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Abstract

Background: Teachers often rely on the use of open‐ended questions to assess stu-

dents' conceptual understanding of assigned content. Particularly in the context of

mathematics; teachers use these types of questions to gain insight into the processes

and strategies adopted by students in solving mathematical problems beyond what is

possible through more close‐ended problem types. While these types of problems

are valuable to teachers, the variation in student responses to these questions makes

it difficult, and time‐consuming, to evaluate and provide directed feedback. It is a

well‐studied concept that feedback, both in terms of a numeric score but more

importantly in the form of teacher‐authored comments, can help guide students as to

how to improve, leading to increased learning. It is for this reason that teachers need

better support not only for assessing students' work but also in providing meaningful

and directed feedback to students.

Objectives: In this paper, we seek to develop, evaluate, and examine machine learn-

ing models that support automated open response assessment and feedback.

Methods: We build upon the prior research in the automatic assessment of student

responses to open‐ended problems and introduce a novel approach that leverages

student log data combined with machine learning and natural language processing

methods. Utilizing sentence‐level semantic representations of student responses to

open‐ended questions, we propose a collaborative filtering‐based approach to both

predict student scores as well as recommend appropriate feedback messages for

teachers to send to their students.

Results and Conclusion: We find that our method outperforms previously published

benchmarks across three different metrics for the task of predicting student perfor-

mance. Through an error analysis, we identify several areas where future works may

be able to improve upon our approach.
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1 | INTRODUCTION

Educational technologies strive to support educators and students in

ways that augment instructional practices. These technologies, for

example, can help an instructor monitor student performance at levels

of granularity and at scales that are infeasible or impractical in more

traditional classroom environments. Advancements in machine learn-

ing and artificial intelligence have enabled educational technologies to

aid in teachers' decision-making processes; with access to large sums

of current and historic educational data, these technologies show

promise in their capacity to suggest effective actions that teachers

can take to support their students' learning.

These systems are developed to support both teachers and stu-

dents through functions and tools that utilize collected data in various

ways. These functions include scaffolding problems (Ringenberg &

VanLehn, 2006), worked examples (Roll et al., 2011), or even answer-

specific feedback to help remedy known common errors (Selent &

Heffernan, 2014). Even simple correctness feedback provided to stu-

dents can be beneficial for their learning (Kehrer et al., 2013), and is

one of the most prominent benefits of learning systems. In consider-

ing these supports, there still remain several challenges in addressing

all types of problems that teachers commonly assign to students.

Common across domains, though particularly in the domain of

mathematics on which this paper is primarily focused, there are two

types of question: close-ended and open-ended. Close-ended prob-

lems have a single or finite number of accepted answers (for example

a multiple-choice question or fill-in questions) that are easily recogniz-

able by a system through a simple matching approach; student

answers can be compared, character by character, to a set of recog-

nized answers for a direct match to determine correctness. Support

learning systems is generally confined to these close-ended problem

types. For instance, it is easy for a system to understand that the

accepted value for x in the equation x + 4 = 8 is 4. If a student were

to answers with the value of 12, the system may easily be able to pro-

vide the correctness score with a feedback message that highlights

the student's mistake. Open-ended questions, however allow students

to express their understanding of concepts through natural language

(e.g., Figure 1); while there are still a finite number of conceptually

acceptable answers, such responses can vary greatly making it impos-

sible to utilize a direct matching approach as can be used for close-

ended problems. In many K-12 mathematics classrooms, these types

of open-ended questions are used by teachers to assess their stu-

dent's understanding and thought process about the assigned topic.

The challenges posed by open-ended problems in developing

tools to better support the provision of various forms of feedback

become even more apparent in mathematics-prevalent domains. Dis-

tinctive even from other contexts pertaining to language arts, student

answers to open-ended questions in mathematics often include a

combination of natural language with other artefacts including images,

tables, mathematical symbols, as well as equations and expressions.

While the number of words in a language such as English is large, it is

finite, making it easier to represent words (or sequences of

commonly-occurring words) as distinctive components when building

automated systems to process natural language. The inclusion of num-

bers, as an infinite set, complicates traditional approaches to natural

language processing, especially when appearing within more complex

expressions.

1.1 | Research questions

In this paper,1 we provide a deeper examination into the methods and

framework underlying recent work in the space of automating assess-

ment in the domain of mathematics (Baral et al., 2021). We introduce,

and develop, an approach which utilizes sentence level semantic rep-

resentation of student open responses through Sentence-BERT

(SBERT). With the ultimate goal of helping teachers assess and pro-

vide feedback to open-ended problems in mathematics through the

development of an automated assessment system, this work explores

the following overarching research questions:

1. How can historic student data be leveraged in assessing and sug-

gesting feedback for student answers to open-ended problems in

mathematics?

2. When examining student open-response answers, which similarity

metrics most closely align with how a teacher may group similar

student answers?

F IGURE 1 Example of an open-ended question taken from
openupresources.org

1It is important to acknowledge that this work expands upon previously published research

conducted in this space (Baral et al., 2021).
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3. What are the characteristics of student work that impact the per-

formance of our proposed methods?

In addressing our research questions, we identify four contribu-

tions presented in this work. First, we conduct an empirical analy-

sis to compare different feedback recommendation policies

utilizing traditional and state-of-the-art NLP and machine learning

methods. Focusing on developing methods to suggest feedback as

well as assessment, we develop a data-driven metric and proce-

dure to evaluate automated feedback recommendation policies in

an offline manner based on how teachers identify similar student

answers. We then introduce a method to provide automated

scores and feedback suggestions to teachers to give to their stu-

dents' open-ended work based on the similarity of student

responses. Finally, to explore what impacts the performance of our

methods, we conduct an error analysis to investigate the answer-

level characteristics that correlate with the magnitude of error

observed in our proposed methods.

2 | BACKGROUND

Intelligent tutoring systems (ITS) and computer-based learning

platforms have been utilized by teachers and students for several

decades (c.f. Corbett et al., 1997), but their adoption has increased in

recent years. With the rise of COVID-19, teachers' reliance on these

online learning platforms such as ASSISTments (Heffernan &

Heffernan, 2014), McGraw Hill's ALEKS™ and others have grown.

Studies conducted to evaluate online learning platforms, have identi-

fied promising results that point toward their success in helping to

improve student learning over more traditional instructional

approaches. In the case of ASSISTments, as it is the platform from

which the data used in this work was collected, such an efficacy trial

found that use of the platform nearly doubled student learning over

the course of a year (Roschelle et al., 2016); at least part of this out-

come has been attributed to the simple offering of immediate feed-

back, as previous studies have identified (Kehrer et al., 2013).

Similarly, the study from (VanLehn, 2011) highlights the positive

effects of intelligent tutoring systems on student learning, and that

these intelligent tutoring systems have the opportunity to be almost

as effective as human tutors. Most learning platforms, particularly in

the context of mathematics, largely focus on closed-ended problem

types as they are well-structured and are easier to automatically

grade. As these types of problems are easier to automate, there has

been a considerable amount of work and research in improving feed-

back to these types of questions. However, Ku (2009) discussed that

providing only one question type, such as multiple-choice, would be

inadequate in capturing the students' rationale or process of thinking.

Similarly, Chi et al. (1994) highlights that pedagogically engaging stu-

dents in explanation about their works and making arguments and jus-

tifications about their understanding of the concept, leads to the

development of conceptual understanding and finally better learning.

Similarly, in comparing close-ended questions (such as multiple-

choice) and open-ended questions, Martinez (1999) has identified and

examined the different levels of cognition required for each question

type, suggesting that open-ended questions require a wider spectrum

of cognition than that of a close-ended question. A similar study by

Kramarski and Zeichner (2001) highlights the importance of metacog-

nitive feedback on questions that asks for the understanding of the

approach has better impact on math learning than just a result based

feedback on result problems.

