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TRAVELING WAVES FOR NAVIER-STOKES 2539

forall f € LZ(Q;) in hand, we may then argue as in the proof of the first item to
conclude that the third item holds. U

>From Theorem 5.15 we know that under some assumptions on 7, we have
the inclusion M; f € H® whenever f € H®. We now aim to investigate the
smoothness of a generalization of the map (1, f) — M; f. This will be essential
later in our nonlinear analysis.

THEOREM 5.16. Letn > 2,5 > n/2, and { € C,"' (R"™) such that inf ¢ > 0.
Let ¢ = c(n,s,¢) > 0 denote the larger of the constant from the third item of
Theorem 5.11 with k = 0 and the constant from Theorem 5.14. Define the ball
Bys(0,b/(2c)) = {f € Y¥(Q¢) | [ fllys < ’zb_c}' Then the maps I'1,T'y :
Bys(0,b/(2¢)) x H*(Q2¢) — H*(Q2) given by T'1(f. g) = % and Tor(f, g) =
bif 7 are well-defined and smooth.

PROOF. We have that I'>(f,g) = fI'1(f. g), so if I'1 is well-defined and
smooth, then Theorem 5.14 guarantees that I'; is also well-defined and smooth.
It thus suffices to prove that I'; is well-defined and smooth. We begin by showing
that T'; is well-defined; i.e., it actually takes values in H*(2). To this end we note

that Theorem 5.11 and Theorem 5.14 show that the series Y bl)k k= =557 + 7

converges in H*(Q¢).

converges uniformly in ¢, and the series 3 k=1
However,

_g b
b+f bb+ f b

| o

(549 Ti(f.g) = Z —gf* e H (Qy),
so I'1(f, g) is well-defined. We now turn to the proof of smoothness. Define the
linear map 7 : Y*(Q¢) — L(H*(R)) via T(f)g = gf. By virtue of The-
orem 5.14, T is bounded and || T'|| z(ys.c(ms)) < c. In the unital Banach algebra
L(H?(S2¢)) we have that the power series F(L) = Y reo #Lk converges and de-
fines a smooth function in the open ball {L € L(H*(2¢)) | |L| zcas) < b}. Thus,
FoT :Y%Q¢) — L(H*(Q¢)) defines a smooth function. Since I'1(f, g) =
F(Tf)g we immediately deduce that I'y is smooth on Bys(0,b/(2c)) x H*(2¢).
O

In shifting from the Eulerian problem (1.14) to the flattened problem (1.22), we
employ the flattening map § defined in terms of the free surface function via (1.18).
We thus require some information about the operators defined by composition with
$n and its inverse. We record this now.

THEOREM 5.17. Letn > 2,n/2 < k € N, and n € X¥+5/2(R"=1) be such that
||n||cg < b/2. Define ® : Qp, — Qvia B(x) = (X', x,b/(b+n(x"))). Suppose
that V is a real finite-dimensional inner product space. Then the following hold:
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2540 G. LEONI AND I. TICE

(1) & € C"(RQp4n: Q) is a diffeomorphism for r = 3 + |k —n/2] € N,
with inverse § € C"(Q2:Qp4y) defined by (1.18). Moreover, we have the
inclusions V& € Cg_l(Qb+,,;R”X”) and V§ € Cb’_l(Q;R”X”).

@ If0<s <k+2and f € HY(QV), then f o & € H (Qpyn:V).
Moreover, there is a constant ¢ = c(n, s, k, ||n|| xx+2) > 0 such that

I/ o Bllas@yrnv) < cllflas@;v),
and also the map

[0,00) 2 F > c(n,s,k,r) € (0,00)

is nondecreasing.
B)If0<s<k+2and f € H(Qp4y: V), then

foFe HY(Q:V).
Moreover, there is a constant ¢ = c(n, s, k, ||n|| xx+2) > 0 such that
I/ o Slas@v) < cllflas@ppmv)
and also the map [0,00) 2 r — c(n,s,k,r) € (0, 00) is nondecreasing.

PROOF. We will prove only the results for &. The corresponding results for §
follow from similar arguments.

Note that k + 5/2 > 3 4+ |k —n/2| + (n — 1)/2. Then according to The-
orem 5.6 we have that n € Cj (R"~1), and from this we readily deduce that
& € C"(Qpyy: 2). We compute

O—D)x(n=1) Om—1)x1
(5.50) Ve -1 =| +povpa) _ a6 |-
b+n(x"))2 b+n(x’)

which shows that V& € Cbr_1 (Rp4y; R™M) . Clearly, & = !, and we have the
inclusion § € C"(£2; 2. ,) from a similar argument. This proves the first item.

We now turn to the proof of the second item. Suppose f € L?(2; V). Then we
use the change variables x = §(y) and the identity J = det Vg, for J defined in
(1.20), to estimate

If ool = [ If eowlpdx
(5.51) 40

- fg 1f O3 et VEOD)Idy < 1 oo £ 1125.

By hypothesis we have that ||J||pe = |1 + %HLOO < %, and we deduce from this
that | f 0 6|2 < /3]1/ 2 forall £ € L(®: V).

Suppose now that for 0 < m < k + 1 there is a constant

¢ = C(nvm’k’ ||7I||Xk+2) >0,
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TRAVELING WAVES FOR NAVIER-STOKES 2541

which is nondecreasing in the last argument, such that
(5.52) If o &llgm <cllfllam forall f € H™(Q: V).

Consider f € H™1(Q: V). For 1 < j <n we compute

(5.53) 0;(fo®) =) 0ifo®0j® =0;fo&+ > 0;f0&(0;&; ).

i=1 i=1
From this, (5.50), (5.52), and Theorem 5.15 we may then bound
19 (f o &)l rm
n
(5.54) < clldj fllam + e+ Il xe2) Il xes2 Y10 f 0 S|
i=1

< cllfllgm+

for a new constant ¢ = c(n,m, k, ||n|| xx+2) > 0 that is nondecreasing in the last
argument. Summing over 1 < j < n and again using the induction hypothesis
(5.52), we conclude that there exists a constant ¢ = c(n,m + 1,k, ||n| xx+2) >
0 that is again nondecreasing in the last argument such that || f o &||gm+1 <
cll fllgm+ for all f € H™TY(Q; V). Proceeding with a finite induction then
shows that for each 0 < m < k 4+ 2 there exists a constant

¢ =c(n,mk, |nlxc+2) >0

such that || f o &|gm < c| fl|lgm forall f € H™(Q;V).
We have now shown that the linear map

H™(Q;V)> f > fo® e H"(Qpyn: V)

is bounded for each 0 < m < k + 2 with operator norm bounded by a constant ¢ =
c(n,m,k,||n|xx+2) > 0. The theory of operator interpolation then guarantees that
this map is bounded from H*(Q2: V) to H*(Qp4y: V) forevery 0 < s < k + 2
and that the operator norm is a constant of the form ¢ = c(n, s, k, ||| yx+2) > 0.
This completes the proof of the second item. 0

Theorem 5.17 tells us that under some assumptions on 7, we can guarantee that
f o8y € H*(R2:R") whenever f € H*(Q2p4,:R"). In our nonlinear analysis of
(1.14) we will need to show that a variant of this map is jointly C! in  and f. The
complication with working directly with the composition in Theorem 5.17 is that
in the theorem the function f is defined on €24 ,,, a set that depends on 7. To avoid
this technical complication, we instead investigate the continuous differentiability
of the map (f,n) — f o &, where f : R" — R", ie., f is defined everywhere
rather than just €254 ,, and &, is a diffeomorphism that agrees with §; on Q.
This is a variant of the “w-lemma” (see, for instance, proposition 2.4.18 in [9]
for a proof in C? spaces over compact topological spaces, and [53] for a proof in
standard Sobolev spaces on R” or manifolds) for the specialized spaces. As in the
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2542 G. LEONI AND I. TICE

standard w-lemma, we need to impose an extra order of regularity on the vector
field in order to show the map is C!.

Although the map §, from (1.18) can be naturally extended as a map from R”
to R”, the unbounded term x,1(x’)/b causes some technical problems in proving
the w-lemma. As such, we need to introduce a better behaved map €, : R” — R”
that agrees with §; on Q. We do this now.

PROPOSITION 5.18. Let s > n/2 and y € CZ°(R) be such that 0 < ¢ < 1,
Y = 1 on [-2b,2b], and supp(y) C (=3b,3b). Let ¢ € CZ°(R) be given by
@(t) = t¥(t). Givenn € XSTV2(R"1) define &, : R" — R" via

(5.55) €y (x) = (", xn + @(xn)n(x") /D).

Then the following hold:

(1) The map &y is Lipschitz and C L and there exists a constantc = c(n, s, @) >
0 such that

(5.56) V€ = Ilico < clinllxssisa.

(2) If' V is a real finite-dimensional inner product space and 0 < r < s—1, then
there exists a constant ¢ = c¢(n,r,s,V, @) > 0 such that

(5.57) sup [0,y -ex fllar < c(I+ nllxs+12) | fllar
1<j,k<n
and
(5.58) sup [[(0;€y-ex —0; € -ep) fllar < clln—_Cllxs+i2ll fllar
1<j,k<n

foreveryn, ¢ € XSTU2@R" V) and f € H"(R"; V).

