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for the sake of generality. In order to state the equations of motion and describe

the physical features, we must first establish some notation needed to describe the

fluid domain and its boundaries.

We assume throughout the paper that 2 � n 2 N, and we make the standard con-

vention of writing points x 2 R
n as x D .x0; xn/ 2 R

n�1 � R. The fluid domains

of interest to us in this paper are layer-like, with fixed, flat, rigid lower boundaries

and moving upper boundaries. We will assume that the moving upper boundary

can be described by the graph of a function. Given a function � W R
n�1 ! .0; 1/,

we define the set

(1.1) �� D fx D .x0; xn/ 2 R
n j 0 < xn < �.x0/g � R

n;

and we define the � graph surface

(1.2) †� D fx 2 R
n j xn D �.x0/ for some x0 2 R

n�1g:

In particular, with this notation we have that if � is continuous, then the upper

boundary of �� is †� , while the flat lower boundary is †0 D fx 2 R
n j xn D 0g:

With this notation established, we now turn to a description of the equations of

motion for time t � 0. We assume that in quiescent equilibrium with all external

forces and stresses absent, the fluid occupies the flat equilibrium domain

(1.3) �b D fx 2 R
n j 0 < xn < bg

for some equilibrium depth parameter b 2 .0; 1/. We further assume that when

perturbed from its equilibrium state the fluid occupies the moving domain �bC�.�;t/,

where � W R
n�1 � Œ0; 1/ ! .�b; 1/ is the unknown free surface function.

We describe the evolution of the fluid for t � 0 with its velocity field w. � ; t / W

�bC�. � ;t/ ! R
n and its pressure P. � ; t / W �bC�. � ;t/ ! R. We posit that the

fluid is acted upon by five distinct forces, two in the bulk (i.e., in �bC�. � ;t/), and

three on the free surface (i.e., on †bC�. � ;t/). The first bulk force is a uniform

gravitational field pointing down: ��gen 2 R
n, where � > 0 is the constant fluid

density, g > 0 is the gravitational field strength, and en D .0; : : : ; 1/ 2 R
n is the

vertical unit vector. The second bulk force is a generic force described for each

t � 0 by the vector field zf. � ; t / W �bC�. � ;t/ ! R
n. The first surface force is

a constant (in both space and time) external pressure applied by the fluid above

�bC�. � ;t/, which we write as Pext 2 R. The second surface force is generated by

an externally applied stress tensor, which we describe for each t � 0 by a map
�T . � ; t / W †bC�. � ;t/ ! R

n�n
sym , where

(1.4) R
n�n
sym D fM 2 R

n�n j M D M |g

denotes the set of symmetric n � n matrices. Note that symmetry is imposed to

be consistent with the fact that stresses are typically symmetric in continuum me-

chanics, but it is not essential in our results and could be dropped. The third surface

force is the surface tension generated by the surface itself, which we model in the
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standard way as ��H.�/, where � � 0 is the coefficient of surface tension, and

(writing r 0 and div0 for the gradient and divergence in R
n�1)

(1.5) H.�/ D div0

 

r 0�
p

1 C jr 0�j2

!

is the mean-curvature operator.

The equations of motion are then

(1.6)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�.@tw C w � rw/ � ��w C rP D ��gen Czf in �bC�. � ;t/;

div w D 0 in �bC�. � ;t/;

.PI � �Dw/� D ��H.�/� C .PextI C zT /� on †bC�. � ;t/;

@t� D w � �
p

1 C jr 0�j2 on †bC�. � ;t/;

w D 0 on †0;

where � > 0 is the constant fluid density, � > 0 is the fluid viscosity,

(1.7) Dw D .rw/ C .rw/| 2 R
n�n
sym

is the symmetrized gradient of w, and

(1.8) � D
.�r 0�; 1/

p

1 C jr 0�j2
2 R

n

denotes the outward-pointing unit normal to the surface †bC�. � ;t/. The first two

equations in (1.6) are the incompressible Navier-Stokes equations: the first is the

Newtonian balance of forces, and the second enforces mass conservation. The third

equation in (1.6) is called the dynamic boundary condition, and it asserts a balance

of the forces acting on the free surface. The fourth equation in (1.6) is called the

kinematic boundary condition, as it dictates how the surface evolves with the fluid;

note that it may be rewritten as a transport equation in the form

(1.9) @t� C r 0� � w0j†bC�. � ;t/
D wnj†bC�. � ;t/

;

which shows that � is transported by the horizontal component of velocity, w0, and

driven by the vertical component wn. The fifth equation in (1.6) is the usual no-slip

condition enforced at rigid, unmoving boundaries.

It will be convenient to eliminate three of the physical parameters in (1.6). This

may be accomplished in a standard way by dividing by �, rescaling in space and

time, and renaming b; � , and the forcing terms. Doing so, we may assume without

loss of generality that � D � D g D 1.

Given an open set ¿ ¤ U � R
n, a scalar p 2 L2.U /, and a vector field

u 2 H 1.U I R
n/, we define the associated stress tensor

(1.10) S.p; u/ WD pI � Du 2 R
n�n
sym ;

where I denotes the n � n identity and Du is defined as in (1.7). The stress tensor

is of fundamental physical importance, but it also allows us to compactly rewrite
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terms in (1.6). Indeed, the left side of the third equation in (1.6) is S.P; w/�, and

if we extend the divergence to act on tensors in the usual way, then

(1.11) div S.P; w/ D rP � �w � r div w;

so the first equation may be rewritten as

(1.12) @tw C w � rw C div S.P; w/ D �en Czf:

Our focus in this paper is the construction of traveling wave solutions to (1.6),

which are solutions that are stationary (i.e., time-independent) when viewed in an

inertial coordinate system obtained from the Eulerian coordinates of (1.6) through

a Galilean transformation. Clearly, for the stationary condition to hold, the new

coordinate system must be moving at a constant velocity parallel to †0. Up to a

single rigid rotation fixing en, we may assume, without loss of generality, that the

moving coordinate system’s velocity relative to the Eulerian coordinates is 
e1 for

e1 D .1; 0; : : : ; 0/ 2 R
n and 
 2 Rnf0g. Then j
 j > 0 is the speed of the traveling

wave and sgn.
/ determines the direction of travel along the e1-axis.

In the new coordinates the stationary free surface is described by the unknown

� W R
n�1 ! .�b; 1/, which is related to � via �.x0; t / D �.x0 � 
 te1/. We then

posit that

(1.13)
w.x; t/ D v.x � 
 te1/; P.x; t/ D q.x � 
 te1/ C Pext � .xn � b/;

zf.x; t/ D f.x � 
 te1/; and zT .x; t/ D T .x � 
 te1/;

where v W �bC� ! R
n, q W �bC� ! R, f W �bC� ! R

n, and T W †bC� !

R
n�n
sym are the stationary velocity field, (renormalized) pressure, external force, and

external stress, respectively. In the traveling coordinate system the equations for

the unknowns .v; q; �/, given the data f and T , become

(1.14)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.v � 
e1/ � rv � �v C rq D f in �bC�;

div v D 0 in �bC�;

.qI � Dv/N D .� � �H.�//N C T N on †bC�;

�
@1� D v � N on †bC�;

v D 0 on †0;

where here we have written

(1.15) N D .�r 0�; 1/ 2 R
n

for the non-unit normal to †bC�. Note in particular that the renormalization of the

pressure has shifted the gravitational force from the bulk, where it manifested as the

force vector �en, to the free surface, where it is manifested as the term �N on the

right side of the third equations of (1.14). The renormalization has also completely

removed Pext from the equations, which makes it evident that the external pressure

only serves to adjust the dynamic pressure by a constant.
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To provide some context for our result we now consider some of the basic fea-

tures of the system (1.14) under some modest assumptions on the solution. Sup-

pose we have a solution for which � 2 H 5=2.Rn�1/, � is bounded and Lipschitz,

and infRn�1 � > �b. Note that when n 2 f2; 3g the latter two conditions can

be verified via the Sobolev embeddings and a smallness condition on k�kH 5=2 , but

for higher dimensions this is an auxiliary assumption that would need to be verified

through a higher regularity argument, which we ignore for the purposes of the dis-

cussion here. The latter two assumptions on � guarantee that �bC� is well-defined,

open, and connected, and that the surface †bC� is Lipschitz and thus enjoys a

trace theory. We further suppose that v 2 H 2.�bC�I R
n/ \ L1.�bC�I R

n/,

q 2 H 1.�bC�/, f 2 L2.�bC�I R
n/, and T 2 H 1=2.†bC�I R

n�n
sym /; in other

words, we posit that we have a strong solution and that v is bounded. Note again

that the boundedness of v follows from Sobolev embeddings when n 2 f2; 3g but

is an auxiliary assumption for n � 4. Then an elementary computation, which we

record in Proposition A.1 of the appendix, shows that

(1.16)

Z
�bC�

f � v �

Z
†bC�

T � � v D

Z
�bC�

1

2
jDvj2:

This has a clear physical meaning: the right side is the viscous dissipation rate,

and the left side is the power supplied by the external surface stress and bulk force.

These must be in perfect balance for a traveling wave solution to exist.

In particular, if there are no sources of external surface stress and bulk force,

T D 0 and f D 0, then (1.16) requires that Dv D 0 a.e. in �bC�. In turn this

implies (see, for instance, lemma A.4 of [57]) that v.x/ D ´ C Ax for ´ 2 R
n

and A 2 R
n�n such that A| D �A, but since v 2 H 1.�bC�I R

n/ this requires

that v D 0. Plugging this into (1.14) then shows that � D 0 and q D 0. The

upshot of this analysis is that within the functional framework described above,

nontrivial stress or forcing is a necessary condition for the existence of nontrivial

solutions to (1.14). We emphasize, though, that this argument depends crucially

on the assumed Sobolev inclusions and thus does not eliminate the possibility of

nontrivial solutions to (1.14) with T D 0 and f D 0 in other functional frameworks

(e.g., Hölder spaces).

In this paper we identify a Sobolev-based functional framework appropriate for

constructing solutions to (1.14), and we prove that for every nontrivial wave speed

there exists a nonempty open set of forcing and stress data that generate solutions to

(1.14). While the existence of traveling wave solutions to the free boundary incom-

pressible Euler equations (the system (1.6) with � D 0 and the no-slip condition

replaced with no-penetration) is well-known with and without external sources of

stress and forcing (see Section 1.2), to the best of our knowledge this paper is

the first to construct traveling wave solutions to the free boundary incompressible

Navier-Stokes equations. It is important to account for the viscous case because,

while many fluids have small viscosity (or more precisely, the fluid configuration

has large Reynolds number), small does not mean zero, so all fluids experience
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some viscous effects. Developing the viscous theory also opens the possibility

of connecting the viscous and inviscid cases through vanishing viscosity limits,

which could potentially yield insight into the zoo of known inviscid solutions. In

particular, it could lead to a selection mechanism for physically relevant inviscid

solutions.

1.2 Previous work

The problems (1.6) and (1.14) and their variants have attracted enormous atten-

tion in the mathematical literature, making a complete review impossible. We shall

attempt here only a brief survey of those results most closely related to the present

paper, which in particular means that we will focus exclusively on incompressible

fluids in single-layer geometries and neglect the expansive literature on other geo-

metric configurations and on compressible fluids. For more thorough reviews of the

literature we refer to the works of Toland [93], Groves [43], and Strauss [86] for

the inviscid case and Zadrzyńska [109] and Shibata-Shimizu [83] for the viscous

case.

The oldest results in this area concern traveling wave solutions to the free bound-

ary Euler equations, the inviscid analogues of (1.6) and (1.14). In this case it is

possible to posit that the flow is irrotational, a condition that propagates with the

flow. The rigorous construction of the first periodic solutions was completed in 2D

by Nekrasov [72] and Levi–Civita [66]. Large amplitude 2D periodic solutions, in-

cluding those with angle 2�=3 satisfying the Stokes conjecture, were constructed

later by Krasovskiı̆ [61], Keady-Norbury [60], Toland [92], Amick-Toland [17],

Amick-Fraenkel-Toland [16], Plotnikov [80], and McLeod [69]. For more recent

work on Stokes waves, see Plotnikov-Toland [81] and Gravina-Leoni [41, 42] and

the references therein. Solitary nonperiodic solutions in 2D were constructed by

Beale [20].

Progress on the 2D Euler problem with rotation came much more recently, start-

ing with the construction of periodic rotational traveling waves by Constantin-

Strauss [33]. Wahlén [95, 96] then constructed periodic solutions with surface ten-

sion, and Walsh [97–99] built solutions with density stratification and with surface

tension. Hur [51], Groves-Wahlén [45], and Wheeler [102] constructed solitary

traveling waves, and Chen-Walsh-Wheeler [30, 31] recently constructed infinite

depth solitary waves with and without stratification. In these results the only forces

are due to gravity and surface tension. Recent work of Walsh-Bühler-Shatah [100]

and Bühler-Shatah-Walsh-Zeng [28] included effects modeling forcing by wind

above the fluid, and Wheeler [103] studied an applied spatially localized pressure

force.

In 3D much less is known in the inviscid case. Periodic irrotational solutions

without surface tension were constructed by Iooss-Plotnikov [56]. Irrotational soli-

tary waves in 3D with surface tension were first constructed by Groves-Sun [44],

and then by Buffoni-Groves-Sun-Wahlén [26] and Buffoni-Groves-Wahlén [27]

with different techniques.
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There has also been considerable recent progress on the fully dynamic inviscid

and irrotational problem. For the infinite depth problem Wu [105,106] constructed

local solutions in 2D and 3D, showed almost global existence in 2D [107], and

then proved global well-posedness in 3D [108]. Lannes [62] developed a local

well-posedness theory in finite depth in 2D and 3D. In infinite depth Germain-

Masmoudi-Shatah [39, 40] proved global well-posedness with gravity only and

with surface tension only in 3D, Deng-Ionescu-Pausader-Pusateri [34] established

global well-posedness with gravity and surface tension in 3D, and Ionescu-Pusateri

[54, 55] proved global results in 2D with and without surface tension. Wang [101]

produced global solutions in finite depth with gravity but no surface tension. Local

existence in arbitrary dimension with surface tension was studied in a series of pa-

pers by Alazard-Burq-Zuily [11–13]. Alazard-Delort [14, 15] obtained 2D global

solutions with scattering, while Hunter-Ifrim-Tataru [50] and Ifrim-Tataru [52] ob-

tained 2D global solutions in an alternate framework. To the best of our knowl-

edge, the only result for layer geometries without the irrotationality assumption is

by Zhang-Zhang [110], who obtained a local existence result in 3D.

We now turn our attention to the literature associated to the dynamic viscous

problem (1.6) in 3D. In contrast with the inviscid case, irrotationality is not pre-

served along viscous flow, so the challenges of vorticity are inherent to the vis-

cous problem. Beale [21] proved local well-posedness without surface tension and

global well-posedness with surface tension [22], and Beale-Nishida [23] derived

algebraic decay estimates for the latter solutions. Solutions in other functional

frameworks were produced with surface tension by Tani-Tanaka [89], Bae [18], and

Shibata-Shimizu [84] and without surface tension by Abels [6]. Guo-Tice [47, 48]

and Wu [104] proved global well-posedness without surface tension and derived

decay estimates for solutions. Masmoudi-Rousset [67] proved a local-in-time van-

ishing viscosity result with infinite depth. For related work on the linearized

problem and resolvent estimates in various functional settings we refer to Abe-

Shibata [1, 2], Abels [4, 5, 7], Abels-Wiegner [8], and Abe-Yamazaki [3].

Much is also known about periodic solutions to the viscous problem in 3D.

Nishida-Teramoto-Yoshihara [73] constructed global, exponentially decaying so-

lutions with surface tension. Without surface tension, global solutions with a fixed

algebraic decay rate were constructed by Hataya [49] and with almost exponential

decay by Guo-Tice [46]. Tan-Wang [88] established the vanishing surface tension

limit for global solutions. Remond-Tiedrez–Tice [82] proved global existence of

exponentially decaying solutions with generalized bending energies, and Tice [90]

constructed global decaying solutions with and without surface tension for flows

with a gravitational field component parallel to the bottom.

Stationary solutions to 3D viscous problems, which correspond to traveling

waves with zero velocity (
 D 0 in (1.14)), have been constructed in various

settings. Jean [58] and Pileckas [76, 77] constructed solutions with a partially

free boundary, corresponding to a reservoir lying above an infinite channel. Gell-

rich [38] constructed a solution with a completely free boundary and with an
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affine external pressure. Nazarov-Pileckas [70, 71], Pileckas [78], and Pileckas-

Zaleskis [79] built solutions in domains that are layer-like at infinity. Bae-Cho [19]

found stationary solutions for incompressible non-Newtonian fluids.

To the best of our knowledge, there are no results in the literature establishing

the existence of traveling wave solutions to the free boundary problem (1.6) with

nonzero velocity. In fixed domains there are a few results for viscous fluids. In

full space Chae-Dubovskiı̆ [29] constructed a family of traveling wave solutions

to Navier-Stokes, and Freistühler [37] constructed solutions for a Navier-Stokes-

Allen-Cahn system. Kagei-Nishida [59] studied traveling waves bifurcating from

Poiseuille flow in rigid channels. We refer also to Escher-Lienstromberg [36] for

traveling wave solutions to a related thin-film problem.

Our goal in the present paper is to construct traveling wave solutions to (1.6) by

solving (1.14) in the presence of bulk forces f and surface stresses T . A simple

version of the forcing occurs when we take f D 0 and T D 'I for a scalar function

'. In this case 'I can be thought of as a spatially localized external pressure

source translating in space with velocity 
e1 above the fluid. This is a configuration

that has been realized in recent experiments in which a tube blowing air onto the

surface of a viscous fluid is uniformly translated above the surface, resulting in the

observation of traveling waves on the free surface. For details of the experiments,

some numerical simulations, and approximate models we refer to Akylas-Cho-

Diorio-Duncan [32, 35], Masnadi-Duncan [68], and Park-Cho [74, 75].

1.3 Reformulation

A central difficulty in studying (1.14) is that the domain �bC�, on which we

seek to construct the unknowns v and q, is itself unknown since � is unknown. To

bypass this difficulty we follow the usual path of reformulating (1.14) in a fixed

domain, which comes at the price of worsening the nonlinearities. To this end

we reformulate the problem in the equilibrium domain (1.3); in the interest of

notational concision, throughout the rest of the paper we will typically drop the

subscript b and simply write

(1.17) � D �b D R
n�1 � .0; b/:

Given a continuous function � W R
n�1 ! .�b; 1/ we define the flattening map

F W S� ! S�bC� via

(1.18) F.x/ D .x0; xn.1 C �.x0/=b// D x C
xn�.x0/

b
en:

When we need to emphasize the dependence of this map on � we will often write

F� in place of F. By construction we have that F.x0; 0/ D .x0; 0/ and F.x0; b/ D

.x0; b C �.x0//, so Fj†0
D Id†0

and F.†b/ D †bC�. Moreover, F is a bijection

with inverse given by F�1.y/ D .y0; ynb=.b C �.y0/// for y 2 S�bC�: Thus F is a

homeomorphism that inherits the regularity of � in the sense that if � is Lipschitz,

then F is a bi-Lipschitz homeomorphism, and if � 2 C k.Rn�1/, then F is a C k

diffeomorphism.
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Provided that � is differentiable, we may compute and define the following:

(1.19) rF.x/ D

�

I.n�1/�.n�1/ 0.n�1/�1

xnr 0�.x0/=b 1C �.x0/=b

�

;

and so we define the Jacobian and inverse Jacobian J;K W � ! .0;1/ via

(1.20) J D det rF D 1C �=b and K D 1=J D b=.b C �/;

and we define the matrix A W � ! R
n�n via

A.x/ D .rF.x//�|
D

�

I.n�1/�.n�1/ �K.x/xnr 0�.x0/=b

01�.n�1/ K.x/

�

D

�

I.n�1/�.n�1/ �xnr 0�.x0/=.b C �.x0//

01�.n�1/ b=.b C �.x0//

�

:

(1.21)

We now have all of the ingredients needed to reformulate (1.14) in �. We as-

sume that � 2 C 2.Rn�1/ satisfies � > �b and define the functions u W � ! R
n,

p W � ! R, f W � ! R
n, and T W †b ! R

n�n
sym via u D v ı F, p D q ı F,

f D f ı F, and T D T ı F. Then (1.14) is equivalent to the following quasilinear

system in the fixed domain �:

(1.22)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.u � 
e1/ � rAu ��AuC rAp D f in �;

divA u D 0 in �;

.pI � DAu/N D .� � �H.�//N C TN on †b;

u � N C 
@1� D 0 on †b;

u D 0 on †0:

Here we introduce the differential operators rA, divA, and �A with their actions

given via

(1.23)

.rA /i D

n
X

j D1

Aij @j ; divAX D

n
X

i;j D1

Aij @jXi ;

and .�AX/i D

n
X

j D1

n
X

kD1

n
X

mD1

Ajk@k

�

Ajm@mXi

�

for appropriate  and X . We also write

(1.24)

.X � rAu/i D

n
X

j;kD1

XjAjk@kui ;

.DAu/ij D

n
X

kD1

�

Aik@kuj C Ajk@kui

�

; and SA.p; u/ D pI � DAu:

Allowing divA to act on symmetric tensors in the usual way, we arrive at the iden-

tity

(1.25) divA SA.p; u/ D rAp ��Au � rA divA u:
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This allows us to rewrite (1.22) as

(1.26)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.u � 
e1/ � rAu C divA SA.p; u/ D f in �;

divA u D 0 in �;

SA.p; u/N D .� � �H.�//N C TN on †b;

u � N C 
@1� D 0 on †b;

u D 0 on †0:

1.4 Statement of main results

In the inviscid and irrotational case, a typical strategy for producing traveling

wave solutions (see, for instance, [56, 60]) involves a sophisticated change of un-

known that relies on conserved quantities and the irrotationality assumption. In the

resulting reformulated equations, it is then possible to identify a parameter to which

bifurcation and degree theory can be applied to produce a curve of solutions. In

contrast, the viscous problem with forcing does not admit useful conserved quanti-

ties, and irrotationality of the data is not preserved along the flow. As such, we are

forced to analyze (1.14) directly in � after the reformulation (1.22). The domain �

is unbounded, has infinite measure and noncompact boundary, which precludes the

application of many standard tools in the theory of boundary value problems, in-

cluding compactness and Fredholm techniques. The problem (1.22) is quasilinear

but has no variational structure, so we are left with the option of constructing solu-

tions by way of the implicit function theorem. This turns out to be rather delicate

because the underlying spaces are nonstandard.

Our first main theorem establishes the solvability of (1.22) with surface tension

(� > 0) in dimension n � 2 and without surface tension (� D 0) in dimension

n D 2. Before giving the precise statement, a couple of comments on how we treat

the bulk forcing and surface stress data are in order. Our ultimate goal is to solve

(1.14) by way of (1.22), so in the final part of our analysis we will want to have

bulk forcing in (1.22) of the form f ı F�, where F� is the flattening map defined in

terms of � via (1.18), so that when we compose with F�1
� we have bulk forcing f

in the first equation of (1.14).

The minimal assumption on f is that it is defined in the domain �bC�, but this

formulation is inconvenient for our analysis because it requires a priori knowledge

of �, which is one of the unknowns we are solving for in terms of f. We thus

assume that f is a priori defined in a fixed larger set that we can guarantee always

contains �bC�, which without loss of generality (thanks to extension operators),

we can assume is actually all of R
n. This is consistent with the usual physical

understanding that bulk force fields are defined globally, not just within the set

currently occupied by a continuum. Since we employ the implicit function theorem

in our proofs, we then need to show that the map .f; �/ 7! f ı F� is C 1, and it is

well-known (see [53] and references therein) that in the context of standard Sobolev

spaces this requires the domain for f to enjoy one order of regularity more than the
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codomain (i.e., H sC1 for the domain but H s for the codomain), and we prove in

Section 5.4 that this holds in our nonstandard Sobolev context as well.

In some settings it may be advantageous to maintain the minimal regularity for

the bulk force (H s for domain and codomain), and we have identified a special

structural assumption on a bulk force field that allows for this. Indeed, if f 2

H s.Rn�1I R
n/ and we define the bounded linear map L��

W H s.Rn�1I R
n/ !

H s.�� I R
n/ via L��

f .x/ D f .x0/ (see Lemma A.10), then L�b
f ı F�1

� .x/ D

f .x0/ D L�bC�
f .x/. In other words, bulk force fields with no xn dependence are

invariant under composition with F�1
� and thus stay the same as we change from

(1.22) to (1.14). The map f 7! L�b
f is also linear and thus smooth without any

augmentation of regularity in its domain.

In our formulation of the existence result for (1.22) we have thus chosen to in-

corporate both types of forces, taking the right side of the first equation in (1.22)

to be of the form f ı F� C L�b
f for f 2 H sC1.RnI R

n/ and f 2 H s.Rn�1I R
n/.

A similar analysis applies to the surface stresses, and we have chosen to con-

sider stresses in the third equation of (1.22) of the form T ı F�j†b
C SbT for

T 2 H sC2.RnI R
n�n
sym /, T 2 H sC1=2.Rn�1I R

n�n
sym /, and SbT .x0; b/ D T .x0/ (see

Lemma A.11). Here we need to increase the regularity count to s C 2 for T so

that the map .T ; �/ 7! T ı F� is C 1 with values in H sC1.�I R
n�n
sym /, which then

allows us to take a trace to arrive in H sC1=2.†bI R
n�n
sym /. Optimal regularity is

maintained for T , though. Note also that in the following statement we will refer

to the spaces C k
b

, C k
0 , and 0H s.�I R

n/, defined later in Section 1.6, as well as the

nonstandard Sobolev space X s defined in (6.19), which is built from new types of

anisotropic Sobolev spaces XsC5=2.Rn�1/ and Y sC1.�/, as defined in (5.6) and

(5.34), respectively.

THEOREM 1.1 (Proved later in Section 7.2). Suppose that either � > 0 and n � 2

or � D 0 and n D 2. Assume that n=2 < s 2 N, let X s be as defined by (6.19),

and let L� D L�b
be as in Lemma A.10 and Sb be as defined in Lemma A.11.

Then there exist open sets

U
s � .R n f0g/ � H sC2.RnI R

n�n
sym / � H sC1=2.Rn�1I R

n�n
sym /

� H sC1.RnI R
n/ � H s.Rn�1I R

n/
(1.27)

and Os � X s such that the following hold:

(1) .0; 0; 0/ 2 Os , and for every .u; p; �/ 2 Os we have that

(1.28)
u 2 C

2Cbs�n=2c

b
.�I R

n/; p 2 C
1Cbs�n=2c

b
.�/;

� 2 C
3Cbs�n=2c
0 .Rn�1/;

lim
jx0j!1

@˛u.x/ D 0 for all ˛ 2 N
n such that j˛j � 2 C bs � n=2c;

lim
jx0j!1

@˛p.x/ D 0 for all ˛ 2 N
n such that j˛j � 1 C bs � n=2c;

(1.29)
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maxRn�1 j�j � b=2; and if F� W S� ! S�bC� denotes the map from (1.18),

then F� is a bi-Lipschitz homeomorphism and is a C 3Cbs�n=2c diffeomor-

phism.

(2) We have that .R n f0g/ � f0g � f0g � f0g � f0g � U s .

(3) For each .
; T ; T; f; f / 2 Us , there exists a unique .u; p; �/ 2 Os classi-

cally solving

(1.30)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.u � 
e1/ � rAu � �Au C rAp D f ı F� C L�f in �;

divA u D 0 in �;

.pI � DAu/N D .� � �H.�//N C .T ı F�j†b
C SbT /N on †b;

u � N C 
@1� D 0 on †b;

u D 0 on †0:

(4) The map Us 3 .
; T ; T; f; f / 7! .u; p; �/ 2 Os is C 1 and locally Lipschitz.

Note that if n D 2 in Theorem 1.1, then in fact (see Proposition 5.2)

(1.31) Os � X s D 0H sC2.�I R
2/ � H sC1.�/ � H sC5=2.R/;

and so the solutions belong to standard Sobolev spaces. It is only in dimension

n � 3 that we need the specialized spaces XsC5=2.Rn�1/ and Y sC1.�/.

With Theorem 1.1 in hand, we turn our attention back to the original Eulerian

problem (1.14). Recall from the discussion at the end of Section 1.1 that Proposi-

tion A.1 implies that under some mild Sobolev regularity assumptions on solutions,

there cannot exist nontrivial solutions without a nontrivial stress and forcing. When

n D 2, (1.31) shows that our functional framework enforces these mild conditions,

and we conclude that there cannot exist nontrivial solutions

� 2 H sC5=2.R/ with inf
Rn�1

� > �b;

v 2 0H sC2.�bC�I R
2/;

q 2 H sC1.�bC�/

(1.32)

to (1.14) with 1 D n=2 < s 2 N, f D 0, and T D 0. However, when n � 3

the space X s (defined in (6.19)) is built from our specialized Sobolev spaces, and

so Proposition A.1 is inapplicable. Our first result on (1.14) thus addresses the

question of whether traveling wave solutions exist within our functional framework

without stress and forcing when n � 3. In the statement we recall that the spaces

Y s.�� / are defined in (5.34).

THEOREM 1.2 (Proved later in Section 7.3). Suppose that 
 2 R n f0g, � > 0, and

n � 3. Let s D bn=2cC1 2 N. There exists r > 0 such that if � 2 XsC5=2.Rn�1/,

v 2 0H sC2.�bC�I R
n/, and q 2 Y sC1.�bC�/ satisfy q � � 2 H sC1.�bC�/, the
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bound infRn�1 � > �b, and

(1.33)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.v � 
e1/ � rv � �v C rq D 0 in �bC�;

div v D 0 in �bC�;

.qI � Dv/N D .� � �H.�//N on †bC�;

�
@1� D v � N on †bC�;

v D 0 on †0;

then either v D 0, q D 0, and � D 0, or else

(1.34) kvk
0H sC2 C kqkY sC1 C k�kXsC5=2 C kq � �kH sC1 � r:

The upshot of this theorem is that if a nontrivial traveling wave solution .v; q; �/

exists without forcing (i.e., f D 0 and T D 0 in (1.14)), then either the solution

does not belong to the stated function spaces, or else it does but must exist outside

a ball of known radius. In particular, we cannot rule out the possible existence

of large nontrivial unforced solutions in X s , though we do not expect them to

exist. We emphasize that this result implies nothing about the existence of unforced

solutions in other functional frameworks, such as those built from Hölder spaces.