While past studies have suggested the importance of open-ended

questions, there is still only limited support in most learning platforms

for this type of problem; many systems do not even support this prob-

lem type in the context of mathematics. As Buckles and Siegfried

(2006) highlights, there are certain affordances in omitting open-

ended problems as they are considerably more difficult to assess with

support from automation. Recognizing the benefits of these problems,

however, efforts are being made to automate the assessment of

open-ended answers (c.f. Attali & Burstein, 2006; Foltz et al., 1999;

Zhao et al., 2017; Erickson et al., 2020). In this work, we present an

approach to help provide support for not only the assessment of

open-ended problems, but also to help aid in the writing of feedback

in support of student learning.

2.1 | Natural language processing

To address the problem of automatically assessing student answers to

open-ended problems, such approaches need to be able to quantify

aspects of student responses. In most modern approaches, this is usu-

ally accomplished through the application of natural language proces-

sing (NLP) methodologies. While the study and application of NLP

broadly encompasses numerous aspects of the study of language, for

the purpose of this work we refer to NLP in terms of the narrow

scope of methodologies used to convert language into numeric repre-

sentations; the primary goal of most modern methods, as described

further below, is to represent language in such a way that describes

syntactic and semantic features.

Within this, there has been a long history of research pertaining

to automated short-answer grading (ASAG), following several trends

distinguishing scoring for what we would refer to as close-ended

problems and more open-ended formats (see, for example, Burrows

et al., 2015). Within this work, the authors also highlight several dis-

tinctions between ASAG and the scoring of longer essay responses

(automated essay grading, or AEG). Our specific context is character-

ized by open-ended responses that consist of, at most, a couple of

sentences. Across these areas of automatic scoring of language,

Burrows et al. (2015) identifies sets of methods used to approach this

problem as following "eras" ranging from concept mapping (e.g. C-

Rater; Leacock & Chodorow, 2003) to machine learning approaches

discussed later in this section.

There have been many methods proposed in the past as to how

to best represent text in a manner that captures syntactic as well as

semantic meaning. The simplest way to represent language is perhaps

with a bag of words approach. By adding up the number of times the

word occurs, that can be the number which represents said word.

BOTELHO ET AL. 825
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While this has been the foundation of recent studies (e.g. Graesser

et al., 2000; Sordoni et al., 2015), the bag of words approach is often

utilized as a baseline of comparison for more complex methods. Simi-

larly, some research utilizes n-gram approaches for text classification

(Cavnar & Trenkle, 1994). In such a method, instead of having a list of

individual words, a list of grouped words could be counted

(e.g. perhaps observing two- or three-word sequences as a single

grouping to form a bi-gram and tri-gram representation, respectively);

such a method helps to capture the context of particular words by

observing how each word is situated in relation to others. Not only

has this been used in interpreting speech or text, it has also been uti-

lized in other contexts, such as in detecting malicious code (Abou-

Assaleh et al., 2004). Other common foundational methods attempt to

measure the importance of words based on the frequency or scarcity

of their usage; term frequency inverse document frequency (TF-IDF),

for example, was developed to provide a weighting measure designed

to discount overly-common words and focus on keywords that help

to provide better meaning (Ramos, 2003). A recent study showed suc-

cess in automatically grading student open-ended questions using

TF-IDF (Erickson et al., 2020).

What is missing from a bag-of-words-based approaches is any rela-

tional or contextual understanding of thewords; even considering n-gram

methods, though context is represented through adjacent words, such

methods are unable to measure deeper relationships between the ideas

present in the given text. These foundationalmethodsprovide somemea-

sure of word frequency (and perhaps importance), but it fails to provide

and relational information; we argue that both of these characteristics are

important in considering the assessment of student open-ended work.

With recent advancements in deep learning, researchers have developed

approaches that attempt to embed contextual information within high-

dimensional language representations; two such notable methods are

those of Word2Vec (Mikolov et al., 2013) and GloVe (Pennington

et al., 2014). Though varying in the specific formulation, these deep-learn-

ing-based embedding methods attempt to project words into an embed-

ding space such that the semantic relationship between words is

maintained in their distance in that space; if the two vectors are far apart

within the vector space, it is presumed that they are less likely to be

related or similar. An additional benefit to such embeddingmethods is the

ability to “export” the learned representations so that they can be utilized

in broader applications; embeddings can be generated on large corpora of

language data and then be used in various contexts as a pre-trained repre-

sentation, supporting applicationswhere such a robust corpusmay be dif-

ficult to collect (and also such pre-trained methods add statistical power

in that the representations can incorporate semantic and contextual

information from a large and diverse sample set).

Expanding from the development of word embeddings, higher

representations at the sentence- and document-level have also

emerged. Instead of developing a vector representation of each indi-

vidual word, approaches such as Doc2Vec (Le & Mikolov, 2014), aim

to generate a single embedding to represent an entire document or

multiple paragraphs. Likewise, other approaches such as the Universal

Sentence Encoder (Cer et al., 2018) and Sentence-BERT (Reimers &

Gurevych, 2019) have gained popularity in their ability to represent

sentences as a single vector, offering opportunities to use such repre-

sentations to capture the relationships between broader ideas that

may be split across words, clauses, sentences, and paragraphs.

2.2 | Auto assessment of open-ended problems

There has been a growing body of research around the automated

assessments of open-ended response in conjunction with the emer-

gence of improved NLP methodologies. Prior works on automated

assessment of student open-responses are of ranging complexities

that are based on the type of the answer text and the subject domains

(Burrows et al., 2015). Such works present various automated

methods to help teachers assess short answers and essays in several

domains (Basu et al., 2013; Brooks et al., 2014; Goularte et al., 2019;

Leacock & Chodorow, 2003; Sultan et al., 2016; Zhao et al., 2017).

Studies such as Basu et al. (2013) and Brooks et al. (2014) have imple-

mented various clustering based techniques to grade short textual

answers. C-rater (Leacock & Chodorow, 2003) used grading rubrics

and the decomposition of scores into multiple knowledge components

to assess the correctness of short answer questions. Study from Sul-

tan et al. (2016) proposes methods on short answer grading tasks

based on the semantic similarity of the student response with the cor-

rect response. Other more recent works (e.g. Riordan et al., 2017;

Zhao et al., 2017) have been based on various deep learning methods

to assess open-ended answers. While these works have mostly been

applied in non-mathematical domains, there are other works such as

Lan et al. (2015) which focuses on the auto-assessment of open-

ended questions in mathematics, emphasizing the unique challenges

present in representing mathematical language and expressions. Sub-

sequent work in the context of mathematics (i.e. Erickson et al., 2020)

discusses challenges in developing auto-scoring models for open-

ended questions in such a context. In their work, they offer a compari-

son of various models utilizing machine learning (e.g. random forest

and XGBoost; Chen & Guestrin, 2016) and more complex deep learn-

ing (e.g. Long Short Term Memory (LSTM) networks; Hochreiter &

Schmidhuber, 1997) techniques; they combined these with NLP

methods to automatically score open-ended responses.

Beyond correctness feedback, there are also some works that

have explored the generation of other forms of feedback for natural

language contexts. Recent work, for example, has developed and eval-

uated a discourse-based feedback system that communicates with

students through a chat-like interface (Grenander et al., 2021). Other

prior research has explored the delivery of feedback through more

structured scaffolding (Grossman et al., 2019).

2.3 | Developing QUICK-Comments tool

Building upon these prior works, the studies on which we report in

this work follow the development and pilot-testing of an automated

assessment and feedback recommendation tool called QUICK-

Comments Tool. The design of this tool draws inspiration from

826 BOTELHO ET AL.
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Google's SmartReply (Kannan et al., 2016). This tool, and others like it

that have since been developed, have become widely-used to help

users respond to email and other forms of textual communication.

Like SmartReply, the goal of QUICK-Comments Tool is to provide

teachers with three suggested feedback messages to provide for each

student answer to an open-ended math problem; in addition, the tool

provides a suggested assessment score for each response, allow

teachers to utilize these suggestions or ignore them to formulate their

own scores and feedback for students.