(3) There exists 0 < 8x < 1 such that if ||n|| xs+1/2 < 0, then &, is a bi-
Lipschitz homeomorphism and a C' diffeomorphism, and we have the esti-
mate

(5.59) Ve, —Ilicp < 1/2.

PROOF. Sinces > n/2 = (n—1)/2+1/2, wehave thats+1/2 > (n—1)/2+1,
so the first item follows from the fifth item of Theorem 5.6 and the formula

(5.60) V&, (x) =1 +en ® (p(xn)V'n(x") /b, ¢ (xn)n(x") /D).

The second item follows from this formula, Lemmas A.6 and A.9, and Theo-
rem 5.13. We now turn to the proof of the third item. First note that if the map
R” 5 x — (@(xn)n(x")/b)ey is a contraction, then the Banach fixed point theo-
rem readily implies that &, is a bi-Lipschitz homeomorphism. On the other hand,
the estimate (5.56) shows that if ||n|| ys+1/2 is sufficiently small, then we can ap-
ply the inverse function theorem to see that &, is a local C! diffeomorphism in a
neighborhood of every point. Since the smallness of ||7|| ys+1/2 can also be used
to guarantee the smallness of 7]~ 1 thanks to the fifth item of Theorem 5.6, we

then deduce the existence of a 0 < §, < 1 satisfying the third item. O
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TRAVELING WAVES FOR NAVIER-STOKES 2543

Next we establish some essential continuity properties of the map we will use in
the w-lemma.

PROPOSITION 5.19. Let n/2 < s € N and let 0 < 8« < 1 be as in the third
item of Proposition 5.18. Let r € N be such that 0 < r < s and V be a real
finite-dimensional inner product space. Consider the map

(5.61) A H™(R™;V) X Byst1/2@n-1)(0,85) — H(R™; V)

given by A(f,n) = f o &, where &, : R" — R" is as defined in Proposition
5.18. Then A is well-defined and continuous, and there exists a constant ¢ =
c(n,V,s,r,¢) > 0 (where ¢ is as in the definition of €y) such that

(5.62) IACEMEr < e+ [Inllxst2) TN F e

PROOF. We proceed by finite inductionon 0 < r <.
Suppose initially that r = 0 and let f,g € H°(R";V) = L?>(R";V) and
N, ¢ € Bys+1/2rn-1y(0,8x). A change of variables shows that

1/2
—11/2
669 Ifotlno= ([ 17 o&P) < leve 121 o
but, together with the bound ||n|| ys+1/2 < 1, the first and third items of Proposition
5.18 allow us to estimate
— 1/2 —

ldet Ve, 2 < (Ve 2

< c(l+ Inllxs+12)"? < e+ Il gs+172).

Hence, || f o &;llzo < c(1 + |nllxs+1/2)|| f | o, which is (5.62) with r = 0.
Next we compute

A(fm) —A@G. =fo&—fo& +(f—g) o&,

(5.64)

so that

(5.65) [[A(fim) = Ag.Dllgo = IIL.f o€y = f o&llgo + I(f — &) o & go.

Note that if { — 7 in X$T1/2(R?~1), then the fifth item of Theorem 5.6 implies
that € — &, uniformly; this fact, together with the density of C2°(R"; V') in
HO°(R”; V) and the dominated convergence theorem, show that

(5.66) If o€y — foCllgo—0as¢— nin XST/2@®M),

On the other hand, (5.62) with r = 0 implies that ||( /' —g)o&¢||o — Oas f — g
in HO(R™; V) and { — 75 in XSTY/2(R"~1). Thus, the continuity assertion is
proved, and the result is proved in the case r = 0.

Suppose now that the result holds for # € N suchthat 0 <t < r < s —
1, and consider the case r + 1 < 5. Let f.g € H'"TY(R";V) and 1. €
Bys+1/2@gn-1)(0,8x). For 1 < j < n we have that 9; A(f,n) = Y f_; 9 f ©
€,0; &, - e, and the induction hypothesis (applied to di f instead of f') implies
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2544 G. LEONI AND I. TICE

that 9 f o &, € H"(R"; V). Thus, the induction hypothesis and Proposition 5.18
show that

IACE M Er+1 = C(IIA(ﬁ Mlgo + Y 18 AL n)llw)

Jj=1

< (U4 lnllxs+12)> 1 f lrs

(5.67)

which is (5.62) for r + 1. On the other hand, for 1 < j < n we also compute

3 [A(fin) — A(g. )]

n
:Z(akfo@,,_akfo@;)ajcs,,-ek

k=1
5.68) “
( +Zakfoég(ajén-ek—aj@;-ek)
k=1
n
+ Z 0k (f —g) o €0, & - ep.
k=1

Again using the induction hypothesis (applied to d; /) and Proposition 5.18, we
deduce from this that [|A(f,7) — A(g.0)||gr+1 — Oas f — gin H'TLR"; V)
and { — nin X* +1/2(R7=1) | This proves continuity assertion, so the result is
proved for r + 1. Proceeding by finite induction, we see that the result holds for
all0 <r <y, as desired. U

We now have the tools needed to prove a version of the w-lemma. Note that we
need to impose higher regularity on the domain of A in order to prove that itis C .

THEOREM 5.20. Let n/2 < s € N, 0 < 6« < 1, be as in the third item of
Proposition 5.18, and V be a real finite-dimensional inner product space. Con-
sider the map A : HSTH(R"™; V) x Byxst1/2@rn—1)(0,8+) — H*(R"; V) given by
A(f.n) = f o &, where &, : R" — R" is as defined in Proposition 5.18. Then
Ais CYand DA(f,n)(g,8) = £(0n f 0 €)){ + g o &,

PROOF. Let f,.g € H*TIY(R"; V) and 1 € Byxs+1/2@gn—1)(0,8%). Let R >0
be such that

BX.y+1/2(Rn—1)(n, R) C BXS+1/2(R)’[—1)(0, 8x)
and consider { € Bys+1/2(gn—1)(7, R). Define the map
(5.69) Ofn: HSPYR™ V) x XSH2RYY) — HSR™ V)

via Qfy(h, ) = $(3n f o €)¥ + h o &,. This is obviously linear, provided that
it is well-defined. It is indeed well-defined and bounded due to Theorem 5.13 and
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TRAVELING WAVES FOR NAVIER-STOKES 2545

Proposition 5.19, which show that
1Q sy (. Dls = (10nf o Eqllusldlxs+1/2 + 1o Eyllms)
5700 < e+ nllxsr2) A+ S Nsen) Wllzs + 19 xs172)
< (U Illxs+12) ™ A+ 1L st (bl gser + 19 xst172).

We next claim that A is differentiable at (f,7) and DA(f,n) = Qfy. Since
s+ 1>14n/2, wehavethat f,g € Cbl(R”; V). Then

A(f+gn+0—Afin)— Qrn(g.0)
_ |:fo(‘3n+§—fo(’3n—%(8nfo(’f,,)§:|+[go(’3,7+§—go(‘fn].

We will handle each term on the right in turn. For the first we use the fundamental
theorem of calculus to write

1
(5.72) fo@,,H—foQE,,—%(anfoc‘i,,)f - %E/O [0n f 0@y 1z —Bn f 0 €yld1.

Using Theorem 5.13, this allows us to estimate

fo@ur—f o€~ o c’sn)z‘

(5.71)

(5.73) i

1
< clielixrena [ 100f 0 €pig = © €l
0
and since ) + t{ € Bys+1/2(0, 8x), Proposition 5.19 guarantees that

o® —fol, —%2( o s
(5.74) i [fo€yie—fo€ —30nfoC)lln _0
(g,5)—0 lgllgs+1 + ISl xs+1/2

Similarly, we can again use the fundamental theorem of calculus, Theorem 5.13,
and Proposition 5.19 to see that

et (!
g o€t —go&yllas = H?[ Ing o €pyp dt
0 Hs

1
< clilysrn [ 10ng © gl dr

(5.75)
1
=< C||§||Xs+l/2 ||g||Hs+1 ](; (1 + ||77 + T§||Xs+l/2)s+1 dt
<c(14+8) T Nl xs+12 18l s+,
and hence
o — oo s
(5.76) g o€yt —go&llas _

i
@00 lIgllms+r + [l xs+1/2
Combining these then completes the proof of the claim.
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2546 G. LEONI AND I. TICE

To show that A is C! it remains only to prove that the map
(5.77) DA : H**Y(R"; V) X Bys+1/2(gn—1y(0, 84)
N £(Hs+l(Rn; V) % XS+1/2(Rn_1); Hs(Rn, V))

is continuous. We compute

Y

DA(f.m(h.?) = DA(g.)(h. D) = == (0nf o€y —dnf oC)

(5.78) 5
+‘% (Onf —0ng) o € + (ho €y —ho E).

Again using Theorem 5.13 and Proposition 5.19 we may estimate

v
| 0 0 &=t o)
HS
< cl| xs+1/2[0n f 0 €y — In f o E¢|lms.