Finally, we turn our attention to the existence of forced solutions to (1.14). Note

that we continue to consider generalized bulk forces of the form fCL�bC�
f where

L�bC�
is as in Lemma A.10, and we consider generalized surface stresses of the

form T j†bC�
C SbC�T , where we write SbC�T .x/ D T .x0/.

THEOREM 1.3 (Proved later in Section 7.3). Suppose that either � > 0 and n � 2

or � D 0 and n D 2. Assume that n=2 < s 2 N, and let U s and Os � X s be the

open sets from Theorem 1.1. Then for each .
; T ; T; f; f / 2 Us there exist:

(i) a free surface function � 2 XsC5=2.Rn�1/\C
3Cbs�n=2c
0 .Rn�1/ satisfying

the bound maxRn�1 j�j � b=2 and such that F�, defined by (1.18), is a bi-

Lipschitz homeomorphism and C 3Cbs�n=2c diffeomorphism,

(ii) a velocity field v 2 0H sC2.�bC�I R
n/ \ C

2Cbs�n=2c

b
.�bC�I R

n/,

(iii) a pressure q 2 Y sC1.�bC�/ \ C
1Cbs�n=2c

b
.�bC�/,

(iv) constants C; R > 0

such that the following hold:

(1) .v; q; �/ classically solves

(1.35)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.v � 
e1/ � rv � �v C rq D f C L�bC�
f in �bC�;

div v D 0 in �bC�;

.qI � Dv/N D .� � �H.�//N C .T j†bC�
C SbC�T /N on †bC�;

�
@1� D v � N on †bC�;

v D 0 on †0:

(2) .v ı F�; q ı F�; �/ 2 Os � X s .
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(3) If .
�; T�; T�; f�; f�/ 2 Us and

(1.36) j
 � 
�j C kT � T�kH sC2 C kT � T�kH sC1=2

C kf � f�kH sC1 C kf � f�kH s < R;

then for the corresponding solution triple .v�; q�; ��/ we have the local Lips-

chitz estimate

k.v ı E�; q ı E�; �/ � .v� ı E��
; q� ı E��

; ��/kX s

� C
�

j
 � 
�j C kT � T�kH sC2 C kT � T�kH sC1=2

C kf � f�kH sC1 C kf � f�kH s

�

:

(1.37)

We conclude with a couple of remarks about Theorem 1.3. First note that the

functional framework requires that � ! 0, F� ! I , v ! 0, and q ! 0 as

jx0j ! 1. This means that our traveling wave solutions correspond to what are

called solitary waves in the inviscid traveling wave literature. Second, note that

solutions with different free surface functions, say � and ��, have velocities and

pressures defined in different domains, �bC� and �bC��
respectively, so there is

no natural way to compare the velocities and pressures with Sobolev norms. In the

local Lipschitz estimate of the third item we have chosen to measure the difference

in velocity and pressure by pulling back to the flattened domain � and using the

X s norm, which we believe is a reasonable metric given how our solutions are con-

structed. Third, note that while we have treated the bulk force and surface stress as

distinct, in some cases it is possible to shift terms from one to the other in the same

way that we shifted the gravitational force from the bulk to the boundary. Indeed, if

f D f0 Cr , then the potential gradient term can be shifted to the boundary by re-

defining the pressure via q 7! q� and the stress via T 7! T � I , which leaves

f0 in place of f in the bulk forcing. The regularity requirements for  are the same,

though: we need  2 H sC2.Rn/ to guarantee that the bulk force term satisfies

r 2 H sC1.RnI R
n/ and the stress term satisfies  I 2 H sC2.RnI R

n�n
sym /.

1.5 Strategy for proof

We now turn to a discussion of our strategy for producing solutions to (1.14) by

way of (1.22). This begins with the observation that for f D 0, T D 0, and any


 2 R, a trivial solution to (1.22) is given by the equilibrium configuration u D 0,

p D 0, � D 0. Linearizing (1.22) around this solution yields the Stokes system

with traveling gravity-capillary boundary conditions:

(1.38)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

divS.p; u/ � 
@1u D f in �;

divu D g in �;

S.p; u/en � .� � ��0�/en D k; un C 
@1� D h on †b;

u D 0 on †0;

where here we recall that the stress tensor S.p; u/ is defined by (1.10) and satisfies

(1.11), and �0 D div0 r 0 D
Pn�1

j D1 @
2
j is the Laplacian on R

n�1. With this in
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hand, we can state our strategy for solving (1.22): prove that (1.38) induces an

isomorphism .u; p; �/ 7! .f; g; h; k/ between appropriate spaces, and use this in

conjunction with the implicit function theorem.

The first key to this strategy is the linear problem (1.38). To better understand

the coupling between �, u, and p in this system, it is instructive to consider what

happens when we view � as given and absorb the � terms into the data. This leads

us to study the overdetermined problem

(1.39)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en D k; un D h on †b;

u D 0 on †0:

The problem (1.39) is overdetermined in the sense that we specify too many,

namely n C 1, boundary conditions on †b , when only n are needed to uniquely

solve the problem. Indeed, as a starting point for understanding (1.39), we first

analyze the Stokes system with stress boundary conditions:

(1.40)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en D k on †b;

u D 0 on †0;

in Section 2 and show that it induces an isomorphism .u; p/ 7! .f; g; k/ between

appropriate L2-based Sobolev spaces (see Theorem 2.6 for the precise statement).

Consequently, when we specify the extra boundary condition un D h on †b in

(1.39), we should not expect solvability in general.

In Section 3 we endeavor to precisely characterize for which data .f; g; h; k/

we can uniquely solve (1.39). If everything were integrable, then a clear necessary

compatibility condition would follow from integrating and applying the divergence

theorem:

(1.41)

Z

�

g D

Z

�

div u D

Z

†b

un D

Z

†b

h:

However, since we’re working in L2-based spaces in the infinite-measure set �,

we cannot guarantee integrability, and so this compatibility condition manifests in

a more subtle way. In Theorem 3.1 we show that the L2 formulation of (1.41) is

that

(1.42) h �

Z b

0

g. � ; xn/dxn 2 PH �1.Rn�1/;

where PH �1.Rn�1/ is the homogeneous Sobolev space of order �1 (see (1.61) for

the definition). In order to see the connection to (1.41) note that if we formally
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rewrite this as

(1.43) 0 D

Z

†b

h �

Z

�

g D

Z

Rn�1

�

h.x0/ �

Z b

0

g.x0; xn/dxn

�

dx0;

then this tells us that the Fourier transform of the function h �
R b

0
g. � ; xn/dxn

vanishes at the origin. The inclusion of this function in PH �1.Rn�1/ does not

require the Fourier transform to vanish at the origin, but it does require that the

Fourier transform is not too large near the origin, which is a sort of weak form

of vanishing at the origin. This behavior has been seen before in the analysis of

viscous surface waves: we refer, for example, to [23, 47, 91].

The divergence structure div S.p; u/ in (1.39) and the appearance of S.p; u/en

on †b suggest that another compatibility condition should hold, but it is more

subtle since we have no information about S.p; u/en on †0. To get our hands on

it, we take a cue from the closed range theorem and identify the formal adjoint of

the overdetermined problem as the underdetermined problem

(1.44)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.q; v/ C 
@1v D f in �;

div v D g in �;

.S.q; v/en/0 D k0 on †b;

v D 0 on †0;

which only imposes n�1 boundary conditions on †b . The compatibility condition

can then be derived by integrating solutions to (1.39) against functions in the kernel

of (1.44). From our theory of the Stokes problem with stress boundary conditions,

developed in Section 2, we know that this kernel can be exactly parametrized by

augmenting (1.44), with f D 0; g D 0; and k0 D 0, with the extra condition

(1.45) S.q; v/en � en D '

for ' belonging to an appropriate Sobolev space. This leads us to Theorem 3.3,

which shows that the data .f; g; h; k/ must satisfy the second compatibility condi-

tion,

(1.46)

Z

�

.f � v � gq/ �

Z

†b

.k � v � h'/ D 0

for all appropriate ', where .v; q/ are in the kernel of (1.44) and satisfy (1.45).

Remarkably, the two necessary compatibility conditions identified in Theorems

3.1 and 3.3 are sufficient as well. We prove this in Theorem 3.4, which establishes

that (1.39) induces an isomorphism into a space of data satisfying the compatibility

conditions.

The formulation of the second compatibility condition (1.46) is hard to work

with directly, so the next step is to reformulate it on the Fourier side and elimi-

nate '. We do this, among other things, in Section 4 by studying the horizontal

Fourier transform of the problem (1.40). This leads to a second-order boundary-

value ODE system on .0; b/ with the horizontal spatial frequency � 2 R
n�1 as a
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parameter. The ODE is not particularly easy to work with, and an interesting fea-

ture of our work with it is that we use the solvability of the PDE (1.40) to deduce

some key information about the ODE, which is backward from the usual approach

of using the ODE to solve the PDE via Fourier synthesis. In Proposition 4.12 we

reformulate (1.46) as

(1.47)

Z b

0

. yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
//dxn

� yk.�/ � V.�; b;�
/C yh.�/ D 0

for almost every � 2 R
n�1, where Q and V are special solutions to the ODE (see

(4.37) for the precise definition), and y� denotes the horizontal Fourier transform.

With the solvability criteria of the overdetermined problem and (1.47) in hand,

we return to (1.38). If a solution .u; p; �/ to (1.38) exists for given data .f; g; h; k/,

then .u; p/ solve the overdetermined problem (1.39) with data .f; g; h�
@1�; kC
.� � ��0�/en/, and so (1.47) requires that

(1.48) �.�/y�.�/ D  .�/ for � 2 R
n�1;

where  ; � W R
n�1 ! C are given by

 .�/ D

Z b

0

�

yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
/
�

dxn

� yk.�/ � V.�; b;�
/C yh.�/;

(1.49)

and

(1.50) �.�/ D 2�i
�1 C .1C 4�2� j�j2/Vn.�; b;�
/:

Here for any 
 2 R, the function Vn. � ; b; 
/ is the symbol associated to the pseu-

dodifferential operator corresponding to the map

(1.51) H s.†b/ 3 ' 7! unj†b
2 H sC1.†b/;

where .u; p/ 2 H sC3=2.�I R
n/ � H sC1=2.�/ solve (1.40) with f D 0, g D 0,

and k D 'en (see Remark 4.6). This can be thought of as a Stokes system ana-

logue of the Neumann-to-Dirichlet operator associated to the scalar Laplacian (see

Remark 4.8), which one might call the normal-stress to normal-Dirichlet opera-

tor. This reveals a remarkable fact: the two boundary conditions for � combine

via the compatibility condition into a single pseudodifferential equation on R
n�1,

�.r=.2�i//� D L , where the symbol of the operator is a synthesis of the symbols

for 
@1, I ���0, and the symbol of the normal-stress to normal-Dirichlet operator.

Clearly, for there to be any hope of solving the pseudodifferential equation

(1.48), we need detailed information about V and Q. We obtain this in Section 4,

where in addition to deriving (1.47), we show that Vn.�; b;�
/ D 0 if and only if

� D 0, and we obtain asymptotic developments of V andQ as � ! 0 and � ! 1.

The latter is particularly tricky as it is predicated on the daunting task of working

out closed-form expressions for V and Q. The asymptotics of V.�; b;�
/ reveal
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(see Lemma 6.1 for a precise statement) that for 
 ¤ 0 we have that �.�/ D 0 if

and only if � D 0 and that

(1.52) j�.�/j2 �

(

�2
1 C j�j4 for j�j � 0;

1C j�j2 for j�j � 1;

if � > 0, while

(1.53) j�.�/j2 �

(

j�j2 for j�j � 0;

1C j�j2 for j�j � 1;

if � D 0 and n D 2. Here the condition 
 ¤ 0 is essential: the asymptotics are

worse near 0 if 
 D 0.

Having derived detailed information about V andQ, we can resume the study of

the pseudodifferential equation (1.48). The first observation is that since � vanishes

exactly at the origin, � is entirely determined via y� D  =�. The second is that

the asymptotics (1.52)–(1.53) dictate the form of the estimates we get for y� when


 ¤ 0: for � > 0 these read
Z

B.0;1/

�2
1 C j�j4

j�j2
jy�.�/j2 d� C

Z

B.0;1/c

.1C j�j2/sC5=2jy�.�/j2 d�

�

Z

B.0;1/

1

j�j2
j .�/j2 d� C

Z

B.0;1/c

.1C j�j2/sC3=2j .�/j2 d�;

(1.54)

while for � D 0 and n D 2 these read
Z

B.0;1/

jy�.�/j2 d� C

Z

B.0;1/c

.1C j�j2/sC5=2jy�.�/j2 d�

�

Z

B.0;1/

1

j�j2
j .�/j2 d� C

Z

B.0;1/c

.1C j�j2/sC3=2j .�/j2 d�:

(1.55)

Fortunately, the asymptotics of V and Q, together with the low frequency bounds

provided by (1.42), allow us to control the right-hand sides of these expressions

(see Lemma 6.2). Unfortunately, while in the case n D 2 the bounds (1.54) and

(1.55) do provide standard H sC5=2.Rn�1/ estimates of �, when n � 3 and � > 0

the bound (1.54) does not provide standard Sobolev control due to the poor low

frequency control. In this case it’s not immediately clear that the resulting � will

be regular enough to use in the nonlinear analysis of (1.22) or, much less, even

define a function. We are thus forced to build specialized Sobolev spaces based on

the left side of (1.54) and to study their properties.

To the best of our knowledge, the specialized Sobolev spaces defined via (1.54)

have not been studied previously in the literature, so we turn our attention to their

properties in Section 5. In order for these spaces (and in turn the estimate (1.54))

to be useful, they must satisfy three mandates. The first is that the objects in these

spaces must be actual functions and not just tempered distributions or equivalence

classes of functions modulo polynomials. The source of this mandate is clear: the

� determined by the pseudodifferential equation (1.48), and thus satisfying (1.54),
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is meant to serve as the free surface function whose graph determines the fluid

domain. The second is that these spaces must have useful properties such as good

embedding and mapping properties. In particular, as s is made large we need to

guarantee at the very least that the functions in these spaces are continuous and

decay at infinity. Third, the spaces have to be well-suited for the nonlinear analysis

needed to invoke the implicit function theorem. For this we need good product-type

estimates and composition estimates.

Remarkably, these spaces, which we call Xs.Rn�1/ in Section 5, satisfy the

above three mandates. We show in Proposition 5.2 that Xs.R/ D H s.R/, so

when n D 2 these spaces are actually the standard L2-Sobolev spaces. However,

when d � 2 we prove that H s.Rd / � Xs.Rd /, so the new spaces are strictly

bigger than the standard spaces. The Fourier multiplier defining Xs.Rd / for d � 2

is anisotropic at low frequencies, with a special role played by the e1 direction,

which is the direction of motion of the traveling wave. We prove that this induces a

strong anisotropy in the space, which manifests itself in the space not being closed

under composition with rigid rotations (see Remark 5.3). In addition to the spaces

Xs.Rn�1/, in Section 5 we also define and derive the basic properties of the spaces

Y s.�/ D H s.�/CXs.Rn�1/, where here by abuse of notation we view functions

in Xs.Rn�1/ as being defined in � in the obvious way. We need these spaces due

to a complication with the pressure that we will describe below.

The importance of 
 ¤ 0 here is worth emphasizing. It is precisely this condi-

tion that yields the asymptotics (1.52)–(1.53) and in turn guarantees the inclusion

� 2 Xs.Rn�1/. Without it we would only get inclusion in a space for which we

could not guarantee the three mandates, and in particular in which we could not

guarantee the objects in the space were actual functions. This all highlights the

interesting fact that our technique is capable of producing genuine traveling wave

solutions with 
 ¤ 0 but is incapable of producing stationary solutions with 
 D 0.

Armed with the spaces Xs.Rn�1/ and Y s.�/ and our analysis of (1.40), we

characterize the solvability of (1.38) in Section 6. To do so we first define two

Banach spaces for s � 0. The first, X s defined in (6.19), is built from the spe-

cialized spaces Xs.Rn�1/ and Y s.�/, and is the container space for the solutions:

.u; p; �/ 2 X s . The second, Ys defined in (3.13), is the container space for the

data: .f; g; h; k/ 2 Ys . This space contains the data space used for the overdeter-

mined isomorphism (see Theorem 3.4). We prove that (1.38) induces an isomor-

phism from X s to Ys for each s � 0 when 
 ¤ 0. This is proved in Theorem 6.6

when � > 0 and in Theorem 6.7 when � D 0 and n D 2.

The reason the dimension plays a role without surface tension (i.e., � D 0)

can be seen by examining �, the symbol of the pseudodifferential operator given

in (1.50). When n D 2 we can take advantage of the fact that 
@1 is an elliptic

operator with symbol 2�i
�1 D 2�i
� in R to get the asymptotics listed in (1.53)

for j�j � 1. However, when n � 3 the operator 
@1 is not elliptic on R
n�1, and

since � D 0, the asymptotics of Vn.�; b; �
/ derived in Theorems 4.7 and 4.10
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only yield

(1.56) j�.�/j2 �

(

�2
1 C j�j4 for j�j � 0;

1 C �2
1 for j�j � 1:

This induces a second, high-frequency anisotropy in the analogue of (1.54). Our

linear techniques can readily extend to this case through the definition of another

further specialized scale of spaces beyond Xs.Rn�1/. Unfortunately, the spaces

defined in this manner do not meet the second or third mandates described above,

and we are unable to use them to solve the nonlinear problem (1.22). As such, we

have declined to record this extension of our linear analysis in the present paper.

The space Y s.�/ appears in these isomorphisms to handle an issue with the

pressure. Indeed, our proofs show that for .u; p; �/ solving (1.38) for the data

.f; g; h; k/ 2 Ys , we have the inclusions p 2 Y sC1.�/, � 2 XsC5=2.Rn�1/,

and p � � 2 H sC1.�/. Thus, while the pressure is in the nonstandard space

Y sC1.�/ D H sC1.�/ C XsC1.Rn�1/, we characterize precisely the source of

this abnormality: p D � C q for q in the standard space H sC1.�/. From this we

see that the the source of low-frequency bad behavior in the pressure is identified

as exactly the bad behavior of � at low frequencies, and so if it happens that � is

actually well-behaved at low frequencies, p must be as well.

We now arrive at the second key to our strategy: the spaces X s and Ys are

amenable to nonlinear analysis. While the isomorphisms associated to the lin-

earized system (1.38) are interesting in their own right, they are useless in the study

of (1.22) if we cannot prove that the nonlinear map from X s (or really an open sub-

set thereof) to Ys defined by (1.22) is C 1. The first difficulty is seen immediately

upon examining the requirements of the space Ys , which in particular require that

the linearized compatibility condition (1.41) holds. This clearly does not hold for

the g and h defined by (1.22). However, in Proposition 7.2 we identity a nonlinear

variant of (1.41) that allows us to switch to an equivalent formulation of (1.22) for

which the linear compatibility condition holds. This allows us to show that the map

defined by this slight reformulation of (1.22) is indeed well-defined from X s to Ys .

Then the special nonlinear properties of the spaces Xs.Rn�1/ and Y s.�/ allow us

to prove in Theorem 7.3 that this map is indeed C 1. Upon combining these tools,

we can then prove the main theorems.

Remark 1.4. An obvious alternate strategy for attacking (1.38), at least for small 
 ,

is to employ a technique used in many of the references on the viscous problem

from Section 1.2, which proceeds as follows. First we would develop the well-

posedness of the linear Stokes system with Navier boundary conditions:

(1.57)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

.S.p; u/en/0 D k0; un D h on †b;

u D 0 on †0:
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Then we would use this to define a map .v; q; �/ 7! .u; p/ for .u; p/ solving (1.57)

with data f; g; h � 
@1�; k0, and then we would solve for � via the elliptic problem

(1.58) � � ��0� D S.p; u/en � en C kn D p � 2@nun C kn on †b:

We would then seek to show that the map .v; q; �/ 7! .u; p; �/ is contractive on

some space.

Unfortunately, this strategy encounters a serious technical obstruction: while the

elliptic system (1.57) provides control of rp, it fails to provide control of p itself.

In a bounded domain this can be easily dealt with by simply forcing p to have zero

average, which gives control of p via a Poincaré inequality, but this technique is

unavailable in the unbounded domain �. Without control of p, the best we can

hope for is that the pressure belongs to a homogeneous Sobolev space, in which

case solving (1.58) presents a problem due to the appearance of the trace of p

onto †b . This is indeed a serious problem: in recent work [64] we extended an

earlier 2D result due to Strichartz [87] and proved that the trace space associated

to homogeneous Sobolev spaces on � is not a standard Sobolev space, and so not

only is the elliptic theory for (1.58) unavailable in the literature, it has no hope of

producing an � amenable to the necessary nonlinear analysis.

1.6 Notational conventions

Here we record some notational conventions used throughout the paper. We

always write 2 � n 2 N for the dimension of the fluid domain �. We will also

need to talk about function spaces defined on other sets, and in particular on subsets

of @�. To avoid confusion and tedious appearances of n�1, we will often describe

these other sets as subsets of R
d for 1 � d 2 N. In other words d � 1 is a generic

dimensional parameter, and n � 2 always refers to the dimension of the fluid.

We write S .Rd / for the usual Schwartz class of complex-valued functions and

S 0.Rd / for the space of tempered distributions. We define the Fourier transformy�

and inverse Fourier transform L�, on R
d , via

(1.59) yf .�/ D

Z
Rd

f .x/e�2�ix�� dx and Lf .x/ D

Z
Rd

f .�/e2�ix��d�:

By employing the Parseval and Tonelli-Fubini theorems, we extend (1.59) to hori-

zontal Fourier transforms acting on functions defined on � via

(1.60)

yf .�; xn/ D

Z
Rn�1

f .x0; xn/e�2�ix0
��dx0 for � 2 R

n�1;

Lf .x/ D Lf .x0; xn/ D

Z
Rn�1

f .�; xn/e2�ix0
�� d�:

For k 2 N, an open set ¿ ¤ U � R
d , and a finite-dimensional inner prod-

uct space W , we define the usual L2-Sobolev space H k.U I W / D ff W U !
W j @˛f 2 L2.U I W / for j˛j � kg, where @˛ denotes distributional derivatives.

For 0 � s 2 R we then let H s.U I W / denote the fractional spaces obtained by

interpolation. In the event that U D R
d we take the norm on these spaces to be the
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standard one defined on the Fourier side, and we also extend to s 2 .�1; 0/ � R

in the usual way. When the target is W D R we will usually drop this in the no-

tation, writing simply H s.U /. For 0 < r 2 R we define the real-valued negative

homogeneous Sobolev space to be

(1.61)

PH �r.Rd / D
˚

f 2 S .Rd / j f D xf ; yf 2 L1
loc.R

d / and Œf � PH �r < 1
�

for Œf �2PH �r
D

Z

Rd

1

j�j2r
j yf .�/j2 d�:

Suppose now that � W R
n�1 ! R is Lipschitz and satisfies inf � > 0. For 1=2 <

s 2 R we can use trace theory to define 0H s.�� I R
n/ D fu 2 H s.�� I R

n/ j u D
0 on †0g; where the equality u D 0 on †0 is in the sense of traces. We will mostly

employ these spaces in the case �� D � (i.e., � D b), in which case we will need

the following extra definitions. Recall that the symmetrized gradient D is defined

by (1.7). We endow 0H 1.�I R
n/ with the inner product

(1.62) .u; v/
0H 1 D

1

2

Z

�

Du W Dv;

which, thanks to Korn’s inequality (see Lemma A.4), is indeed an inner product

and generates the same topology as the standard H 1 norm. We define the closed

subspace of solenoidal vector fields to be

(1.63) 0H 1
� .�I R

n/ D fu 2 0H 1.�I R
n/ j div u D 0g:

Then 0H 1
� .�I R

n/ is a Hilbert space with the same inner product. In what follows

we will often use the fact that by the symmetry of Du,

(1.64)

Z

�

Du W rv D
1

2

Z

�

Du W Dv

for all u; v 2 H 1.�I R
n/.

Given k 2 N, a real Banach space V , and an open set ¿ ¤ U � R
d , we define

the Banach space

(1.65) C k
b .U I V / D ff W U ! V j

f is k-times continuously differentiable and kf kC k

b

< 1g;

where kf kC k

b

D
P

j˛j�k supx2U k@˛f .x/kV . When V D R we will typically

write C k
b

.U / D C k
b

.U I R/. We also define C k
0 .Rd I V / � C k

b
.Rd I V / to be the

closed subspace

(1.66) C k
0 .Rd I V / D

˚

f 2 C k
b .Rd I V / j lim

jxj!1
@˛f .x/ D 0 for all j˛j � k

�

;

which we endow with the norm from C k
b

.Rd I V /. Again we will typically write

C k
0 .Rd / D C k

0 .Rd I R/. We also write C 1
0 .Rd I V / D

T1
kD0 C k

0 .Rd I V /.

Finally, we introduce a convenient abuse of notation that we will use throughout

the paper. The hyperplane †b D fx 2 R
n j xn D bg is canonically diffeomorphic
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to R
n�1 via the map †b 3 .x0; b/ 7! x0 2 R

n�1. Using this, we can identify

H s.†bI W / with H s.Rn�1I W / for any finite-dimensional inner product space

W . This abuse of notation is justified by a gain in brevity, as it allows us to write

f .x0/ in place of f .x0; b/ for x0 2 R
n�1, etc. It also allows us to use the Fourier

transform on †b in a natural way.

1.7 Plan of the paper

In Section 2 we study the Stokes problem with stress boundary conditions (1.40)

and characterize its solvability in standard L2-based Sobolev spaces. In Section 3

we study the overdetermined problem (1.39), derive its compatibility conditions,

and characterize its solvability in Sobolev spaces. In Section 4 we turn our at-

tention to an ODE associated to the horizontal Fourier transform of the problem

(1.40). We study some special solutions to this ODE and derive their asymptotic

developments. In Section 5 we study some specialized Sobolev spaces. Section 6

concerns the analysis of the linearized problem (1.38). We characterize its solv-

ability in terms of the specialized spaces from Section 5. In Section 7 we employ

nonlinear analysis to prove all of the main theorems. The appendix contains some

analysis tools used throughout the paper.

2 The 
-Stokes Equations with Stress Boundary Conditions

In this section we study the linear problem

(2.1)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en D k; on †b;

u D 0 on †0;

where f 2 .0H 1.�I R
n//�, g 2 L2.�/, and k 2 H �1=2.†bI R

n/ are given data.

A related problem with 
 D 0 was studied in [7] in Lp-Sobolev spaces. Here we

work only in L2-based spaces but also go to higher regularity than [7] by using the

results of [10].

2.1 The specified divergence problem and the pressure

as Lagrange multiplier

Before addressing (2.1) we need to develop a couple of auxiliary tools related

to the divergence operator. We develop these now. The first allows us to solve

the specified divergence problem, which is useful in reducing to the case g D 0

in (2.1) and is essential in dealing with the pressure in the weak formulation. The

following proof is adapted from theorem 2 in [25].

PROPOSITION 2.1. Let g 2 L2.�/. Then there exists v 2 0H 1.�I R
n/ such that

div v D g in � and

(2.2) kvk
0H 1 � ckgkL2
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for some constant c D c.b; n/ > 0.

PROOF. Let U D R
n�1 � .�3b; b/ and define g1 2 L2.U / via

(2.3) g1.x/ D

(

g.x/ in �;

0 in U n �:

Consider the Dirichlet problem

(2.4)

(

�' D g1 in U;

' D 0 on @U:

The unique weak solution ' 2 H 1
0 .U / to this problem is given by the minimizer

of the functional

(2.5) H 1
0 .U / 3 v 7!

Z

U

1

2
jrvj2 C g1v:

This functional is coercive thanks to the Poincaré inequality (see Lemma A.3 for

the result in �, but the bound continues to hold in H 1
0 .U / via a translation and

scaling argument) and the Cauchy-Schwarz inequality. Moreover, using v D 0 as

a comparison, we find that

(2.6)

Z

U

1

2
jr'j2 C g1' �

Z

U

1

2
jr0j2 C g10 D 0;

and so again by Poincaré’s inequality,

(2.7) kr'k2
L2.U /

� 2k'kL2.U /kg1kL2.U / � c.b/kr'kL2.U /kgkL2.�/;

which yields the estimate kr'kL2.U / � c.b/kgkL2.�/. Using standard regularity

results we deduce that ' 2 H 2.U / and

(2.8) k'kH 2.U / � ckgkL2.�/

for a constant c D c.n; b/ > 0.

We now define v W � ! R
n via

v0.x/ D r 0'.x0; xn/ C 3r 0'.x0; �xn/ � 4r 0'.x0; �2xn/;

vn.x/ D @n'.x0; xn/ � 3@n'.x0; �xn/ C 2@n'.x0; �2xn/:
(2.9)

Then, using the fact that g1 D 0 in R
n�1 � .�3b; 0/, we find that

div v.x/ D �'.x/ C 3�'.x0; �xn/ � 4�'.x0; �2xn/ D g.x/ for x 2 �:

Moreover, v D 0 on †0 by construction, so v 2 0H 1.�I R
n/. The estimate (2.2)

then follows directly from (2.8) and the definition of v. �

Next we aim to use Proposition 2.1 to perform the usual trick of introducing

the pressure as a Lagrange multiplier associated to the divergence free condition.
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Given p 2 L2.�/, consider the linear functional Lp W 0H 1.�I R
n/ ! R defined

by

(2.10) Lpv D
Z

�

p div v for v 2 0H 1.�I R
n/:

Then kLpk.0H 1/� � c.n; b/kpkL2 , and so the Riesz representation theorem shows

that there exists a unique wp 2 0H 1.�I R
n/ such that kwpk

0H 1 D kLpk.0H 1/�

and

(2.11)

Z
�

p div v D .wp; v/
0H 1.�/ for all v 2 0H 1.�I R

n/:

We then use this to define the bounded linear operator Q W L2.�/ ! 0H 1.�I R
n/

via Qp D wp. The next result records some essential properties of Q.