These technologies often rely on their ability to effectively com-

pare new experiences with historic data. If a particular observed sce-

nario has been seen in the past, it is likely that a course of action that

was previously successful in such a case may be appropriate in the

present as well. In the case of SmartReply, email responses may be re-

used in other contexts (consider how certain replies such as “sounds
good” or “thanks!” are appropriate for a wide range of contexts).

Expanding this example to the context of education, historic contexts

are often used to inform how to approach similar scenarios in the

future. If a student under-performed in mathematics classes in high

school, for example, it may be appropriate to recommend that the stu-

dent enrols in a remedial math course in college based on similar stu-

dents benefiting from such a selection in previous years. In such a

practice, however, the success of the recommendation is based on

the system's ability to compare and quantify similarities between two

artefacts (i.e. the system needs to be able to find historic examples

that are similar to what is currently being observed). In the course rec-

ommendation example, the system must quantify and compare stu-

dent performance in high school mathematics courses using, for

example, letter grades or students' grade point averages.

Tools like SmartReply typically utilize natural language processing

along with several machine learning methods such as LSTM deep

learning networks (Hochreiter & Schmidhuber, 1997) to process users'

email and then recommend appropriate responses. While the original

SmartReply paper describes a generative approach (where responses

are being generated word-for-word), many similar recommendation

systems instead rely on a case-selection method (i.e. from a pool of

known possible artefacts, select the one that best applies). In either

case, however, this technology, like other recommendation systems,

relies on the method's ability to identify similar known examples in

order to make informed recommendations as to how to proceed.

3 | DEFINING SIMILARITY

As the concept of “similarity” is a prominent aspect of this current

work, it is important to discuss our definition of this term as it aligns

with different measures of distance and relatedness.

To illustrate the concept of similarity, consider the example illus-

trated by Figure 2. Which of the three objects, A, B, or C, is most simi-

lar to the target object in the upper left? Is it possible to order these

artefacts from most similar to least similar? Ignoring context, it is not

likely that readers would unanimously agree on the answers to these

questions due to the number of dimensions in which the artefacts can

be compared. Similarity here can be expressed in regard to shape,

rotation, colour, or any number of other attributes. Each artefact

exhibits similarities and differences along each of these dimensions;

without more information (or more structure to the problem) it is

impossible to know which dimensions should be given higher impor-

tance. In other words, the difficulty of this task stems from the combi-

nation of the dimensionality of the artefacts and the unknown

weights of these dimensions for comparison.

In a practical sense, this challenge is even greater when even the

artefacts are difficult to describe, such as is the case with natural lan-

guage. Consider, for example, the sentences "see Spot run” and “Spot
runs fast” for comparison. In what ways are these sentences similar?

Semantically, they both refer to “Spot” and describe Spot's action of

running, but there are many other ways to compare these. Both of

these are similar in their count of the letter “s,” both use the same

number of spaces and have the same number of words. Likewise,

apparent similarities could be viewed as differences; the word “Spot”
appears earlier in the second sentence. In this way, there are multiple

“correct” ways of measuring the similarity of these sentences; it is just

likely the case, however, that some methods of measuring similarity

are more useful than others depending on the context.

In the most abstract sense, similarity can be defined as the dis-

tance between quantified artefact representations. Once an artefact

can be quantified along its various attribute dimensions, these values

then represent the artefact's point within a representation space.

Measuring the distance between these points reveals the similarity of

the given artefacts.

4 | LEVERAGING HISTORIC DATA

In this work, we propose a method, or framework, for leveraging his-

toric student responses for the tasks of automated assessment and

F IGURE 2 Example of how similarity can be defined along
multiple dimensions of comparison.

BOTELHO ET AL. 827
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feedback recommendation based on the idea of collaborative filtering

(Su & Khoshgoftaar, 2009). Collaborative filtering is a common

method utilized by recommendation systems based on the idea of

removing irrelevant suggestions to better focus on relevant relation-

ships in data. Distinctive from other works that have approached this

problem from a supervised learning perspective, we instead re-

envision the task as a similarity ranking problem that intends to utilize

the large amount of historic data that is collected through educational

technologies. The reason for this is due to the nature of open-ended

problems, where the sample space is too expansive and sparse to

effectively evaluate supervised approaches using traditional methods.

For example, if I wanted to predict an appropriate feedback message

to give to a student, this is often a near one-to-one relationship

between student answers and feedback messages (i.e. it is rare that a

teacher says exactly the same thing for two different student

answers); as the label space is nearly just as large as the sample space,

it would be nearly impossible to train (and evaluate) a machine learn-

ing model in a traditional supervised manner. Instead, the problem can

be re-framed to identify groups of student work for which feedback

for one member is appropriate for all members, in which case the chal-

lenge becomes developing methods that accurately identify group

membership as represented by a binary outcome (does a student sam-

ple belong to a given group or not) or as a continuous similarity mea-

sure (e.g. a likelihood that two student samples belong to the same

group for all pair-wise comparisons). Thus, if we are presented with a

reasonable way of identifying “ground truth” groupings by, for exam-

ple, letting teachers define categories of student work, we can evalu-

ate measures of similarity (and other estimation methods) in terms of

how well they agree with teacher-provided groupings. In the remain-

der of this section, we describe the framework proposed, with the

next section then describing an empirical study used to evaluate this

approach with data collected from teachers.

To begin, let us assume that, for a given problem or context P0,

we have a list of historic samples A0…n�1. For a new student sample,

An, we want to rank samples A0…n�1 in regard to their measured simi-

larity to An. In order to achieve this, we must project all samples A0…n

onto a feature space using one of a set of representation methods

R0…j(), such that answers are characterized as comparable feature vec-

tors X0…n. For every pair-wise comparison of Xn to X0…n�1, one of a

set of similarity-measuring methods S0…k() are applied to generate a

set of scalar distance values D0…n�1 that measure how close, in terms

of the representation space, the new sample is compared to each of

the historic samples. Finally, D0…n�1 can then be sorted to identify the

ranking.

It is important to note that we present this framework in such

notation as to be agnostic to the type of student data observed. While

we present this work in the context of student answers to open-

ended problems, we posit that this framework could extend to com-

pare other types of data as well including, for example, student pro-

cess data to identify similar sequences of student interactions.

We must identify some assumptions that must be met in practical

application of this framework. First, given a particular problem or con-

text of interest, we assume that this context has a sufficient number

of student samples and that those student samples have been previ-

ously assessed by a trained assessor. In terms of our application to

student open-ended work, we must assume that there is a sizable

number of historic answers that have teacher-provided scores and

feedback messages so that we may recommend these for a newly-

collected student response.

The second assumption we make is that there is a set of historic

samples that belong to the same conceptual grouping as a newly-

observed sample, in a binary sense. This may be unreasonable, as just

because a particular historic sample is the “closest” to a given new

sample within the representation space, does not necessarily mean

that it should belong to the same conceptual grouping. For this rea-

son, it is recommended that, in practical application, the framework be

expanded with a determined threshold T0…k which acts as a cut-off

for considering two samples as similar or not Such a threshold could

then, for example, help to account for scenarios where a new student

sample is completely unlike anything previously recorded in the set of

historic samples. In either case, this risk may be further mitigated

through a human-in-the-loop approach, where a trained assessor

(i.e. teacher) can simply choose to ignore recommendations that are

inappropriate before they are given to a student.

A third assumption here is that we have an appropriate represen-

tation method R and similarity procedure S that collectively produce a

meaningful distance value for each comparison. While this is perhaps

the largest assumption, it is also one that can be tested and evaluated.

In reality, we have access to a large number of procedures, R0…j and

S0…k, collectively representing potential “recommendation policies” to
measure similarity. In comparing different policies, however, we need

a ground-truth value of similarity as defined by teachers with which

we can compare. The method by which we calculate this value is

described in the next section.