¥
H%(anf—ang)o@;‘
HS

< cll¥llxs+12(0+ 18l xs+172) 0 f — Ingllars
and (also using the fundamental theorem of calculus)
[ho&;—hoClgs

|

< cln=Clixs+1r2

-0 [
PO [ o € dr

HS

1
| oo €rane di

HS

(5.79) 1
< el —Ellgssre /0 10k © €1yt (1o e di

1
fC||7]_§”Xs+l/2”8nh”Hs[) (U Nl = (=08 xsr12) ' di

< c(1 480" In=Cllxs+172 ol prs+1
Hence, we may bound the operator norm via

(5.80)
IDA(f.n) — DA(g. Dl

<c(l9nf o€ —anfoClus +If —glgstr +lIn=LElxs12).

and the continuity of DA then follows from this estimate and Proposition 5.19.

Thus A is CL.

Our final result gives another version of the w-lemma for the original flattening

map given in (1.18).
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TRAVELING WAVES FOR NAVIER-STOKES 2547

COROLLARY 5.21. Letn/2 < s € N, 0 < 8« < 1, be as in the third item of
Proposition 5.18, and V be a real finite-dimensional inner product space. For
n € XST/2(R"1) define Sn 1 Q — Qpqp asin (1.18). Then the following hold:

(1) The map
Ag : H* T R™ V) x Byst1/2@n—1)(0,8x) = H*(Q: V)

defined via Aq(f,n) = f o Fy is well-defined and C, with

DAQ(f:m)(g.8) = 50 f o)t +8 0 F-
(2) The map
Gp : HSP2(R™; V) x Bystaaq@n—1y(0.84) — HTV2(2y: V)

given by &p(f,n) = f o Fplx, is well-defined and C*, with

D fin)(&.8) = (5 @nf 0T +g0Fy)| -

PROOF. Let €, : R" — R” be as in Proposition 5.18. By construction, we
have that §; equals the restriction of &; to 2. Then Aq = Rgq o A, where A
is as in Theorem 5.20 and Rg : HS(R"; V) — H®(2; V) is the bounded linear
restriction map Rog = g|q. Theorem 5.20 shows that A is C!, and Rgq is linear,
and hence smooth, so Ag is C! by the chain rule. This proves the first item, and
the second follows from the first (applied with s + 1 in place of s) and the fact that
the trace operator from H*+t1(Q2; V) to H*+t1/2(,: V) is bounded and linear, and
hence smooth. O

6 The y-Stokes Equations with Traveling Gravity-Capillary
Boundary Conditions

In this section we turn our attention to the y-Stokes problem with boundary
conditions that couple the stress tensor to the linearized gravity-capillary operator.
That is, we seek solution triples (u, p, n) to the problem

divS(p,u) —yoiu = f in Q,
©.1) divu =g / in 2,

S(p.u)en —(n—0A'ne, =k, up+ydin=~h onZXy,

u=2~0 on X,

for given data (f, g,h,k) € )*, as defined in (3.13). In order to solve this prob-
lem for data in )’ we will employ the specialized Sobolev spaces X*(R”~!) and
Y ¥ (2) introduced in Section 5.
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2548 G. LEONI AND I. TICE

6.1 Preliminaries

We begin our analysis by studying the mapping defined by the problem (6.1),
with the aim being to find a domain space for the triple (1, p, n) that yields a well-
defined linear map into ). We begin with two crucial lemmas that establish key
properties of some auxiliary functions.

The first lemma studies a function defined in terms of the function m from
(4.37).

LEMMA 6.1. Letn > 2andm : R" xR — C be given by (4.37). Let y € R\{0},
o > 0, and define p : R"™ 1 — C via p(§) = 2wiyéEr + (1 + 4n2|E|%0)m(E, —p).
Then the following hold.:

(1) p is continuous, and it is also smooth when restricted to R*~1 \ {0}.

(2) Rep <0, and Re p(§) = 0 if and only if ¢ = 0. In particular, p(§) = 0 if
and only if ¢ = 0.

(3) p(§) = p(=§) forall § € R"~\.

(4) For o > 0 there exists a constant ¢ = ¢(n, y, 0,b) > 0 such that

Hp®P _ & +1E* _ 1p©P

(6.2) R S R SR for[§] < 1.
and
©3) @R < 14 P < elo®) P for ¢l = 1
(5) For 0 = 0 and n = 2 there exists a constant ¢ = c(y, b) > 0 such that
(64) 1")'(;)2'2 <1+EP < c"’|§)2'2 for |l <1
and
©3) @R < 14 P < elo®)P for ¢l = 1

PROOF. The first item follows from the continuity of m( -, —y) and its smooth-
ness away from the origin, which was proved in Theorem 4.5. Clearly p(0) = 0,
but Re p(§) = (1 + 4n2|€|?0)Rem(£, —y) < O for £ # 0, thanks again to The-
orem 4.5. This proves the second item. The third item follows from the third item
of Theorem 4.5:

p(€) = —2miyér + (1 + 4x2|§)20)m(E, —y)
= 27iyé + (1 + 4n?[EPo)m(=§, —y) = p(—).

We now turn to the proof of the fourth item. According to Theorems 4.7 and
4.10 we have the asymptotic developments

4m?|E12b3
3

(6.6)

(6.7) m(E, —y) = + O(EP) asE —> 0
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TRAVELING WAVES FOR NAVIER-STOKES 2549

and
1 1
(6.8) m(&, —y) = —m + 0 (W) as |&] — oc.
Thus
2161273

o6 = T2 L omivty + 0Py as 0

(6.9) 21012
1+ 4x%|E%o . 1
pé) = T +27iyé + O (W) as || — oo,

and so we we can pick constants ¢ = ¢(n,y,0,b) > 0and R = R(n,y,0,b) > 1
such that (6.2) holds for |§] < 1/R and (6.3) holds for |£| > R. However, on the
compact set {x € R”"! | /R < |£| < R} the quantities in the middle of (6.2) and
(6.3) cannot vanish, nor can |p| by the second item. Hence, the middle and outer
quantities are equivalent on this compact set, and so upon possibly enlarging c, we
conclude that (6.2) holds for |§] < 1 and (6.3) holds for |£| > 1, which completes
the proof of the fourth item. The fifth item follows from a similar argument.  [J

The second lemma studies an auxiliary function defined in terms of Q and V
from (4.37).

LEMMA 6.2. Lety € R, s > 0, and let Q(-,-,—y) : R"1 x [0,b] — C and
V(-,-,=y): R*" 1 x[0,b] — C" be as defined in (4.37). There exists a constant
¢ =c(n,s,y,b) > 0such that if (f,g,h,k) € V°, where V* is the Hilbert space
defined in (3.13), and we define the measurable function ¥ : R"~! — C via

b, . -
O = [ (7Gx VE =)~ 86 1) QCxm, 7))
—k(®) - VED~y) +h).

then

_1 2 2\s+3/2 2
d d
fyon RO EE [ g P s

< cl(fog h)3s.

Moreover, the function  satisfies ¥ (€) = ¥ (—£) for every £ € R" ™1,

(6.10)

PROOF. For || < 1 we regroup the sum defining V¥ via
b -~ —_—_— —_—
= ’n'V,n,_ -g s AR s AR T -1 d}’l
v© = [ (7€ 00 V& =) — 86 00) (0E ¥ 71~ 1)) dx

I b
— k() - V(b —y) + (h(S)—/O §(€,xn)dxn)
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2550 G. LEONI AND I. TICE

and then apply the Cauchy-Schwarz inequality and square to arrive at the estimate

b b
2 _ 2 2 2
@) _4(/0 1€ x| ds) (/0 V(E x| ds)
b b
(6.11) +4</0 |§(s,xn>|2ds) (/0 |Q<s,xn,—y)—1|2ds)

. ~ b 2
AR®PIVE b )P + 4'h(s> - [ 2w,

Using the continuity of V' and Q, as proved in Theorem 4.5, together with the
asymptotic developments as £ — 0 from Theorem 4.7, we find that there exists a
constant ¢ = c¢(n, b, y) > 0 such that

sup

b
w (/0 (|V<s,xn,—y>|2+|Q<s,xn,—y>—1|2)dxn
(6.12) =

b
B
+ |V(s,b,—y)|2) <c.

On the other hand, from the definition of H ! (see (1.61)) we have that

2 b
dt < [h - /0 g(-,xn>dxn}

Combining these and employing the Tonelli and Parseval theorems, we deduce that
[ e
B [§?
b ) .
= c//(o 1)/0 (lf(g’xn)l + |g(§’xn)| )dxn dé

R b
(©14) vef k@Pdg+e {h - g(-’wd%}
B'(0,1) 0

b
=< C(Ilflliz +lglzs + IkIZ- + Hh —/0 g+, xn)dxn

< cll(frg. h )3

2
1

(6.13) —
B [

R b
i) - /0 8 (. xn)dxn

H-1

2

H-!