PROPOSITION 2.2. Let Q W L2.�/ ! 0H 1.�I R
n/ be as above. Then Q has

closed range, and .Ran Q/? D 0H 1
� .�I R

n/, where 0H 1
� .�I R

n/ is defined in

(1.63). Consequently, we have the orthogonal decomposition

(2.12) 0H 1.�I R
n/ D 0H 1

� .�I R
n/ ˚ Ran Q:

PROOF. We divide the proof into two steps.

Step 1. Closed range. For every p 2 L2.�/ we have kQpk
0H 1 D kwpk

0
H 1 �

c.n; b/kpkL2 . On the other hand, by Proposition 2.1 there exists v0 2 0H 1.�I R
n/

such that div v0 D p and kv0k
0H 1 � ckpkL2 . Hence, by (2.11),

(2.13) kpk2
L2 D

Z
�

p div v0 D .wp; v0/
0H 1 � kwpk

0H 1kv0k
0H 1

D kQpk
0H 1kv0k

0H 1 � ckQpk
0H 1kpkL2 ;

and so kpkL2 � ckQ.p/k
0H 1 . Hence, we have shown that

(2.14) c�1kpkL2 � kQ.p/k
0H 1 �

p
nkpkL2

for all p 2 L2.�/, which implies that Q has closed range.

Step 2. Orthogonal decomposition. From the first step we know that Ran Q is

closed, and so we have the orthogonal decomposition 0H 1.�I R
n/ D Ran Q ˚

.Ran Q/?. We now endeavor to identify the subspace .Ran Q/?.

Let v 2 .Ran Q/?, that is, .Qp; v/
0H 1.�/ D 0 for all p 2 L2.�/. Then by

(2.11),
R

� p div v D 0 for all p 2 L2.�/, which implies that div v D 0, and

hence that v 2 0H 1
� .�I R

n/. Conversely, if v 2 0H 1
� .�I R

n/, then div v D 0

and so by (2.11), .Q.p/; v/
0H 1.�/ D 0 for all p 2 L2.�/, which implies that

v 2 .Ran Q/?. This shows that .Ran Q/? D 0H 1
� .�I R

n/, which completes the

proof. �

The following corollary is essential in introducing the pressure in the weak for-

mulation of (2.1).
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COROLLARY 2.3. Suppose that ƒ 2 .0H 1.�I R
n//� is such that hƒ; vi D 0 for

every v 2 0H 1
� .�I R

n/. Then there exists a unique function p 2 L2.�/ such that

(2.15) hƒ; vi D

Z
�

p div v for all v 2 0H 1.�I R
n/:

Moreover, there is a constant c D c.n; b/ > 0 such that kpkL2 � ckƒk.0H 1/� .

PROOF. The Riesz representation theorem provides w 2 0H 1.�I R
n/ such that

hƒ; vi D .w; v/
0H 1 for all v 2 0H 1.�I R

n/ and kwk
0H 1 D kƒk.0H 1/� . Then

by hypothesis, w is orthogonal to 0H 1
� .�I R

n/, and so Proposition 2.2 implies that

w 2 Ran Q, which provides us with p 2 L2.�/ such that Qp D w. It follows

from (2.14) that

(2.16) kpkL2 � ckQ.p/k
0H 1 D ckwk

0H 1 D ckƒk.0H 1/� :

Moreover, p is unique since Q is injective by (2.14). The conclusion now follows

from (2.11). �

2.2 Solving (2.1)

We are now ready to prove the existence of solutions to (2.1). We begin with

weak solutions. Employing the identity (1.64), a simple computation reveals that

the weak formulation of (2.1) is to find a velocity field u 2 0H 1.�I R
n/ and a

pressure p 2 L2.�/ satisfying div u D g in � as well as

(2.17)

Z
�

1

2
Du W Dv � p div v � 
@1u � v D hf; vi � hk; vi†b

for all v 2 0H 1.�I R
n/, where here hf; vi denotes the dual pairing between f 2

.0H 1.�I R
n/� and v 2 0H 1.�I R

n/, and hk; vi†b
denotes the dual pairing of

k 2 H �1=2.†bI R
n/ D .H 1=2.†bI R

n//� and vj†b
2 H 1=2.†bI R

n/.

THEOREM 2.4 (Existence of weak solutions). Let f 2 .0H 1.�I R
n//�, g 2

L2.�/, and k 2 H �1=2.†bI R
n/. Then there exist unique u 2 0H 1.�I R

n/

and p 2 L2.�/ satisfying div u D g in � and (2.17). Moreover,

(2.18) kuk
0H 1 C kpkL2 � ckf k.0H 1/� C ckgkL2 C ckkkH �1=2

for some constant c D c.b; n/ > 0.

PROOF. We divide the proof into three steps.

Step 1. Setup. Consider the bilinear map B W 0H 1.�I R
n/�0H 1.�I R

n/ ! R

given by

(2.19) B.u; v/ D

Z
�

1

2
Du W Dv � 
@1u � v:

In light of Korn’s inequality, Lemma A.4, B is well-defined and continuous. Note

that

(2.20)

Z
�

@1u � u D

Z
�

@1
juj2

2
D 0;

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



G. LEONI AND I. TICE2500  

and hence

(2.21) B.u; u/ D
1

2

Z

�

jDuj2 D kuk2

0H 1 ;

which shows that B is coercive. The Hilbert space 0H 1
� .�I R

n/, defined in (1.63),

is a closed subspace of 0H 1.�I R
n/, so this analysis also shows that B is well-

defined, continuous, and coercive on 0H 1
� .�I R

n/.

Step 2. A special case. Assume now that g D 0. Thanks to the first step, we

are in a position to apply Lax-Milgram to find a unique u 2 0H 1
� .�I R

n/ such that

B.u; v/ � hf; vi C hk; vi†b
D 0 for all v 2 0H 1

� .�I R
n/. Moreover,

(2.22) kuk
0H 1 � ckf k.0H 1/� C ckkkH �1=2

for some constant c D c.n; b/ > 0.

The functional ƒ 2 .0H 1.�I R
n//� defined by hƒ; vi WD B.u; v/ � hf; vi C

hk; vi†b
for v 2 0H 1.�I R

n/ vanishes on 0H 1
� .�I R

n/. Then according to Corol-

lary 2.3 there exists a unique function p 2 L2.�/ such that B.u; v/ � hf; vi C

hk; vi†b
D

R

� p div v for all v 2 0H 1.�I R
n/, and we have the estimate

kpkL2 � ckƒk.0H 1/� � ckuk
0H 1 C ckf k.0H 1/� C ckkkH �1=2

� ckf k.0H 1/� C ckkkH �1=2 ;
(2.23)

where in the last inequality we used (2.22).

Step 3. The general case. Finally, given g 2 L2.�/ we use Proposition 2.1 to

find w 2 0H 1.�I R
n/ such that div w D g and kwk

0H 1 � ckgkL2 . We define

f1 2 .0H 1.�I R
n//� via hf1; vi WD hf; vi � B.w; v/ and apply Step 2 with f

replaced by f1 to find u0 2 0H 1
� .�I R

n/ and p 2 L2.�/ such that

Z

�

�

1

2
Du0 W Dv � 
@1u0 � v

�

� hf; vi

C

Z

�

�

1

2
Dw W Dv � 
@1w � v

�

C hk; vi†b

D

Z

�

p div v

for all v 2 0H 1.�I R
n/, and

ku0k
0H 1 C kpkL2 � ckf1k.0H 1/� C ckkkH �1=2

� ckf k.0H 1/� C ckgkL2 C ckkkH �1=2 ;
(2.24)

where in the last inequality we used the fact that kwk
0H 1 � ckgkL2 . Then the

function u WD u0 C w 2 0H 1.�I R
n/ satisfies div u D g in � and

(2.25)

Z

�

�

1

2
Du W Dv � 
@1u � v

�

� hf; vi C hk; vi†b
D

Z

�

p div v
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for all v 2 0H 1.�I R
n/, which gives (2.17). In view of (2.24) and again the fact

kwk
0H 1 � ckgkL2 , we have that the function u satisfies (2.18). The uniqueness

of the pair .u; p/ then follows the uniqueness component of Step 2. �

Next we record some regularity results.

THEOREM 2.5 (Regularity of weak solutions). Suppose s � 0, f 2 H s.�I R
n/,

g 2 H sC1.�/, and k 2 H sC1=2.†bI R
n/. If u 2 0H 1.�I R

n/ and p 2 L.�/

satisfy div u D g in � and (2.17), then u 2 0H sC2.�I R
n/ and p 2 H sC1.�/.

Moreover, we have the estimate

(2.26) kukH sC2 C kpkH sC1 � ckf kH s C ckgkH sC1 C ckkkH sC1=2

for a constant c D c.b; n; s/ > 0.

PROOF. This may be derived from the well-known regularity results for elliptic

systems proved in [10]. See also theorem 2.5 in [65] for an elementary and self-

contained proof.

�

We are now ready to record the main theorem of this section.

THEOREM 2.6. For every 
 2 R and every s � 0, the bounded linear operator

ˆ
 W 0H sC2.�I R
n/ � H sC1.�/ !

H s.�I R
n/ � H sC1.�/ � H sC1=2.†bI R

n/

given by ˆ
 .u; p/ D .div S.p; u/�
@1u; div u; S.p; u/enj†b
/ is an isomorphism.

PROOF. Theorems 2.4 and 2.5 show that the bounded linear operator ˆ
 is sur-

jective. Theorem 2.4 shows that it is injective. �

3 The Overdetermined 
-Stokes Equations

In this section we study the overdetermined problem

(3.1)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en D k; un D h on †b;

u D 0 on †0;

where, for s � 0, the data satisfy the inclusions f 2 H s.�I R
n/, g 2 H sC1.�/,

k 2 H sC1=2.†bI R
n/, and h 2 H sC3=2.†b/. In view of Theorem 2.6, the value

of un on †b is completely determined by f , g, and k. Hence, in general the

problem (3.1) is overdetermined and admits no solution. In this section we identify

compatibility conditions on the data .f; g; h; k/ that are necessary and sufficient

for solutions to (3.1) to exist, and we prove a corresponding isomorphism theorem.
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3.1 Divergence compatibility

In the overdetermined problem (3.1) we seek to specify both div u D g in �

and the boundary conditions un D 0 on †0 and un D h on †b . If we were

to posit integrability of g and h, then the divergence theorem would require the

compatibility condition

(3.2)

Z

�

g D
Z

†b

h:

The functional framework we employ in this paper is built on subspaces of L2.�/,

and � has infinite measure, so in general we cannot verify these integrability con-

ditions. As such, the form of compatibility between g and h is somewhat more

subtle than the condition stated above. We record this condition now.

THEOREM 3.1 (Divergence-trace compatibility condition). Let u 2 0H 1.�I R
n/,

and define g D div u 2 L2.�/ and h D unj†b
2 H 1=2.†bI R/. Then

(3.3) h �
Z b

0

g. � ; xn/dxn 2 PH �1.Rn�1/

and

(3.4)

"

h �
Z b

0

g. � ; xn/dxn

#

PH �1

� 2�
p

bkukL2 :

PROOF. Since un 2 H 1.�/, we have that un.x0; �/ is absolutely continuous for

almost every x0 2 R
n�1 (see, for instance, theorem 11.45 in [63]). Since u D 0 on

†0 and div u D g in �, we may then compute

(3.5) un.x0; b/ D
Z b

0

@nun.x0; xn/dxn D
Z b

0

.g.x0; xn/ � div0 u0.x0; xn//dxn

for almost every x0 2 R
n�1. Hence,

(3.6) un.x0; b/ �
Z b

0

g.x0; xn/dxn D � div0

Z b

0

u0.x0; xn/dxn:

Write R 2 H 1.Rn�1I R
n�1/ for R.x0/ D

R b
0 u0.x0; xn/dxn. Then we may use the

Cauchy-Schwarz inequality, Parseval’s identity, and Tonelli’s theorem to bound

Œdiv R�2
PH �1

D
Z

Rn�1

1

j�j2 j2�i� � yR.�/j2 d� � 4�2

Z

Rn�1

j yR.�/j2 d�

D 4�2

Z

Rn�1

jR.x0/j2 dx0 � 4�2b

Z

�

ju0.x/j2 dx D 4�2bku0k2
L2 ;

which proves (3.3) and (3.4). �

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



TRAVELING WAVES FOR NAVIER-STOKES 2503

3.2 Adjoint problem and compatibility

In the spirit of the closed range theorem, we seek to understand when the over-

determined problem (3.1) admits a solution in terms of a corresponding adjoint

problem. To motivate the form of the adjoint problem we first present the following

calculation.

LEMMA 3.2. Suppose that u; v 2 0H
2.�I R

n/ and p; q 2 H 1.�/. Then
Z

�

.divS.p; u/ � 
@1u/ � v � .divu/q �

Z

�

u � .divS.q; v/C 
@1v/ � p div v

D

Z

†b

S.p; u/en � v � u � S.q; v/en:

PROOF. We simply integrate by parts to see that
Z

�

.divS.p; u/ � 
@1u/ � v � .divu/q

D

Z

�

�S.p; u/ W rv C 
u � @1v � .divu/q C

Z

†b

S.p; u/en � v

D

Z

�

1

2
Du W Dv � p div v C 
u � @1v � .divu/q

C

Z

†b

S.p; u/en � v;

(3.7)

and similarly,
Z

�

u � .divS.q; v/C 
@1v/ � p div v

D

Z

�

1

2
Du W Dv � .divu/q C 
u � @1v � p div v C

Z

†b

u � S.q; v/en:

(3.8)

The result follows by subtracting these expressions. �

This lemma shows that the formal adjoint of the overdetermined problem (3.1)

is the underdetermined problem

(3.9)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

divS.q; v/C 
@1v D f in �;

div v D g in �;

.S.q; v/en/
0 D k0 on †b;

v D 0 on †0:

Note that this is underdetermined in the sense that on †b we only specify n �

1 boundary conditions instead of the standard n. Taking a cue from the closed

range theorem, we then examine the space of solutions to the homogeneous under-

determined problem, i.e., (3.9) with f D 0, g D 0, and k0 D 0. In light of

Theorem 2.6 (with 
 replaced by �
 ) the solution to this problem is completely

determined by the boundary condition S.p; u/en D  en on †b . In other words,
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we may parametrize the space of homogeneous solutions to the underdetermined

problem (3.9) with  by way of the .�
/-Stokes problem

(3.10)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

divS.q; v/C 
@1v D 0 in �;

div v D 0 in �;

S.q; v/en D  en on †b;

v D 0 on †0:

Using this parametrization, we arrive at a convenient formulation of the second

compatibility condition associated to the overdetermined problem.

THEOREM 3.3 (Overdetermined compatibility condition). Let s � 0 and suppose

f 2 H s.�I R
n/, g 2 H sC1.�/, h 2 H sC3=2.†b/, and k 2 H sC1=2.†bI R

n/.

Assume that the problem (3.1) admits a solution u 2 0H
sC2.�I R

n/ and p 2

H sC1.�/. For every 2 H sC1=2.†b/ let v 2 0H
sC2.�I R

n/ and q 2 H sC1.�/

be the unique solution (given by Theorem 2.6) to the adjoint problem (3.10). Then

the following compatibility condition holds:

(3.11)

Z

�

.f � v � gq/ �

Z

†b

.k � v � h / D 0:

PROOF. In light of Lemma 3.2, (3.1), and (3.10) we have that

(3.12)

Z

�

f � v � gq D

Z

†b

k � v � u �  en D

Z

†b

k � v � h :

Then (3.11) follows by rearranging. �

3.3 Some function spaces and the overdetermined isomorphism

With the compatibility conditions of Theorems 3.1 and 3.3 in hand, we may now

completely characterize the solvability of the overdetermined problem (3.1). To do

so, we first need to introduce a pair of function spaces for the data.

For s � 0 we define the space

(3.13) Y
s D

˚

.f; g; h; k/ 2 H s.�I R
n/ �H sC1.�/

�H sC3=2.†b/ �H sC1=2.†bI R
n/ j h and g satisfy (3.3)

�

:

We endow Ys with the norm defined by

k.f; g; h; k/k2
Ys D kf k2

H s C kgk2
H sC1 C khk2

H sC3=2

C kkk2
H sC1=2 C

"

h �

Z b

0

g. � ; xn/dxn

#2

PH �1

;
(3.14)

which clearly makes Ys into a Hilbert space (with the obvious inner product asso-

ciated to the norm). Similarly, for s � 0 we define the subspace

(3.15) Z
s D f.f; g; h; k/ 2 Y

s j (3.11) holds for every  2 H sC1=2.†b/g:
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The topology of Ys guarantees that Zs is a closed subspace, and so Zs is a Hilbert

space when endowed with the inner product from Ys .

Next we establish the main result of this section, which shows that a necessary

and sufficient condition for the existence of a solution to (3.1) is that f , g, h, k

satisfy the compatibility conditions (3.3) and (3.11) for every  2 H sC1=2.†/.

THEOREM 3.4. Let 
 2 R, s � 0, and Zs be the Hilbert space defined in (3.15).

Then the bounded linear operator ‰
 W 0H
sC2.�I R

n/ �H sC1.�/ ! Zs given

by

(3.16) ‰
 .u; p/ D .divS.p; u/ � 
@1u; divu; unj†b
; S.p; u/enj†b

/

is an isomorphism.

PROOF. First note that in light of Theorems 3.1 and 3.3, the map ‰
 takes

values in Zs and is thus well-defined. It is clearly a bounded linear operator. The

injectivity of ‰
 follows from Theorem 2.6. To prove that ‰
 is surjective let

.f; g; h; k/ 2 Zs . Using f , g, and k in Theorem 2.6, we find the unique solution

u 2 0H
sC2.�I R

n/ and p 2 H sC1.�/ to (2.1). Given  2 H sC1=2.†/, let v 2

0H
sC2.�I R

n/ and q 2 H sC1.�/ be the unique solution to (3.10) (the existence

of which is again guaranteed by Theorem 2.6). Applying Theorem 3.3 and using

the fact that .f; g; h; k/ satisfy the compatibility condition (3.11), we then find that

(3.17)

Z

†b

un D �

Z

�

.f � v � gq/C

Z

†b

k � v D

Z

†b

h :

Then
R

†b
.un � h/ D 0 for all  2 H sC1=2.†b/, which implies that un D h on

†b . Hence ‰
 is surjective. �

4 Fourier Analysis

In this section we consider the horizontal Fourier transform (as defined in Sec-

tion 1.6) of the linear problem (2.1), where f 2 H s.�I R
n/, g 2 H sC1.�/, and

k 2 H sC1=2.†bI R
n/. Note that the boundary condition S.p; u/en D k on †b

may be decomposed into horizontal and vertical components: �@nu
0 � r 0un D k0

and p � 2@nun D kn: Applying the horizontal Fourier transform to (2.1) then

yields the following ODE boundary value problem for yu.�; � / 2 H 2..0; b/I C
n/

and yp.�; � / 2 H 1..0; b/I C/:

(4.1)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

�@2
n C 4�2j�j2

�

yu0 C 2�i� yp � 2�i�1
 yu0 D yf 0 C 2�i� yg in .0; b/;
�

�@2
n C 4�2j�j2

�

yun C @n yp � 2�i�1
 yun D yfn C @n yg in .0; b/;

2�i� � yu0 C @nyun D yg in .0; b/;

�@nyu0 � 2�i�yun D yk0; yp � 2@nyun D ykn for xn D b;

yu D 0 for xn D 0:
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G. LEONI AND I. TICE2506  

4.1 Generalities about the ODE system (4.1)

We begin our discussion of the ODE system (4.1) by deriving an ODE variant

of (2.17) and proving uniqueness of solutions.

PROPOSITION 4.1. Suppose that F 2 L2..0; b/I C
n/; G 2 H 1..0; b/I C/, and

K 2 C
n. Then the following hold:

(1) If w 2 H 2..0; b/I C
n/ and q 2 H 1..0; b/I C/ satisfy

(4.2)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

�@2
n C 4�2j�j2

�

w0 C 2�i�q � 2�i�1
w0 D F 0 C 2�i�G in .0; b/;
�

�@2
n C 4�2j�j2

�

wn C @nq � 2�i�1
wn D Fn C @nG in .0; b/;

2�i� � w0 C @nwn D G in .0; b/;

�@nw0 � 2�i�wn D K 0; q � 2@nwn D Kn; for xn D b;

w D 0 for xn D 0;

then for v 2 H 1..0; b/I C
n/ satisfying v.0/ D 0, we have that

(4.3)

� K � v.b/ C

Z b

0

F � v C q.2�i� � v0 C @nvn/

D

Z b

0

�
2�i�1w � v C 2@nwn@nvn C .@nw0 C 2�i�wn/ � .@nv0 C 2�i�vn/

C
1

2

Z b

0

.2�i� ˝ w0 C w0 ˝ 2�i�/ W .2�i� ˝ v0 C v0 ˝ 2�i�/:

(2) There exists at most one pair .w; q/ 2 H 2..0; b/I C
n/�H 1..0; b/I C/ solv-

ing (4.2).

PROOF. Using the third equation in (4.2), we compute
�

�@2
n C 4�2j�j2

�

w0 C 2�i�q � 2�i�G

D
�

�@2
n C 4�2j�j2

�

w0 C 2�i�q � 2�i�.2�i� � w0 C @nwn/

D 2�i�q � .2�i� ˝ w0 C w0 ˝ 2�i�/2�i� � @n.@nw0 C 2�i�wn/

and
�

�@2
n C 4�2j�j2

�

wn C @nq � @nG

D
�

�@2
n C 4�2j�j2

�

wn C @nq � @n.2�i� � w0 C @nwn/

D �2�i� � .@nw0 C 2�i�wn/ C @n.q � 2@nwn/:

Using these and the first two equations of (4.2), we then find that
Z b

0

F 0 � v0 C 
2�i�1w0 � v0

D

Z b

0

�q2�i� � v0 C .2�i� ˝ w0 C w0 ˝ 2�i�/ W

v0 ˝ 2�i� � @n.@nw0 C 2�i�wn/ � v0

(4.4)
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and Z b

0

Fnvn C 
2�i�1wnvn

D

Z b

0

.@nw0 C 2�i�wn/ � 2�i�vn C @n.q � 2@nw/vn:

(4.5)

We then integrate by parts and use the boundary conditions in (4.2) to see that

(4.6) �

Z b

0

@n.@nw0 C 2�i�wn/ � v0 D K 0 � v0.b/ C

Z b

0

.@nw0 C 2�i�wn/ � @nv0

and

(4.7)

Z b

0

@n.q � 2@nw/vn D Knvn.b/ �

Z b

0

.q � 2@nw/@nvn:

Combining these then shows that

� K � v.b/ C

Z b

0

F � v C q.2�i� � v0 C @nvn/

D

Z b

0

�
2�i�1w � v C 2@nwn@nvn

C .@nw0 C 2�i�wn/ � .@nv0 C 2�i�vn/

C

Z b

0

.2�i� ˝ w0 C w0 ˝ 2�i�/ W v0 ˝ 2�i�;

(4.8)

and we conclude the proof of the first item by using the symmetry of .2�i� ˝w0 C

w0 ˝ 2�i�/ to rewrite

.2�i� ˝ w0 C w0 ˝ 2�i�/ W v0 ˝ 2�i�

D
1

2
.2�i� ˝ w0 C w0 ˝ 2�i�/ W .2�i� ˝ v0 C v0 ˝ 2�i�/:

(4.9)

We now prove the second item. If wj 2 H 2..0; b/I C
n/ and qj 2 H 1..0; b/I C/

for j D 1; 2 solve (4.2), then w D w1 � w2 2 H 2..0; b/I C
n/ and q D q1 � q2 2

H 1..0; b/I C/ solve (4.2) with F D 0, G D 0, K D 0. The first item with v D w

then implies that

Z b

0

�
2�i�1jwj2 C 2j@nwnj2 C j@nw0 C 2�i�wnj2

C

Z b

0

1

2
j2�i� ˝ w0 C w0 ˝ 2�i�j2 D 0:

(4.10)

Taking the real part of this identity then shows that

@nwn D 0 and @nw0 C 2�i�wn D 0 in .0; b/.
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Due to the boundary condition wn.0/ D 0, we then have that wn D 0, which then

implies that @nw
0 D 0 and hence that w0 D 0 since w0.0/ D 0. The second and

fifth equations in (4.2) then require that @nq D 0 and q.b/ D 0, which imply that

q D 0. Hence w1 D w2 and q1 D q2, which proves the second item. �

In order to analyze the system (4.1) it is convenient to decompose it into a pair

of decoupled subsystems. We present this decoupling now. In the following result

we suppress the functional dependence on � for the sake of brevity; i.e., we write

simply yu.xn/ in place of yu.�; xn/, etc.

PROPOSITION 4.2. Suppose that yf 2 L2..0; b/I C
n/, yg 2 H 1..0; b/I C/, and

yk 2 C
n. Further suppose that yu 2 H 2..0; b/I C

n/, yp 2 H 1..0; b/I C/, '; 2
H 2..0; b/I C/, q 2 H 1..0; b/I C/, and # 2 H 2..0; b/I C

n�1/. Then the following

are equivalent for every � 2 R
n�1 n f0g:

(1) yu; yp solve (4.1).

(2) We have that

(4.11) yp D q; yu0 D �i'
�

j�j
C #; and yun D  ;

where '; ; q solve

(4.12)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

�@2
n C 4�2j�j2

�

' � 2�j�jq � 2�i�1
' D i yf 0 � �=j�j � 2�j�jyg in .0; b/;
�

�@2
n C 4�2j�j2

�

 C @nq � 2�i�1
 D yfn C @n yg in .0; b/;

2�j�j' C @n D yg in .0; b/;

�@n' C 2�j�j D i yk0 � �=j�j; q � 2@n D ykn for xn D b;

' D  D 0 for xn D 0;

and # solves

(4.13)
n

�

�@2
n C 4�2j�j2

�

# � 2�i�1
# D .1 � � ˝ �=j�j2/H

In either case (and hence both), the solutions are unique.

PROOF. First note that if # solves (4.13), then taking the dot product with �

reveals that � WD � � # 2 H 2..0; b/I C/ solves

(4.14)

8

ˆ

<

ˆ

:

�

�@2
n C 4�2j�j2

�

� � 2�i�1
� D 0 in .0; b/;

�@n� D 0 for xn D b;

� D 0 for xn D 0:

We then multiply the first equation by x� and integrate by parts over .0; b/ to con-

clude that

(4.15)

Z b

0

j@n�j2 C .4�2j�j2 � 2�i�1
/j�j2 D 0:

Taking the real part of this equation then shows that � D 0 on .0; b/, and hence

# � � D 0.
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Now suppose yu; yp solve (4.1). Then we define q D yp, ' D i yu0 � �=j�j,  D yun,

and # D .1� � ˝ �=j�j2/yu0, which implies (4.11). Then (4.12) follows from (4.1)

by taking the dot product with i�=j�j, and (4.13) follows by multiplying by the

projector matrix .1 � � ˝ �=j�j2/.
On the other hand, if '; ; q solve (4.12) and # solves (4.13), then we define yu

and yp via (4.11). We then multiply the first and fourth equations in (4.12) by i�=j�j
and combine with (4.13) and the remaining equations in (4.12) to obtain (4.1).

The uniqueness claim follows from the uniqueness result of Proposition 4.1. �

It is also convenient to reformulate the coupled system (4.12) as a first-order

equation. We present this equivalent formulation now. Note that in this result we

present the system with slightly more general data and we allow for � D 0 as well.

PROPOSITION 4.3. Suppose that F 2 L2..0; b/I C
2/; G 2 H 1..0; b/I C/, and

K 2 C
2. Further suppose that y 2 H 1..0; b/I C

4/, '; 2 H 2..0; b/I C/, q 2
H 1..0; b/I C/. Then the following are equivalent for every � 2 R

n�1:

(1) '; ; q solve the second-order boundary value problem

(4.16)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

�@2

n
C 4�2j�j2

�

' � 2�j�jq � 2�i�1
' D F1 � 2�j�jG in .0; b/;
�

�@2

n
C 4�2j�j2

�

 C @nq � 2�i�1
 D F2 C @nG in .0; b/;

2�j�j' C @n D G in .0; b/;

�@n' C 2�j�j D K1; q � 2@n D K2 for xn D b;

' D  D 0 for xn D 0:

(2) y D .';  ; q; @n'/ and y solves the first-order two-point boundary value

problem

(4.17)

(

@ny D Ay C ´ in .0; b/;

My.0/CNy.b/ D d;

where A 2 C
4�4 is given by

(4.18) A D

0

B

B

@

0 0 0 1

�2�j�j 0 0 0

0 �.4�2j�j2 � i2��1
/ 0 �2�j�j

4�2j�j2 � i2��1
 0 �2�j�j 0

1

C

C

A

;

´ 2 L2..0; b/I C
4/, and d 2 C

4 are given by

(4.19) ´.xn/ D

0

B

B

@

0

G.xn/

F2.xn/C 2@nG.xn/

�F1.xn/C 2�j�jG.xn/

1

C

C

A

and d D

0

B

B

@

0

0

K1

K2 C 2G.b/

1

C

C

A

;
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G. LEONI AND I. TICE2510  

and M;N 2 C
4�4 are given by

(4.20) M D

0

B

B

@

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1

C

C

A

and N D

0

B

B

@

0 0 0 0

0 0 0 0

0 2�j�j 0 �1

4�j�j 0 1 0

1

C

C

A

:

PROOF. Suppose that ',  , and q solve (4.16) and let y D .';  ; q; @n'/.

Note that y1; y2 2 H 2..0; b/I C/. We differentiate the third equation to obtain the

equation

(4.21) @2

n
y2 D @2

n
 D @nG � 2�j�j@n' D @nG � 2�j�jy4:

From this we readily deduce that y solves the system

(4.22)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

@ny1 D y4 in .0; b/;

@ny2 D �2�j�jy1 CG in .0; b/;

@ny3 D �.4�2j�j2 � 2�i�1
/y2 � 2�j�jy4 C F2 C 2@nG in .0; b/;

@ny4 D .4�2j�j2 � 2�i�1
/y1 � 2�j�jy3 � F1 C 2�j�jG in .0; b/;

�y4 C 2�j�jy2 D K1; y3 C 4�j�jy1 D K2 C 2G for xn D b;

y1 D 0; y2 D 0 for xn D 0;

which may be compactly rewritten as (4.17).