5 | STUDY 1: COMPARING MEASURES OF
SIMILARITY

While this framework provides a quantitative ranking of historic sam-

ples based on a likelihood of each pair-wise set of samples An,0…n�1

belonging to the same conceptual group, we must define R() and S(),

as previously stated. As we are observing answers to open-ended

problems, we can compare existing NLP representation methods in

conjunction with existing measures of similarity to evaluate which

combinations most closely align with teachers' definitions of

similarity.

In order to evaluate recommendation polices, there are potential

online and offline approaches that can be utilized. To evaluate the pol-

icies in an online sense, we could simply build the proposed system,

and compare the effectiveness of policies based on how often the

recommendations are chosen by teachers. There are of course several

issues with this method in that it could take a long time to evaluate a

large number of policies. Ideally, we would want to use an offline

method, effectively simulating or approximating teachers' choices of

recommendations; in this way, a large number of policies can be
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evaluated simultaneously using a common dataset. While only an

approximation of how teachers would utilize recommendations, off-

line methods are often used to first filter the number of likely-optimal

policies to a small number of candidates that are then further evalu-

ated in an online manner.

5.1 | Evaluating recommendation policies

In this work, we evaluate the proposed policy in an offline manner

using a dataset constructed through close collaboration with a cohort

of 17 teachers from across the United States. The goal in constructing

this dataset was to develop a measure representing similarity as

defined by the group of teachers as a whole. Having such a measure

provides a ground-truth value of similarity with which we can com-

pare our recommendation policy distance values.

The data was constructed by first sampling student answers to

open-ended problems from widely-assigned open educational

resources (OER) in the context of middle school mathematics. We then

randomized sets of student answers from the same problem and pre-

sented them to subsets of the teachers. With these responses, per

problem, we asked the teachers to group the responses into any num-

ber of desired categories. We gave no further instruction regarding

how to group the student answers nor the number of categories to use.

In this way, the teachers could decide, through heuristics or inherent

processes, how to identify “similar” answers by placing them within the

same abstract category. Not only this, but since multiple teachers per-

formed this categorization for the same set of responses and problems,

we also are able to capture variation in how teachers define and iden-

tify similarity. There were initially 78 distinct open-ended problems

with sampled student answers, but was ultimately filtered to 67 prob-

lems due to some problems having been categorized by fewer than two

teachers. As a final filtering step, empty student responses were also

dropped from the dataset. After all filtering, there were a total of 5,539

student answers across 67 problems. A sample of these responses and

their associated teacher response categories are presented in Table 1.

From Tables 1, 3 separate student responses are presented from

the same problem. In this case, correct answers tend to include the

value 34.5. Within the table you can see for this problem, Teacher

1 has used the category “C” when a student provided a correct

answer. Therefore we can infer student answers with the category

“C”, the teacher considered similar, and would elicit a similar

response. Within our data, teachers created an average of 5.53

(SD = 1.93) distinct student answer categories across all problems,

with a median of 5 categories (min = 2, max = 18).

With this data, we constructed a metric which we call the Teacher

Agreement Score (TAS). This value is calculated for a given recom-

mendation policy by first applying the proposed recommendation

method presented in Section 4 to generate the top R most-similar

responses (where R = 3 in our particular evaluation) from a selected

holdout answer as An. From these selected answers, the sample-level

TAS is calculated as follows:

TASi ¼ 1
R

XR

j¼0

1
T

XT

t¼0

1, ifCi,t ¼Cj,t

0,Otherwise

�

This equation calculates TAS for holdout sample i by comparing

the teacher-given categories of this response in comparison to the

categories provided for the selected R responses for all teachers

T with provided categories. In other words, for each pairwise compari-

son of sample i to samples in R, the metric simply counts the number

of teachers that agree that the two belong to the same category, aver-

aging this over all teachers and response pairings. This process is

repeated in a hold-one-out manner (observing each student answer as

the selected holdout) and an average TAS is calculated for the

observed policy in regard to the given problem. Finally, this process is

repeated across all 67 problems and an average and per-problem TAS

is used to compare each policy.

To give an example of this calculation, consider Table 1. If the last

row was used as a holdout sample and the first 3 rows were the iden-

tified 3 most-similar responses, the calculated TASi for this sample

would be 0.556. This is, again, calculated by comparing for matching

categories within each teacher for each response; the categories

match for 2/3 teachers when comparing to the first row, 0/3 for the

second row, and 3/3 when comparing to the third row. These values

are then simply averaged to find the 0.556 value. The process would

then continue by rotating the holdout sample.

Ultimately, a TAS close to 1 suggests that the observed policy

agrees with how teachers would define similar student responses. To

clarify, TAS represents a percentage of teachers that would agree with a

method that identifies sets of similar answers. In this way, policies exhi-

biting higher scores are, in theory, more likely to be utilized by teachers.

5.2 | Evaluating policies

Now that we have defined both our proposed method for recom-

mending feedback and our evaluation method derived from real

TABLE 1 Sample student answers for a single problem and
associated teacher response categories

Student answer

Each Teacher's category:

Category T1, T2, T3

I divided 7.5 by 0.75 and got 10 then I

did 10 times 3.45 and got 34.5.

C, B, K

I divided 3/4 by 3.45 and got 0.21 then

i multiplied 3.45 by 0.21 until i got

7.5

I, D, J

I know this because I divided 3.45 by

3/4 and got 4.6 and times 4.6 by 7.5

and got 34.5

C, A, K

I did 3.45 divided by 0.75. I got 0.75

because 3 divided by 4 is 0.75. When

I divided 3.45 and 0.75, I got 4.6. I

then did 4.6 multiplied by 7.5 and got

34.5.

C, A, K
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data, we present an empirical analysis to both exemplify these

methods as well as compare several potential recommendation poli-

cies of varying complexity. These methods are further detailed in the

sections below.

5.2.1 | Universal sentence encoder

As introduced in the Background Section, several NLP methods of

representing text have grown in popularity for their ability to capture

the semantic meaning of not only words, but also full sentences and

even paragraphs. The first method that we explore within our empiri-

cal analysis is the Universal Sentence Encoder (USE; Cer et al., 2018).

While other NLP methods often build numeric representations of indi-

vidual words, the USE builds a single vector representation for a given

sequence of words within a high-dimensional vector.

Once a sentence-level embedding is generated for each response,

a distance measure (described below) can be applied to measure the

“closeness” of other student answers in vector-space. As this method

is meant to capture the semantic meaning of the sentence, and lever-

ages complex deep learning methods to do so, this method has the

potential to allow for comparisons beyond the surface-level features

of the text.

5.2.2 | Sentence-BERT

Developed even more recently and arguably considered to be the cur-

rent state-of-the-art of sentence representation is the second method

of comparison: Sentence-BERT (Reimers & Gurevych, 2019). Devel-

oped from the word-level representation method of BERT, this

method constructs a high dimensional vector representation of

sentence- or paragraph-level text similar to that of the Universal Sen-

tence Encoder. This method, however, is based on what is known as a

“siamese network” architecture. This type of network attempts to

incorporate textual and semantic similarity into the generated

embeddings. In this way, this method represents the most complex of

representation methods compared in the current analysis.

Throughout all our analyses, we utilize a pre-trained version of

Sentence-BERT. This model has been trained on a large corpus of

samples collected from Wikipedia. It is important to note that, while

prior research has explored ways in which pre-trained models such as

these may be "fine-tuned" or trained on context-specific data (Shen

et al., 2021), no parameter tuning was applied in any of the analyses

described in this work.

5.2.3 | Levenshtein ratio

Among the simplest methods of comparing the likeness of two sam-

ples of text is that of Levenshtein Distance. This approach examines

strings of characters and calculates a distance based on how many

need to be changed to turn one string into its comparison string. For

example, if a student A said ‘the answer is 45’ and student B submit-

ted an answer with ‘the answer is 46’, the distance would be 1. How-

ever, if student B answered with ‘I think the answer is 46’, the

distance would be 9. Clearly, there are disadvantages to this approach,

mainly the distance could be larger between two answers, but their

content is the same. However, when considering a character level dis-

tance metric, could this out perform more modern approaches? For

the purposes of the paper, we utilize the Levenshtein Ratio which cal-

culates the distance and converts it to a similarity ratio which is meant

to account for the comparison of strings of different lengths.