2
H—l)

for another constant ¢ = c¢(n, y, b) > 0.
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TRAVELING WAVES FOR NAVIER-STOKES 2551

For || > 1 we don’t regroup but use Cauchy-Schwarz again to bound

b b
2 - n 2 _)2
v (©) _4(/0 €l ds) ([0 V(E X —7)] ds)
6.15 b b
12 +4(/0 |§(s,xn)|2ds) ([0 |Q<s,xn,—y)|2ds)

+ 4k E)PIVE b, —y) 2 + 4h(E)%.

From Theorem 4.10, Corollary 4.11, and the continuity of V', we deduce that there
is a constant ¢ = c(n, b, y) > 0 such that

b
(1 + [62)¥2 /0 V&, 30, =) don

6.16 b
(010 L |é|2)1/2f0 0. X —1)|2 dx

+ A+ EDIVED - <c

for all £ € R"!. Combining these, and again using the Tonelli and Parseval
theorems, as well as Corollary A.7, we deduce that

/ (1 + [EP) 2|y @) de
B’(0,1)¢
b
2NS| 7 2
<[ [ a+EPrIfEmPasan,

b
‘f‘C/(; An_l(l+|$|2)s+1|§(%~’xn)|2d§_dxn
+/ (1 + |$—|2)S+1/2|]’€\(5)|2dé§
Rnr—1

6.17) .
[ ARG ds

b
< ¢ [ UGt sy

b
+e /0 18 Cxm) 251 oty o+ ko + s

< c (1 s + Nglsrr + Wkl zrsqiro + 1213 043/2)
< cll(fig. h )3
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2552 G. LEONI AND I. TICE

Then (6.10) follows by summing (6.14) and (6.17). To conclude we use Lemma
A.2 and the third item of Theorem 4.5 to compute

(6.18)

b
V() = A7n'V»ns_ _A7n » Ay T dxp
7© = [ (7€ V& 50 =) FE Q5. —)) dv

— k@ VED -y +hE)

b, - -

= [ (&) VEm =)~ 26 5) Q%7 i
—k(=§) - V(=£.0.~) + h(=5)

=¥ (=f)
O

With these lemmas in hand, we now turn to the question of defining the domain
of the map determined by (6.1). For s > 0 we define the space

X5 = {(M, ?, T]) c OHS+2(Q;RII) % YS+1(Q) % XS+5/2(R}1—1)

(6.19)
| p—ne HTH(Q).

where here the condition p — n € H*T1(Q) is understood in the sense of the def-
inition of the space Y11 (Q) from (5.34) and is well-defined due to the inclusion
XsH5/2Rr=1) ¢ xS+t(R”1) from Theorem 5.6. We endow X** with the norm
1, pom)llxes = Nullygs+2 + I pllys+1 + [0l xs+s2 + P = nll gs+1. Itis a sim-
ple matter to verify that X'* is a Banach space. Moreover, we have the following
embedding result:

PROPOSITION 6.3. Let X' be defined by (6.19) and suppose s > n/2. Then we
have the continuous inclusion

6200 x° < 2l qirmy x o2 (@) x et R,
where le and Cé‘ are defined in Section 1.6. Moreover, if (u, p,n) € X°, then
lim 0%(x) = 0 forall « € N" such that || <2+ |s —n/2|, and

|x/|—>00
lim 0%p(x) = O0forall @ € N" such that |a| < 1+ |s —n/2].
|x/|—00
PROOF. This follows from the usual Sobolev embedding, the third item of The-
orem 5.11, and the fifth item of Theorem 5.6. |

The next result shows that the map (u, p,n) — (f, g, h, k) defined by (6.1) is
well-defined from X5 to )S.

LEMMA 6.4. Let s > 0 and suppose that (u, p,n) € X*, where X’ is the Banach
space defined by (6.19). Define f : Q@ - R", g : Q > R, h: X — R, and
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TRAVELING WAVES FOR NAVIER-STOKES 2553

k:3p - R"via f = divS(p,u) — yoiu, g = divu, h = u, + yo1n, and
k = S(p,u)e, — (n —oA'n)ey. Then (f, g, h,k) € V5, where V* is the Hilbert
space defined in (3.13), and there exists a constant ¢ = c(L2, s, y,0) > 0 such that
(6.22) (/g h.k)llys < cll@u, p,n)llas.

PROOF. Theorem 5.11 shows that V : YSt1(Q) — H5(Q;R") is a bounded
linear map, so according to (1.11) we have that f € HS(Q;R") and || f|lgs <
cllullyms+2 + cllplysr. Clearly, g € H**(Q) and ||g]gs+1 < cllullygs+a-
Then Theorem 3.1 shows that we have the inclusion

b
un(-,b>—/ ¢ xn)dxn € B!
0

and
b
(623 un-.0) = [ eComdu | = clule
0 H?l
Theorem 5.6 shows that the linear maps 9, : XS1t3/2(%,) — HSt3/2(Z,) n

H™Y(Zp) and A’ : X515/2(%,) — HSY/2(%,) are bounded. These and stan-
dard trace theory then show that we have the inclusions

b
he HT3%(x,) and h—/ g(+,xp)dx, € H!,
0

and that we have the bounds ||h| gs+3/2 < c||ull,gs+2 + clIn|l xs+s/2 and

b
[h - /0 g(-,xn)dan_l

(6.24) b
= |:un(',b)_/0 g(',xn)dxn:| + [yoinl g

H-!
<clnllxs+s2 +cllull 2.

Finally, we again use the above, the inclusion p —n € HSt1(Q), and trace
theory to see that k € H5T1/2(X;: R") and

el rs+172 = 1o = nlls+1r2¢s,) + 10A D gs+1/2(3,)

(6.25) + ||]D)u||Hs+1/z(Eb)
< cllp = nllas+i@) + clinllixs+srz + cllully s+
Synthesizing these shows that ( f, g, h, k) € V* and that (6.22) holds. g

Fory € R\ {0},0 > 0,s > 0, and X* and )° the Banach spaces defined by
(6.19) and (3.13), respectively, we define the operator Y 5 : X* — )* via

Yyo(u, p.n) = (divS(p,u) — ydu, divu, uu|s, + yoin.

(6.26) ,
S(p.u)enls, — (1 —oA'n)ey).
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2554 G. LEONI AND I. TICE

This is well-defined and bounded by virtue of Lemma 6.4. The map Y, ; is injec-
tive, as we now prove.

PROPOSITION 6.5. Assume that y € R\ {0}, 0 > 0, s > 0, and let X° and )*
be the Banach spaces defined by (6.19) and (3.13), respectively. Then the bounded
linear operator Y5 : X° — V° defined by (6.26) is injective.

PROOF. Suppose that (4, p,n) € X* and Y, »(u, p,n) = 0, which is equiva-
lent to the problem

divS(p,u) —ydiu =0 in Q,
divu =0 in 2,
627) ivu , in
S(p,u)e, = (n—aA'ne,, up+ydin=0 on Xy,
u=20 on Xo.

Since s > 0, when we apply the horizontal Fourier transform we find from the
Tonelli and Parseval theorems that #(£,-) € H?((0,b); C") for almost every £ €
R”~!. We also know from Proposition 5.10 that p(£,-) € H'((0,5); C) for almost
every £ € R"~!. Furthermore, Lemma 5.4 shows that

(6.28) fe LY®R™Y) + L2R™ (1 + |£)2)6H5/D/1248),

We may thus apply the horizontal Fourier transform to (6.27) to deduce that for
almost every £ € R"1 the pair w := #(£,-), ¢ := p(£,-) satisfies (4.2) with
F =0,G =0,and K = (1+472|£|?0)7(£)en, and that ii,, (£, b)+2mi y£17(§) =
0. Fix one of these almost every £ € R”~! \ {0}. Using (4.3) from Proposition 4.1
with v = w, we find that

b
[ —p2miEr|w|? 4 20pwn|? + |0 w’ 4 27mi Ew,|?
0

6.29 1
(6.29) +§|2ms®w’+w/®2ms|2

= —(1 + 472[E[0)7(§)in (§,b) = 2miyEr(1 + 4 [E20)[7()) .

Taking the real part of this expression then shows that d,w, = 0 and that d,w’ +
2niéw, = 01in (0, ), but w(0) = 0, so w = 01in [0, b]. Since w = 0 and & # 0,
the first equation in (4.2) then shows that ¢ = 0 in [0, 5], but then the fifth equation
in (4.2) requires that 0 = ¢(b) — 20, w,(b) = K, = (1 + 472|€|?0)7(£), and
we find that 7(§) = 0. We have thus proved that for almost every £ € R"~! we
have that #(§,-) = 0, p(§,-) = 0, and 7j(§) = 0, which then implies that u = 0,
p = 0, and n = 0 and hence that T, ; is injective. O

6.2 Solvability of (6.1) when o > 0

We are now ready to completely characterize the solvability of (6.1) for data
belonging to )* in the case of positive surface tension, i.e., ¢ > 0.
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TRAVELING WAVES FOR NAVIER-STOKES 2555

THEOREM 6.6. Assume thaty € R\ {0}, 0 > 0, s > 0, and let X and )* be the
Banach spaces defined by (6.19) and (3.13), respectively. Then the bounded linear
operator Yy 5 : X° — YV* defined by (6.26) is an isomorphism.