Now suppose that y solves (4.17), which is equivalent to (4.22). Define ' D y1,

 D y2, and q D y3, all of which then belong to H 1..0; b/I C/. However, @n' D

@ny1 D y4 2 H 1..0; b/I C/ and @n D @ny2 D G � 2�j�j' 2 H 1..0; b/I C/,

so '; 2 H 2..0; b/I C/. In turn this implies that we may differentiate the second

equation in (4.22) to see that (4.21) holds. Then the second equation in (4.22)

corresponds to the third in (4.16), the fourth in (4.22) corresponds to the first in

(4.16), and the third in (4.22) corresponds to the second in (4.16) in light of the

identity (4.21). The equivalence of the boundary conditions follows similarly. �

Consider the matrix A 2 C
4�4 given by (4.18). Given ´ 2 L2..0; b/I C

4/, the

unique solution y 2 H 1..0; b/I C
4/ to the ODE

(4.23)

(

@ny D Ay C ´ in .0; b/;

y.0/ D y0;

is given by

(4.24) y.xn/ D exp.xnA/y0 C

Z

xn

0

exp..xn � t /A/´.t/dt:

Let M;N 2 C
4�4 be given by (4.20) and define the boundary matrix

(4.25) B WD M CN exp.bA/ 2 C
4�4:
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Thus the solvability of the two-point problem (4.17) reduces to solving for y0 2 C
4

such that d D My0 C Ny.b/, which in light of (4.24) is equivalent to

(4.26) By0 D My0 C N exp.bA/y0 D d � N

Z b

0

exp..b � t /A/´.t/dt:

Our next result establishes that B is invertible for every � 2 R
n�1, which then

allows us to make various conclusions about (4.17). An interesting feature of our

approach is that we establish the invertibility of B by using the isomorphism from

Theorem 2.6 rather than through direct computation. We do this because although

det B can be computed by hand (and we will do so later in Section 4.3), the result-

ing expression is quite cumbersome, and it is rather tricky to prove directly that it

never vanishes.

THEOREM 4.4. Let � 2 R
n�1 and A; M; N; B 2 C

4�4 be given by (4.18), (4.20),

and (4.25), respectively. Then the following hold:

(1) The boundary matrix B has the block structure

(4.27) B D

�

I2�2 02�2

B3 B4

�

;

where B3; B4 2 C
2�2 are given by

(4.28) B3 D

�

2�j�j exp.bA/21 � exp.bA/41 2�j�j exp.bA/22 � exp.bA/42

4�j�j exp.bA/11 C exp.bA/31 4�j�j exp.bA/12 C exp.bA/32

�

and

(4.29) B4 D

�

2�j�j exp.bA/23 � exp.bA/43 2�j�j exp.bA/24 � exp.bA/44

4�j�j exp.bA/13 C exp.bA/33 4�j�j exp.bA/14 C exp.bA/34

�

:

(2) B4 2 C
2�2 is invertible.

(3) B is invertible, and we have the identities det B D det B4 and

(4.30) B�1 D

�

I2�2 02�2

�B�1
4

B3 B�1
4

�

:

(4) For every ´ 2 L2..0; b/I C
4/ and d 2 C

4 there exists a unique solution

y 2 H 1..0; b/I C
4/ to the problem

(4.31)

(

@ny D Ay C ´ in .0; b/

My.0/ C Ny.b/ D d;

which is given by

y.xn/ D exp.xnA/B�1

 

d � N

Z b

0

exp..b � t /A/´.t/dt

!

C

Z xn

0

exp..xn � t /A/´.t/dt:

(4.32)
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PROOF. The first item follows from a direct calculation, using the block struc-

ture of M; N :

(4.33) M D

�

I2�2 02�2

02�2 02�2

�

and N D

�

02�2 02�2

N3 N4

�

for N3; N4 2 C
2�2. The third item follows from the second and a simple calcula-

tion. The fourth item then follows from the third item, combined with (4.24) and

(4.26). It remains only to prove the second item.

Suppose initially that � D 0. In this case we may readily compute

(4.34) B4 D N4 D

�

0 �1

1 0

�

to deduce that B4 is invertible. In the case � 2 R
n�1 n f0g the value of det B4 can

be computed explicitly from the first item, but the resulting expression is rather

complicated. To avoid working directly with det B4 we will instead employ The-

orem 2.6 to show that B4 is invertible. Let m 2 N and pick a radial function

� 2 C 1
c .Rn�1/ such that � D 1 on B.0; 2m/ n BŒ0; 2�m�. For j D 1; 2 let

k1; k2 2 S .Rn�1I C
n/ be given via

(4.35) yk1.�/ D .�i�.�/�=j�j; 0/ and yk2.�/ D �.�/en:

Then by construction ykj .�/ D ykj .��/, and so Lemma A.2 shows that kj actually

takes values in R
n.

We may then use f D 0, g D 0, and k D kj 2
T

s>0 H s.†bI R
n/ for j D 1; 2

in Theorem 2.6 to produce .uj ; pj / 2
T

s>0 0H sC2.�I R
n/ � H sC1.�/ solving

(2.1). For � 2 R
n�1 n f0g define yj .�; � / 2 C 1.Œ0; b�I C

4/ via

(4.36) yj .�; xn/ D .i yuj .�; xn/ � �=j�j; yuj
n.�; xn/; ypj .�; xn/; i@nyuj .�; xn//:

Since .yuj ; ypj / satisfy (4.1), Propositions 4.2 and 4.3, together with (4.26) and

(4.35) and the fact that ´ D 0, imply that if 2�m < j�j < 2m then Byj .�; 0/ D
e2Cj . Since yj .�; 0/ � e1 D yj .�; 0/ � e2 D 0 for all � ¤ 0, we may write

yj .�; 0/ D .0; 0; �j .�// for �j .�/ 2 C
2. Then the identity Byj .�; 0/ D e2Cj is

equivalent to B4�j .�/ D ej for j D 1; 2, and we deduce that for 2�m < j�j < 2m

the matrix B4 2 C
2�2 has rank 2 and is thus invertible. Since m 2 N was arbitrary,

we then conclude that B4 is invertible for all � 2 R
n�1 n f0g, which concludes the

proof of the second item. �

4.2 Some special functions

With Theorem 4.4 in hand we are now in a position to introduce some functions

that will play a fundamental role in our subsequent analysis. For � 2 R
n�1 and


 2 R write A.�; 
/; B.�; 
/ 2 C
4�4 for the matrices defined by (4.18) and (4.25),

respectively. In light of Theorem 4.4 we may then define Q W R
n�1 � Œ0; b� � R !
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C, V W R
n�1 � Œ0; b� � R ! C

n, and m W R
n�1 � R ! C via

(4.37)

Q.�; xn; 
/ D exp.xnA.�; 
//B�1.�; 
/e4 � e3 2 C;

V 0.�; xn; 
/ D �i
�

exp.xnA.�; 
//B�1.�; 
/e4 � e1

� �

j�j
2 C

n�1 for � ¤ 0;

V 0.0; xn; 
/ D 0 2 C
n�1;

Vn.�; xn; 
/ D exp.xnA.�; 
//B�1.�; 
/e4 � e2 2 C;

m.�; 
/ D Vn.�; b; 
/ D exp.bA.�; 
//B�1.�; 
/e4 � e2 2 C:

The following result records some essential properties of these functions.

THEOREM 4.5. Let Q W R
n�1 � Œ0; b� � R ! C, V W R

n�1 � Œ0; b� � R ! C
n,

and m W R
n�1 � R ! C be as defined in (4.37). Then the following hold:

(1) Q, V , and m are continuous, Q and V are smooth on .Rn�1 nf0g/� Œ0; b��
R, and m is smooth on .Rn�1 n f0g/ � R. Also, for each � 2 R

n�1 we have

that Q.�; � / and V.�; � / are smooth on Œ0; b�.

(2) V.0; xn; 
/ D 0, Q.0; xn; 
/ D 1, and m.0; 
/ D 0.

(3) For each � 2 R
n�1, xn 2 Œ0; b�, and 
 2 R we have that V.�; xn; 
/ D

V.��; xn; 
/, Q.�; xn; 
/ D Q.��; xn; 
/, and m.�; 
/ D m.��; 
/.

(4) For each � 2 R
n�1 we have that Q.�; � ; 
/, V.�; � ; 
/ solve

(4.38)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

�@2
n C 4�2j�j2

�

V 0 C 2�i�Q � 2�i�1
V 0 D 0 in .0; b/;
�

�@2
n C 4�2j�j2

�

Vn C @nQ � 2�i�1
Vn D 0 in .0; b/;

2�i� � V 0 C @nVn D 0 in .0; b/;

�@nV 0 � 2�i�Vn D 0; Q � 2@nVn D 1 for xn D b;

V D 0 for xn D 0:

(5) If .u; p/ 2 0H 2.�I R
n/ � H 1.�/ solves (2.1) with f D 0, g D 0, and

k D �en for � 2 H 1=2.Rn�1/, then yu D y�V . � ; � ; 
/ and yp D y�Q. � ; � ; 
/.

(6) Re m.�; 
/ � 0 for all � 2 R
n�1 and 
 2 R, and Re m.�; 
/ D 0 if and

only if � D 0.

PROOF. Define y W R
n�1 � Œ0; b� � R ! C

4 via

(4.39) y.�; xn; 
/ D exp.xnA.�; 
//B�1.�; 
/e4:

Theorem 4.4 shows that y is continuous, smooth on .Rn�1 n f0g/ � Œ0; b� � R, and

that for � fixed y.�; � ; � / is smooth on Œ0; b� � R. We have that Q D y3, Vn D y2,

m D y2. � ; b; � /, and for � ¤ 0, V 0.�; xn; 
/ D �iy1.�; xn; 
/�=j�j. Thus, to
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complete the proof of the first two items it suffices to notice that

lim
.�;t;
/!.0;xn;
0/

y.�; t; 
/ D exp.xnA.0; 
0//B�1.0; 
0/e4

0

B

B

@

1 0 �xn 0

0 1 0 0

0 0 0 1

0 0 �1 0

1

C

C

A

0

B

B

@

0

0

0

1

1

C

C

A

D

0

B

B

@

0

0

1

0

1

C

C

A

;

and hence y.�; t; 
/ ! e3 D y.0; xn; 
0/ as .�; t; 
/ ! .0; xn; 
0/.

To prove the third item we note that A.��; 
/ D A.�; 
/, and if we write N.�/ 2

C
4�4 to emphasize the � dependence of the matrix defined in (4.20), then N.��/ D

N.�/. From this we have that B.��; 
/ D M C N.��/ exp.xnA.��; 
// D M C

N.�/ exp.xnA.�; 
// D B.�; 
/, and hence that B�1.��; 
/ D B�1.�; 
/. Hence

y.�; xn; 
/ D y.��; xn; 
/ for all � 2 R
n�1, xn 2 Œ0; b�, and 
 2 R. The third

item then follows directly from this and the definitions of V; Q; and m in terms

of y.

The fourth item follows immediately from Propositions 4.2 and 4.3 when � ¤ 0,

and from the second item and a trivial calculation when � D 0. The fifth item

follows from the fourth and Proposition 4.2.

We now turn to the proof of the sixth item. In light of the fourth item and

Proposition 4.1 we have the identity

Z b

0

.�
2�i�1jV.�; xn; 
/j2 C 2j@nVn.�; xn; 
/j2/dxn

C

Z b

0

j@nV 0.�; xn; 
/ C 2�i�Vn.�; xn; 
/j2 dxn

C
1

2

Z b

0

j2�i� ˝ V 0.�; xn; 
/ C V 0.�; xn; 
/ ˝ 2�i�j2 dxn D �m.�; 
/:

Taking the real part of this identity yields

� Re m.�; 
/

D

Z b

0

�

2j@nVn.�; xn; 
/j2 C j@nV 0.�; xn; 
/ C 2�i�Vn.�; xn; 
/j2
�

dxn

C
1

2

Z b

0

j2�i� ˝ V 0.�; xn; 
/ C V 0.�; xn; 
/ ˝ 2�i�j2 dxn;

which immediately implies that Re m.�; 
/ � 0 for all � 2 R
n�1 and 
 2 R.

Moreover, if Re m.�; 
/ D 0 for � ¤ 0, then this identity and the sixth equation in

(4.38) show that V.�; � ; 
/ D 0, and so the first and fifth equations in (4.38) show

that Q.�; � ; 
/ D 0 but Q.�; b; 
/ D 1, a contradiction. Hence Re m.�; 
/ < 0 for

� ¤ 0. �
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Remark 4.6. The fifth item of Theorem 4.5 shows that m. � ; 
/ is the symbol of

pseudodifferential operator corresponding to the normal-stress to normal-Dirichlet

map given by (1.51).

We know that V.0; xn; 
/ D 0, Q.0; xn; 
/ D 1, and m.0; 
/ D 0 from Theo-

rem 4.5. Later in the paper we will crucially require a finer asymptotic development

as j�j ! 0. This is the content of the following theorem.

THEOREM 4.7. Let Q W R
n�1 � Œ0; b� � R ! C, V W R

n�1 � Œ0; b� � R ! C
n,

and m W R
n�1 � R ! C be as defined in (4.37). Then for j�j � 1 we have the

asymptotic developments

V 0.�; xn; 
/ D �i��.2xnb � x2
n/ C O.j�j2/;

Vn.�; xn; 
/ D 2�2j�j2x2
n

�xn

3
� b

�

C O.j�j3/;

m.�; 
/ D �
4�2j�j2b3

3
C O.j�j3/;

Q.�; xn; 
/ D 1 C O.j�j2/;

(4.40)

where here we write F.�; xn/ D O.j�jk/ to mean that

(4.41) lim sup
j�j!0

sup
0�xn�b

jF.�; xn/j

j�jk
< 1:

PROOF. Fix 
 2 R. Throughout the proof we will suppress the functional de-

pendence on 
 in A and B , writing A.�/ and B.�/ in place of A.�; 
/ and B.�; 
/.

Write P.�; xn/ D exp.xnA.�//, and introduce the block form

(4.42) P.�; xn/ D

�

P1.�; xn/ P2.�; xn/

P3.�; xn/ P4.�; xn/

�

for Pj .�; xn/ 2 C
2�2 for 1 � j � 4. Using the block form of B�1.�/ from

Theorem 4.4, we may compute

exp.xnA.�//B�1.�/ D
�

P1.�; xn/ � P2.�; xn/B�1
4 .�/B3.�/ P2.�; xn/B�1

4 .�/

P3.�; xn/ � P4.�; xn/B�1
4 .�/B3.�/ P4.�; xn/B�1

4 .�/

�

:
(4.43)

Since jA.�/j D O.1/ and jA.�/6j D O.j�j3/, we deduce that jA.�/kj D

O.j�j3/ for k � 6. Then exp.xnA.�// D P.�; xn/ D
P6

j D0 A.�/j =j Š C O.j�j3/,

and we may compute
P6

j D0 A.�/j =j Š by hand (or with a computer algebra system)

and truncate to second order to write

(4.44)

P2.�; xn/ D
 

��j�jx2
n C x4

n
�2i
 j�j�1

6
xn C x3

n
4�2j�j2��i
�1

3
� x5

n
�2
2�2

1

30

x3
n

2�2j�j2

3
��j�jx2

n C x4
n

�2i
 j�j�1

6

!

C O.j�j3/

DW Q2.�; xn/ C O.j�j3/
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and

P4.�; xn/

D

 

1C 2�2j�j2x2
n �2�j�jxn

�2�j�jxn C x3
n

2�2i
 j�j�1

3
1C x2

n.4�
2j�j2 � �i
�1/ � x4

n
�2
2�2

1

6

!

CO.j�j3/

DW Q4.�; xn/CO.j�j3/:

Using this, the expression for B4 from Theorem 4.4, and the block form of (4.33),

we may then compute B4.�/ D N4 CR.�/CO.j�j3/, for

(4.45) R.�/ D

 

2�bj�j � 2�2b3i
 j�j�1

3

�2.�36b2j�j2Cb4
2�2

1
/

6
C �b2i
�1

�2�2b2j�j2 �bj�j.6�4�b2i
�1/
3

!

:

Then for j�j � 1, we have the expansion

B�1
4 .�/ D .I CN�1

4 R.�/CN�1
4 O.j�j3//�1N�1

4

D .I �N�1
4 R.�/C .N�1

4 R.�//2/N�1
4 CO.j�j3/

D

0

@

2�j�j
�

1C �b2i
�1

3

�

1 � 2�2b2j�j2

�1C b2.10�2j�j2 � �i
�1/C
5�2b4
2�2

1

6
2�j�jb

�

1C 4�b2i
�1

3

�

1

A

CO.j�j3/

DW W.�/CO.j�j3/:

Returning to (4.43), we compute

y.�; xn/ WD exp.xnA.�//B
�1.�/e4 D

�

P2.�; xn/B
�1
4 .�/e2

P4.�; xn/B
�1
4 .�/e2

�

D

�

Q2.�; xn/W.�/e2

Q4.�; xn/W.�/e2

�

CO.j�j3/:

From these we then compute

y1.�; xn/ D P2.�; xn/B
�1
4 .�/e2 � e1 D �j�j.2xnb � x2

n/CO.j�j2/;

y2.�; xn/ D P2.�; xn/B
�1
4 .�/e2 � e2 D 2�2j�j2x2

n

�xn

3
� b

�

CO.j�j3/;

y3.�; xn/ D P4.�; xn/B
�1
4 .�/e2 � e1 D 1CO.j�j2/:

(4.46)

Then (4.40) follows from this and the definitions (4.37). �

Remark 4.8. Naively, one might expect that m. � ; 
/, the symbol for the normal-

stress to normal-Dirichlet operator, should have the same essential behavior as

the Neumann to Dirichlet operator defined via the scalar Laplacian, i.e., the map

H s.†b/ 3  7! uj†b
2 H sC1.†b/, where

(4.47)

8

ˆ

<

ˆ

:

��u D 0 in �;

@nu D  on †b;

u D 0 on †0:
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However, the symbol for this operator is

(4.48)
sinh.2�j�jb/

2�j�j cosh.2�j�jb/
; which behaves like b

�

1 � 4�2j�j2b2

3

�

for j�j � 1, and the lack of vanishing at the origin makes this operator significantly

easier to work with. Note, though, that the asymptotics of m. � ; 
/ exactly match

the second term in the above development.

4.3 Asymptotics of the special functions (4.37) as j�j ! 1

We now turn our attention to the question of the asymptotics of the functions

defined in (4.37) as j�j ! 1. Unfortunately, due to the essential singularity of the

exponential map at infinity, we cannot employ a simple Taylor expansion at 1, as

we did at 0 in Theorem 4.7. Instead we must employ a more delicate strategy in

which we actually compute exp.xnA/B�1e4. Doing this directly is prohibitively

difficult, so we first introduce a reparametrization that makes the algebraic manip-

ulations more tractable. We begin our pursuit of this strategy with the following

lemma, which introduces the reparametrization.

LEMMA 4.9. Let s W Œ0; 1/ � R ! C be defined via

(4.49) s.r; �/ D

s

r2 C
p

r4 C r2�2

2
� i

r�
p

2
p

r2 C
p

r4 C r2�2

for r > 0 and s.0; �/ D 0. Then the following hold:

(1) .s.r; �//2 D r2 � ir� for every .r; �/ 2 Œ0; 1/ � R.

(2) s is continuous on Œ0; 1/ � R and smooth on .0; 1/ � R.

(3) For all .r; �/ 2 Œ0; 1/ � R we have the bounds

(4.50) 0 � Re.s.r; �// � r � �2

8r
and 0 � � sgn.�/ Im.s.r; �// � j�j

2
:

(4) There exists c > 0 such that if j�j � r , then

(4.51)

ˇ

ˇ

ˇ

ˇ

Re.s.r; �// � r � �2

8r

ˇ

ˇ

ˇ

ˇ

� c
�4

r3
and

ˇ

ˇ

ˇ

ˇ

Im.s.r; �// C �

2
� �3

16r2

ˇ

ˇ

ˇ

ˇ

� c
�5

r4
:

PROOF. The first two items are trivial. To prove the third item we first note that

since r2�2 � 0,

(4.52) Re.s.r; �// �

s

r2 C
p

r4

2
D r:
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On the other hand, we have that

(4.53)

Re.s.r; �// � r C �2

8r

,
p

r4 C r2�2 � r2 C �2

2
C �4

32r2

, r4 C r2�2 � r4 C 2r2

�

�2

2
C �4

32r2

�

C
�

�2

2
C �4

32r2

�2

;

and the final inequality is trivially true, which means that the first estimate of (4.50)

holds. In turn this implies that

� � 0 ) ��

2
� Im.s.r; �// � ��

2

8r2

8r2 C �2
� 0;

� < 0 ) 0 � ��

2

8r2

8r2 C �2
� Im.s.r; �// � ��

2
;

(4.54)

which implies the second estimate of (4.50).

Finally, for the fourth item we note that if r D 1=� for � > 0, then Taylor-

expanding around � D 0 shows that

Re.s.r; �// D 1p
2�

r

1 C
q

1 C .��/2

D 1p
2�

�p
2 C

p
2.��/2

8
C O..��/4/

�

(4.55)

and

Im.s.r; �// D � �p
2

�

1 C
q

1 C .��/2

�

�1=2

D ��

�

1

2
� .��/2

16
C O..��/4/

�

:

(4.56)

Hence there exists c > 0, depending only on the smooth maps

R 3 ´ 7!
q

1 C
p

1 C ´2 2 R

R 3 ´ 7! 1=

q

1 C
p

1 C ´2 2 R;

such that if j�j < r , then
ˇ

ˇ

ˇ

ˇ

Re.s.r; �// � r � �2

8r

ˇ

ˇ

ˇ

ˇ

� cr.��/4 D c
�4

r3
;

ˇ

ˇ

ˇ

ˇ

Im.s.r; �// C i�

2
� �3

16r2

ˇ

ˇ

ˇ

ˇ

� c
�5

r4
: �

We now aim to reparametrize the matrices A; N; B 2 C
4�4 as defined in (4.18),

(4.20), and (4.25), respectively. To this end we first note that for given � 2 R
n�1

and 
 2 R, each of these matrices only depends on j�j and 
�1. This suggests that

we introduce the reparametrization R
n�1 n f0g 3 � 7! .r; �/ 2 Œ0; 1/ � Œ�j
 j; j
 j�
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given by r D 2�j�j and � D 
�1=j�j. We then introduce the function s W Œ0; 1/ �

Œ�j
 j; j
 j� ! C defined as the restriction to Œ0; 1/ � Œ�j
 j; j
 j� of the function

defined in (4.49); by construction .s.r; �//2 D r2 � ir� D 4�2j�j2 � 2�i
�1,

s 2 f´ 2 C j r � Re.´/; jIm.´/j � j�j=2 � j
 j=2g, and s D r if and only if

� D 0. We then reparametrize A; N; B in terms of r and s via

(4.57)
A.r; s/ D

0

B

B

@

0 0 0 1

�r 0 0 0

0 �s2 0 �r

s2 0 �r 0

1

C

C

A

; N.r/ D

0

B

B

@

0 0 0 0

0 0 0 0

0 r 0 �1

2r 0 1 0

1

C

C

A

;

and B.r; s/ D M C N.r/ exp.bA.r; s//:

Written in this form, for s ¤ r (i.e., when � ¤ 0) we have that A.r; s/ is diag-

onalizable with spectrum fs; �s; r; �rg. Exploiting this, we may readily compute

the columns exp.xnA.r; s//.j / 2 C
4 for j D 1; : : : ; 4:

(4.58) exp.xnA.r; s//.1/ D

0

B

B

@

cosh.xns/

� r sinh.xns/
s

0

s sinh.xns/

1

C

C

A

;

(4.59) exp.xnA.r; s//.2/ D

0

B

B

B

@

s
r2

�s2
.�r sinh.xns/ C s sinh.xnr//

1
r2

�s2
.r2 cosh.xns/ � s2 cosh.xnr//

�s2 sinh.xnr/
r

s2r
r2

�s2
.� cosh.xns/ C cosh.xnr//

1

C

C

C

A

;

(4.60) exp.xnA.r; s//.3/ D

0

B

B

@

r
r2

�s2
.cosh.xns/ � cosh.xnr//

r
s.r2

�s2/
.�r sinh.xns/ C s sinh.xnr//

cosh.xnr/
r

r2
�s2

.s sinh.xns/ � r sinh.xnr//

1

C

C

A

;

and

(4.61) exp.xnA.r; s//.4/ D

0

B

B

@

1
r2

�s2
.�s sinh.xns/ C r sinh.xnr//

r
r2

�s2
.cosh.xns/ � cosh.xnr//

� sinh.xnr/
1

r2
�s2

.�s2 cosh.xns/ C r2 cosh.xnr//

1

C

C

A

:

Note that when s D r (i.e., � D 0) A.r; r/ fails to be diagonalizable (though it

still has a nice Jordan form), but we may recover the value of exp.xnA.r; r// by

sending s ! r in these expressions.

We then define the reparametrized form of

(4.62) y.�; xn; 
/ D exp.xnA.�; 
//B�1.�; 
/e4;
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as used in the definition of the special functions in (4.37), to be

(4.63) Y.r; �; xn/ WD exp.xnA.r; s.r; �///B�1.r; s.r; �//e4 2 C
4:

Employing Theorem 4.4, for 1 � j � 3 and r ¤ s we may explicitly compute:

(4.64) Yj .r; �; xn/ D
1

det B

�

exp.xnA/j 3.exp.bA/44 C r exp.bA/24/
�

C
1

det B

�

exp.xnA/j 4.r exp.bA/23 � exp.bA/43/
�

DW
nj

det B
:

Using the identity s2 D r2 � i�r simplifies the resulting expressions for nj and

det B , and after some elementary, if tedious, calculations, we arrive at

n1 D �
1

2�2s

h

.r C s/.2r � i�/ cosh.bs � xnr/ C 2s.r C s/ cosh.br � xns/

�2s.2r � i�/ cosh.s.b � xn// � 4rs cosh.r.b � xn//

�.r � s/.2r � i�/ cosh.bs C xnr/ C 2s.r � s/ cosh.br C xns/
i

;

(4.65)

(4.66)

n2 D
1

2�2s

h

� .r C s/.2r � i�/ sinh.bs � xnr/ � 2r.r C s/ sinh.br � xns/

C 2r.2r � i�/ sinh.s.b � xn// C 4rs sinh.r.b � xn//

� .r � s/.2r � i�/ sinh.bs C xnr/ C 2r.r � s/ sinh.br C xns/
i

;

(4.67) n2jxnDb D
i

�s
Œr sinh.bs/ cosh.br/ � s cosh.bs/ sinh.br/� ;

n3 D
�i

2�s

�

�.r C s/.2r � i�/ cosh.bs � xnr/

C 4rs cosh.r.b � xn// C .r � s/.2r � i�/ cosh.bs C xnr/
�

;
(4.68)

and

det B D
�1

�2s

�

s.8r2 � �2 � i4�r/ cosh.br/ cosh.bs/

� r.8r2 � �2 � i8�r/ sinh.br/ sinh.bs/ � 4rs.2r � i�/
�

:
(4.69)

The value of Yj .r; 0; xn/ may then be obtained by sending s ! r in these expres-

sions:

(4.70)

Y1.r; 0; xn/ D

.b � xn/.sinh.r.b C xn// � sinh.r.b � xn/// C 2brxn cosh.r.b � xn//

2.cosh.2rb/ C 1 C 2b2r2/
;
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(4.71)

Y2.r; 0; xn/

D
� sinh.r.b C xn// � r.b � xn/ cosh.r.b C xn//

2r.cosh.2rb/ C 1 C 2b2r2/

C
.1 C 2br2xn// sinh.r.b � xn// C r.b C xn/ cosh.r.b � xn//

2r.cosh.2rb/ C 1 C 2b2r2/
;

Y3.r; 0; xn/

D
cosh.r.b C xn// C cosh.r.b � xn// C 2rb sinh.r.b � xn//

cosh.2rb/ C 1 C 2b2r2
:

(4.72)

With all of these computations in hand, we are now ready to derive the asymp-

totics as j�j ! 1.

THEOREM 4.10. Let Q W R
n�1 � Œ0; b� � R ! C, V W R

n�1 � Œ0; b� � R ! C
n,

and m W R
n�1 � R ! C be as defined in (4.37). Then for each 
 2 R there exist

constants c D c.
; b/ > 0 and R D R.
; b/ > 0 such that if xn 2 Œ0; b� and

j�j > R, then

jV 0.�; xn; 
/j � c

�

j
 j

j�j2
C .b � xn/

�

e�2�j�j.b�xn/ C ce�2�j�jb;

jVn.�; xn; 
/j � c

�

1

j�j
C .b � xn/

�

e�2�j�j.b�xn/ C ce�2�j�jb;

jm.�; 
/ C
1

4�j�j
j � c

1

j�j2
;

jQ.�; xn; 
/j � ce�2�j�j.b�xn/ C ce�2�j�jb:

(4.73)

PROOF. We will present the proof under the assumption that 
 ¤ 0. The proof

when 
 D 0 is simpler and can be readily extracted from the first two steps of the

following argument, so we omit the details. We divide the proof into steps.

Step 1. A claim and its consequences. We claim that there exist constants c > 0

and R D R.
; b/ > 0 such that

jY1.r; �; xn/j � c

�

j�j

r2
C .b � xn/

�

e�r.b�xn/ C ce�br ;

jY2.r; �; xn/j � c

�

1

r
C .b � xn/

�

e�r.b�xn/ C ce�br ;

ˇ

ˇ

ˇ

ˇ

Y2.r; �; b/ C
1

2r

ˇ

ˇ

ˇ

ˇ

� c
1

r2
;

jY3.r; �; xn/j � ce�r.b�xn/ C ce�br ;

for all j�j � 
 , xn 2 Œ0; b�, and r � R.

Once the claim is established we consider

(4.74) y.�; xn; 
/ D exp.xnA.�; 
//B�1.�; 
/e4 D Y.2�j�j; 
�i=j�j; xn/
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and simply plug into the definitions in (4.37) to deduce (4.73). It remains only to

prove the claim. We break it down to two cases: � D 0 and � ¤ 0.