This method acts as a baseline comparison method due to the

simplicity of the approach. However, it is likely that surface-features

of text (i.e. the use of particular keywords within student answers)

may actually prove to be a highly-weighted attribute among the

teacher comparisons.

5.2.4 | Distance metrics for similarity

While the above methods generate representations of student

answers, the method of calculating the distance between representa-

tions is still needed. In this regard, we observe three different

methods within this analysis: Euclidean Distance, Cosine Similarity,

and Canberra Distance; these were chosen both for their prominent

usage in previous NLP research and also for their notable differences

in meaning. As described in an earlier section, Euclidean Distance

observes the magnitude of the geometric distance between two vec-

tors while Cosine similarity observes the difference in angles pro-

duced by two representation vectors. Canberra Distance, while not as

widely known as the other two, has been applied in areas of computer

science as a means of comparing ranked lists (Jurman et al., 2009).

Each of these distance measures are applied to the above representa-

tion methods (excluding the Levenshtein Ratio) and the TAS measure

is calculated for each as described in Section 5.1.

6 | STUDY 1 RESULTS

As mentioned earlier, after all the filtering, there were 67 total prob-

lems with 5,539 student answers. From this, we calculated the overall

Teacher Agreement Scores for each approach and distance measure

as shown in Table 2. In comparing representations, Sentence-BERT

appears to outperform the other methods to a statistically significant

degree, as observed by the non-overlapping 95% confidence bounds;

while statistical significance and overlapping/non-overlapping confi-

dence bounds are not necessary to compare performance differences,

they provide evidence in this case that Sentence-BERT may provide

representations that better align with teachers' implicit heuristics.

While USE exhibits a higher average TAS than the raw character rep-

resentation across distance metrics, the differences are not found to

be statistically significant. Observing the TAS metric of all of these

approaches, however, even the lowest-performing approach (i.e. raw

character representation with Levenshtein Ratio) exhibits an

830 BOTELHO ET AL.
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agreement score that indicates greater than 50% agreement with

teachers; in other words, even in the worst-performing case, we see

that the method utilizing Levenshtein Ratio identifies pairs of student

responses that 53.6% of teachers would agree to represent similar

student answers.

Overall, the strongest performing approach, in terms of Teacher

Agreement Scores, was Sentence-BERT. Consistently, Sentence-BERT

managed the highest average Teacher Agreement Score across all the

problems with all distance measures. However, there were only small

differences in performance observed across distance metrics paired

with the Sentence-BERT representation. Of these metrics, Canberra

and Cosine similarity results in the highest observed average TAS of

0.623; this suggests that an estimated 62.3% of teachers would agree

with the sets of similar answers identified by these methods. While

the highest performing among methods examined in this work, a

62.3% agreement leaves a large margin for improvement and suggests

that teachers are considering several dimensions of comparison that

are seemingly missed by our observed policies.

What is evident is that different combinations of representations

and similarity methods varies in their ability to identify suitable similar

student answers, as seen in Table 2. While this exhibits our ability to

evaluate our similarity calculations, and could be scaled to apply to

new answers within the same problem, we set out to see how the

models performed not just overall, but on a per problem basis.

Table 3 provides a breakdown of the performance of each combi-

nation of representations and similarity methods at a per-problem

level. What is apparent is that there is not a policy which dominates

all other methods. Every approach manages to agree with teachers

the most on at least one problem. Overall, utilizing Sentence-BERT

managed to have the most agreement with teachers on which student

answers were similar. What is also apparent is the number of prob-

lems which Sentence-BERT performed well varied among distance

measures. When using Canberra to calculate the distance between

the vectors, it managed to have the highest Teacher Agreement Score

with 27 out of the 67 problems. As compared to utilizing Cosine and

Euclidean distance measures, which only managed to have the highest

Teacher Agreement Score on 17/67 problems and 12/67 respectively.

It should also be noted that the Number of Times Best Teacher Agree-

ment Score for Problem in Table 3 will total to over 67 problems by

9. This is because there were 9 cases where two policies could be

deemed acceptable for a problem; they had the same Teacher Agree-

ment Score.

In the end, it is evident that there is not a single policy which

agrees the most with teachers on which student answers are the most

similar, but Sentence-BERT combined with Canberra distance is per-

haps the closest of those methods explored in this work. There is a

wide distribution of problems which certain method combinations

outperform others, but then there are many problems in which they

struggle. From this study we are able to identify those methods and

problems and select when the Levenshtein ratio should be used vs

Universal Sentence Encoder or the Sentence-BERT. We can use these

approaches with future unseen responses (for this set of problems).

By utilizing our validation results from the Teacher Agreement Scores,

we can choose the best method, find the most similar current problem

TABLE 2 Overall teacher agreement
scores

Representation (R) Distance metric (S) Average TAS 95% Confidence bounds

N/A Levenshtein ratio 0.536 [0.510, 0.562]

Universal sentence encoder Euclidean 0.556 [0.530, 0.582]

Universal sentence encoder Canberra 0.554 [0.527, 0.581]

Universal sentence encoder Cosine 0.556 [0.530, 0.582]

Sentence-BERT Euclidean 0.621 [0.596, 0.646]

Sentence-BERT Canberra 0.623 [0.598, 0.648]

Sentence-BERT Cosine 0.623 [0.598, 0.648]

TABLE 3 Teacher agreement scores per problem. It should be noted that the'Number of Times Best Teacher Agreement Score for Problem’
sums to over 76/67; this occurs because there were 9 cases where two approaches scored the same score for that problem. Thus, either of the

approaches would be considered acceptable

Representation (R) Distance metric (S) % best teacher agreement score
Number of times best teacher
agreement score for problem

N/A Levenshtein 1.492 1/67

Universal sentence encoder Euclidean 11.94 8/67

Universal sentence encoder Cosine 11.94 8/67

Universal sentence encoder Canberra 4.48 3/67

Sentence-BERT Euclidean 17.91 12/67

Sentence-BERT Cosine 25.37 17/67

Sentence-BERT Canberra 40.30 27/67
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we have seen and select the teacher responses associated with that

student answer as the teacher response for the new answer.

7 | STUDY 2: AUTOMATING ASSESSMENT

Following the proposed framework and results of study 1, we illus-

trate how this method can be utilized for the task of assessing student

answers to open-ended problems. Given the previous results, we

instantiate the method using a combination of Sentence-BERT and

the Canberra distance measure and compare this approach to a

previously-established benchmark (Erickson et al., 2020).

For this study, we use a dataset2 composed of student answers

to open-ended questions in mathematics along with the teacher-

provided scores and feedback messages to these responses as used in

Erickson et al. (2020). This dataset, collected from the ASSISTments

(Heffernan & Heffernan, 2014), consists of 150,477 total student

responses from 27,199 different students to 2076 unique open-

ended questions graded by 970 different teachers. To directly com-

pare with the methods presented in Erickson et al. (2020), we use this

dataset to develop and evaluate the auto-scoring methodology. In

processing the data, as was done in the previous work, we remove all

responses containing only uploaded images. It is important to note

that this process does leave some empty responses in the data (a total

of 5,704), but are treated as any other response within this study;

these empty responses will be discussed further in Study 3. Each stu-

dent response is paired with a teacher-provided integer-valued score

ranging from 0 to 4, with 0 being the lowest and 4 being the high-

est score achievable by the student for the given answer. Within

the dataset, the distribution of labels is quite imbalanced, with

66.64%, 6.78%, 6.93%, 4.56% and 16.07% scored as 4, 3, 2, 1, and

0, respectively. The average number of responses to each problem

in the dataset is 70.76 with an 85.63 standard deviation, and

median of 47. Example student responses are included in Table 4.