PROOF. Proposition 6.5 established that the map T, is injective, so we must
only prove that it is surjective. Fix (f.g,h.k) € Y5 let ¢ : R"™1 — C be
defined in terms of (f, g, h,k) as in Lemma 6.2, and consider p : R*~! — C
given by p(€§) = 27wiyE; + (1 4 472|€|?0)m (&) as in Lemma 6.1. Lemma 6.1
tells us that p(£) = 0 if and only if £ = 0, so we may define 7 : R”~! — C via
(&) = ¥ (§)/p(§) for § # 0 and 7(0) = 0. Note that 7)(§) = 7(—§) due to the
corresponding properties of p and ¥/, as established in Lemmas 6.1 and 6.2. Then
from Lemmas 6.1 and 6.2 we find a constant ¢ = ¢(n, y, b, s, ) > 0 such that

2 4
/ L e as + / (1+ [E2)°F5217() | dg
B’(0,1) &1 B’(0,1)¢

p@F
d
< [y e 1AOR d

ny / (1 + [E2)+32)p(6) 217(e) | d
B’(0,1)¢

s

(6.30)

1 2
— d
< C/B«o,n FELAIKE

b PP de
B’(0,1)¢
< el (f.g.h ) B

Consequently, we may define = ()Y € X*T3/2(R"~1); the above estimate then

says that [|n]| ys+s/2 < c[[(f. & h. k)| ys.
Next we recall from (4.37) that m (&) = V, (&, b). Using this and the definitions

of p and v, we rearrange the identity p7) = ¥ to find that

b -~ e — ——
0= /0 (f (& xn) - VE Xn,—7) — 85, x0) O(E, Xn, —))dn
631) — (k&) + (1 + 472 |EP0)ii(§)en) - VIE b, —y) + h(E)
—2miyEA(E)

for £ € R"~!\ {0}. From the third equation in (4.38) from Theorem 4.5 we know
that 2wi& - V/(E, xn, —y) + 0,V (E,xn,—y) = 0. Since V(£,0,—y) = 0, this
allows us to compute

b b
632) VaE.b—) = / 0V & Xms ) dotn = [ 2i€- V&, 3mr—7)dxn.
0 0
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2556 G. LEONI AND I. TICE

Combining (6.31) and (6.32), we deduce that
b ~
= [ (7.5~ Crigi.0)

V(& xn, —y) — 8(E. xn) Q(§, Xn, —y))doxn
(6.33)

— (k(®) + 47| Poii(€)en) - V(E.b.—y) + h(E)

—2miy£1n(§).

Since n € X +5/ 2(R™~1), Theorem 5.6 guarantees that we have the inclusions
(—=V'n,0) € HT3/2(Q;R") € H¥(Q:R™),
(6.34) Ay e Hs+1/2(Rn—1)’
817] c Hs+3/2(Rn_1) N H_I(Rn_l).

Therefore, f — (V'n,0) € HS(Q:R"), g € Hs+1(8'2) h—ydin e HST32(3y),
k—oA'ne, € HS‘H/Z(EI, R"), and (h— )/817]) fo g(-, xp)dx, € HL(R" D).
We have that V’n(é) = 2mién(€) and oA/n(é) = —472|£)?07(£), so the iden-
tity (6.33) and Proposition 4.12 imply that the modified data quadruple (f —
(V'n,0),g,h—ydin, k —oA'ney) satisfies the compatibility condition (3.11) and
hence belongs to the Hilbert space Z°, as defined in (3.15). Thus, we may apply
Theorem 3.4 to find a unique pair u € o H*+2(Q;R”) and g € H5T1(Q) solving

divS(q,u) —ydu = f —(V'n,0) inQ,
divu =g in 2,
(6.35) S(g,u)en, =k —oA'ney on Xy,
up =h—yon on Xp,
u=2~0 on Xo.

Since S(q,u) = g1 —Du and div S(q,u) = —Au — Vdivu + Vg, we may then
define p = g + n € Y*T1(Q) and deduce that (u, p, n) € X'’ satisfies

divS(p,u) —yoiu=f in 2,
divu =g in 2,
(6.36) S(p,u)e, — (n—oA'n)e, =k on Xy,
up +yoin=nh on Xp,
u=20 on Xy.

Hence Y, 5 (u, p,n) = (f. g, h, k), and we conclude that T, is an isomorphism.
O
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TRAVELING WAVES FOR NAVIER-STOKES 2557

6.3 Solvability of (6.1) wheno =0andn = 2

We now turn our attention to the solvability of (6.1) in the case without surface
tension, i.e., 0 = 0. Due to technical obstructions, we must restrict to the dimen-
sion n = 2. In this case, for s > 0 Proposition 5.2 and Remark 5.8 imply that the
Banach space X* defined by (6.19) satisfies the algebraic identity

(6.37) XS = oH'T2(2;R?) x HSTH(Q) x HSP5/2(R)
and that we have the norm equivalence

(6.38) 1Ge, pomllaes = Nully sz + NP lEs+1 + [0l gs+sr2

for (4, p,n) € X®. In particular, this means that in this case X" possesses an
equivalent Hilbert topology.
The following characterizes the solvability of (6.1) when o = 0 and n = 2.

THEOREM 6.7. Assume thatn = 2,y € R\{0}, 0 =0, s > 0, and let X and V*
be the Banach spaces defined by (6.19) and (3.13), respectively. Then the bounded
linear operator Yy o : X° — Y* defined by (6.26) is an isomorphism.

PROOF. Again, we know from Proposition 6.5 that Y, o is injective, so we must
only establish surjectivity.

Fix (f,g,h,k) € Y5, let ¥ : R — C be defined in terms of (f, g,h, k) as
in Lemma 6.2, and consider p : R — C given by p(§) = 2wiyE + m(€) as in
Lemma 6.1 with 0 = 0. Arguing as in the proof of Theorem 6.6, we may define
n:R — CvianE) = ¢(E)/p) for & # 0 and 7(0) = 0, and we have that
7(§) = 7(—&). Moreover, thanks to Lemmas 6.1 and 6.2 there exists a constant
¢ = c¢(y,b,s) > 0 such that

/ (1 + [EP)AE) 2 dt + / (1 + [ER 523 P de
B’(0,1) B’(0,1)¢

p®F
< d
e, e @R

C/ (1 + €12 T3/2|p(®)[217(E) | d&
B’(0,1)¢

(6.39)

1 2
< — d
_C/B/(O,l) |§|2|¢(E)| :

+c[ (1 + [P +¥2 [y (@) de
B’(0,1)¢

< cll(f.g.h 3.

Consequently, we may define = (7)Y € HSt%/2(R) = X5+5/2(R) (recall that
the latter identity was established in Proposition 5.2); the above estimate then says
that ]l xs+s2 < c[[(f g, h, k)llys.
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2558 G. LEONI AND I. TICE

Next we argue as in the proof of Theorem 6.6 to see that

b ~ e — e —
0= [0 (F(&.x2) - VE 52, —7) — 8(6. x2) O 32, 7)) dxa
— (k&) + A(®)ea) - VE. b, —y) + h(E) — 2miyEi(%)

for £ € R\ {0}, and that we have the inclusions
h—ydine HP2(Sy), k+nex € HSTV2(2:R?),

(6.40)

b .
(h— ydun) — /0 ¢ x2)dxs € H\(R),

These and Proposition 4.12 imply that the modified data quadruple (f, g,h —
yo1n, k + ney) satisfies the compatibility condition (3.11) and hence belongs to
the Hilbert space Z%, as defined in (3.15). Thus, we may apply Theorem 3.4 to find
a unique pair u € g H5T2(Q:;R?) and p € H5T1(Q) solving

divS(p,u) —you = f inQQ,
divu =g in §2,
(6.41) S(p,u)e, =k + ney on Xp,
uz =h—yon on Xp,
u=2~0 on Xo.

Hence Yy, 0(u, p,n) = (f.g.h, k), and we conclude that Y, o is an isomorphism.
O

7 Nonlinear Analysis

In this section we prove Theorems 1.1, 1.2, and 1.3. The latter two are conse-
quences of the first and the mapping properties of the flattening diffeomorphism §
defined by (1.18). As such, the crux of the matter is to prove the first theorem and
study §. We prove Theorem 1.1 with the help of the implicit function theorem and
the isomorphisms of Theorems 6.6 and 6.7. In order to apply the implicit function
theorem, we must first establish the smoothness of various maps.

7.1 Preliminaries

We now turn our attention to proving some preliminary results needed to define
the nonlinear maps associated to (1.22). The first such result is a simple quantitative
L bound for functions in X*(R”~1).

LEMMA 7.1. If s > (n—1)/2, then there is a constant § = §(n, s, b) > 0 such that
ifne XSR™ 1Y) and |n|xs < §, then ||77||C1()) <b/2.