Step 2. Asymptotic development of Y.r; 0; xn/. Clearly, for r large the domi-

nant terms in the denominators of (4.70)–(4.72) are the cosh.2rb/ terms. Similarly,

since 0 � xn � b, the dominant terms in the numerators of (4.70)–(4.72) are the

hyperbolic functions with arguments r.b C xn/. From these observations we then

deduce that

sup
0�xn�b

ˇ

ˇ

ˇ

ˇ

Y1.r; 0; xn/ �
.b � xn/e�r.b�xn/

2

ˇ

ˇ

ˇ

ˇ

D O.e�rb/;

sup
0�xn�b

ˇ

ˇ

ˇ

ˇ

Y2.r; 0; xn/ �
Œ�1 � r.b � xn/�e�r.b�xn/

2r

ˇ

ˇ

ˇ

ˇ

D O.e�rb/;

ˇ

ˇ

ˇ

ˇ

Y2.r; 0; b/ C
1

2r

ˇ

ˇ

ˇ

ˇ

D O.e�rb/;

sup
0�xn�b

jY3.r; 0; xn/ � e�r.b�xn/j D O.e�rb/:

Step 3. Asymptotic development of Y.r; �; xn/ for � ¤ 0. First recall that Lemma

4.9 tells us that s has the asymptotic development

(4.75) s D r � i
�

2
C

�2

8r
C i

�3

16r2
C O.�4=r3/:

We begin by using the expression for det B in (4.69) together with the asymptotic

development of s to write

det B.r; �/

D
�1

4�2s

h

�

s.8r2 � �2 � i�r/ � r.8r2 � �2 � i�r/
�

eb.rCs/ C O.e�3br=2/
i

D
�1

4�2s

��

��2r C i
�3

2
C �2O.�2=r/

�

eb.rCs/ C O.e�3br=2/

�

:

This allows us to use (4.65) to write

Y1.r; �; xn/

D
e�b.rCs/

��2r C i �3

2
C �2O.�2=r/

h

�.r � s/.2r � i�/ebsCxnr C 2s.r � s/ebrCxns
i

C O.e�br/

D
r � s

��2r C i �3

2
C �2O.�2=r/

e�r.b�xn/
h

2s � 2r C i� C 2s
�

e.r�s/.b�xn/ � 1
�i

C O.e�br/;
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and so when we plug in the s asymptotics we find that there exist a c > 0 and

R D R.
; b/ > 0 such that

(4.76) jY1.r; �; xn/j � c

�

j�j

r2
C .b � xn/

�

e�r.b�xn/ C ce�br

for all 0 < j�j � 
 , xn 2 Œ0; b�, and r � R. Arguing similarly with (4.66)–(4.68)

and enlarging R if necessary, we find that

(4.77) jY2.r; �; xn/j � c

�

1

r
C .b � xn/

�

e�r.b�xn/ C ce�br ;

(4.78) jY2.r; �; b/ C
1

2r
j � c

1

r2
C ce�br ;

and

(4.79) jY3.r; �; xn/j � ce�r.b�xn/ C ce�br

for all 0 < j�j � 
 , xn 2 Œ0; b�, and r � R.

Step 4. Proof of the claim. The claim now follows by combining the results of

Steps 2 and 3. �

The asymptotic developments of Theorem 4.10 may be combined with the re-

sults of Theorem 4.5 to deduce some integral bounds. We record these now.

COROLLARY 4.11. Let Q W R
n�1 � Œ0; b� � R ! C and V W R

n�1 � Œ0; b� �

R ! C
n be as defined in (4.37). Then for each 
 2 R there exists a constant

c D c.n; 
; b/ > 0 such that

(4.80) .1 C j�j3/

Z b

0

jV.�; xn; 
/j2 dxn C .1 C j�j/

Z b

0

jQ.�; xn; 
/j2 dxn � c

for all � 2 R
n�1.

PROOF. From Theorems 4.5 and 4.10 we can choose c D c.n; 
; b/ > 0 such

that

(4.81) jV.�; xn; 
/j2 � c

�

1

1 C j�j2
C .b � xn/2

�

e�4�j�j.b�xn/

and

(4.82) jQ.�; xn; 
/j2 � c
�

e�4�j�jb C e�4�j�j.b�xn/
�

for all xn 2 Œ0; b� and � 2 R
n�1. The result then follows directly from this and the

fact that
R 1

0 ´te�r´ d´ D �.t C 1/=r tC1 for every r; t 2 .0; 1/. �
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4.4 The overdetermined problem

We now write the compatibility conditions (3.11) using the Fourier transform.

PROPOSITION 4.12. Let 
 2 R, s � 0, and suppose that f 2 H s.�I R
n/, g 2

H sC1.�/, h 2 H sC3=2.†b/, and k 2 H sC1=2.†bI R
n/. Then (3.11) holds if and

only if

Z b

0

. yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
//dxn

� yk.�/ � V.�; b;�
/C yh.�/ D 0

(4.83)

for almost every � 2 R
n�1, where Q and V are as defined in (4.37).

PROOF. For  2 H sC1=2.†b/ and v, q as in Theorem 3.3 we apply Parseval’s

theorem, the fifth item of Theorem 4.5, and Fubini’s theorem to see that

(4.84)

Z

�

.f � v � gq/ �

Z

†

.k � v � h /

D

Z

Rn�1

Z b

0

�

yf .�; xn/ � yv.�; xn/ � yg.�; xn/yq.�; xn/
�

dxn d�

�

Z

Rn�1

�

yk.�/ � yv.�; b/ � yh.�/ y .�/
�

d�

D

Z

Rn�1

�Z b

0

. yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
//dxn

�

y .�/d�

C

Z

Rn�1

�

�yk.�/ � V.�; b;�
/C yh.�/
�

y .�/d�:

If (4.83) holds, then this implies that (3.11) holds.

Conversely, suppose that (3.11) holds. Let y 2 C1
c .Rn�1I C/ be such that

y .�/ D y .��/. From Lemma A.2 we then know that  D . y /_ 2 S .Rn�1/ is

real-valued. We then use this  in Theorem 3.3 to see that the left term in (4.84)

vanishes, which yields an identity of the form

(4.85) 0 D

Z

Rn�1

�.�/ y .��/d�

for all y 2 C1
c .Rn�1I C/ such that y .�/ D y .��/, where �.�/ is the left side of

(4.83). According to Lemma A.2 and the third item of Theorem 4.5, we have that

�.�/ D �.��/. Since we then know that Re� and Re y are even and Im� and

Im y are odd, the previous identity reduces to

(4.86) 0 D

Z

Rn�1

�

Re�.�/Re y .�/C Im�.�/ Im y .�/
�

d�
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for all such y . Let �; � 2 C1
c .Rn�1/ be such that supp.�/; supp.�/ � R

n�1
C

D
fxn�1 > 0g and set

(4.87) y .�/ D

�

�.�/C �.��/

2

�

C i

�

�.�/ � �.��/

2

�

;

which satisfies y .�/ D y .��/. Then from the previous identity we deduce that

(4.88) 0 D

Z

R
n�1

C

.Re�.�/�.�/C Im�.�/�.�// d�;

and from the arbitrariness of �; � we then deduce that Re� D Im� D 0 almost

everywhere in R
n�1
C

and hence almost everywhere in R
n�1 as well. Thus (4.83)

holds for almost every � 2 R
n�1. �

5 Some Specialized Sobolev Spaces

In this section we introduce a pair of specialized Sobolev spaces that play an es-

sential role in constructing solutions to (1.14). The first space,Xs.Rd /, is the space

to which the free surface function will belong. It is defined through an anisotropic

Fourier multiplier and is, at least when d � 2, strictly larger than the standard frac-

tional L2-based Sobolev space H s.Rd /. The second space, Y s.�/, is the space

to which the pressure will belong. It is defined in terms of Xs.Rn�1/ and is again

strictly larger than H s.�/ when n � 3. Note that throughout this section we

continue the practice described in Section 1.6 of using 1 � d 2 N for a generic

dimension and 2 � n 2 N for the dimension of �.

To the best of our knowledge, neither of these spaces has been previously studied

in the literature. As such, we develop their basic properties here. We will need to

work with these spaces in a nonlinear context, so we also develop a number of

nonlinear tools.

5.1 Preliminary estimate

We record here a preliminary estimate that will play an essential role in defining

the specialized Sobolev spaces.

PROPOSITION 5.1. Let R > 0 and consider the ball B.0;R/ � R
d for d � 1.

Then

(5.1)

Z

B.0;R/

jxj2

x2
1 C jxj4

dx < 1:

PROOF. If d � 3 then we simply bound
Z

B.0;R/

jxj2

x2
1 C jxj4

dx �

Z

B.0;R/

dx

jxj2
D H

d�1.@B.0; 1//

Z R

0

rd�3 dr

D H
d�1.@B.0; 1//

Rd�2

d � 2
< 1:

(5.2)
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On the other hand, in the case d D 2 we may use polar coordinates and a residue

calculation to compute

Z

B.0;R/

jxj2
x2

1 C jxj4
dx D

Z R

0

Z 2�

0

r2

r2 cos2.�/ C r4
r d� dr

D
Z R

0

r

Z 2�

0

d�

r2 C cos2.�/
dr

D
Z R

0

r
2�

r
p

r2 C 1
dr D 2�

Z R

0

drp
1 C r2

D 2� arcsinh.R/ < 1:

(5.3)

Finally, if d D 1 then

�(5.4)

Z

B.0;R/

jxj2
x2

1 C jxj4
dx D

Z R

�R

dr

1 C r2
D 2 arctan.R/ < 1:

5.2 A class of specialized Sobolev spaces on R
d

For 0 � s 2 R and 1 � d 2 N we define the measurable function !s W R
d !

Œ0; 1/ via

(5.5) !s.�/ D �2
1 C j�j4

j�j2 �B.0;1/.�/ C .1 C j�j2/s�B.0;1/c .�/:

Then for s � 0 we define the (real) specialized Sobolev space

(5.6) Xs.Rd / D ff 2 S
0.Rd / j f D xf ; yf 2 L1

loc.R
d /; and kf kXs < 1g:

We endow the vector space Xs.Rd / with the norm and inner product

kf kXs WD
�Z

Rd

!s.�/j yf .�/j2 d�

�1=2

;

.f; g/Xs WD
Z

Rd

!s.�/ yf .�/yg.�/d�;

the latter of which takes values in R due to Lemma A.2. Note that we can similarly

define complex-valued analogues of Xs.Rd / by dropping the condition that f D
xf . We will not need these spaces, so we focus on the real case.

We begin our study of these spaces by showing that they contain the usual

Sobolev spaces H s.Rd / and that the containment is strict for d � 2. Here and

in the subsequent statements we recall that the spaces C k
b

and C k
0 are defined in

Section 1.6.

PROPOSITION 5.2. For s � 0 the following hold:

(1) We have that Xs.R/ D H s.R/, and k�kXs and k�kH s are equivalent norms.

(2) If d � 2, then we have the strict inclusion

H s.Rd / � Xs.Rd / and kf kXs � 2kf kH s for all f 2 H s.Rd /.
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(3) If d � 2, then Xs.Rd / is not closed under rotation in the sense that for every

Q 2 O.d/ such that jQe1 � e1j < 1 there exists f 2 Xs.Rd / \ C 1
0 .Rd /

such that f .Q �/ … Xs.Rd /.

PROOF. Clearly !s.�/ � 2.1 C j�j2/s for all � 2 R
d , and hence

(5.7) kf k2
Xs D

Z

Rd

!s.�/j yf .�/j2 d� � 2

Z

Rd

.1 C j�j2/j yf .�/j2 d� D 2kf k2
H s

for all f 2 H s.Rd /. Thus H s.Rd / � Xs.Rd /. On other hand, if d D 1, then

.�2
1 C j�j4/=j�j2 D 1 C j�j2, and for j�j � 1 we have that

(5.8)
.1 C j�j2/s

1 C j�j2
2

(

Œ2s�1; 1� if 0 � s � 1;

Œ1; 2s�1� if 1 < s:

Hence, we can choose a constant c D c.s/ > 0 such that

1

c

Z

R

.1 C j�j2/sj yf .�/j2 d� �

Z

R

!s.�/j yf .�/j2 d�

� c

Z

R

.1 C j�j2/sj yf .�/j2 d�

(5.9)

to deduce that k�kXs is a norm equivalent to k�kH s .

Now assume that d � 2 and let Q 2 O.d/ be such that jQe1 � e1j < 1, which

is equivalent to the existence of 2 � j � d such that jQe1 � ej j > 0. We will

construct f 2 Xs.Rd / \ C 1
0 .Rd / such that f .Q�/ … Xs.Rd / and f … L2.Rd /,

which will complete the proof since the latter also shows that f … H s.Rd /. For

1 � i � d write

(5.10) �i D

(

1 if Qe1 � ei � 0;

�1 if Qe1 � ei < 0:

For 0 < " < 2

3
p

d
we then define

R" D �1."2=2; 3"2=2/ �

d
Y

j D2

�j ."=2; 3"=2/ � B.0; 1/:

By construction, for � 2 R" [ .�R"/ � B.0; 1/ we have that

(5.11) j� � Qe1j D

ˇ

ˇ

ˇ

ˇ

d
X

iD1

�i .Qe1 � ei /

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

d
X

iD1

�i�i jQe1 � ei j

ˇ

ˇ

ˇ

ˇ

D

d
X

iD1

j�i jjQe1 � ei j

and since jQe1 � ej j > 0, we readily deduce the equivalences

(5.12) !s.�/ D
j�1j2

j�j2
C j�j2 �

"4

"4 C "2
C ."4 C "2/ � "2
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and

!s.QT �/ D jQT � � e1j2
jQT �j2

C jQT �j2

D j� � Qe1j2
j�j2 C j�j2

� "2

"4 C "2
C ."4 C "2/ � 1 C "2 � 1:

(5.13)

Define F" D �R"
C �

�R"
and note that F".��/ D F".�/ D F".�/. The above

calculations then show that we have the equivalencesZ
Rd

!s.�/jF".�/j2 d� � "2 � ."2 � "d�1/ D "dC3;(5.14)

Z
Rd

jF".�/jd� D
Z

Rd

jF".�/j2 d� � 1 � ."2 � "d�1/ D "dC1;(5.15)

and Z
Rd

!s.�/jF".Q�/j2 d� D
Z

Rd

!s.QT �/jF".�/j2 d�

� 1 � ."2 � "d�1/ D "dC1:

(5.16)

Now fix r > 3 and K 2 N such that K log r > log.3
p

d=2/. Define

(5.17) F D
1X

kDK

rk.dC1/=2Fr�k ;

which converges pointwise since the supports of the Fr�k are pairwise disjoint

thanks to the bound r > 3. Then (5.14)–(5.16) imply that

(5.18)

Z
Rd

!s.�/jF.�/j2 d� �
1X

kDK

rk.dC1/r�k.dC3/ D
1X

kDK

r�2k < 1

and

(5.19)

Z
Rd

jF.�/jd� �
1X

kDK

rk.dC1/=2r�k.dC1/ D
1X

kDK

r�k.dC1/=2 < 1;

while Z
Rd

!s.�/jF.Q�/j2 d� �
Z

Rd

jF.�/j2 d�

�
1X

kDK

rk.dC1/r�k.dC1/ D 1:

(5.20)
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Hence, f WD LF 2 Xs.Rd /, but f .Q �/ … Xs.Rd / and f … L2.Rd /. The

inclusion f 2 C 1

0 .Rd / follows from the fact that f is band-limited and yf 2

L1.Rd /. �

Remark 5.3. The third item of Proposition 5.2 shows that Xs.Rd / is not closed un-

der composition with rotations when d � 2, which is a strong form of anisotropy.

Next we prove a technical lemma that, in particular, will allow us to show that

the elements of Xs.Rd / are actually functions and not just tempered distributions.

LEMMA 5.4. Let s � 0 and R > 0. Then there exists c D c.d; R; s/ > 0 such that

if f 2 Xs.Rd /, then

(5.21)

Z

B.0;R/

j yf .�/jd� C

�Z

B.0;R/c

.1 C j�j2/sj yf .�/j2 d�

�1=2

� ckf kXs :

In particular, if s > d=2, then there exists a constant c D c.d; s/ > 0 such that

k yf kL1 � ckf kXs .

PROOF. First note that we have the trivial norm equivalence

(5.22) kf k2
Xs �

Z

B.0;R/

�2
1 C j�j4

j�j2
j yf .�/j2 d� C

Z

B.0;R/c

.1 C j�j2/sj yf .�/j2 d�

where the constants in the equivalence depend on d; R; s. To complete the proof

of the first estimate, we use the Cauchy-Schwarz inequality and Proposition 5.1 to

bound

Z

B.0;R/

j yf .�/jd� D

Z

B.0;R/

j�j
q

�2
1 C j�j4

q

�2
1 C j�j4

j�j
j yf .�/jd�

�

 

Z

B.0;R/

j�j2

�2
1 C j�j4

d�

!1=2  
Z

B.0;R/

�2
1 C j�j4

j�j2
j yf .�/j2 d�

!1=2

D c.d; R/

 

Z

B.0;R/

�2
1 C j�j4

j�j2
j yf .�/j2 d�

!1=2

:

(5.23)

In the supercritical case s > d=2 we may then further bound

(5.24)

Z

B.0;R/c

j yf .�/jd�

�

�Z

B.0;R/c

.1 C j�j2/sj yf .�/j2 d�

�1=2 �Z

B.0;R/c

1

.1 C j�j2/s
d�

�1=2

� c.d; R; s/

�Z

B.0;R/c

.1 C j�j2/sj yf .�/j2 d�

�1=2

to arrive at the estimate k yf kL1 � ckf kXs . �
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Next we show that all elements of Xs.Rd / can be decomposed into a sum of

low and high frequency localizations with certain nice properties. In particular,

the decomposition shows that Xs.Rd / � C 1
0 .Rd / C H s.Rd / and hence that the

elements of this space are actually functions.

THEOREM 5.5. Let s � 0 and R > 0. For each f 2 Xs.Rd / define the low-

frequency localization fl;R D . yf �B.0;R//
_ as well as the high-frequency localiza-

tion fh;R D . yf �B.0;R/c /_, both of which are well-defined as elements of S 0.Rd /

by virtue of Lemma 5.4. Then the following hold:.

(1) fl;R; fh;R 2 Xs.Rd / and f D fl;RCfh;R. Moreover, kfl;RkXs � kf kXs

and kfh;RkXs � kf kXs .

(2) For each k 2 N we have that fl;R 2 C k
0 .Rd / � C k

b
.Rd / and there exists a

constant c D c.c; R; s; k/ > 0 such that

(5.25) kfl;RkC k

b

D
X

j˛j�k

k@˛fl;RkL1 � ckfl;RkXs :

In particular, fl;R 2 C 1
0 .Rd / D

T
k2N

C k
0 .Rd /.

(3) fh;R 2 H s.Rd / and there exists a constant c D c.d; R; s/ > 0 such that

kfh;RkH s � ckfh;RkXs .

PROOF. Lemma A.2 and the fact that balls are reflection-invariant imply that

the localizations fl;R; fh;R 2 S 0.Rd / are real-valued. The first item then follows

directly from this. To prove the second item we first note that fl;R is band-limited

and hence smooth. The stated estimate then follows from the boundX
j˛j�k

k@˛fl;RkL1 �
X

j˛j�k

k2@˛fl;RkL1 � c

Z
B.0;R/

.1 C j�j2/kj yf .�/jd�

� c

Z
B.0;R/

j yf .�/jd�

(5.26)

and the estimate of Lemma 5.4. The fact that @˛fl;R ! 0 as jxj ! 1 for any

multi-index ˛ 2 N
d follows from the Riemann-Lebesgue lemma. The third item

follows directly from Lemma 5.4. �

Our next result establishes some fundamental completeness, inclusion, and map-

ping properties of the space Xs.Rd /.

THEOREM 5.6. Let s � 0. Then the following hold:

(1) Xs.Rd / is a Hilbert space.

(2) The subspace ff 2 Xs.Rd / j yf 2 C 1
c .Rd / and 0 … supp. yf /g � Xs.Rd /

is dense. In particular, the set of real-valued Schwartz functions is dense in

Xs.Rd /.

(3) If t 2 R and s < t , then we have the continuous inclusion X t .Rd / �

Xs.Rd /.
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(4) For each k 2 N we have the continuous inclusion Xs.Rd / � C k
0 .Rd / C

H s.Rd /.

(5) If k 2 N and s > kCd=2, then we have the continuous inclusion Xs.Rd / �
C k

0 .Rd /, and there exists a constant c D c.d; k; s/ > 0 such that kf kC k

b

�
ckf kXs for all f 2 Xs.Rd /.

(6) If s � 1, then there exists a constant c D c.d; s/ > 0 such that we have the

bound k
p

��f kH s�1 � ckf kXs for each f 2 Xs.Rd /. In particular, we

have that
p

�� W Xs.Rd / ! H s�1.Rd / is a bounded linear map.

(7) If s � 1, then there exists a constant c D c.d; s/ > 0 such that

(5.27) krf kH s�1 � ckf kXs for each f 2 Xs.Rd /:

In particular, we have that r W Xs.Rd / ! H s�1.Rd I R
d / is a bounded

linear map. This map is injective.

(8) If s � 1, then there exists a constant c D c.d; s/ > 0 such that Œ@1f � PH �1 �
ckf kXs for each f 2 Xs.Rd /. In particular, we have that @1 W Xs.Rd / !
H s�1.Rd / \ PH �1.Rd / is a bounded linear map. This map is injective.

PROOF. The first item follows immediately from the completeness of the L2

space on R
d generated by the measure !s.�/d� . We now prove the second item.

Let f 2 Xs.Rd / and " > 0. By the monotone convergence theorem we may

choose 0 < R1 < R2 < 1 such that if we define the annulus A.R1; R2/ D
B.0; R2/ n BŒ0; R1�, then

(5.28)

Z

A.R1;R2/c

!s.�/j yf .�/j2 d� <
"2

4
:

We then select a nonnegative and radial function ' 2 C 1
c .Rd / with supp.'/ �

B.0; 1/ and
R

Rd ' D 1. Then for 0 < ı < R1=4 we define the function Fı 2
C 1

c .Rd / via

(5.29) Fı.�/ D
Z

A.R1;R2/

1

ıd
'

�

� � ´

ı

�

yf .´/d´

and note that supp.Fı/ � A.R1=2; R2 C R1/ and

Fı.�/

D
Z

A.R1;R2/

1

ıd
'

�

� � ´

ı

�

yf .´/d´ D
Z

A.R1;R2/

1

ıd
'

�

� � ´

ı

�

yf .�´/d´

D
Z

A.R1;R2/

1

ıd
'

�

� C ´

ı

�

yf .´/d´ D
Z

A.R1;R2/

1

ıd
'

��� � ´

ı

�

yf .´/d´

D Fı.��/;

which implies, by virtue of Lemma A.2, that LFı 2 S .Rd / is real-valued. On the

annulus A.R1=2; R1 C R2/ we have the equivalence !s.�/ � 1 (with equivalence
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constants depending on d; s; R1; R2), and so the usual theory of mollification (see,

for instance, appendix C of [63]) provides us with 0 < ı0 < R1=2 such thatZ
A.R1;R2/

!s.�/j yf .�/ � Fı0
.�/j2 d�

C
Z
A.R1=2;R1CR2/nA.R1;R2/

!s.�/jFı0
.�/j2 d� <

"2

8
:

(5.30)

Thus, if we define fı0
D LFı0

, then fı0
2 Xs.Rd / \ S .Rd /, supp. yfı0

/ �
A.R1=2; R1 CR2/, and the estimates (5.28) and (5.30), together with the inclusion

A.R1; R2/ � A.R1=2; R1 C R2/, imply that

(5.31)

kf � fı0
k2

Xs D
Z
A.R1=2;R1CR2/c

!s.�/j yf .�/j2 d�

C
Z
A.R1=2;R1CR2/

!s.�/j yf .�/ � Fı0
.�/j2 d�

<
"2

4
C

Z
A.R1;R2/

!s.�/j yf .�/ � Fı0
.�/j2 d�

C
Z
A.R1=2;R1CR2/nA.R1;R2/

!s.�/j yf .�/ � Fı0
.�/j2 d�

<
"2

4
C

Z
A.R1;R2/

!s.�/j yf .�/ � Fı0
.�/j2 d�

C 2

Z
A.R1=2;R1CR2/nA.R1;R2/

!s.�/jFı0
.�/j2 d�

C 2

Z
A.R1;R2/c

!s.�/j yf .�/j2 d� <
"2

4
C 2

"2

8
C 2

"2

4
D "2;

which completes the proof of the second item.

The third item follows trivially from the pointwise estimate !s � !t , and the

fourth follows immediately from Theorem 5.5. The fifth item follows from the

fourth and the standard Sobolev embedding H s.Rd / ,! C k
0 .Rd / for s > kCd=2.

We now turn to the proof of the sixth item. Assume s � 1. First note that there

is a constant c D c.s/ > 0 such that j�j2.1 C j�j2/s�1 � c!s.�/ for all � 2 R
d :

Then for a real-valued f 2 S .Rd / we may bound

k
p

��f k2
H s�1 D 4�2

Z
Rd

j�j2.1 C j�j2/s�1j yf .�/j2 d�

� 4�2c

Z
Rd

!s.�/j yf .�/j2 d� D 4�2ckf k2
Xs :

(5.32)

The sixth item then follows from this and the density result of the second item.

The seventh item then follows from the second and sixth items, together with the

identity krf kH s�1 D k
p

��f kH s�1 for all f 2 S .Rd /, and the observation
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that rf D 0 if and only if j�jj yf .�/j D 0, which requires that yf D 0 almost

everywhere.

To prove the eighth item we first note that
�2

1

j�j2
� !s.�/ for all � 2 R

n. Then for

f 2 S .Rd / we bound

(5.33) Œ@1f �2PH �1
� c

Z
Rd

�2
1

j�j2
j yf .�/j2d� � c

Z
Rd

!s.�/j yf .�/j2 d� D ckf k2
Xs ;

and we again use the second item to conclude the estimates holds for general f 2

Xs . Injectivity follows since @1f D 0 if and only if j�1jj yf .�/j D 0, which requires

that yf D 0 almost everywhere. �

5.3 A class of specialized Sobolev spaces on � built from Xs.Rn�1/

For 0 � s 2 R, n � 2, and � 2 C
0;1
b

.Rn�1/ such that inf � > 0, we define the

space

(5.34)

Y s.�� /

D H s.�� / C Xs.Rn�1/

D ff 2 L1
loc.�� / j there exist g 2 H s.�� / and h 2 Xs.Rn�1/ such

that f .x/ D g.x/ C h.x0/ for almost every x 2 ��g;

and we endow this space with the norm kf kY s D inffkgkH s C khkXs j f D
g C hg. Note that � D �b , so in particular this defines a scale of spaces with

functions defined on �.

Our first result shows that this is a Banach space.

THEOREM 5.7. Let s � 0, n � 2, and � 2 C
0;1
b

.Rn�1/ such that inf � > 0. Then

Y s.�� / is a Banach space.

PROOF. Let ffmgm2N � Y s.�� / be such that
P

m2N
kfmkY s < 1: We may

then select fgmgm2N � H s.�� / and fhmgm2N � Xs.Rn�1/ such that kgmkH s C
khmkXs � 2kfmkY s ; which in particular means that

P
m2N

kgmkH s < 1 andP
m2N

khmkXs < 1: Since H s.�� / and Xs.Rn�1/ (see Theorem 5.6) are Ba-

nach spaces, there exist g 2 H s.�� / and h 2 Xs.Rn�1/ such that g D
P

m2N
gm

and h D
P

m2N
hm; with the convergence of the sums occurring in H s.�� / and

Xs.Rn�1/, respectively. From this we deduce that f WD g C h 2 Y s.�� / is such

that f D
P

m2N
fm, with the sum converging in Y s.�� /. Thus every absolutely

summable sequence is summable, and so Y s.�� / is a Banach space. �

Remark 5.8. When n D 2 Proposition 5.2 implies that H s.Rn�1/ D Xs.Rn�1/

algebraically and topologically, so in this case Y s.�� / D H s.�� /CH s.Rn�1/ D
H s.�� /. When n � 3, it’s clear that we have the continuous inclusion H s.�� / �

Y s.�� /, but due to the strict inclusion H s.Rn�1/ � Xs.Rn�1/ from Proposition

5.2, the previous inclusion is strict as well.
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Our next result shows that the trace operator may be extended to act on Y s.�/

when s > 1=2. Recall that we employ the abuse of notation for functions on †b

described at the end of Section 1.6.

THEOREM 5.9. Let s > 1=2 and n � 2. Then the trace map Tr W H s.�/ !

H s�1=2.†b/ extends to a bounded linear map Tr W Y s.�/ ! Xs�1=2.Rn�1/.

More precisely, the following hold:

(1) If f 2 C 0.S�/ \ Y s.�/, then Tr f D f j†b
.

(2) If ' 2 C 1
c .Rn�1 � .0; b�/, then

(5.35)

Z
†b

Tr f ' D

Z
�

@nf ' C f @n' for all f 2 Y s.�/:

(3) There exists a constant c D c.n; s; b/ > 0 such that kTr f kXs�1=2 �
ckf kY s for all f 2 Y s.�/.

PROOF. Let f 2 Y s.�/ and suppose that f D g1 Ch1 D g2 Ch2 for g1; g2 2
H s.�/ and h1; h2 2 Xs.Rn�1/, which in particular requires that @ng1 D @ng2 in

�. Let ' 2 C 1
c .Rn�1 � .0; b�/. From the usual trace theory in H s.�/ and the fact

that h1; h2 do not depend on xn we may compute

(5.36)

Z
†b

.Tr g1 C h1/' D

Z
�

.g1 C h1/@n' C @ng1'

D

Z
�

.g2 C h2/@n' C @ng2' D

Z
†b

.Tr g2 C h2/':

Hence Tr g1 C h1 D Tr g2 C h2, and so we unambiguously define Tr f D Tr g C

h 2 H s�1=2.†b/ C Xs.Rn�1/ � Xs�1=2.Rn�1/. The stated properties of Tr W

H s.�/ ! Xs�1=2.Rn�1/ then follow from the standard trace theory and Theorem

5.6. �

The next result shows that functions in Y s.�/ interact nicely with the horizontal

Fourier transform.

PROPOSITION 5.10. Let s � 0, n � 2, and f 2 Y s.�/. Then the following hold:

(1) For almost every xn 2 .0; b/ we have that f . � ; xn/ 2 Xs.Rn�1/, and

if we write y� for the Fourier transform with respect to x0 2 R
n�1, then

yf . � ; xn/ 2 L1.Rn�1/ C L2.Rn�1/.