Similarly as was done in the prior work, the ordinal-valued score

is treated as a multiclass label, with the goal of predicting each score

as a one-hot encoded vector (e.g. a score of 4 is denoted as

{0,0,0,0,1}). We acknowledge that there are several limitations in fram-

ing the task in this way (as the ordering of scores is ignored in evaluat-

ing model performance), but is maintained for direct comparison to

the previous work.

Using the framework described in Section 4 (illustrated in

Figure 3), we convert each student answer into a 768-valued feature

vector using Sentence-BERT and, for each student answer for which

we want to predict a score, we compare that answer to answers

within the respective training set to identify the single most-similar

student response from that set. The score associated with that

selected, most-similar sample is then used as the prediction for the

new student answer. We also acknowledge that more sophisticated

methods could be used to extend this, such as taking an average, or

majority vote, but evaluate the method using this simplified approach

as a means of exemplifying the framework. We do include a model

that applies a regression over the top 3-most-similar answers as an

additional model for comparison.

As an additional component of this model, a “fallback” condition

is implemented to be able to produce scoring estimates for problems

where there are no historic answers on which to compare. We

acknowledge that this is an unconventional addition to such a

machine learning model, as may normally be dropped from analyses

(or otherwise handled in a different manner). The choice to use a fall-

back condition, implemented as a simpler model, comes from the

intended practical use case of an automated scoring model; the model

is intended to be implemented into a learning system to provide help

to teachers who would normally manually score each student

response. It may be confusing for the model to sometimes provide

this aid and other times not (particularly within a single problem

where some students receive a score and others receive nothing), and

thus we chose to incorporate this fallback condition such that the

model can provide a score based on simple features that have been

found to correlate with scores in other problems. The use of the fall-

back model was needed on 65 problems, affecting 3.13% of the prob-

lems in our dataset. As this affects only the problems with the fewest

sample responses, the overall impact on the analyses described in this

paper is negligible. This may, however, have implications in practice if

teachers utilize never-before-seen content as the fallback model is

currently only applied when there are exactly 0 historic answers on

F IGURE 3 The design of the SBERT-Canberra method, that
suggests scores based on similarity between the answers.

2All data used in this work cannot be publicly posted due to the potential existence of

personally identifiable information contained within student open response answers. In

support of open science, this data may be sharable through an IRB approval process. Inquiries

should be directed to the trailing author of this work.
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which to compare, but this is likely a case that could be addressed by

other means (i.e. deciding not to suggest scores for never-before-seen

content or defining an evidence-based threshold for including/

excluding problems to support).

In this case, we train a single multinomial regression model over

all known answers (across all problems), utilizing (1) the number of

words in the answer and (2) the average length of each word in the

answer; this model produces a probability distribution over five cate-

gorical labels (observing the 0-4 grading scale as a multinomial regres-

sion formulation). This one model is trained over all known answers

and used then only in the case that no historic answers are available

for the SBERT-Canberra model. This component is viewed as being

part of our SBERT-Canberra approach.

7.1 | Evaluating the SBERT-Canberra
scoring model

While there are few components of the described framework that

“model” student work in the traditional machine learning connotation,

it is worth noting that we describe this constructed SBERT-Canberra

scoring method as a model given its dependence on a set of training

samples (e.g. it is, in some form, modelling how teachers have previ-

ously assessed student work).

We calculate the model performance and compare our method to

the previous works based on 3 performance metrics: AUC, treating

the label as multinomial and calculated as described in Hand and Till

(2001), Root mean squared error (RMSE) calculated over the ordinal-

valued representation of the multinomial estimates and scores, and

Cohen's Kappa, again using the multinomial estimates and scores. The

model is trained and evaluated using a 10-fold student-level cross val-

idation, where the model is problem-specific to compare only

responses within each respective problem for similarity when generat-

ing a prediction. To evaluate these models solely based on its ability

interpret the words in student responses, we make use of a

1-parameter ordinal IRT model (van Schuur, 2011), known as a Rasch

model (Rasch, 1993), within the evaluation procedure, similar to that

of prior work (Erickson et al., 2020); while 2- and 3-parameter IRT

models observing problem discrimination and item guessing could also

be leveraged to evaluate these models, the 1-parameter Rasch model

used here is able to sufficiently account for student- and problem-

level factors that should not be considered by the auto-scoring model

and is therefore sufficient to compare model performance beyond

these factors. While the output of the IRT model is not intended to be

used for automated scoring itself, it does provide a structure to more

fairly compare different scoring methods in their ability to understand

student textual answers. The method accomplishes this by learning

two parameters corresponding to one-value-per-student representing

general student ability (referred to as discrimination in terms of IRT),

and one-value-per-problem representing item difficulty (referred to as

location in terms of IRT). As student ability and the difficulty of the

item are not factors that should influence the scoring decisions of our

models, IRT controls for these aspects to form a basis for comparison.

The predictions of each model (i.e. the five probability predictions of

our SBERT-Canberra model corresponding with each of the 5 grade

scale values from 0-4) can be included into the model as additional

covariates (e.g. the model will learn the IRT parameters of student

ability and problem difficulty as well as beta coefficients correspond-

ing with the five probability estimates produced by the scoring

models). The performance of an IRT with these added covariates can

be compared to a baseline IRT without covariates, where the magni-

tude of the difference describes the scoring model's ability to assess

the student answer independent of the student's ability and the diffi-

culty of the problem.

7.2 | Study 2 results

For the auto-scoring method we developed in this work, we com-

pare the methods directly to the works from (Erickson et al., 2020)

and the results are presented in the Table 5. In addition to the

SBERT-Canberra method previously described, we also compare

another formation of this approach. This method, referred to as

“SBERT-Canberra (top 3),” uses the SBERT-Canberra method to

identify the three most similar student responses to a given student

answer (as opposed to the single most-similar historic answer as

described for the base SBERT-Canberra model). The teacher-given

scores for these top three-most-similar responses are included into

a multinomial logistic regression to produce five probability esti-

mates corresponding with each of the integer grade scale values of

TABLE 4 Sample student responses (selected from across
multiple problems for illustrative purposes) and the teacher-provided
scores on a scale of 0 to 4

Sample response Score

y = 4x-2 4

I counted 4

I multiply �3 and 2x 2

diagram is on paper 3

Yes Because Y = mx + b 0

I got 2/9 by dividing by 4 3

I was not in class for this so I do not know. 1

I went multiplication first then division then multiplication 3

I got this by doing 45/75. I knew that 75 + 75 = 150 and

150 goes into 450 3 times and 3 x 2 = 6. So the answer is

6.

4

You would need an example and then you would need to

draw a line and find out far away your shape is from the

line and mark it and then do that on the rest of your lines

on the shape

4

The distributive property means that a number outside a set

of parentheses can be multiplied by each of the numbers

within the parentheses and the answer will be the same. It

works because it would be the same as multiplying each

number by the number outside the parentheses and then

adding them together.

1
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zero through four. The inclusion of this method for comparison

allows us to further understand how incorporating less-similar

responses, as determined by our approach, impacts model

performance.

This results suggest that the proposed method of SBERT-

Canberra to predict a score for the student answer, outperforms the

previously developed methods in (Erickson et al., 2020) across all

three evaluation metrics. The Kappa value suggests that teachers are

likely to agree with the score prediction from our method 47% of the

time accounting for random chance, and from the RMSE, the score

predictions from our model are likely to be wrong by just over half a

grade point on average. While the difference in the AUC score

between the previous best method and the base SBERT-Canberra

method is notably small, the larger differences in other measures indi-

cate that this approach makes improvements upon the prior methods.

In observing the top-3 formulation of SBERT-Canberra, we observe

inferior performance in comparison to the base formulation, but

improvement over previous methods in regard to RMSE and Kappa;

AUC of this top-3 formulation is found to be slightly less than the

previous-best model from prior work. These findings suggest that the

use of the overall most-similar answer leads to better model perfor-

mance, further suggesting that our method of measuring similarity is

able to rank answers in a reasonable manner.