PROOF. This follows immediately from the fifth item of Theorem 5.6. U

Our next result is a nonlinear analogue of Theorem 3.1.
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TRAVELING WAVES FOR NAVIER-STOKES 2559

PROPOSITION 7.2. Suppose u € oH(Q;R") and n € Bxs(0,8) C X*(R"™1)
fors > (n—1)/2and let § > 0 be the constant from Lemma 7.1. Let J, A, and N'
be defined in terms of n as in (1.20), (1.21), and (1.15). Then

b
u-Nx',b)— / J(X', xp) divgu(x’, xp)dxp
(7.1) 0

b ’
= —div/(/ J(x/,xn).AT(x’,xn)u(x/,xn)dxn) .
0

In particular, u-N (-, b)—f: J(-, xp)divqu(-, xp)dx, € H-Y(R"™Y), and there
exists a constant ¢ = c¢(n, b) > 0 such that

b
(7.2) [M-N(-,b)—/ J(-,xn)diVAu(-,xn)dxn} < c|[J AllLoollull >
0

H-1

PROOF. Letp € C(R""!)andlet ¢ € Cc°°(§) be defined by ¢ (x) = ¢(x').
The definition of J and A imply that J Ae,, = N on X} and Z;;l 0j(JA;j) =0
in Q for each 1 < i < n, the latter of which implies that J div 4 u = div(J ATu).
Using these, we then compute

/JdiVAmp:/ diV(JATu)¢=/ —JATM-V¢+/ JATu - e, ¢
Q Q Q b
(7.3) :/ —(JATu)’-V’(p—i-/ JATU - e

Q i

:[ —(JATu)/-V/(p-l—/ u-Neg.
Q p

On the other hand, Fubini’s theorem allows us to compute

b
(7.4) / J div 4 ug =[ go(x/)/ J(x' xp) divau(x’, xp)dx, dx'
Q R#—1 0
and

/ (JATu) - Ve

(1.5) @ .

= / Vp(x) / J(xX x)AT(xX, xp)u(x’, xp)dxp, dx’'.
Rr—1 0

Combining these, rearranging, and using the arbitrariness of ¢ then proves (7.1).
Then (7.2) follows directly from applying the Fourier transform to (7.1) and using
the bound

2

b
(7.6) / J(xX', xp) AT (X, xp)u(x’, xp)dxy,
0

dx' < b T AP [ P,
Rnr—1 Q

which follows from the Cauchy-Schwarz inequality and Tonelli’s theorem. O
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2560 G. LEONI AND I. TICE

Our final preliminary results show that the map we will use in the implicit func-
tion theorem is well-defined and C!. In stating this result we recall that the A-
based differential operators are defined in (1.23)—(1.25).

THEOREM 7.3. Let s > n/2, 0 > 0, and X° be as defined in (6.19). For § > 0
define the open set

(7.7 Ui ={(u,p.n) € X° | |Inllxs+s2 <8} C X°.
There is a constant § = §(n, s, b) > 0 such that if for
(7.8) y €R, T e HSTV2R"L R and (u, p, 1) € Uj,

wedefine f :Q—>R", g: Q>R h:3p >R andk : 3 — R" via

f=@—vye1) Vau+divaSa(p,u), g =Jdivau,
h=u-N+ydn, and k = (pI —D )N — (n—cHN))N — STN,

where J, A, N, and H are defined in terms of n as in (1.20), (1.21), (1.15), and
(1.5), respectively, and Sy, is as in Lemma A.11, then (f, g, h, k) € V°, where )*°
is the Hilbert space defined in (3.13). Moreover, the map

(7.9) Rx HSTV2R"™LRDM) x US 5 (p, Tou, pn) = (f,g.hk) € VS

sym

is smooth.

PROOF. Let § > 0 denote the minimum of the constant from Lemma 7.1,
b/(2¢) where c is the constant from Theorem 5.16, and the ball size from The-
orem A.12 (withr = s + 3/2 and d = n — 1) divided by the embedding constant
from (5.27).

To begin we note that thanks to the second item of Theorem 5.11 and Theorem
5.16, the maps 'y, I : Bxr(0,6) x H"(Q) — H"(Q) given by I'1(n, ¢¥) =
% and Tr(n,¥) = bann are well-defined and smooth for all » > n/2. From
this, (1.23)—(1.25), Theorem 5.6, Theorem 5.12, and standard trace theory we then
deduce that the map

R x o HST2(Q:R") x Bys+5/2(0,8) 3 (y,u,n)
(Dau, divaDau, (u — yer) - Vau, J divau, Dau|s, N uls, - N + ydin)
€ H*TH(QiRE) x H*(Q:R") x H*(Q:R")

x HS(Q) x HSTY2(,: R x HS13/2(5)

is well-defined and smooth. Similarly, the smoothness of I'1, I', Theorem 5.11,
the inclusion p — n € HST1(Q), the fact that H*+t1/2(R"~1) is an algebra, and
standard trace theory imply that the map

UP s (u.p.n) > (Vap.(p = n)ls,N) € HS(Q:R") x HSYV/2(5,: R")
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TRAVELING WAVES FOR NAVIER-STOKES 2561

is well-defined and smooth. Theorem 5.6 and Theorem A.12 imply that the map

V/
Bys+5,2(0,8) 2 n— oH(n) = o div/ (_’I) e HST1/2@Rr 1)

V14V

is well-defined and smooth as well. Finally, Theorem 5.6, Lemma A.11, and the
fact that H5T1/2(R"~1) is an algebra imply that the map
HSTV2RPLRI) X Byots2(0.8) 3 (Ton) = (S,TIN € HSTV2(2:R™)
is also well-defined and smooth.

Arguing as above, we also have that the maps

F : oHST2(Q:R") x Bys+5/2(0,8) — H*+T3/2(R"1) and
G : oH T2(Q:R") x Bys+52(0,8) — HST3/2(R"1, R"1)
given by

b
Fu,n (") =u-N(x',b) —[ J(xX', xp) divg u(x’, x,)dxp
0
and
b /
Gu,n(x") = (/ J(x/,xn).AT(x,sXn)“(xl,xn)dxn)
0

are well-defined and smooth. Proposition 7.2 tells us that
b
—ydin+h —/ g(-,xp)dx, = Fu,n) = —div'G(u,n) € H-Y(R"™).
0

Moreover, for any k € N we have DK F(u, ) = —div' D¥G(u, n), from which
we readily deduce that the map

(7.10) R x o H*T2(Q;R") X Bys+52(0,8) 3 (y,u,n) —

b
0

is well-defined and smooth.
Synthesizing all of the above then shows that the map

. T.ou,p.n) = (f.g.h.k) €)*
is well-defined and smooth. O
We also need a variant of this result.

PROPOSITION 7.4. Letn/2 < s € N and 8« > 0 be as in Proposition 5.18. Then
the map
HP2R™ R X Bysts/2gn-1)(0.84) 3 (T.1)

= (T o Bylz, )N € H T2 (Zh:R7),
where N is defined in terms of n via (1.15), is well-defined and C'.

(7.11)
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2562 G. LEONI AND I. TICE

PROOF. This follows by combining Theorems 5.6 and Corollary 5.21 with the
fact that H5T1/2(X,) is an algebra. O

7.2 Solvability of (1.22): proof of Theorem 1.1
We have now developed all of the tools needed to solve (1.22).
PROOF OF THEOREM 1.1. We first consider the case 0 > 0 and n > 2. Let

8 > 0 be the smaller of §(n,s,b) > 0 from Theorem 7.3 and §« > 0 from Propo-
sition 5.18. Define the open set

Us = {(u, p.n) € X° | |[nllxs+s2 < 8} C X”.

Proposition 6.3 and the standard Sobolev embeddings show that any open subset
of U SS containing (0, 0, 0) satisfies the assertions of the first item.
Define the Hilbert space

S =R x Hs+2(Rn’Rls1y>r<1:l) % Hs+1/2(Rn_1;R?y¥
% HS+1(Rn;Rn) % HS(RH_I;Rn).
Corollary 5.21, Theorem 7.3, Proposition 7.4, and Lemma A.10 then tell us that
the map & : &° x Ug — )* given by
Ew.T.T.f, fiu.p.n)
= ((u—ye1) - Vau +diva Sa(p.u) —foFy — Lo f.

Jdivgu,u- N+ yon,

(pI =D )N — (= o HMIN — (T 0 Fyls, + SpTIN).
where &y, J, A, N, and H are defined in terms of 7 as in (1.18), (1.20), (1.21),
(1.15), and (1.5), respectively, Lq is the linear map from Lemma A.10, and S}, is

the linear map from Lemma A.11, is C!. Due to the product structure £ x U 5> WE
may define the derivatives of & with respect to the first and second factors via

DB : & xU; — L(£°:Y°) and D1EB : % x Uy — L(X*;)°).