(2) If s 2 N, then for almost every � 2 R
n�1 we have the inclusion yf .�; � / 2

H s..0; b/I C/.

PROOF. Since f 2 Y s.�/ we can write f .x/ D g.x/ C h.x0/ for g 2 H s.�/

and h 2 Xs.Rn�1/. The Parseval and Tonelli theorems imply that yg. � ; xn/ 2
L2.Rn�1I C/ for almost every xn 2 .0; b/, and Lemma 5.4 implies the inclusion
yh 2 L1.Rn�1I C/ C L2.Rn�1I C/. This completes the proof of the first item.

For the second item we again use the Tonelli and Parseval theorems to see that

if 0 � j � s, then @
j
n yg.�; � / 2 L2..0; b/I C/ for almost every � 2 R

n�1. On
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the other hand, yh.�/ does not depend on xn and .0; b/ has finite measure, so we

conclude that for 0 � j � s we have the inclusion @
j
n

yf .�; � / 2 L2..0; b/I C/ for

almost every � 2 R
n�1. �

Now we record some essential inclusion and mapping properties of Y s.�/.

THEOREM 5.11. Let s � 0, n � 2, and � 2 C
0;1
b

.Rn�1/ such that inf � > 0. Then

the following hold:

(1) If t 2 R and s < t , then we have the continuous inclusion Y t .�� / �
Y s.�� /.

(2) For each f 2 Xs.Rn�1/ we have that kf kY s � kf kXs , and hence we

have the continuous inclusion Xs.Rn�1/ � Y s.�� /.

(3) If k 2 N and s > k Cn=2, then there exists a constant c D c.n; k; s; �/ > 0

such that kf kC k

b

� ckf kY s for all f 2 Y s.�� /. Moreover, for � D b (in

which case �� D �) we have the continuous inclusion

(5.37) Y s.�/ � ff 2 C k
b .�/ j lim

jx0j!1
@˛f .x/ D 0 for j˛j � kg � C k

b .�/:

(4) If s � 1, then there exists a constant c D c.n; s; �/ > 0 such that krf kH s�1 �
ckf kY s for each f 2 Y s.�� /. In particular, we have that r W Y s.�� / !

H s�1.�� I R
n/ is a bounded linear map.

PROOF. These follow immediately from Theorem 5.6 and the usual properties

of the Sobolev space H s.�� /. �

5.4 Nonlinear analysis tools in the specialized spaces

Later in the paper we will employ our specialized Sobolev spaces to produce

solutions to (1.14). In doing so, we will need a number of nonlinear tools in these

spaces, and our goal now is to develop these. We begin with four important results

about products involving the specialized spaces.

We first investigate how products fg of functions f 2 Xs.Rd / and g 2

H s.Rd / behave in the supercritical case s > d=2.

THEOREM 5.12. Suppose that s > d=2. There exists a constant c D c.d; s/ > 0

such that kfgkH s � ckf kXs kgkH s for all f 2 Xs.Rd / and g 2 H s.Rd /.

Consequently, for 1 � k 2 N the mapping

(5.38) H s.Rd / �

kY

j D1

Xs.Rd / 3 .g; f1; : : : ; fk/ 7! g

kY

j D1

fj 2 H s.Rd /

is a bounded .k C 1/-linear map.

PROOF. First recall that since s > d=2, Lemma 5.4 provides a constant c > 0

such that k yf kL1 � ckf kXs for all f 2 Xs.Rd /. Similarly, k yf kL1 � ckf kH s
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for all f 2 H s.Rd /. Now let f; g 2 S .Rd / be real-valued. Then

.1 C j�j2/s=2jcfg.�/j � c

Z

Rd

j´j.1 C j´j2/.s�1/=2j yf .´/jjyg.� � ´/jd´

C c

Z

Rd

j yf .´/j.1 C j� � ´j2/s=2jyg.� � ´/jd´:

(5.39)

From this, Young’s inequality, the above L1 estimates, and Theorem 5.6, we de-

duce that

kfgkH s D k.1 C j�j2/s=2 cfgkL2

� ck
p

��f kH s�1kygkL1 C ck yf kL1kgkH s

� ckf kXs kgkH s :

(5.40)

This estimate also holds for all f 2 Xs.Rd / and g 2 H s.Rd / due to the density

of real-valued Schwartz functions in both spaces. The boundedness of the mapping

(5.38) then follows from this, the fact that H s.Rd / is an algebra for s > d=2, and

an induction argument. �

Our next product result is a variant of Theorem 5.12 that assumes one of the

factors also has a special product form.

THEOREM 5.13. Let ' 2 C 1

c .R/, n=2 < s 2 R, and V be a real finite-dimensional

inner product space. Then for 0 � r � s there exists a constant

c D c.n; V; s; r; '/ > 0

such that if f 2 H r.RnI V /, � 2 Xs.Rn�1/, and '�f W R
n ! V is defined via

.'�f /.x/ D '.xn/�.x0/f .x/, then '�f 2 H r.RnI V / and

(5.41) k'�f kH r � ck�kXs kf kH r :

PROOF. We first use Theorem 5.5 with R D 1 to write � D �0 C �1 with

�0 D �l;1 and �1 D �h;1 in the notation of the theorem. Then k'�f kH r �
k'�0f kH r C k'�1f kH r . By the second item of Theorem 5.5 we can bound, for

any s � k 2 N,

(5.42)

k'�0f kH r � ck'�0kC k

b
.Rn/kf kH r � ck�0kC k

b
.Rn�1/kf kH r � ck�kXs kf kH r :

On the other hand, from Lemma A.9, the Fourier characterization of H s.Rn/, and

the third item of Theorem 5.5, we can bound

k'�1f kH r � ck'�1kH s.Rn/kf kH r � ck�1kH s.Rn�1/kf kH r

� ck�kXs kf kH r :
(5.43)

Combining these three estimates then yields the stated inclusion and estimate. �

Next, we turn our attention to establishing an analogue of Theorem 5.12 for the

spaces Y s.�� /.
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THEOREM 5.14. Let n � 2, s > n=2, and � 2 C
0;1
b

.Rn�1/ such that inf � > 0.

There exists a constant c D c.n; s; �/ > 0 such that kfgkH s � ckf kY s kgkH s for

all f 2 Y s.�� / and g 2 H s.�� /. In particular, for 1 � k 2 N the mapping

(5.44) H s.�� / �

kY
j D1

Y s.�� / 3 .g; f1; : : : ; fk/ 7! g

kY
j D1

fj 2 H s.�� /

is a bounded .k C 1/-linear map.

PROOF. The boundedness of the .k C 1/-linear map (5.44) follows from the

stated product estimate and an induction argument, so we will only prove the es-

timate. Let f 2 Y s.�� / and g 2 H s.�� /. Write f .x/ D h.x/ C '.x0/ for

h 2 H s.�� / and ' 2 Xs.Rn�1/. Then fg D hg C 'g, but from the standard the-

ory of Sobolev spaces we have that hg 2 H s.�� / with khgkH s � ckhkH s kgkH s

for a constant c D c.n; s; �/ > 0. Thus it suffices to show that 'g 2 H s.�� / and

k'gkH s � ck'kXs kgkH s for a constant c D c.n; s; �/ > 0.

To prove this we first use the Stein extension theorem (see the proof of Lemma

A.5) to pick G D Eg 2 H s.Rn/ such that G D g almost everywhere in �� and

kGkH s.Rn/ � ckgkH s.��/ for a constant c D c.n; s; �/ > 0. Then we use Lemma

A.6 to bound

1

c
k'Gk2

H s.Rn/ �

Z
R

k'.�/G. � ; xn/k2
H s.Rn�1/

dxn

C

Z
R

.1 C �2/skFn.'G/. � ; �/k2
L2.Rn�1/

d�;

(5.45)

where Fn denotes the Fourier transform with respect to the nth variable. For the

latter term, since ' does not depend on xn, we can use Theorem 5.6 to boundZ
R

.1 C �2/skFn.'G/. � ; �/k2
L2.Rn�1/

d�

D

Z
R

.1 C �2/sk'FnG. � ; �/k2
L2.Rn�1/

d�

�

Z
R

.1 C �2/sk'k2
L1.Rn�1/

kFnG. � ; �/k2
L2.Rn�1/

d�

� ck'k2
Xs

Z
R

.1 C �2/skFnG. � ; �/k2
L2.Rn�1/

d�:

(5.46)

For the former term we use Theorem 5.12 for almost every xn 2 R to boundZ
R

k'.�/G. � ; xn/k2
H s.Rn�1/

dxn

� ck'k2
Xs.Rn�1/

Z
R

kG. � ; xn/k2
H s.Rn�1/

dxn:

(5.47)

Hence, upon combining these estimates and again employing Lemma A.6, we

deduce that k'GkH s.Rn/ � ck'kXs kGkH s.Rn/ for a constant c D c.n; s; �/ > 0.
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Since 'G D 'g almost everywhere in �� , we may then use Lemma A.5 to con-

clude that k'gkH s.��/ � ck'kXs kGkH s.Rn/. This proves the desired inclusion

and estimate. �

The following is a variant of the results in Theorems 5.12 and 5.14 that works in

more general domains but in a slightly lower regularity class with integer regularity

bounds.

THEOREM 5.15. Let � 2 C
0;1
b

.Rn�1/ be such that inf � > 0. Suppose that � 2

XkC2.Rn�1/ for n=2 < k 2 N and k�kL1 � b=2. For 0 � j � n � 1 define

�j W �� ! R via �0.x/ D �.x0/ and �j .x/ D xn@j �.x0/ for j 6D 0. For

1 � ` 2 N define M` W �� ! R via M`.x/ D .b C �.x0//�`. Then the following

hold:

(1) For every 0 � s � k C 2 there exists a constant c D c.n; k�k
C

0;1
b

; k; s/ > 0

such that k�0f kH s � ck�kXkC2kf kH s for all f 2 H s.�� /:

(2) For every 0 � s � k C 1 there exists a constant c D c.n; k�k
C

0;1
b

; k; s/ > 0

such that if 1 � j � n � 1, then k�j f kH s � ck�kXkC2kf kH s for all

f 2 H s.�� /.

(3) For every 0 � s � k C 2 and every 1 � ` 2 N there exists a constant c D

c.n; k�k
C

0;1
b

; s; k; `/ > 0 such that kM`f kH s � c.1 C k�kXkC2/kf kH s

for all f 2 H s.�� /.

PROOF. A direct finite induction argument, employing Theorem 5.6 and Lemma

A.8, shows that there is a constant c D c.n; k�k
C

0;1
b

; k/ > 0 such that if 0 � m �

k C 2 is an integer, then k�0f kH m � ck�kXkC2kf kH m for all f 2 H m.�� /.

This shows that the linear map H m.�� / 3 f 7! �0f 2 H m.�� / is bounded

for each 0 � m � k C 2 with operator norm bounded by ck�kXkC2 . Standard

interpolation theory (see, for instance, [24, 63, 94]) then shows that this map is

bounded on H s.�� / for 0 � s � kC2 with operator norm bounded by ck�kXkC2 .

This proves the first item.

In light of Theorem 5.6 we have the inclusion �j 2 H kC1.�� / as well as

the bound k�j kH kC1 � c.n; k�k
C

0;1
b

; k/k�kXkC2 : With these in hand, the second

item then follows directly from Theorem 5.14. For the third item we note that for

1 � ` 2 N and f 2 H 1.�� / we have the identity

@j .M`f / D M`@j f � `M`C1@j �f:

With this and the trivial bound

kM`f kL2 �













1

.b C �/`













L1

kf kL2

�

�

2

b

�`

kf kL2 � c.1 C k�kXkC2/kf kL2

(5.48)
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for all f 2 L2.�� / in hand, we may then argue as in the proof of the first item to

conclude that the third item holds. �

>From Theorem 5.15 we know that under some assumptions on �, we have

the inclusion M1f 2 H s whenever f 2 H s . We now aim to investigate the

smoothness of a generalization of the map .�; f / 7! M1f . This will be essential

later in our nonlinear analysis.

THEOREM 5.16. Let n � 2, s > n=2, and � 2 C
0;1
b

.Rn�1/ such that inf � > 0.

Let c D c.n; s; �/ > 0 denote the larger of the constant from the third item of

Theorem 5.11 with k D 0 and the constant from Theorem 5.14. Define the ball

BY s .0; b=.2c// D ff 2 Y s.�� / j kf kY s < b
2c

g. Then the maps �1; �2 W

BY s .0; b=.2c// � H s.�� / ! H s.�� / given by �1.f; g/ D g
bCf

and �2.f; g/ D

gf
bCf

are well-defined and smooth.

PROOF. We have that �2.f; g/ D f �1.f; g/, so if �1 is well-defined and

smooth, then Theorem 5.14 guarantees that �2 is also well-defined and smooth.

It thus suffices to prove that �1 is well-defined and smooth. We begin by showing

that �1 is well-defined; i.e., it actually takes values in H s.�/. To this end we note

that Theorem 5.11 and Theorem 5.14 show that the series
P1

kD0
.�1/k

bk
f k D b

bCf

converges uniformly in �� , and the series
P1

kD1
.�1/k

bk
gf k converges in H s.�� /.

However,

(5.49) �1.f; g/ D
g

b C f
D

g

b

b

b C f
D

g

b
C

1

b

1X

kD0

.�1/k

bk
gf k 2 H s.�� /;

so �1.f; g/ is well-defined. We now turn to the proof of smoothness. Define the

linear map T W Y s.�� / ! L.H s.�� // via T .f /g D gf . By virtue of The-

orem 5.14, T is bounded and kT kL.Y sIL.H s// � c. In the unital Banach algebra

L.H s.�� // we have that the power series F.L/ D
P1

kD0
1

bk
Lk converges and de-

fines a smooth function in the open ball fL 2 L.H s.�� // j kLkL.H s/ < bg. Thus,

F ı T W Y s.�� / ! L.H s.�� // defines a smooth function. Since �1.f; g/ D

F.Tf /g we immediately deduce that �1 is smooth on BY s .0; b=.2c// � H s.�� /.

�

In shifting from the Eulerian problem (1.14) to the flattened problem (1.22), we

employ the flattening map F defined in terms of the free surface function via (1.18).

We thus require some information about the operators defined by composition with

F� and its inverse. We record this now.

THEOREM 5.17. Let n � 2, n=2 < k 2 N, and � 2 XkC5=2.Rn�1/ be such that

k�kC 0

b

� b=2. Define G W �bC� ! � via G.x/ D .x0; xnb=.bC�.x0///. Suppose

that V is a real finite-dimensional inner product space. Then the following hold:
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(1) G 2 C r.�bC�I �/ is a diffeomorphism for r D 3 C bk � n=2c 2 N,

with inverse F 2 C r.�I �bC�/ defined by (1.18). Moreover, we have the

inclusions rG 2 C r�1
b

.�bC�I R
n�n/ and rF 2 C r�1

b
.�I R

n�n/.

(2) If 0 � s � k C 2 and f 2 H s.�I V /, then f ı G 2 H s.�bC�I V /.

Moreover, there is a constant c D c.n; s; k; k�kXkC2/ > 0 such that

kf ı GkH s.�bC�IV / � ckf kH s.�IV /;

and also the map

Œ0; 1/ 3 r 7! c.n; s; k; r/ 2 .0; 1/

is nondecreasing.

(3) If 0 � s � k C 2 and f 2 H s.�bC�I V /, then

f ı F 2 H s.�I V /:

Moreover, there is a constant c D c.n; s; k; k�kXkC2/ > 0 such that

kf ı FkH s.�IV / � ckf kH s.�bC�IV /;

and also the map Œ0; 1/ 3 r 7! c.n; s; k; r/ 2 .0; 1/ is nondecreasing.

PROOF. We will prove only the results for G. The corresponding results for F

follow from similar arguments.

Note that k C 5=2 > 3 C bk � n=2c C .n � 1/=2. Then according to The-

orem 5.6 we have that � 2 C r
0 .Rn�1/, and from this we readily deduce that

G 2 C r.�bC�I �/. We compute

(5.50) rG.x/ � I D

 

0.n�1/�.n�1/ 0.n�1/�1

�xnbr0�.x0/

.bC�.x0//2 � �.x0/
bC�.x0/

!

;

which shows that rG 2 C r�1
b

.�bC�I R
n�n/ . Clearly, G D F�1, and we have the

inclusion F 2 C r.�I �bC�/ from a similar argument. This proves the first item.

We now turn to the proof of the second item. Suppose f 2 L2.�I V /. Then we

use the change variables x D F.y/ and the identity J D det rF, for J defined in

(1.20), to estimate

kf ı Gk2
L2 D

Z

�bC�

kf ı G.x/k2
V dx

D

Z

�

kf .y/k2
V jdet rF.y/jdy � kJ kL1kf k2

L2 :

(5.51)

By hypothesis we have that kJ kL1 D k1 C �
b

kL1 � 3
2

, and we deduce from this

that kf ı GkL2 �

q

3
2
kf kL2 for all f 2 L2.�I V /.

Suppose now that for 0 � m � k C 1 there is a constant

c D c.n; m; k; k�kXkC2/ > 0;

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



TRAVELING WAVES FOR NAVIER-STOKES 2541

which is nondecreasing in the last argument, such that

(5.52) kf ı GkH m � ckf kH m for all f 2 H m.�I V /:

Consider f 2 H mC1.�I V /. For 1 � j � n we compute

(5.53) @j .f ı G/ D

nX

iD1

@if ı G@jGi D @j f ı G C

nX

iD1

@if ı G.@jGi � ıij /:

From this, (5.50), (5.52), and Theorem 5.15 we may then bound

k@j .f ı G/kH m

� ck@j f kH m C c.1 C k�kXkC2/k�kXkC2

nX

iD1

k@if ı GkH m

� ckf kH mC1

(5.54)

for a new constant c D c.n; m; k; k�kXkC2/ > 0 that is nondecreasing in the last

argument. Summing over 1 � j � n and again using the induction hypothesis

(5.52), we conclude that there exists a constant c D c.n; m C 1; k; k�kXkC2/ >

0 that is again nondecreasing in the last argument such that kf ı GkH mC1 �

ckf kH mC1 for all f 2 H mC1.�I V /. Proceeding with a finite induction then

shows that for each 0 � m � k C 2 there exists a constant

c D c.n; m; k; k�kXkC2/ > 0

such that kf ı GkH m � ckf kH m for all f 2 H m.�I V /.

We have now shown that the linear map

H m.�I V / 3 f 7! f ı G 2 H m.�bC�I V /

is bounded for each 0 � m � k C2 with operator norm bounded by a constant c D

c.n; m; k; k�kXkC2/ > 0. The theory of operator interpolation then guarantees that

this map is bounded from H s.�I V / to H s.�bC�I V / for every 0 � s � k C 2

and that the operator norm is a constant of the form c D c.n; s; k; k�kXkC2/ > 0.

This completes the proof of the second item. �

Theorem 5.17 tells us that under some assumptions on �, we can guarantee that

f ı F� 2 H s.�I R
n/ whenever f 2 H s.�bC�I R

n/. In our nonlinear analysis of

(1.14) we will need to show that a variant of this map is jointly C 1 in � and f . The

complication with working directly with the composition in Theorem 5.17 is that

in the theorem the function f is defined on �bC�, a set that depends on �. To avoid

this technical complication, we instead investigate the continuous differentiability

of the map .f; �/ 7! f ı E�, where f W R
n ! R

n, i.e., f is defined everywhere

rather than just �bC�, and E� is a diffeomorphism that agrees with F� on S�.

This is a variant of the “!-lemma” (see, for instance, proposition 2.4.18 in [9]

for a proof in C 0 spaces over compact topological spaces, and [53] for a proof in

standard Sobolev spaces on R
n or manifolds) for the specialized spaces. As in the
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standard !-lemma, we need to impose an extra order of regularity on the vector

field in order to show the map is C 1.

Although the map F� from (1.18) can be naturally extended as a map from R
n

to R
n, the unbounded term xn�.x

0/=b causes some technical problems in proving

the !-lemma. As such, we need to introduce a better behaved map E� W R
n ! R

n

that agrees with F� on S�. We do this now.

PROPOSITION 5.18. Let s > n=2 and  2 C1
c .R/ be such that 0 �  � 1,

 D 1 on Œ�2b; 2b�, and supp. / � .�3b; 3b/. Let ' 2 C1
c .R/ be given by

'.t/ D t .t/. Given � 2 XsC1=2.Rn�1/ define E� W R
n ! R

n via

(5.55) E�.x/ D .x0; xn C '.xn/�.x
0/=b/:

Then the following hold:

(1) The map E� is Lipschitz andC 1, and there exists a constant c D c.n; s; '/ >

0 such that

(5.56) krE� � IkC 0
b

� ck�kXsC1=2 :

(2) If V is a real finite-dimensional inner product space and 0 � r � s�1, then

there exists a constant c D c.n; r; s; V; '/ > 0 such that

(5.57) sup
1�j;k�n

k@jE� � ekf kH r � c.1C k�kXsC1=2/kf kH r

and

(5.58) sup
1�j;k�n

k.@jE� � ek � @jE� � ek/f kH r � ck� � �kXsC1=2kf kH r

for every �; � 2 XsC1=2.Rn�1/ and f 2 H r.RnIV /.

(3) There exists 0 < ı� < 1 such that if k�kXsC1=2 < ı�, then E� is a bi-

Lipschitz homeomorphism and a C 1 diffeomorphism, and we have the esti-

mate

(5.59) krE� � IkC 0
b
< 1=2:

PROOF. Since s > n=2 D .n�1/=2C1=2, we have that sC1=2 > .n�1/=2C1,

so the first item follows from the fifth item of Theorem 5.6 and the formula

(5.60) rE�.x/ D I C en ˝ .'.xn/r
0�.x0/=b; '0.xn/�.x

0/=b/:

The second item follows from this formula, Lemmas A.6 and A.9, and Theo-

rem 5.13. We now turn to the proof of the third item. First note that if the map

R
n 3 x 7! .'.xn/�.x

0/=b/en is a contraction, then the Banach fixed point theo-

rem readily implies that E� is a bi-Lipschitz homeomorphism. On the other hand,

the estimate (5.56) shows that if k�kXsC1=2 is sufficiently small, then we can ap-

ply the inverse function theorem to see that E� is a local C 1 diffeomorphism in a

neighborhood of every point. Since the smallness of k�kXsC1=2 can also be used

to guarantee the smallness of k�kC 1
b

, thanks to the fifth item of Theorem 5.6, we

then deduce the existence of a 0 < ı� < 1 satisfying the third item. �
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Next we establish some essential continuity properties of the map we will use in

the !-lemma.

PROPOSITION 5.19. Let n=2 < s 2 N and let 0 < ı� < 1 be as in the third

item of Proposition 5.18. Let r 2 N be such that 0 � r � s and V be a real

finite-dimensional inner product space. Consider the map

(5.61) ƒ W H r.RnI V / � BXsC1=2.Rn�1/.0; ı�/ ! H r.RnI V /

given by ƒ.f; �/ D f ı E�, where E� W R
n ! R

n is as defined in Proposition

5.18. Then ƒ is well-defined and continuous, and there exists a constant c D

c.n; V; s; r; '/ > 0 (where ' is as in the definition of E�) such that

(5.62) kƒ.f; �/kH r � c.1 C k�kXsC1=2/1Crkf kH r :

PROOF. We proceed by finite induction on 0 � r � s.

Suppose initially that r D 0 and let f; g 2 H 0.RnI V / D L2.RnI V / and

�; � 2 BXsC1=2.Rn�1/.0; ı�/. A change of variables shows that

(5.63) kf ı E�kH 0 D

�Z

Rn

jf ı E�j2
�1=2

� kdet rE
�1
� k

1=2
L1kf kH 0 ;

but, together with the bound k�kXsC1=2 < 1, the first and third items of Proposition

5.18 allow us to estimate

kdet rE
�1
� k

1=2
L1 � k.rE�/�1k

n=2
L1

� c.1 C k�kXsC1=2/n=2 � c.1 C k�kXsC1=2/:
(5.64)

Hence, kf ı E�kH 0 � c.1 C k�kXsC1=2/kf kH 0 , which is (5.62) with r D 0.

Next we compute

ƒ.f; �/ � ƒ.g; �/ D f ı E� � f ı E� C .f � g/ ı E� ;

so that

(5.65) kƒ.f; �/ � ƒ.g; �/kH 0 � kf ı E� � f ı E�kH 0 C k.f � g/ ı E�kH 0 :

Note that if � ! � in XsC1=2.Rn�1/, then the fifth item of Theorem 5.6 implies

that E� ! E� uniformly; this fact, together with the density of C 1
c .RnI V / in

H 0.RnI V / and the dominated convergence theorem, show that

(5.66) kf ı E� � f ı E�kH 0 ! 0 as � ! � in XsC1=2.Rn�1/:

On the other hand, (5.62) with r D 0 implies that k.f �g/ıE�kH 0 ! 0 as f ! g

in H 0.RnI V / and � ! � in XsC1=2.Rn�1/. Thus, the continuity assertion is

proved, and the result is proved in the case r D 0.

Suppose now that the result holds for t 2 N such that 0 � t � r � s �

1, and consider the case r C 1 � s. Let f; g 2 H rC1.RnI V / and �; � 2

BXsC1=2.Rn�1/.0; ı�/. For 1 � j � n we have that @j ƒ.f; �/ D
Pn

kD1 @kf ı

E�@jE� � ek , and the induction hypothesis (applied to @kf instead of f ) implies
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that @kf ı E� 2 H r.RnI V /. Thus, the induction hypothesis and Proposition 5.18

show that

kƒ.f; �/kH rC1 � c

 

kƒ.f; �/kH 0 C

n
X

j D1

k@j ƒ.f; �/kH r

!

� c.1 C k�kXsC1=2/2Crkf kH rC1 ;

(5.67)

which is (5.62) for r C 1. On the other hand, for 1 � j � n we also compute

@j Œƒ.f; �/ � ƒ.g; �/�

D

n
X

kD1

�

@kf ı E� � @kf ı E�

�

@jE� � ek

C

n
X

kD1

@kf ı E�

�

@jE� � ek � @jE� � ek

�

C

n
X

kD1

@k.f � g/ ı E�@jE� � ek :

(5.68)

Again using the induction hypothesis (applied to @kf ) and Proposition 5.18, we

deduce from this that kƒ.f; �/ � ƒ.g; �/kH rC1 ! 0 as f ! g in H rC1.RnI V /

and � ! � in XsC1=2.Rn�1/. This proves continuity assertion, so the result is

proved for r C 1. Proceeding by finite induction, we see that the result holds for

all 0 � r � s, as desired. �

We now have the tools needed to prove a version of the !-lemma. Note that we

need to impose higher regularity on the domain of ƒ in order to prove that it is C 1.

THEOREM 5.20. Let n=2 < s 2 N, 0 < ı� < 1, be as in the third item of

Proposition 5.18, and V be a real finite-dimensional inner product space. Con-

sider the map ƒ W H sC1.RnI V / � BXsC1=2.Rn�1/.0; ı�/ ! H s.RnI V / given by

ƒ.f; �/ D f ı E�, where E� W R
n ! R

n is as defined in Proposition 5.18. Then

ƒ is C 1 and Dƒ.f; �/.g; �/ D '
b

.@nf ı E�/� C g ı E�.

PROOF. Let f; g 2 H sC1.RnI V / and � 2 BXsC1=2.Rn�1/.0; ı�/. Let R > 0

be such that

BXsC1=2.Rn�1/.�; R/ � BXsC1=2.Rn�1/.0; ı�/

and consider � 2 BXsC1=2.Rn�1/.�; R/. Define the map

(5.69) Qf;� W H sC1.RnI V / � XsC1=2.Rn�1/ ! H s.RnI V /

via Qf;�.h; #/ D '
b

.@nf ı E�/# C h ı E�. This is obviously linear, provided that

it is well-defined. It is indeed well-defined and bounded due to Theorem 5.13 and
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Proposition 5.19, which show that

kQf;�.h; #/kH s � c
�

k@nf ı E�kH s k#kXsC1=2 C kh ı E�kH s

�

� c .1 C k�kXsC1=2/1Cs .1 C kf kH sC1/ .khkH s C k#kXsC1=2/

� c .1 C k�kXsC1=2/1Cs .1 C kf kH sC1/ .khkH sC1 C k#kXsC1=2/ :

(5.70)

We next claim that ƒ is differentiable at .f; �/ and Dƒ.f; �/ D Qf;�. Since

s C 1 > 1 C n=2, we have that f; g 2 C 1
b

.RnI V /. Then

ƒ.f C g; � C �/ � ƒ.f; �/ � Qf;�.g; �/

D

�

f ı E�C� � f ı E� �
'

b
.@nf ı E�/�

�

C Œg ı E�C� � g ı E��:
(5.71)

We will handle each term on the right in turn. For the first we use the fundamental

theorem of calculus to write

(5.72) f ıE�C� �f ıE� �
'

b
.@nf ıE�/� D

'�

b

Z 1

0

Œ@nf ıE�Ct� �@nf ıE��dt:

Using Theorem 5.13, this allows us to estimate












f ı E�C� � f ı E� �
'

b
.@nf ı E�/�













H s

� ck�kXsC1=2

Z 1

0

k@nf ı E�Ct� � @nf ı E�kH s dt;

(5.73)

and since � C t� 2 BXsC1=2.0; ı�/, Proposition 5.19 guarantees that

(5.74) lim
.g;�/!0

kf ı E�C� � f ı E� � '
b

.@nf ı E�/�kH s

kgkH sC1 C k�kXsC1=2

D 0:

Similarly, we can again use the fundamental theorem of calculus, Theorem 5.13,

and Proposition 5.19 to see that

kg ı E�C� � g ı E�kH s D













'�

b

Z 1

0

@ng ı E�Ct� dt













H s

� ck�kXsC1=2

Z 1

0

k@ng ı E�Ct�kH s dt

� ck�kXsC1=2kgkH sC1

Z 1

0

.1 C k� C t�kXsC1=2/sC1 dt

� c.1 C ı�/sC1k�kXsC1=2kgkH sC1 ;

(5.75)

and hence

(5.76) lim
.g;�/!0

kg ı E�C� � g ı E�kH s

kgkH sC1 C k�kXsC1=2

D 0:

Combining these then completes the proof of the claim.
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To show that ƒ is C 1 it remains only to prove that the map

(5.77) Dƒ W H sC1.RnI V / � BXsC1=2.Rn�1/.0; ı�/

! L.H sC1.RnI V / � XsC1=2.Rn�1/I H s.RnI V //

is continuous. We compute

Dƒ.f; �/.h; #/ � Dƒ.g; �/.h; #/ D
'#

b

�

@nf ı E� � @nf ı E�

�

C
'#

b
.@nf � @ng/ ı E� C .h ı E� � h ı E� /:

(5.78)

Again using Theorem 5.13 and Proposition 5.19 we may estimate












'#

b

�

@nf ı E� � @nf ı E�

�













H s

� ck#kXsC1=2k@nf ı E� � @nf ı E�kH s ;













'#

b
.@nf � @ng/ ı E�













H s

� ck#kXsC1=2.1 C k�kXsC1=2/1Csk@nf � @ngkH s

and (also using the fundamental theorem of calculus)

kh ı E� � h ı E�kH s

D













'.� � �/

b

Z 1

0

@nh ı Et�C.1�t/� dt













H s

� ck� � �kXsC1=2













Z 1

0

@nh ı Et�C.1�t/� dt













H s

� ck� � �kXsC1=2

Z 1

0

k@nh ı Et�C.1�t/�kH s dt

� ck� � �kXsC1=2k@nhkH s

Z 1

0

.1 C kt� � .1 � t /�kXsC1=2/1Cs dt

� c.1 C ı�/1Csk� � �kXsC1=2khkH sC1 :

(5.79)

Hence, we may bound the operator norm via

kDƒ.f; �/ � Dƒ.g; �/kL

� c
�

k@nf ı E� � @nf ı E�kH s C kf � gkH sC1 C k� � �kXsC1=2

�

;

(5.80)

and the continuity of Dƒ then follows from this estimate and Proposition 5.19.