In observing the Kappa values, it is important to acknowledge that

even the highest value of 0.476 is lower than may be desired for a

method intended to be used by teachers in practical settings. To help

observe whether this value is an artefact of the strict grading scale

observed in the study, we also report on an “off-by-one” Kappa

(which treats predictions as agreeing with the label if the absolute dif-

ference between them is equal to or less than 1). Given the small dif-

ference observed, it is suggested that the model is making larger

misclassifications. This is particularly interesting given the compara-

tively high AUC, suggesting that the model is able to distinguish

between classes moderately well. This discrepancy suggests that there

may be heterogeneity in the optimal rounding threshold for each

score (i.e. the method for moving from a 5-valued prediction to an

ordinal-scale value is seemingly sub-optimal); in terms of AUC, this

may be represented by multiple intersecting curves for each class,

where such crosses indicate differences in optimal classification

thresholds (Ben-David, 2008). In recognizing that much of the

misclassification is likely not due to off-by-one predictions, it is even

more important to examine where error occurs and what characteris-

tics of the data likely contribute to larger error; this is the purpose of

Study 3 in this paper.

The relatively low Kappa may also be attributed to the subjectiv-

ity and inconsistency of teacher scoring. Gurung et al. (2022) con-

ducted a study with teachers using ASSISTments to examine their

intra-rater agreement (i.e. agreement with themselves) at different

time points. In that work, teachers were asked to re-grade student

work 1-2 months after initially grading the student work. It was found

that teachers' agreement with themselves ranged from as low as

Kappa = 0.2293 to as high as Kappa = 0.7368, suggesting surprisingly

low internal consistency among some teachers. This level of variance

makes it harder for an auto-scoring method to not only learn effective

patterns in the data from the outcome labels, but also introduces

implicit limits on how well a model can perform (i.e. if different scores

are being given to semantically similar answers).

It is also just as important to emphasize that the use of the IRT

model is meant purely for comparative evaluation and likely inflates

these performance metrics compared to what may be expected in a

real-world setting. The controlling for student ability and problem dif-

ficulty lead to higher performing models (and allow us to compare the

scoring models based on their ability to assess student text while con-

trolling for these factors), but would likely bias estimates in favour of

historically high-performing students if used in practice. The SBERT-

Canberra model without IRT, then, is what would be used in practice,

and is observed to have an AUC of 0.70 without the IRT model

(RMSE = 1.26 and a surprisingly higher Kappa of 0.53).

7.3 | Beyond correctness feedback

As has been discussed in earlier sections, it is the intention of this

work to lead to better teacher supports for providing more detailed

feedback to students beyond just simple correctness. Just as the

methods of Study 1 contributed to the development and application

of the SBERT-Canberra scoring model, the same method could be

used to recommend feedback based on teacher-written feedback

given to similar historic answers. In this way, the exact same SBERT-

Canberra model, as its sole purpose is to rank historic responses by

TABLE 5 IRT model performance for
the auto-scoring method compared to
previously-developed models. *IRT
models also included the number of
words as a predictor

Model AUC RMSE Kappa Off-by-one kappa

Current paper

IRT* + SBERT-Canberra 0.851 0.591 0.469 0.484

IRT* + SBERT-Canberra (top 3) 0.850 0.583 0.472 0.480

Erickson et al. (2020)

Baseline IRT 0.827 0.709 0.370 0.380

IRT + Number of words 0.829 0.696 0.382 0.395

IRT* + Random forest 0.850 0.615 0.430 —

IRT* + XGBoost 0.832 0.679 0.390 —

IRT* + LSTM 0.841 0.637 0.415 —
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similarity, can be used to select likely-appropriate messages that

teachers can give in response to student answers. Following a para-

digm of suggesting three possible feedback messages (i.e. as is done in

Google's SmartReply; Kannan et al., 2016), the SBERT-Canberra (top-

3) method explored in the previous section becomes a candidate

model for this task; rather than aggregate or ensemble the top-3

responses, the model simply suggests the teacher-provided feedback

previously written for these responses (continuing down the rank of

similar responses if no feedback had been provided for any of the

top-ranked answers).

While such a method produces potential estimates, this type of

task is much more difficult to evaluate in an offline manner. From

study 1, we can draw conclusions that we may expect teachers to

agree with the recommendations about 62% of the time, but as TAS is

a measure of teacher agreement of similarity, this may not translate to

a teacher agreeing that the feedback for identified answers is neces-

sarily appropriate.

To test the appropriateness of the SBERT-Canberra model as a

feedback recommendation method, we conducted a pilot study of the

QUICK-Comments Tool. Based on the SBERT-Canberra model,

QUICK-Comments Tool suggested automated scores and feedback

messages for open-ended responses in physical and virtual classroom

environments.3 For the collection of this data, 12 middle school math-

ematics teachers were compensated during the Spring and Fall of

2020 to assign assess and provide feedback to student open

responses utilizing this tool; teachers were given complete freedom to

score and provide feedback as they deemed appropriate and were

encouraged to ignore suggested scores and feedback (overwriting

these with their own) in cases where they felt the model was

incorrect.

While the evaluation of the scoring component of QUICK-

Comments Tool is discussed in greater detail in the next section, we

found that teachers utilized one of the suggested feedback messages

on 12.6% of the 30,371 student answers scored by teachers during

the pilot study. While this percentage is well below the 62.3% sug-

gested by the TAS score and indicative that there is still a large margin

for improvement, this percent-age suggests that the recommenda-

tions were able to provide some utility to teachers for a portion of

student responses. Considering that the Google SmartReply tool

reported a usage rate of 10% (Kannan et al., 2016) in its pilot testing,

we view this as a promising initial result, yet emphasizes a larger need

to improve these methods, as discussed next.

8 | STUDY 3: ERROR ANALYSIS

The final study presented in this work explores our framework and,

specifically, our SBERT-Canberra model to provide greater insights

into its strengths and limitations; the goal of this final study is to iden-

tify characteristics of student work that may correlate with model

error such that attributes with the strongest relationships can be

addressed with focused improvements in future iterations of the

method.

To explore the sources of error within our model for the task of

automated assessment (i.e. from observing the model and results in

Section 7) we use the same dataset as used in Study 2 to conduct a

set of error analyses using the SBERT-Canberra model. First, we

explore the results of this model across the set of class labels using a

simple confusion matrix to identify where misclassification is occur-

ring. After this, we conduct two regression analyses using a set of

answer-level features as independent variables to predict misclassifi-

cation and large prediction error exhibited by the model

(i.e. predictions with absolute differences greater than 0 and absolute

prediction differences greater than one, respectively). The purpose of

this study is to understand the potential weaknesses of the model in

order to guide targeted future improvements.

Before conducting this analysis, however, we examined the predic-

tions and labels in our data and found a counter-intuitive phenomenon

regarding empty student answers present in the data. In describing the

dataset in Study 2, there were a total of 5,704 empty student responses

that remained in the data after following the preprocessing procedures

of Erickson et al. (2020). It would normally be assumed that these empty

responses would reasonably be scored as 0, given that the student did

not provide an answer. In beginning our error analysis, however, it was

found that the teacher-provided scores for this set of responses varied

across the entire grading scale, suggesting that teachers were either

scoring student work that was submitted outside the system

(e.g. perhaps on paper), or teachers were scoring based on some infor-

mation that could not be recorded in the system (although we find it dif-

ficult to speculate as to what the reasoning behind these scores may

be); while 62.6% of these responses were scored with a 0, 29.7% were

scored as 1, 4.4% were scored as 2, 1.8% were scored as 3 and 1.6%

were scored as 4. For this reason, and as these clearly deviate from our

intended use case in applying the model in practice (i.e. it would be

infeasible for the model to anticipate and correct for this scenario when

there is no student response to generate a prediction), we decided to

drop these responses from the data for Study 3. The SBERT-Canberra

model performance after removing these responses resulted in an AUC

of 0.695, RMSE of 1.325, and a Kappa of 0.503.