Note that Corollary 5.21 shows that for &5(7,1) = T o §y|x, and Aq(f,n) =
f o 5 we have that D,S(0,0) = 0 and DA (0,0) = 0. Thus, forany y € R
we have that E(y,0,0,0,0,0,0,0) = (0,0,0,0) and

D> E(y,0,0,0,0,0,0,0)(u, p,n)
= (div S(p,u) — yoiu,divu,u, + yo1n, S(p.u)e, — (n — oA'n)ey)
for all (u, p,n) € X*. In other words,
D2E(y,0,0,0,0,0,0,0) = Yy,5 € L(X*; D7),

where Y, ; is as defined in (6.26). Thus, for every yx # 0 Theorem 6.6 guarantees
that D, E(y%,0,0,0,0,0,0,0) is an isomorphism. The implicit function theorem
(see, for instance, theorem 2.5.7 in [9]) then provides us with open sets U (yx) C £°
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TRAVELING WAVES FOR NAVIER-STOKES 2563

and O(yx) € Uy such that (yx,0,0,0,0) € U(yx) and (0,0,0) € O(yx), and a
C! and Lipschitz map @y, : U(ys) — O(ys) C Uy such that

EW.T.T.§. f oy (y. T.T.. /) = (0,0,0,0)

for all (y, 7T, T,f, f) € U(yx). Moreover, the implicit function theorem also im-
plies that the triple (u, p,n) = @y, (v, T, T.§, f) € O(y«) is the unique solution
to E(y, T, T.,f, fu, p,n) = (0,0,0,0) in O(yx).

Define the open sets

wW= |J Uyodce ad 0°= [J 0@ cUj.
y«€R\{0} y«€R\{0}
By construction we have that (R \ {0}) x {0} x {0} x {0} x {0} C U", which is the
second item.
Using the above, we may then define the map w : U* — OF via

o, T.T.5. f) = @p. (v, T, T.5, f)

when (y, T, T, f, f) € U(yx) for some ys € R\ {0}. This is well-defined, C !, and
locally Lipschitz by the above analysis. The third and fourth items then follow by
setting (u, p,n) = w(y,T,T,f, f) for (v, T.T,§, f) € U°.

The result is now proved for 0 > 0 and n > 2. The proof when n = 2 and
o = 0 is identical except that we use Theorem 6.7 and the isomorphism Y, o in
place of Theorem 6.6. Moreover, in this case we know from (6.37) that X* =
OHS+2(Q;R2) % Hs-f-l(Q) % HS+5/2(R). 0

7.3 Solvability of (1.14): proofs of Theorems 1.2 and 1.3

We have all the tools needed to prove Theorems 1.2 and 1.3. We present these
proofs now.

PROOF OF THEOREM 1.2. Suppose that
neXSH2®R1 ye OHS+2(Qb+,,;R"), and g € Ys+1(Qb+,7)
are nontrivial solutions to (1.14) with 7 = 0 and § = 0. Further suppose that
(7.12) Illgms+2 + llgllys+r + Inllxs+s2 + llg = nllgs+1 < R

for some 0 < R < § to be chosen, where § = §(n,s,b) = 8(n,b) > 0isasin
Lemma 7.1. In particular, this means that || n||C£ <b/2.

Defineu =vog:Q > R"and p = goF: Q2 — R for § defined in terms of
n as in (1.18). Then (u, p, n) solves (1.22) with f = 0and T = 0. Since s € N
and s > n/2, Theorem 5.17 guarantees that (u, p,n) € X* and

(713)  Mully sz + | Pllyser + nllxs+s2 + 12 = nllgs+1 < ¢, AR,

where r + c¢(n, r) is nondecreasing.
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2564 G. LEONI AND I. TICE

Let U(y) and O(y) be the open sets constructed in the previous subsection in
the proof of Theorem 1.1. That proof shows that

(i1, p, ) = (0,0,0) = @, (y,0,0,0,0) € O(y)

is the unique solution to E(y,0,0,0,0,u, p,n) = (0,0,0,0) in O(y). Let Ry > 0
be such that Bys((0,0,0), Rg) € O(y). From (7.13) we know that if R < r for r
small enough (in terms of n), then ¢(n, R)R < Ry, and hence (u, p,n) = (0,0, 0),
which contradicts the fact that (v, g, ) is nontrivial. Thus (7.12) cannot hold for
R <r. [l

PROOF OF THEOREM 1.3. Let U* and OF be the open sets from Theorem 1.1,
and let w : U* — O° be as in the proof of Theorem 1.1 above. Then (u, p,n) =
@ (y,T,T.f, f) solves (1.30) for every (y,7T,T,f, f) € U°. We also know that
for this data we have | 7|| cp = b/2, and so Theorem 5.17 implies that the maps §,
and S;l are C3+1577/2] diffeomorphisms.

Fix (y. T.T.f. f) € US and set (u, p.n) = w (. T.T.§. ), v =uoF,", and
g=po 5;1. Theorems 5.11, 5.17, and the usual Sobolev embeddings then imply
that

= OHS+2(Qb+n; Rn) N Cb2+|_s—"/2J (Qb-i-n; Rn)
and
1+s—n/2
q € Y (Qpi) N CHET Q).

Note that since (3;1 (x))" = x’, we have that

(Fo Sy + Laf)o, (x) = f(x)+ f(x') = f(x) + Loty f(x) forall x € 2p.4.

and, similarly, (7 o §p + SpT) o S;1|Eh+n = Tlsy4y + Sp+nT. Then since
(u, p,n) solve (1.30) we have that (v, g, n) solve (1.35), and this completes the
proof of the first two items. The third item follows from the fact that @ is locally
Lipschitz. U

Appendix: Analysis Tools
In this appendix we record various analytic tools used throughout the paper.
A.1 A computation
Here we record the proof of the assertion made at the end of Section 1.1.

PROPOSITION A.l. Suppose that n € H3/2(R"=YY is bounded and Lipschitz with
infgn—1 71 > —b. Further suppose that v € H2(9b+,,;R") N L2 (Qp1y: R"),
q € H' (Qpsn), | € LA Qpgn:R"), and T € HY2(Spyy: RIX) solve (1.6).
Then

1
(A.1) / fov— Tv-v :/ —|Dv|?.
Qp+n Zptn Qyin 2
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TRAVELING WAVES FOR NAVIER-STOKES 2565
PROOF. First note that the first and fourth equations of (1.6) can be rewritten as
(A2) f=(v—ye1) - Vv—Av + Vg =div(S(q,v) + v ® (v —ye1)) in Qp 4,

and

(A3) 0=v-N+ypdin=(v—ye1)- N =@w—yer)-vy1+|Vn?onZpy.

We then take the dot product of (A.2) with v, integrate by parts over £25 ., (which
is possible since 7 is Lipschitz, so 2, enjoys a trace operator), and use the fact
that v = 0 on X to deduce that

/ f-v:[ v-div(S(q,v) + v ® (v — yer))
Qp+n Qp+n
=/ —Vv:(S(g,v)+v® (v —yer))
Qp+n
+ [ S@v+ve -y
b+n

Note that the second term in the last €2, integral and the second term in the
Yp4p integral are well-defined since v is bounded. We will compute each of the
four terms on the right in turn.

For the first term we use the fact that div v = 0 to compute

1
/ —Vv:S(q,v)=/ Vv:]D)v—qdivv=/ §|]D)v|2.
Qptn Qp4n Qp4n

For the second we integrate by parts again and use the equations divv = 0 in
Qpyy, v ="00n o, and (A.3) to compute

/ —Vv:iv® (v—yer)
Qp+n

2
v

=]' —VQ}-w—ya)

Qp+n

2 2
=/ ﬁdiV(v—yel)—/ ﬁ(v—yel)-v =0.
Qb-‘,—n 2 Eb-‘rn 2

For the third term we use the third equation of (1.14) to compute

/ S(q,v)v-v:/ m—cHm)W-v+Tv- v,
Zptn Zp+n
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but by (A.3) and an integration by parts
[ a=ommy-v
Zptn

=/ —ydin(n—oH(n) =
Rn—l

V'n ,
=—V/ NN + 0 ——————=-V'017
R7—1 V1+|Vn2

1
_ —yf i (—|n|2 +o(f1+ [V — 1)) _o,
R7—1 2

/ S(g,v)v-v = Tv-wv.
Zptn Zptn

Finally, for the fourth term we again use (A.3) to compute

/ v®(v—yel)v-v=/ |v|?(v — yer) -v = 0.
Zp4n

Ethn

SO

Combining these computations and rearranging then yields (A.1). g

A.2 Fourier transform

In the following lemma we will need to make use of the reflection operator
defined as follows. For f : R — C we define Rf : R? — C via Rf(x) =

S (=x).
LEMMA A.2. The following hold:

(1) Let | € L2(R4:C). Then f is real-valued; i.e., f = f if and only if
f=Rf.

(2) The Fourier transform is a bijection from the real-valued Schwartz functions
(feSRY| f=[two{fesRY)| [ =Rf)

(3) Recall that for a tempered distribution T € ./ "(RY) we define the conjugate
and reflected distributions T, RT € &' (R?%) via (T, ) = (T, V), and
(RT,y) = (T, RY) for each ¥ € S(RY). Then T € 7' (R?) is real-
valued, i.e., T = T, if and only iff — RT.

PROOF. These follow from standard properties of the Fourier transform. U

A.3 Poincaré and Korn inequalities
The following version of the Poincaré inequality will be useful.

LEMMA A.3 (Poincaré inequality). Suppose that ¢ : R"~1 — (0, 00) is bounded
and lower semicontinuous. Then

2 _ 12 2
[RIGE Iy
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TRAVELING WAVES FOR NAVIER-STOKES 2567

forevery f € Hl(Qg) such that f = 0 on g. Consequently, on

{(f € H' (Q) | [ =00nZo},
themap f — ||V f ||L2(Q§) defines a norm equivalent to the standard H' norm.