Thus ƒ is C 1. �

Our final result gives another version of the !-lemma for the original flattening

map given in (1.18).
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COROLLARY 5.21. Let n=2 < s 2 N, 0 < ı� < 1, be as in the third item of

Proposition 5.18, and V be a real finite-dimensional inner product space. For

� 2 XsC1=2.Rn�1/ define F� W � ! �bC� as in (1.18). Then the following hold:

(1) The map

ƒ� W H sC1.RnI V / � BXsC1=2.Rn�1/.0; ı�/ ! H s.�I V /

defined via ƒ�.f; �/ D f ı F� is well-defined and C 1, with

Dƒ�.f; �/.g; �/ D
'

b
.@nf ı F�/� C g ı F�:

(2) The map

Sb W H sC2.RnI V / � BXsC3=2.Rn�1/.0; ı�/ ! H sC1=2.†bI V /

given by Sb.f; �/ D f ı F�j†b
is well-defined and C 1, with

DSb.f; �/.g; �/ D
�'

b
.@nf ı F�/� C g ı F�

�
ˇ

ˇ

ˇ

†b

:

PROOF. Let E� W R
n ! R

n be as in Proposition 5.18. By construction, we

have that F� equals the restriction of E� to �. Then ƒ� D R� ı ƒ, where ƒ

is as in Theorem 5.20 and R� W H s.RnI V / ! H s.�I V / is the bounded linear

restriction map R�g D gj�. Theorem 5.20 shows that ƒ is C 1, and R� is linear,

and hence smooth, so ƒ� is C 1 by the chain rule. This proves the first item, and

the second follows from the first (applied with s C 1 in place of s) and the fact that

the trace operator from H sC1.�I V / to H sC1=2.†bI V / is bounded and linear, and

hence smooth. �

6 The 
-Stokes Equations with Traveling Gravity-Capillary

Boundary Conditions

In this section we turn our attention to the 
 -Stokes problem with boundary

conditions that couple the stress tensor to the linearized gravity-capillary operator.

That is, we seek solution triples .u; p; �/ to the problem

(6.1)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en � .� � ��0�/en D k; un C 
@1� D h on †b;

u D 0 on †0;

for given data .f; g; h; k/ 2 Ys , as defined in (3.13). In order to solve this prob-

lem for data in Ys we will employ the specialized Sobolev spaces Xs.Rn�1/ and

Y s.�/ introduced in Section 5.
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6.1 Preliminaries

We begin our analysis by studying the mapping defined by the problem (6.1),

with the aim being to find a domain space for the triple .u; p; �/ that yields a well-

defined linear map into Ys . We begin with two crucial lemmas that establish key

properties of some auxiliary functions.

The first lemma studies a function defined in terms of the function m from

(4.37).

LEMMA 6.1. Let n � 2 and m W R
n�1�R ! C be given by (4.37). Let 
 2 Rnf0g,

� � 0, and define � W R
n�1 ! C via �.�/ D 2�i
�1 C .1 C 4�2j�j2�/m.�; �
/.

Then the following hold:

(1) � is continuous, and it is also smooth when restricted to R
n�1 n f0g.

(2) Re � � 0, and Re �.�/ D 0 if and only if � D 0. In particular, �.�/ D 0 if

and only if � D 0.

(3) �.�/ D �.��/ for all � 2 R
n�1.

(4) For � > 0 there exists a constant c D c.n; 
; �; b/ > 0 such that

(6.2)
1

c

j�.�/j2

j�j2
�

�2

1
C j�j4

j�j2
� c

j�.�/j2

j�j2
for j�j � 1;

and

(6.3)
1

c
j�.�/j2 � 1 C j�j2 � cj�.�/j2 for j�j � 1:

(5) For � D 0 and n D 2 there exists a constant c D c.
; b/ > 0 such that

(6.4)
1

c

j�.�/j2

j�j2
� 1 C j�j2 � c

j�.�/j2

j�j2
for j�j � 1

and

(6.5)
1

c
j�.�/j2 � 1 C j�j2 � cj�.�/j2 for j�j � 1:

PROOF. The first item follows from the continuity of m. � ; �
/ and its smooth-

ness away from the origin, which was proved in Theorem 4.5. Clearly �.0/ D 0,

but Re �.�/ D .1 C 4�2j�j2�/ Re m.�; �
/ < 0 for � ¤ 0, thanks again to The-

orem 4.5. This proves the second item. The third item follows from the third item

of Theorem 4.5:

�.�/ D �2�i
�1 C .1 C 4�2j�j2�/m.�; �
/

D �2�i
�1 C .1 C 4�2j�j2�/m.��; �
/ D �.��/:
(6.6)

We now turn to the proof of the fourth item. According to Theorems 4.7 and

4.10 we have the asymptotic developments

(6.7) m.�; �
/ D �
4�2j�j2b3

3
C O.j�j3/ as � ! 0
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and

(6.8) m.�;�
/ D �
1

4�j�j
CO

�

1

j�j2

�

as j�j ! 1:

Thus

�.�/ D �
4�2j�j2b3

3
C 2�i
�1 CO.j�j3/ as � ! 0;

�.�/ D �
1C 4�2j�j2�

4�j�j
C 2�i
�1 CO

�

1

j�j2

�

as j�j ! 1;

(6.9)

and so we we can pick constants c D c.n; 
; �; b/ > 0 and R D R.n; 
; �; b/ > 1

such that (6.2) holds for j�j � 1=R and (6.3) holds for j�j � R. However, on the

compact set fx 2 R
n�1 j 1=R � j�j � Rg the quantities in the middle of (6.2) and

(6.3) cannot vanish, nor can j�j by the second item. Hence, the middle and outer

quantities are equivalent on this compact set, and so upon possibly enlarging c, we

conclude that (6.2) holds for j�j � 1 and (6.3) holds for j�j � 1, which completes

the proof of the fourth item. The fifth item follows from a similar argument. �

The second lemma studies an auxiliary function defined in terms of Q and V

from (4.37).

LEMMA 6.2. Let 
 2 R, s � 0, and let Q. � ; � ;�
/ W R
n�1 � Œ0; b� ! C and

V. � ; � ;�
/ W R
n�1 � Œ0; b� ! C

n be as defined in (4.37). There exists a constant

c D c.n; s; 
; b/ > 0 such that if .f; g; h; k/ 2 Ys , where Ys is the Hilbert space

defined in (3.13), and we define the measurable function  W R
n�1 ! C via

 .�/ D

Z b

0

�

yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
/
�

dxn

� yk.�/ � V.�; b;�
/C yh.�/;

then
Z

B 0.0;1/

1

j�j2
j .�/j2 d� C

Z

B 0.0;1/c

.1C j�j2/sC3=2j .�/j2 d�

� ck.f; g; h; k/k2
Ys :

(6.10)

Moreover, the function  satisfies  .�/ D  .��/ for every � 2 R
n�1.

PROOF. For j�j � 1 we regroup the sum defining  via

 .�/ D

Z b

0

�

yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/
�

Q.�; xn;�
/ � 1
��

dxn

� yk.�/ � V.�; b;�
/C

 

yh.�/ �

Z b

0

yg.�; xn/dxn

!
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and then apply the Cauchy-Schwarz inequality and square to arrive at the estimate

j .�/j2 � 4

 

Z b

0

j yf .�; xn/j
2 d�

! 

Z b

0

jV.�; xn/j
2 d�

!

C 4

 

Z b

0

jyg.�; xn/j
2 d�

! 

Z b

0

jQ.�; xn;�
/ � 1j2 d�

!

C 4jyk.�/j2jV.�; b;�
/j2 C 4

ˇ

ˇ

ˇ

ˇ

yh.�/ �

Z b

0

yg.�; xn/dxn

ˇ

ˇ

ˇ

ˇ

2

:

(6.11)

Using the continuity of V and Q, as proved in Theorem 4.5, together with the

asymptotic developments as � ! 0 from Theorem 4.7, we find that there exists a

constant c D c.n; b; 
/ > 0 such that

sup
j�j�1

1

j�j2

�Z b

0

�

jV.�; xn;�
/j
2 C jQ.�; xn;�
/ � 1j2

�

dxn

C jV.�; b;�
/j2
�

� c:

(6.12)

On the other hand, from the definition of PH�1 (see (1.61)) we have that

(6.13)

Z

B 0.0;1/

1

j�j2

ˇ

ˇ

ˇ

ˇ

yh.�/ �

Z b

0

yg.�; xn/dxn

ˇ

ˇ

ˇ

ˇ

2

d� �

"

h �

Z b

0

g.�; xn/dxn

#2

PH �1

:

Combining these and employing the Tonelli and Parseval theorems, we deduce that

Z

B 0.0;1/

1

j�j2
j .�/j2 d�

� c

Z

B 0.0;1/

Z b

0

�

j yf .�; xn/j
2 C jyg.�; xn/j

2
�

dxn d�

C c

Z

B 0.0;1/

jyk.�/j2 d� C c

"

h �

Z b

0

g. � ; xn/dxn

#2

PH �1

� c

�

kf k2
L2 C kgk2

L2 C kkk2
L2 C













h �

Z b

0

g. � ; xn/dxn













2

PH �1

�

� ck.f; g; h; k/k2
Ys

(6.14)

for another constant c D c.n; 
; b/ > 0.
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For j�j � 1 we don’t regroup but use Cauchy-Schwarz again to bound

j .�/j2 � 4

 

Z b

0

j yf .�; xn/j
2 d�

! 

Z b

0

jV.�; xn;�
/j
2 d�

!

C 4

 

Z b

0

jyg.�; xn/j
2 d�

! 

Z b

0

jQ.�; xn;�
/j
2 d�

!

C 4jyk.�/j2jV.�; b;�
/j2 C 4jyh.�/j2:

(6.15)

From Theorem 4.10, Corollary 4.11, and the continuity of V , we deduce that there

is a constant c D c.n; b; 
/ > 0 such that

.1C j�j2/3=2

Z b

0

jV.�; xn;�
/j
2 dxn

C .1C j�j2/1=2

Z b

0

jQ.�; xn;�
/j
2 dxn

C .1C j�j2/jV.�; b;�
/j2 � c

(6.16)

for all � 2 R
n�1. Combining these, and again using the Tonelli and Parseval

theorems, as well as Corollary A.7, we deduce that

Z

B 0.0;1/c

.1C j�j2/sC3=2j .�/j2 d�

� c

Z b

0

Z

Rn�1

.1C j�j2/sj yf .�; xn/j
2 d� dxn

C c

Z b

0

Z

Rn�1

.1C j�j2/sC1jyg.�; xn/j
2 d� dxn

C

Z

Rn�1

.1C j�j2/sC1=2jyk.�/j2 d�

C

Z

Rn�1

.1C j�j2/sC3=2jyh.�/j2 d�

� c

Z b

0

kf . � ; xn/k
2
H s.Rn�1/

dxn

C c

Z b

0

kg. � ; xn/k
2
H sC1.Rn�1/

dxn C ckkk2
H sC1=2 C ckhk2

H sC3=2

� c
�

kf k2
H s C kgk2

H sC1 C kkk2
H sC1=2 C khk2

H sC3=2

�

� ck.f; g; h; k/k2
Ys :

(6.17)
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Then (6.10) follows by summing (6.14) and (6.17). To conclude we use Lemma

A.2 and the third item of Theorem 4.5 to compute

 .�/ D

Z b

0

�

yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
/
�

dxn

� yk.�/ � V.�; b;�
/C yh.�/

D

Z b

0

�

yf .��; xn/ � V.��; xn;�
/ � yg.��; xn/Q.��; xn;�
/
�

dxn

� yk.��/ � V.��; b;�
/C yh.��/

D  .��/

(6.18)

�

With these lemmas in hand, we now turn to the question of defining the domain

of the map determined by (6.1). For s � 0 we define the space

X
s D

˚

.u; p; �/ 2 0H
sC2.�I R

n/ � Y sC1.�/ �XsC5=2.Rn�1/

j p � � 2 H sC1.�/
�

;
(6.19)

where here the condition p � � 2 H sC1.�/ is understood in the sense of the def-

inition of the space Y sC1.�/ from (5.34) and is well-defined due to the inclusion

XsC5=2.Rn�1/ � XsC1.Rn�1/ from Theorem 5.6. We endow X s with the norm

k.u; p; �/kX s D kuk
0H sC2 C kpkY sC1 C k�kXsC5=2 C kp � �kH sC1 . It is a sim-

ple matter to verify that X s is a Banach space. Moreover, we have the following

embedding result:

PROPOSITION 6.3. Let X s be defined by (6.19) and suppose s > n=2. Then we

have the continuous inclusion

X
s � C

2Cbs�n=2c

b
.�I R

n/ � C
1Cbs�n=2c

b
.�/ � C

3Cbs�n=2c
0 .Rn�1/;(6.20)

where C k
b

and C k
0 are defined in Section 1.6. Moreover, if .u; p; �/ 2 X s , then

lim
jx0j!1

@˛u.x/ D 0 for all ˛ 2 N
n such that j˛j � 2C bs � n=2c; and

lim
jx0j!1

@˛p.x/ D 0 for all ˛ 2 N
n such that j˛j � 1C bs � n=2c:

(6.21)

PROOF. This follows from the usual Sobolev embedding, the third item of The-

orem 5.11, and the fifth item of Theorem 5.6. �

The next result shows that the map .u; p; �/ 7! .f; g; h; k/ defined by (6.1) is

well-defined from X s to Ys .

LEMMA 6.4. Let s � 0 and suppose that .u; p; �/ 2 X s , where X s is the Banach

space defined by (6.19). Define f W � ! R
n, g W � ! R, h W †b ! R, and
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k W †b ! R
n via f D div S.p; u/ � 
@1u, g D div u, h D un C 
@1�, and

k D S.p; u/en � .� � ��0�/en. Then .f; g; h; k/ 2 Ys , where Ys is the Hilbert

space defined in (3.13), and there exists a constant c D c.�; s; 
; �/ > 0 such that

(6.22) k.f; g; h; k/kYs � ck.u; p; �/kX s :

PROOF. Theorem 5.11 shows that r W Y sC1.�/ ! H s.�I R
n/ is a bounded

linear map, so according to (1.11) we have that f 2 H s.�I R
n/ and kf kH s �

ckuk
0H sC2 C ckpkY sC1 . Clearly, g 2 H sC1.�/ and kgkH sC1 � ckuk

0H sC2 .

Then Theorem 3.1 shows that we have the inclusion

un. � ; b/ �

Z b

0

g. � ; xn/dxn 2 PH �1

and

(6.23)

"

un. � ; b/ �

Z b

0

g. � ; xn/dxn

#

PH �1

� ckukL2 :

Theorem 5.6 shows that the linear maps @1 W XsC5=2.†b/ ! H sC3=2.†b/ \
PH �1.†b/ and �0 W XsC5=2.†b/ ! H sC1=2.†b/ are bounded. These and stan-

dard trace theory then show that we have the inclusions

h 2 H sC3=2.†b/ and h �

Z b

0

g. � ; xn/dxn 2 PH �1;

and that we have the bounds khkH sC3=2 � ckuk
0H sC2 C ck�kXsC5=2 and

"

h �

Z b

0

g. � ; xn/dxn

#

PH �1

�

"

un. � ; b/ �

Z b

0

g. � ; xn/dxn

#

PH �1

C Œ
@1�� PH �1

� ck�kXsC5=2 C ckukL2 :

(6.24)

Finally, we again use the above, the inclusion p � � 2 H sC1.�/, and trace

theory to see that k 2 H sC1=2.†bI R
n/ and

kkkH sC1=2 � kp � �kH sC1=2.†b/ C k��0�kH sC1=2.†b/

C kDukH sC1=2.†b/

� ckp � �kH sC1.�/ C ck�kXsC5=2 C ckuk
0H sC2 :

(6.25)

Synthesizing these shows that .f; g; h; k/ 2 Ys and that (6.22) holds. �

For 
 2 R n f0g, � � 0, s � 0, and X s and Ys the Banach spaces defined by

(6.19) and (3.13), respectively, we define the operator ‡
;� W X s ! Ys via

‡
;� .u; p; �/ D
�

div S.p; u/ � 
@1u; div u; unj†b
C 
@1�;

S.p; u/enj†b
� .� � ��0�/en

�

:
(6.26)
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This is well-defined and bounded by virtue of Lemma 6.4. The map ‡
;� is injec-

tive, as we now prove.

PROPOSITION 6.5. Assume that 
 2 R n f0g, � � 0, s � 0, and let X s and Ys

be the Banach spaces defined by (6.19) and (3.13), respectively. Then the bounded

linear operator ‡
;� W X s ! Ys defined by (6.26) is injective.

PROOF. Suppose that .u; p; �/ 2 X s and ‡
;� .u; p; �/ D 0, which is equiva-

lent to the problem

(6.27)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D 0 in �;

div u D 0 in �;

S.p; u/en D .� � ��0�/en; un C 
@1� D 0 on †b;

u D 0 on †0:

Since s � 0, when we apply the horizontal Fourier transform we find from the

Tonelli and Parseval theorems that yu.�; � / 2 H 2..0; b/I C
n/ for almost every � 2

R
n�1. We also know from Proposition 5.10 that yp.�; �/ 2 H 1..0; b/I C/ for almost

every � 2 R
n�1. Furthermore, Lemma 5.4 shows that

(6.28) y� 2 L1.Rn�1/ C L2.Rn�1I .1 C j�j2/.sC5=2/=2d�/:

We may thus apply the horizontal Fourier transform to (6.27) to deduce that for

almost every � 2 R
n�1 the pair w WD yu.�; � /, q WD yp.�; � / satisfies (4.2) with

F D 0; G D 0, and K D .1C4�2j�j2�/y�.�/en, and that yun.�; b/C2�i
�1y�.�/ D
0. Fix one of these almost every � 2 R

n�1 n f0g. Using (4.3) from Proposition 4.1

with v D w, we find that

Z b

0

�
2�i�1jwj2 C 2j@nwnj2 C j@nw0 C 2�i�wnj2

C
1

2
j2�i� ˝ w0 C w0 ˝ 2�i�j2

D �.1 C 4�2j�j2�/y�.�/yun.�; b/ D �2�i
�1.1 C 4�2j�j2�/jy�.�/j2:

(6.29)

Taking the real part of this expression then shows that @nwn D 0 and that @nw0 C
2�i�wn D 0 in .0; b/, but w.0/ D 0, so w D 0 in Œ0; b�. Since w D 0 and � ¤ 0,

the first equation in (4.2) then shows that q D 0 in Œ0; b�, but then the fifth equation

in (4.2) requires that 0 D q.b/ � 2@nwn.b/ D Kn D .1 C 4�2j�j2�/y�.�/, and

we find that y�.�/ D 0. We have thus proved that for almost every � 2 R
n�1 we

have that yu.�; � / D 0, yp.�; � / D 0, and y�.�/ D 0, which then implies that u D 0,

p D 0, and � D 0 and hence that ‡
;� is injective. �

6.2 Solvability of (6.1) when � > 0

We are now ready to completely characterize the solvability of (6.1) for data

belonging to Ys in the case of positive surface tension, i.e., � > 0.

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



TRAVELING WAVES FOR NAVIER-STOKES 2555

THEOREM 6.6. Assume that 
 2 R n f0g, � > 0, s � 0, and let X s and Ys be the

Banach spaces defined by (6.19) and (3.13), respectively. Then the bounded linear

operator ‡
;� W X s ! Ys defined by (6.26) is an isomorphism.

PROOF. Proposition 6.5 established that the map ‡
;� is injective, so we must

only prove that it is surjective. Fix .f; g; h; k/ 2 Ys , let  W R
n�1 ! C be

defined in terms of .f; g; h; k/ as in Lemma 6.2, and consider � W R
n�1 ! C

given by �.�/ D 2�i
�1 C .1 C 4�2j�j2�/m.�/ as in Lemma 6.1. Lemma 6.1

tells us that �.�/ D 0 if and only if � D 0, so we may define y� W R
n�1 ! C via

y�.�/ D  .�/=�.�/ for � ¤ 0 and y�.0/ D 0. Note that y�.�/ D y�.��/ due to the

corresponding properties of � and  , as established in Lemmas 6.1 and 6.2. Then

from Lemmas 6.1 and 6.2 we find a constant c D c.n; 
; b; s; �/ > 0 such that

Z

B 0.0;1/

�2
1 C j�j4

j�j2
jy�.�/j2 d� C

Z

B 0.0;1/c

.1C j�j2/sC5=2jy�.�/j2 d�

� c

Z

B 0.0;1/

j�.�/j2

j�j2
jy�.�/j2 d�

C c

Z

B 0.0;1/c

.1C j�j2/sC3=2j�.�/j2jy�.�/j2 d�

� c

Z

B 0.0;1/

1

j�j2
j .�/j2 d�

C c

Z

B 0.0;1/c

.1C j�j2/sC3=2j .�/j2 d�

� ck.f; g; h; k/k2
Ys :

(6.30)

Consequently, we may define � D .y�/_ 2 XsC5=2.Rn�1/; the above estimate then

says that k�kXsC5=2 � ck.f; g; h; k/kYs .

Next we recall from (4.37) that m.�/ D Vn.�; b/. Using this and the definitions

of � and  , we rearrange the identity �y� D  to find that

0 D

Z b

0

�

yf .�; xn/ � V.�; xn;�
/ � yg.�; xn/Q.�; xn;�
/
�

dxn

�
�

yk.�/C .1C 4�2j�j2�/y�.�/en

�

� V.�; b;�
/C yh.�/

� 2�i
�1y�.�/

(6.31)

for � 2 R
n�1 n f0g. From the third equation in (4.38) from Theorem 4.5 we know

that 2�i� � V 0.�; xn;�
/ C @nVn.�; xn;�
/ D 0. Since V.�; 0;�
/ D 0, this

allows us to compute

(6.32) Vn.�; b;�
/ D

Z b

0

@nVn.�; xn;�
/dxn D

Z b

0

2�i� �V 0.�; xn;�
/dxn:
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Combining (6.31) and (6.32), we deduce that

0 D

Z b

0

��

yf .�; xn/ � .2�i�y�.�/; 0/
�

� V.�; xn; �
/ � yg.�; xn/Q.�; xn; �
/
�

dxn

�
�

yk.�/ C 4�2j�j2� y�.�/en

�

� V.�; b; �
/ C yh.�/

� 2�i
�1y�.�/:

(6.33)

Since � 2 XsC5=2.Rn�1/, Theorem 5.6 guarantees that we have the inclusions

.�r 0�; 0/ 2 H sC3=2.�I R
n/ � H s.�I R

n/;

�0� 2 H sC1=2.Rn�1/;

@1� 2 H sC3=2.Rn�1/ \ PH �1.Rn�1/:

(6.34)

Therefore, f � .r 0�; 0/ 2 H s.�I R
n/, g 2 H sC1.�/, h � 
@1� 2 H sC3=2.†b/,

k���0�en 2 H sC1=2.†bI R
n/, and .h�
@1�/�

R b
0 g. � ; xn/dxn 2 PH �1.Rn�1/.

We have that br 0�.�/ D 2�i�y�.�/ and 1��0�.�/ D �4�2j�j2� y�.�/, so the iden-

tity (6.33) and Proposition 4.12 imply that the modified data quadruple .f �
.r 0�; 0/; g; h � 
@1�; k � ��0�en/ satisfies the compatibility condition (3.11) and

hence belongs to the Hilbert space Z
s , as defined in (3.15). Thus, we may apply

Theorem 3.4 to find a unique pair u 2 0H sC2.�I R
n/ and q 2 H sC1.�/ solving

(6.35)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

div S.q; u/ � 
@1u D f � .r 0�; 0/ in �;

div u D g in �;

S.q; u/en D k � ��0�en on †b;

un D h � 
@1� on †b;

u D 0 on †0:

Since S.q; u/ D qI � Du and div S.q; u/ D ��u � r div u C rq, we may then

define p D q C � 2 Y sC1.�/ and deduce that .u; p; �/ 2 X
s satisfies

(6.36)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en � .� � ��0�/en D k on †b;

un C 
@1� D h on †b;

u D 0 on †0:

Hence ‡
;� .u; p; �/ D .f; g; h; k/, and we conclude that ‡
;� is an isomorphism.

�
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6.3 Solvability of (6.1) when � D 0 and n D 2

We now turn our attention to the solvability of (6.1) in the case without surface

tension, i.e., � D 0. Due to technical obstructions, we must restrict to the dimen-

sion n D 2. In this case, for s � 0 Proposition 5.2 and Remark 5.8 imply that the

Banach space X s defined by (6.19) satisfies the algebraic identity

(6.37) X
s D 0H

sC2.�I R
2/ �H sC1.�/ �H sC5=2.R/

and that we have the norm equivalence

(6.38) k.u; p; �/kX s � kuk
0H sC2 C kpkH sC1 C k�kH sC5=2

for .u; p; �/ 2 X s . In particular, this means that in this case X s possesses an

equivalent Hilbert topology.

The following characterizes the solvability of (6.1) when � D 0 and n D 2.

THEOREM 6.7. Assume that n D 2, 
 2 R n f0g, � D 0, s � 0, and let X s and Ys

be the Banach spaces defined by (6.19) and (3.13), respectively. Then the bounded

linear operator ‡
;0 W X s ! Ys defined by (6.26) is an isomorphism.

PROOF. Again, we know from Proposition 6.5 that‡
;0 is injective, so we must

only establish surjectivity.

Fix .f; g; h; k/ 2 Ys , let  W R ! C be defined in terms of .f; g; h; k/ as

in Lemma 6.2, and consider � W R ! C given by �.�/ D 2�i
� C m.�/ as in

Lemma 6.1 with � D 0. Arguing as in the proof of Theorem 6.6, we may define

y� W R ! C via y�.�/ D  .�/=�.�/ for � ¤ 0 and y�.0/ D 0, and we have that

y�.�/ D y�.��/. Moreover, thanks to Lemmas 6.1 and 6.2 there exists a constant

c D c.
; b; s/ > 0 such that

(6.39)

Z
B 0.0;1/

.1C j�j2/jy�.�/j2 d� C

Z
B 0.0;1/c

.1C j�j2/sC5=2jy�.�/j2 d�

� c

Z
B 0.0;1/

j�.�/j2

j�j2
jy�.�/j2 d�

C c

Z
B 0.0;1/c

.1C j�j2/sC3=2j�.�/j2jy�.�/j2 d�

� c

Z
B 0.0;1/

1

j�j2
j .�/j2 d�

C c

Z
B 0.0;1/c

.1C j�j2/sC3=2j .�/j2 d�

� ck.f; g; h; k/k2
Ys :

Consequently, we may define � D .y�/_ 2 H sC5=2.R/ D XsC5=2.R/ (recall that

the latter identity was established in Proposition 5.2); the above estimate then says

that k�kXsC5=2 � ck.f; g; h; k/kYs .
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Next we argue as in the proof of Theorem 6.6 to see that

0 D

Z b

0

�

yf .�; x2/ � V.�; x2; �
/ � yg.�; x2/Q.�; x2; �
/
�

dx2

�
�

yk.�/ C y�.�/e2

�

� V.�; b; �
/ C yh.�/ � 2�i
�y�.�/

(6.40)

for � 2 R n f0g, and that we have the inclusions

h � 
@1� 2 H sC3=2.†b/; k C �e2 2 H sC1=2.†bI R
2/;

.h � 
@1�/ �

Z b

0

g. � ; x2/dx2 2 PH �1.R/:

These and Proposition 4.12 imply that the modified data quadruple .f; g; h �

@1�; k C �e2/ satisfies the compatibility condition (3.11) and hence belongs to

the Hilbert space Zs , as defined in (3.15). Thus, we may apply Theorem 3.4 to find

a unique pair u 2 0H sC2.�I R
2/ and p 2 H sC1.�/ solving

(6.41)

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

div S.p; u/ � 
@1u D f in �;

div u D g in �;

S.p; u/en D k C �e2 on †b;

u2 D h � 
@1� on †b;

u D 0 on †0:

Hence ‡
;0.u; p; �/ D .f; g; h; k/, and we conclude that ‡
;0 is an isomorphism.

�

7 Nonlinear Analysis

In this section we prove Theorems 1.1, 1.2, and 1.3. The latter two are conse-

quences of the first and the mapping properties of the flattening diffeomorphism F

defined by (1.18). As such, the crux of the matter is to prove the first theorem and

study F. We prove Theorem 1.1 with the help of the implicit function theorem and

the isomorphisms of Theorems 6.6 and 6.7. In order to apply the implicit function

theorem, we must first establish the smoothness of various maps.

7.1 Preliminaries

We now turn our attention to proving some preliminary results needed to define

the nonlinear maps associated to (1.22). The first such result is a simple quantitative

L1 bound for functions in Xs.Rn�1/.

LEMMA 7.1. If s > .n�1/=2, then there is a constant ı D ı.n; s; b/ > 0 such that

if � 2 Xs.Rn�1/ and k�kXs < ı, then k�kC 0

b

< b=2.

PROOF. This follows immediately from the fifth item of Theorem 5.6. �

Our next result is a nonlinear analogue of Theorem 3.1.
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PROPOSITION 7.2. Suppose u 2 0H 1.�I R
n/ and � 2 BXs .0; ı/ � Xs.Rn�1/

for s > .n � 1/=2 and let ı > 0 be the constant from Lemma 7.1. Let J , A, and N

be defined in terms of � as in (1.20), (1.21), and (1.15). Then

u � N .x0; b/ �

Z b

0

J.x0; xn/ divA u.x0; xn/dxn

D � div0

�Z b

0

J.x0; xn/A|.x0; xn/u.x0; xn/dxn

�0

:

(7.1)

In particular, u�N . � ; b/�
R b

0 J. � ; xn/ divA u. � ; xn/dxn 2 PH �1.Rn�1/, and there

exists a constant c D c.n; b/ > 0 such that

(7.2)

"

u � N . � ; b/ �

Z b

0

J. � ; xn/ divA u. � ; xn/dxn

#

PH �1

� ckJAkL1kukL2 :

PROOF. Let ' 2 C 1
c .Rn�1/ and let � 2 C 1

c .S�/ be defined by �.x/ D '.x0/.

The definition of J and A imply that JAen D N on †b and
Pn

j D1 @j .JAij / D 0

in � for each 1 � i � n, the latter of which implies that J divA u D div.JA|u/.

Using these, we then compute
Z

�

J divA u� D

Z

�

div.JA
|u/� D

Z

�

�JA
|u � r� C

Z

†b

JA
|u � en�

D

Z

�

�.JA
|u/0 � r 0' C

Z

†b

JA
|u � en'

D

Z

�

�.JA
|u/0 � r 0' C

Z

†b

u � N':

(7.3)

On the other hand, Fubini’s theorem allows us to compute

(7.4)

Z

�

J divA u� D

Z

Rn�1

'.x0/

Z b

0

J.x0; xn/ divA u.x0; xn/dxn dx0

and
Z

�

.JA
|u/0 � r 0'

D

Z

Rn�1

r 0'.x0/ �

Z b

0

J.x0; xn/A|.x0; xn/u.x0; xn/dxn dx0:

(7.5)

Combining these, rearranging, and using the arbitrariness of ' then proves (7.1).

Then (7.2) follows directly from applying the Fourier transform to (7.1) and using

the bound

(7.6)

Z

Rn�1

ˇ

ˇ

ˇ

ˇ

Z b

0

J.x0; xn/A|.x0; xn/u.x0; xn/dxn

ˇ

ˇ

ˇ

ˇ

2

dx0 � bkJAk2
L1

Z

�

juj2;

which follows from the Cauchy-Schwarz inequality and Tonelli’s theorem. �
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Our final preliminary results show that the map we will use in the implicit func-

tion theorem is well-defined and C 1. In stating this result we recall that the A-

based differential operators are defined in (1.23)–(1.25).

THEOREM 7.3. Let s > n=2, � � 0, and X s be as defined in (6.19). For ı > 0

define the open set

(7.7) U sı D
˚

.u; p; �/ 2 X s j k�kXsC5=2 < ı
�

� X s:

There is a constant ı D ı.n; s; b/ > 0 such that if for

(7.8) 
 2 R; T 2 H sC1=2.Rn�1I R
n�n
sym /; and .u; p; �/ 2 U sı ;

we define f W � ! R
n, g W � ! R, h W †b ! R, and k W †b ! R

n via

f D .u � 
e1/ � rAuC divA SA.p; u/; g D J divA u;

h D u � N C 
@1�; and k D .pI � DAu/N � .� � �H.�//N � SbTN ;

where J , A, N , and H are defined in terms of � as in (1.20), (1.21), (1.15), and

(1.5), respectively, and Sb is as in Lemma A.11, then .f; g; h; k/ 2 Ys , where Ys

is the Hilbert space defined in (3.13). Moreover, the map

(7.9) R �H sC1=2.Rn�1I R
n�n
sym / � U sı 3 .
; T; u; p; �/ 7! .f; g; h; k/ 2 Ys

is smooth.

PROOF. Let ı > 0 denote the minimum of the constant from Lemma 7.1,

b=.2c/ where c is the constant from Theorem 5.16, and the ball size from The-

orem A.12 (with r D s C 3=2 and d D n � 1) divided by the embedding constant

from (5.27).

To begin we note that thanks to the second item of Theorem 5.11 and Theorem

5.16, the maps �1; �2 W BXr .0; ı/ � H r.�/ ! H r.�/ given by �1.�;  / D
 
bC�

and �2.�;  / D  �
bC�

are well-defined and smooth for all r > n=2. From

this, (1.23)–(1.25), Theorem 5.6, Theorem 5.12, and standard trace theory we then

deduce that the map

R � 0H
sC2.�I R

n/ � BXsC5=2.0; ı/ 3 .
; u; �/ 7!
�

DAu; divA DAu; .u � 
e1/ � rAu; J divA u;DAuj†b
N ; uj†b

� N C 
@1�
�

2 H sC1.�I R
n�n
sym / �H s.�I R

n/ �H s.�I R
n/

�H s.�/ �H sC1=2.†bI R
n/ �H sC3=2.†b/

is well-defined and smooth. Similarly, the smoothness of �1; �2, Theorem 5.11,

the inclusion p � � 2 H sC1.�/, the fact that H sC1=2.Rn�1/ is an algebra, and

standard trace theory imply that the map

U
p

ı
3 .u; p; �/ 7! .rAp; .p � �/j†b

N / 2 H s.�I R
n/ �H sC1=2.†bI R

n/
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is well-defined and smooth. Theorem 5.6 and Theorem A.12 imply that the map

BXsC5=2.0; ı/ 3 � 7! �H.�/ D � div0

 

r 0�
p

1 C jr 0�j2

!

2 H sC1=2.Rn�1/

is well-defined and smooth as well. Finally, Theorem 5.6, Lemma A.11, and the

fact that H sC1=2.Rn�1/ is an algebra imply that the map

H sC1=2.Rn�1I R
n�n
sym / � BXsC5=2.0; ı/ 3 .T; �/ 7! .SbT /N 2 H sC1=2.†bI R

n/

is also well-defined and smooth.

Arguing as above, we also have that the maps

F W 0H sC2.�I R
n/ � BXsC5=2.0; ı/ ! H sC3=2.Rn�1/ and

G W 0H sC2.�I R
n/ � BXsC5=2.0; ı/ ! H sC3=2.Rn�1I R

n�1/

given by

F.u; �/.x0/ D u � N .x0; b/ �

Z b

0

J.x0; xn/ divA u.x0; xn/dxn

and

G.u; �/.x0/ D

�Z b

0

J.x0; xn/A|.x0; xn/u.x0; xn/dxn

�0

are well-defined and smooth. Proposition 7.2 tells us that

�
@1� C h �

Z b

0

g. � ; xn/dxn D F.u; �/ D � div0 G.u; �/ 2 PH �1.Rn�1/:

Moreover, for any k 2 N we have DkF.u; �/ D � div0 DkG.u; �/, from which

we readily deduce that the map

(7.10) R � 0H sC2.�I R
n/ � BXsC5=2.0; ı/ 3 .
; u; �/ 7!

h �

Z b

0

g. � ; xn/dxn 2 H sC3=2.Rn�1/ \ PH �1.Rn�1/

is well-defined and smooth.

Synthesizing all of the above then shows that the map

.
; T; u; p; �/ 7! .f; g; h; k/ 2 Ys

is well-defined and smooth. �

We also need a variant of this result.

PROPOSITION 7.4. Let n=2 < s 2 N and ı� > 0 be as in Proposition 5.18. Then

the map

H sC2.RnI R
n�n
sym / � BXsC5=2.Rn�1/.0; ı�/ 3 .T ; �/

7! .T ı F�j†b
/N 2 H sC1=2.†bI R

n/;
(7.11)

where N is defined in terms of � via (1.15), is well-defined and C 1.
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PROOF. This follows by combining Theorems 5.6 and Corollary 5.21 with the

fact that H sC1=2.†b/ is an algebra. �

7.2 Solvability of (1.22): proof of Theorem 1.1

We have now developed all of the tools needed to solve (1.22).

PROOF OF THEOREM 1.1. We first consider the case � > 0 and n � 2. Let

ı > 0 be the smaller of ı.n; s; b/ > 0 from Theorem 7.3 and ı� > 0 from Propo-

sition 5.18. Define the open set

U s
ı D f.u; p; �/ 2 X s j k�kXsC5=2 < ıg � X s:

Proposition 6.3 and the standard Sobolev embeddings show that any open subset

of U s
ı

containing .0; 0; 0/ satisfies the assertions of the first item.

Define the Hilbert space

Es D R � H sC2.RnI R
n�n
sym / � H sC1=2.Rn�1I R

n�n
sym /

� H sC1.RnI R
n/ � H s.Rn�1I R

n/:

Corollary 5.21, Theorem 7.3, Proposition 7.4, and Lemma A.10 then tell us that

the map „ W Es � U s
ı

! Ys given by

„.
; T ; T; f; f; u; p; �/

D
�

.u � 
e1/ � rAu C divA SA.p; u/ � f ı F� � L�f;

J divA u; u � N C 
@1�;

.pI � DAu/N � .� � �H.�//N � .T ı F�j†b
C SbT /N

�

;

where F�; J , A, N , and H are defined in terms of � as in (1.18), (1.20), (1.21),

(1.15), and (1.5), respectively, L� is the linear map from Lemma A.10, and Sb is

the linear map from Lemma A.11, is C 1. Due to the product structure Es � U s
ı

, we

may define the derivatives of „ with respect to the first and second factors via

D1„ W Es � U s
ı ! L.EsIYs/ and D2„ W Es � U s

ı ! L.X sIYs/:

Note that Corollary 5.21 shows that for Sb.T ; �/ D T ıF�j†b
and ƒ�.f; �/ D

f ı F� we have that D2Sb.0; 0/ D 0 and D2ƒ�.0; 0/ D 0. Thus, for any 
 2 R

we have that „.
; 0; 0; 0; 0; 0; 0; 0/ D .0; 0; 0; 0/ and

D2„.
; 0; 0; 0; 0; 0; 0; 0/.u; p; �/

D .div S.p; u/ � 
@1u; div u; un C 
@1�; S.p; u/en � .� � ��0�/en/

for all .u; p; �/ 2 X s . In other words,

D2„.
; 0; 0; 0; 0; 0; 0; 0/ D ‡
;� 2 L.X sIYs/;

where ‡
;� is as defined in (6.26). Thus, for every 
� ¤ 0 Theorem 6.6 guarantees

that D2„.
�; 0; 0; 0; 0; 0; 0; 0/ is an isomorphism. The implicit function theorem

(see, for instance, theorem 2.5.7 in [9]) then provides us with open sets U.
�/ � Es
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and O.
�/ � U s
ı

such that .
�; 0; 0; 0; 0/ 2 U.
�/ and .0; 0; 0/ 2 O.
�/, and a

C 1 and Lipschitz map $
�
W U.
�/ ! O.
�/ � U s

ı
such that

„.
; T ; T; f; f; $
�
.
; T ; T; f; f // D .0; 0; 0; 0/

for all .
; T ; T; f; f / 2 U.
�/. Moreover, the implicit function theorem also im-

plies that the triple .u; p; �/ D $
�
.
; T ; T; f; f / 2 O.
�/ is the unique solution

to „.
; T ; T; f; f; u; p; �/ D .0; 0; 0; 0/ in O.
�/.

Define the open sets

U
s D

[


�2Rnf0g

U.
�/ � E
s and O

s D
[


�2Rnf0g

O.
�/ � U s
ı :

By construction we have that .R n f0g/ � f0g � f0g � f0g � f0g � Us , which is the

second item.

Using the above, we may then define the map $ W Us ! Os via

$.
; T ; T; f; f / D $
�
.
; T ; T; f; f /

when .
; T ; T; f; f / 2 U.
�/ for some 
� 2 R n f0g. This is well-defined, C 1, and

locally Lipschitz by the above analysis. The third and fourth items then follow by

setting .u; p; �/ D $.
; T ; T; f; f / for .
; T ; T; f; f / 2 Us .

The result is now proved for � > 0 and n � 2. The proof when n D 2 and

� D 0 is identical except that we use Theorem 6.7 and the isomorphism ‡
;0 in

place of Theorem 6.6. Moreover, in this case we know from (6.37) that X s D

0H sC2.�I R
2/ � H sC1.�/ � H sC5=2.R/. �

7.3 Solvability of (1.14): proofs of Theorems 1.2 and 1.3

We have all the tools needed to prove Theorems 1.2 and 1.3. We present these

proofs now.

PROOF OF THEOREM 1.2. Suppose that

� 2 XsC5=2.Rn�1/; v 2 0H sC2.�bC�I R
n/; and q 2 Y sC1.�bC�/

are nontrivial solutions to (1.14) with T D 0 and f D 0. Further suppose that

(7.12) kvk
0H sC2 C kqkY sC1 C k�kXsC5=2 C kq � �kH sC1 < R

for some 0 < R < ı to be chosen, where ı D ı.n; s; b/ D ı.n; b/ > 0 is as in

Lemma 7.1. In particular, this means that k�kC 0
b

< b=2.

Define u D v ı F W � ! R
n and p D q ı F W � ! R for F defined in terms of

� as in (1.18). Then .u; p; �/ solves (1.22) with f D 0 and T D 0. Since s 2 N

and s > n=2, Theorem 5.17 guarantees that .u; p; �/ 2 X s and

(7.13) kuk
0H sC2 C kpkY sC1 C k�kXsC5=2 C kp � �kH sC1 � c.n; R/R;

where r 7! c.n; r/ is nondecreasing.
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Let U.
/ and O.
/ be the open sets constructed in the previous subsection in

the proof of Theorem 1.1. That proof shows that

. Pu; Pp; P�/ D .0; 0; 0/ D $
 .
; 0; 0; 0; 0/ 2 O.
/

is the unique solution to „.
; 0; 0; 0; 0; Pu; Pp; P�/ D .0; 0; 0; 0/ in O.
/. Let R0 > 0

be such that BX s ..0; 0; 0/; R0/ � O.
/. From (7.13) we know that if R < r for r

small enough (in terms of n), then c.n; R/R < R0, and hence .u; p; �/ D .0; 0; 0/,

which contradicts the fact that .v; q; �/ is nontrivial. Thus (7.12) cannot hold for

R � r . �

PROOF OF THEOREM 1.3. Let Us and Os be the open sets from Theorem 1.1,

and let $ W Us ! Os be as in the proof of Theorem 1.1 above. Then .u; p; �/ D

$.
; T ; T; f; f / solves (1.30) for every .
; T ; T; f; f / 2 Us . We also know that

for this data we have k�kC 0
b

� b=2, and so Theorem 5.17 implies that the maps F�

and F�1
� are C 3Cbs�n=2c diffeomorphisms.

Fix .
; T ; T; f; f / 2 Us and set .u; p; �/ D $.
; T ; T; f; f /, v D u ı F�1
� , and

q D p ı F�1
� . Theorems 5.11, 5.17, and the usual Sobolev embeddings then imply

that

v 2 0H sC2.�bC�I R
n/ \ C

2Cbs�n=2c

b
.�bC�I R

n/

and

q 2 Y sC1.�bC�/ \ C
1Cbs�n=2c

b
.�bC�/:

Note that since .F�1
� .x//0 D x0, we have that

�

f ı F� C L�f
�

ıF�1
� .x/ D f.x/Cf .x0/ D f.x/CL�C�f .x/ for all x 2 �bC�;

and, similarly, .T ı F� C SbT / ı F�1
� j†bC�

D T j†bC�
C SbC�T: Then since

.u; p; �/ solve (1.30) we have that .v; q; �/ solve (1.35), and this completes the

proof of the first two items. The third item follows from the fact that $ is locally

Lipschitz. �

Appendix: Analysis Tools

In this appendix we record various analytic tools used throughout the paper.

A.1 A computation

Here we record the proof of the assertion made at the end of Section 1.1.

PROPOSITION A.1. Suppose that � 2 H 5=2.Rn�1/ is bounded and Lipschitz with

infRn�1 � > �b. Further suppose that v 2 H 2.�bC�I R
n/ \ L1.�bC�I R

n/,

q 2 H 1.�bC�/, f 2 L2.�bC�I R
n/, and T 2 H 1=2.†bC�I R

n�n
sym / solve (1.6).

Then

(A.1)

Z

�bC�

f � v �

Z

†bC�

T � � v D

Z

�bC�

1

2
jDvj2:

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



TRAVELING WAVES FOR NAVIER-STOKES 2565

PROOF. First note that the first and fourth equations of (1.6) can be rewritten as

(A.2) f D .v � 
e1/ � rv � �v C rq D div.S.q; v/ C v ˝ .v � 
e1// in �bC�

and

(A.3) 0 D v �N C 
@1� D .v � 
e1/ �N D .v � 
e1/ � �

q

1 C jr 0�j2 on †bC�:

We then take the dot product of (A.2) with v, integrate by parts over �bC� (which

is possible since � is Lipschitz, so †bC� enjoys a trace operator), and use the fact

that v D 0 on †0 to deduce that

Z

�bC�

f � v D

Z

�bC�

v � div.S.q; v/ C v ˝ .v � 
e1//

D

Z

�bC�

�rv W .S.q; v/ C v ˝ .v � 
e1//

C

Z

†bC�

.S.q; v/ C v ˝ .v � 
e1//� � v:

Note that the second term in the last �bC� integral and the second term in the

†bC� integral are well-defined since v is bounded. We will compute each of the

four terms on the right in turn.

For the first term we use the fact that div v D 0 to compute

Z

�bC�

�rv W S.q; v/ D

Z

�bC�

rv W Dv � q div v D

Z

�bC�

1

2
jDvj2:

For the second we integrate by parts again and use the equations div v D 0 in

�bC�, v D 0 on †0, and (A.3) to compute

Z

�bC�

�rv W v ˝ .v � 
e1/

D

Z

�bC�

�r
jvj2

2
� .v � 
e1/

D

Z

�bC�

jvj2

2
div.v � 
e1/ �

Z

†bC�

jvj2

2
.v � 
e1/ � � D 0:

For the third term we use the third equation of (1.14) to compute

Z

†bC�

S.q; v/� � v D

Z

†bC�

.� � �H.�//� � v C T � � v;
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but by (A.3) and an integration by parts
Z

†bC�

.� � �H.�//� � v

D

Z

Rn�1

�
@1�.� � �H.�// D

D �


Z

Rn�1

�@1�C �
r 0�

p

1C jr 0�j2
� r 0@1�

D �


Z

Rn�1

@1

�

1

2
j�j2 C �.

q

1C jr 0�j2 � 1/

�

D 0;

so
Z

†bC�

S.q; v/� � v D

Z

†bC�

T � � v:

Finally, for the fourth term we again use (A.3) to compute
Z

†bC�

v ˝ .v � 
e1/� � v D

Z

†bC�

jvj2.v � 
e1/ � � D 0:

Combining these computations and rearranging then yields (A.1). �

A.2 Fourier transform

In the following lemma we will need to make use of the reflection operator

defined as follows. For f W R
d ! C we define Rf W R

d ! C via Rf .x/ D
f .�x/.

LEMMA A.2. The following hold:

(1) Let f 2 L2.Rd I C/. Then f is real-valued; i.e., f D xf if and only if
xyf D R yf .

(2) The Fourier transform is a bijection from the real-valued Schwartz functions

ff 2 S .Rd / j f D xf g to ff 2 S .Rd / j
xyf D R yf g.

(3) Recall that for a tempered distribution T 2 S 0.Rd / we define the conjugate

and reflected distributions xT ;RT 2 S 0.Rd / via h xT ,  i D hT; x i, and

hRT; i D hT;R i for each  2 S .Rd /. Then T 2 S 0.Rd / is real-

valued, i.e., T D xT , if and only if yT D R yT .

PROOF. These follow from standard properties of the Fourier transform. �

A.3 Poincaré and Korn inequalities

The following version of the Poincaré inequality will be useful.

LEMMA A.3 (Poincaré inequality). Suppose that � W R
n�1 ! .0;1/ is bounded

and lower semicontinuous. Then
Z

��

jf j2 �
1

2
k�k2

1

Z

��

jrf j2

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



TRAVELING WAVES FOR NAVIER-STOKES 2567

for every f 2 H 1.�� / such that f D 0 on †0. Consequently, on

ff 2 H 1.�� / j f D 0 on †0g;

the map f 7! krf kL2.��/ defines a norm equivalent to the standard H 1 norm.

PROOF. Theorem 13.19 in [63] asserts this result for functions that also vanish

on †� , but the proof works also for functions only vanishing on †0. �

We record here a version of Korn’s inequality for the space 0H 1.�I R
n/. A

proof may be found, for instance, in lemma 2.7 of [21].

LEMMA A.4 (Korn’s inequality). There exists a constant c D c.n; b/ > 0 such

that kukH 1 � ckDukL2 for all u 2 0H 1.�I R
n/.

A.4 Sobolev spaces

We record here some basic results about standard Sobolev spaces. Although

these are well-known, we include quick proofs for the benefit of the reader. We be-

gin with a lemma that relates Sobolev norms of functions in � to those of extension

functions on all of R
n.

LEMMA A.5. Let s � 0, n � 2, and � 2 C
0;1
b

.Rn�1/ be such that inf � > 0. Then

the following hold:

(1) There exists a linear map E, mapping the measurable functions on �� to the

measurable functions on R
n, such that Ef D f almost everywhere in �� ,

and for every 0 � t � s the restriction of E to H t .�� / defines a bounded

linear operator with values in H t .Rn/. Moreover, there exists a constant

c D c.n; s; �/ > 0 such that kEf kH t .Rn/ � ckf kH t .��/ for all 0 � t � s

and f 2 H t .�� /.

(2) A measurable function f W �� ! R belongs to H s.�� / if and only if there

exists F 2 H s.Rn/ such that f D F almost everywhere in �� . Moreover,

there exists a constant c D c.n; s; �/ > 0 such that

1

c
kf kH s.��/ � inffkF kH s.Rn/ j F D f a.e. in ��g � ckf kH s.��/

for every measurable f W �� ! R.

PROOF. Let s < m 2 N. The Stein extension theorem (see, for instance, the-

orem VI.5 in [85]) provides a linear extension operator E from the space of mea-

surable functions on �� to the space of measurable functions on R
n such that

Ef D f almost everywhere on �� for each measurable f W �� ! R and with

the additional property that the restriction of E to H k.�� / is a bounded linear

operator into H k.Rn/ for every 0 � k � m. Standard interpolation theory (see,

for instance, [24, 63, 94]) then shows that E is bounded from H s.�� / to H s.Rn/

as well. This proves the first item.

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



G. LEONI AND I. TICE2568  

Suppose now that f W �� ! R is measurable, and consider Ef W R
n ! R. If

f 2 H s.Rn/, then by the first item Ef 2 H s.Rn/ and

inffkF kH s.Rn/ j F D f a.e. in ��g � kEf kH s.Rn/

� kEkL.H s.�/IH s.Rn//kf kH s.��/:

On the other hand, the intrinsic version of the H s.�� / norm shows that

kf kH s.��/ � ckF kH s.Rn/

whenever F 2 H s.Rn/ and F D f a.e. in �� , so if there exists such an F we

deduce that f 2 H s.�� / with kf kH s � c inffkF kH s.Rn/ j F D f a.e. in ��g:
To conclude we simply chain together the bounds. �

The second lemma provides an equivalent “slicing norm” on the space H s.Rn/.

LEMMA A.6. Let s � 0 and n � 2. Then there exists a constant c D c.n; s/ > 0

such that

1

c
kf k2

H s � kf k2
L2.RIH s.Rn�1//

C kf k2
H s.RIL2.Rn�1//

� ckf k2
H s

for all f 2 S 0.Rn/ such that yf 2 L1
loc.R

n/, where

kf k2
L2.RIH s.Rn�1//

D

Z
R

kf . � ; xn/k2
H s.Rn�1/

dxn

and

kf k2
H s.RIL2.Rn�1//

D

Z
R

.1 C �2/skFnf . � ; �/k2
L2.Rn�1/

d�;

and in the latter equation Fn denotes the Fourier transform with respect to the nth

variable.

PROOF. Let y� denote the usual Fourier transform on R
n and F

0 denote the

Fourier transform with respect to the first n � 1 variables. Write � 2 R
n as

� D .� 0; �/ 2 R
n�1 � R. Then yf .�/ D F

0
Fnf .� 0; �/ D FnF

0f .� 0; �/ for

f 2 S 0.Rn/, and the stated equivalence can be seen by applying Parseval’s theo-

rem. �

We also record a useful corollary.

COROLLARY A.7. Let s � 0 and n � 2. Then there exists a constant c D
c.n; s; b/ > 0 such that

Z b

0

kf . � ; xn/k2
H s.Rn�1/

dxn � ckf k2
H s.�/ for all f 2 H s.�/:
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PROOF. Let Ef 2 H s.Rn/ be the Stein extension of f defined in Lemma A.5.

From Lemma A.6 we may then bound

Z b

0

kf . � ; xn/k2
H s.Rn�1/

dxn �

Z
R

kEf . � ; xn/k2
H s.Rn�1/

dxn

� ckEf k2
H s.�/ � ckf k2

H s.�/: �

Next we record a pair of product estimates. The first is phrased for functions

defined in sets of the form �� .

LEMMA A.8. Let � 2 C
0;1
b

.Rn�1/ be such that inf � > 0. Suppose that f 2

H s.�� / for s > n=2. Then for each 0 � r � s there exists a constant c D

c.n; k�k
C

0;1
b

; s; r/ > 0 such that kfgkH r � ckf kH s kgkH r for all g 2 H r.�� /.

PROOF. Define the linear map Tf W L1
loc.�� / ! L1

loc.�� / via Tf g D fg.

Since s > n=2 we have that H s.�� / is an algebra, and hence there exists a constant

c D c.n; k�k
C

0;1
b

; s; r/ > 0 such that kTf gkH s � ckf kH s kgkH s for all g 2

H s.�� /. Similarly, since H s.�� / ,! C 0
b

.�� /, we have the bound

kTf gkL2 � kf kC 0
b
kgkL2 � ckf kH s kgkL2

for all g 2 L2.�� / for a constant c D c.n; k�k
C

0;1
b

; s; r/ > 0. From these bounds

we deduce that Tf is a bounded linear operator on L2.�� / and on H s.�� /. By

standard interpolation theory (see, for instance, [24, 63, 94]) we then have that Tf

is a bounded linear operator on H r.�� / for all 0 < r < s and that the operator

norm is bounded above by ckf kH s for a constant c D c.n; k�k
C

0;1
b

; s; r/ > 0. The

stated estimate follows. �

The second is a full-space product estimate, which can be proved similarly to

Lemma A.8.

LEMMA A.9. Suppose that n=2 < s 2 R. Then for 0 � r � s there exists

a constant c D c.r; s/ > 0 such that kfgkH r � ckf kH s kgkH r for all f 2

H s.Rn/ and g 2 H r.Rn/.

Finally, we record two results about the boundedness of simple lifting operators.

The first deals with sets of the form �� .

LEMMA A.10. Let � 2 C
0;1
b

.Rn�1/ be such that inf � > 0. For 0 � s 2 R the map

L��
W H s.Rn�1I R

n/ ! H s.�� I R
n/ defined by L��

f .x/ D f .x0/ is bounded

and linear.

PROOF. The assertion is trivial for s 2 N, and the general case follows from

these special cases and interpolation theory (see, for instance, [24, 63, 94]). �

The second deals with the flat surface †b .
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LEMMA A.11. Let 0 � s 2 R. Define the map Sb W H s.Rn�1I R
n�n
sym / !

H s.†bI R
n�n
sym / via SbT .x0; b/ D T .x0/. Then Sb is bounded and linear.

PROOF. This follows immediately from the fact that †b 3 .x0; b/ 7! x0 2

R
n�1 is a smooth diffeomorphism. �

A.5 A smooth mapping

Here we record an analogue of Theorem 5.16 that is useful in dealing with the

mean-curvature operator.

THEOREM A.12. Let r > d=2. Then there exists a constant ı D ı.d; r/ > 0 such

that the map � W BH r .0; ı/ ! H r.Rd I R
d / given by

�.f / D
f

p

1 C jf j2

is well-defined and smooth, where BH r .0; ı/ � H r.Rd I R
d / is the open ball of

radius ı.

PROOF. Recall that since r > d=2 the standard theory of Sobolev spaces shows

that H r.Rd / is an algebra, and so we have the continuous inclusion H r.Rd / ,!

C 0
b

.Rd /. Consequently, we can choose a constant c D c.d; r/ > 0 such that

kgkC 0

b

� ckgkH r and kghkH r � ckgkH r khkH r for all g; h 2 H r.Rd /. In

particular, for f 2 H r.Rd I R
d / we have that kjf j2kH r .Rd / � ckf k2

H r .Rd IRd /
:

Moreover, in any unital Banach algebra the power series

1
X

kD0

.�1/k.2k/Š

4k.kŠ/2
xk D .1 C x/�1=2

converges in the open unit ball and defines a smooth function there. With these

ingredients in hand we may then argue as in the proof of Theorem 5.16 (employing

the unital Banach algebras C 0
b

.Rd / and L.H r.Rd I R
d //) to conclude. �
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[109] Zadrzyńska, E. Free boundary problems for nonstationary Navier-Stokes equations. Disserta-

tiones Math. (Rozprawy Mat.) 424 (2004), 135.

[110] Zhang, P.; Zhang, Z. On the free boundary problem of three-dimensional incompressible Euler

equations. Comm. Pure Appl. Math. 61 (2008), no. 7, 877–940. doi:10.1002/cpa.20226

GIOVANNI LEONI

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

USA

E-mail: giovanni@

andrew.cmu.edu

IAN TICE

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

USA

E-mail: iantice@

andrew.cmu.edu

Received July 2020.

 1
0
9
7
0
3
1
2
, 2

0
2
3
, 1

0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/cp

a.2
2
0
8
4
 b

y
 C

arn
eg

ie M
ello

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se