PROOF. Theorem 13.19 in [63] asserts this result for functions that also vanish
on X¢, but the proof works also for functions only vanishing on X. g

We record here a version of Korn’s inequality for the space o H'(Q;R"). A
proof may be found, for instance, in lemma 2.7 of [21].

LEMMA A.4 (Korn’s inequality). There exists a constant ¢ = c¢(n,b) > 0 such
that ||u|| g1 < c|Dul|p2 for allu € o H'(2; R").

A.4 Sobolev spaces

We record here some basic results about standard Sobolev spaces. Although
these are well-known, we include quick proofs for the benefit of the reader. We be-
gin with a lemma that relates Sobolev norms of functions in €2 to those of extension
functions on all of R”.

LEMMA A5. Lets >0,n>2,and { € C:’I(R”_l) be such that inf ¢ > 0. Then
the following hold.:

(1) There exists a linear map E, mapping the measurable functions on ¢ to the
measurable functions on R", such that Ef = f almost everywhere in Q¢,
and for every 0 < t < s the restriction of E to H'(Q ¢) defines a bounded
linear operator with values in H' (R™). Moreover, there exists a constant
¢ =c(n,s,§) > O0such that |[Ef ||gr@wnry < cllf |gi(@q) forall0 <t <
and f € H'(Q).

(2) A measurable function f : Q¢ — R belongs to H*(S2¢) if and only if there
exists F € H*(R") such that f = F almost everywhere in Q¢. Moreover,
there exists a constant ¢ = ¢(n, s, ) > 0 such that

1 . .
Z”f”HS(SZ;) <inf{[|Fllgs@n) | F = f ae inQ} <c|fllas@y
for every measurable f : Q¢ — R.

PROOF. Let s < m € N. The Stein extension theorem (see, for instance, the-
orem VL5 in [85]) provides a linear extension operator E from the space of mea-
surable functions on 2 to the space of measurable functions on R” such that
Ef = f almost everywhere on Q¢ for each measurable f : Q¢ — R and with
the additional property that the restriction of E to H*(Q ¢) is a bounded linear
operator into H*(R") for every 0 < k < m. Standard interpolation theory (see,
for instance, [24,63, 94]) then shows that E is bounded from H*(2¢) to H*(R")
as well. This proves the first item.

auie)) Aq 78022 edo/Z001°01/10p/wiox Kot Aeaqriautjuoy/:sdny woxy papeoumod ‘01 ‘€20T ‘TIE0L60T

QATU[) UO[[] 15

auruQ Ao “Ansi

UONIpUOD) PuE SWIRL, 31 338 “[€207/01/4T) U0 Axeiqry

JO s3[n1 J0§ AIRIQIT QUIUQ A3[IAY UO (SUONIPUOI-PUB-SWLIAYWOY K3[1m* KIeIqI[aur[uoy/:sdny) st

P VO fasn

1

Qe §9)

28UQDIT suowwo)) aAnear) a[qesridde ayy Aq pausoros



2568 G. LEONI AND I. TICE

Suppose now that f : Q; — R is measurable, and consider Ef : R” — R. If
f € H*(R"), then by the firstitem Ef € HS(R") and

inf{[| F[|gsrny | F = fae.inQ¢} < [Ef|gs@n)
<N Ellcs@:rs@my LS 15520
On the other hand, the intrinsic version of the H*(£2¢) norm shows that
I f s e < el Fllas®m

whenever F € H*(R") and F = f a.e. in Q¢, so if there exists such an F we
deduce that f € H¥(Q¢) with || f[|gs < cinf{|| F||gs@n) | F = f a.e.in Q¢}.
To conclude we simply chain together the bounds. U

The second lemma provides an equivalent “slicing norm” on the space H*(R").

LEMMA A.6. Lets > 0 and n > 2. Then there exists a constant ¢ = c(n,s) > 0
such that

1
N We = 1 Baumrs iy + 1 s orany < € Vs

forall f € . (R") such that f e L1 (R™), where

loc

1 Boasan-i = [, 17C 50 s sy
and

1 B zzqanmiy = [, + P 1T S O a4

and in the latter equation F,, denotes the Fourier transform with respect to the n™
variable.

PROOF. Let ~ denote the usual Fourier transform on R” and F’ denote the
Fourier transform with respect to thAe first n — 1 variables. Write £ € R” as
£ = (&,71) € R xR. Then f(§) = F'Fof(f,1) = FoF f(£, 1) for
f € .'(R™"), and the stated equivalence can be seen by applying Parseval’s theo-
rem. =

We also record a useful corollary.

COROLLARY A.7. Let s > 0 and n > 2. Then there exists a constant ¢ =
c(n,s,b) > 0 such that

b
L NIC oy o = LS Wigngay Sorall £ € HE@),
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TRAVELING WAVES FOR NAVIER-STOKES 2569

PROOF. Let Ef € H®(R") be the Stein extension of f defined in Lemma A.5.
From Lemma A.6 we may then bound

b
LG oy dn = [ IEFC 50 By sy

< N EF 12 = Il f 150, O

Next we record a pair of product estimates. The first is phrased for functions
defined in sets of the form 2.

LEMMA AS8. Let ¢ € Cl?’l(Rn_l) be such that inf¢ > 0. Suppose that f €
H?*(Q¢) for s > n/2. Then for each 0 < r < s there exists a constant ¢ =
c. Cllco.r.s.r) > Osuchthat || fglr = cll fllmsllglmr forallg € H"(S2).

PROOF. Define the linear map Ty : Llloc(Q;) — Llloc(QL’) via Trg = fg.
Since s > n/2 we have that H*(£2¢) is an algebra, and hence there exists a constant
¢ = c(n, ||§||C£,1,s,r) > 0 such that |Trgllgs < c| fllusllgllas forallg €

H*(Q2¢). Similarly, since H*(2¢) < CI?(Q;), we have the bound
ITrglle < 1fllcollglzz < cllflasllgle2

forall g € LZ(QE) for a constant ¢ = ¢(n, |[§|| ;0.1,5,7) > 0. From these bounds
b

we deduce that T is a bounded linear operator on L*(Q ¢) and on H®(Q;). By
standard interpolation theory (see, for instance, [24,63,94]) we then have that T
is a bounded linear operator on H"(2¢) for all 0 < r < s and that the operator
norm is bounded above by c|| f || grs fora constant ¢ = ¢(n, [|{[| 0.1, 5,7) > 0. The
stated estimate follows. b ]

The second is a full-space product estimate, which can be proved similarly to
Lemma A.8.

LEMMA A.9. Suppose that n/2 < s € R. Then for 0 < r < s there exists
a constant ¢ = c(r,s) > 0 such that || fg|llgr < cllflaslgllgr for all f €
H*(R")and g € H"(R").

Finally, we record two results about the boundedness of simple lifting operators.
The first deals with sets of the form 2.

LEMMA A.10. Let ¢ € C}?’I(R"_l) be such that inf ¢ > 0. For0 < s € R the map
Lq, : HS(R""1;R") — H*(Q¢;R") defined by Lg, f(x) = f(x') is bounded

and linear.

PROOF. The assertion is trivial for s € N, and the general case follows from
these special cases and interpolation theory (see, for instance, [24, 63, 94]). O

The second deals with the flat surface X,.
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2570 G. LEONI AND I. TICE

LEMMA A.l1l. Let 0 < s € R. Define the map Sp : HS(R* ;R

sym

H*(Zp; R®2™) vig SpT(x',b) = T(x'). Then Sy, is bounded and linear.

sym

PROOF. This follows immediately from the fact that £; > (x/,b) — x’ €
R”~! is a smooth diffeomorphism. O

A.5 A smooth mapping

Here we record an analogue of Theorem 5.16 that is useful in dealing with the
mean-curvature operator.

THEOREM A.12. Let r > d /2. Then there exists a constant 6 = §(d,r) > 0 such
that the map T : Bgr(0,8) — H" (R?;R?) given by

f
()= ———
V1I+1f]
is well-defined and smooth, where Bpr(0,8) C H"(R?;R?) is the open ball of
radius §.

PROOF. Recall that since r > d /2 the standard theory of Sobolev spaces shows
that H” (R?) is an algebra, and so we have the continuous inclusion H” (R?) <
Cl?(Rd). Consequently, we can choose a constant ¢ = c¢(d,r) > 0 such that

lgllcy = cliglar and [lghllar < clglarltllmr for all g,h € H"(RY). In

particular, for f € H"(R?;R%) we have that |||f|2”Hr(Rd) < c||f||12q,(Rd_Rd).
Moreover, in any unital Banach algebra the power series
© k
—1)*(2k)!
2. : 4k) k(v 2) K= 4x)7?
k=0 (k)
converges in the open unit ball and defines a smooth function there. With these

ingredients in hand we may then argue as in the proof of Theorem 5.16 (employing
the unital Banach algebras C l? (R?) and L(H” (R4;R?))) to conclude. U
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