F IGURE 4 The confusion matrix of the SBERT-Canberra model
after removing empty student responses.

3The pilot study of QUICK-Comments Tool began just prior to the shift to remote learning

adopted by most school systems in response to the COVID-19 pandemic and lasted through

Spring of 2020.
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After removing the empty student responses, we generated a con-

fusion matrix, shown in Figure 4, to examine where misclassification

most occurs in the model predictions. From this figure, we see, unsur-

prisingly, that the scores are positively-skewed with a majority of

responses exhibiting a maximum score of 4/4. The model appears to

have the least misclassification in cases where responses are scored as

either a 4 or a 0, although it is observed that the model seems biased in

the direction of the majority class across all scores. We do see that the

model exhibits higher off-by-one misclassification for scores of 1 and 3.

8.1 | Regression error analyses

Prior work has conducted a similar error analysis study on the same

SBERT-Canberra model from Study 2 on a different dataset collected

from a set of teachers who piloted an early version of the QUICK-

Comments tool (Baral et al., 2021). In that study, however, it is found

that the model exhibited a lower Kappa than expected despite main-

taining a comparatively high AUC (AUC 0.76 and Kappa = 0.1). For

this study, we expand upon the methodology utilized in that work to

conduct a similar regression-based error analysis. While that work uti-

lized a linear regression to predict prediction error from a set of

answer-level features, we examine a similar approach using a logistic

regression to help account for the skewed label distribution; it is our

goal to examine whether the analyses lead to the same conclusions

when accounting for this factor.

The regression models are based on student answer-level character-

istics, comprised of a set of six answer-level features extracted from the

student open response data. These features are listed in Table 6. In cal-

culating these features, the answer is first tokenized using the Stanford

NLP tokenizer (Manning et al., 2014), dividing each textual answer into

smaller tokens. For example, if the response to a particular problem is “I
got 2/9 by dividing by 4”, a simple tokenizer splits this response text by

spaces which would give the list of tokens as: (“I”, “got”, “2/9”, “by”,
“dividing”, “by”, “4”). Then from the tokenized data, we separate the

tokens consisting of either digits or mathematical symbols. The number

of such tokens is divided by the total number of tokens to calculate the

equation percentage.4 The average equation percentage calculated by

the procedure mentioned above is 27% across the entire dataset. For

calculating the length of the answer text, we count the total words in the

text simply by splitting them by space. The average length of answers

across the dataset is 10.39. Similarly, within each response, the number

of numeric digits (i.e. Numbers count) and number of operator characters

(i.e. Operators count) are counted independent of the tokens.

ASSISTments, as a learning system, allows students to upload

images as part of the response to open-ended questions; this is most

commonly a picture taken of work done on paper. The response text

in such cases includes the URL of the uploaded image to the system.

About 15% of the total responses in the dataset contains images.

While the earlier preprocessing steps removed student responses that

contained only images, there are still many examples where students

included images alongside other textual language. Since these scoring

models are not yet designed to support images, we hypothesize that

the images' presence contributes significantly to the modelling error.

We examine two logistic regression models that use the same set

of features, but predicting off-by-one error and prediction error greater

than one, respectively. To calculate these, we first divide the dataset

into three categories consisting of samples that were correctly predicted

(i.e. the difference of predicted and actual score is 0), samples that were

off by one (i.e. the absolute value of the difference of predicted and

actual score is 1), and all remaining samples (i.e. where the absolute

value of the difference of the predicted and actual score is strictly

greater than 1). We fit the first regression model to observing any

degree of misclassification as the dependent variable (i.e. absolute error

> 0 as the positive class and correct classifications as the negative class).

This allows us to examine which response-level features may help

explain any degree of misclassification exhibited by the model.

For the second regression, we dropped all of the samples that were

correctly predicted and then observed the third category (where the

absolute difference is strictly greater than 1) as the dependent variable;

this left 36,206 responses to conduct our second regression analysis.

Again conducted as a binary prediction task, this regression can be used

to identify features that help distinguish between high degrees of error

(i.e. absolute error > 1 as the positive class) and low degrees of error

(i.e. absolute error = 1 as the negative class). As the largest possible

absolute error exhibited by the model is dependent on the actual label

(i.e. a true score of 2 can only exhibit maximum differences of 2 while a

true score of 4 can exhibit a maximum difference of 4), we do not con-

tinue to distinguish larger error differences in additional regressions

(i.e. to observe error > 2 as a dependent measure).

For both of these regressions, we report both the unstandardized

and standardized beta coefficients to examine the impact of each fea-

ture on each of the observed outcomes.

8.2 | Study 3 results

The results of the error analysis of the SBERT-Canberra method are

presented in Table 7. It is found that each model explains

TABLE 6 Features for the error analysis linear model

Title Description Mean

Answer length Length of the answer 14.93

Avg. characters

per word

The average number of characters

per words

4.47

Numbers count Total number of digits 2.56

Operators count Total mathematical symbols in the

response

1.89

Equation percent Percentage of mathematical

equations in answer

0.37

Presence of

images

Indicator of presence of images in the

answer

0.02

4We acknowledge that this feature is a misnomer as it includes numeric terms, operators, and

expressions as well as equations, but chose this feature name for sake of brevity.
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approximately 6% of the outcome variance as measured by a Nagelk-

erke pseudo-r-squared estimate (r-squared = 0.0548 for the first

regression and 0.0549 for the second); this suggests that there is a

large degree of variance left unexplained by our error analyses that

may be attributed to other factors such as data scale per problem

(as explored by Erickson et al., 2020), teacher scoring variance

(as found by Gurung et al., 2022), or problem-level factors (as found

by Baral et al., 2021). Despite this, however, the statistical significance

and standardized beta coefficients can still identify factors that impact

model error to help guide future improvements to the model.

The results of the first regression model predicting any degree of

misclassification are reported on the left in Table 7. It is found that

nearly all answer-level features were found to be statistically signifi-

cant predictors of model error; in verifying these results, it was found

that all included covariates exhibited inter-correlations less than 0.3

(suggesting a moderately low impact of multicollinearity potentially

skewing the interpretation of these results). As this is a logistic regres-

sion, the coefficients are reported in log-odds units, where higher

values indicate higher likelihood of a sample being included within the

positive class (i.e. contributing to error) and negative values indicate

higher likelihood of a sample being in the negative class

(i.e. contributing to being correctly classified). While several of the

unstandardized coefficients are found to be close to 0, the standard-

ized coefficients reveal that the scale of these features changes the

interpretation of their impact. In regard to this first regression, answer

length, equation percent, and the presence of images in the student

responses emerge as exhibiting the highest correlation with model

misclassification.

The results of the second regression model predicting larger

degrees of error (error > 1 compared to error = 1), are reported on

the right in Table 7. In this case, all of the answer-level features

emerge as statistically significant, with all but the average word length

exhibiting comparably stronger relationships with the degree of error.

Similar to the first analysis, the presence of equations and images

emerge as contributing to larger degrees of error; the count of opera-

tors also contributes positively to higher error as well, to a lesser

degree. It is found, however, that the answer length and count of

numbers present in student answers contribute negatively to higher

degrees of error; this suggests that these are more attributable to

contributing to off-by-one error per the negative class observed in

this analysis. The count of numbers exhibits an especially strong rela-

tionship with off-by-one error from this analysis.

Across both regressions, responses containing equations and

images are found to have strong relationships with model misclassifi-

cation, and particularly, larger degrees of error. This set of analyses

aligns with the findings of prior work that examined the SBERT-

Canberra model error in a slightly different context (Baral et al., 2021).

Collectively, the error analyses conducted on this model suggest that

future developments should target the representation of numerical

values, mathematical expressions, and equations as a means of reduc-

ing modelling error. Similarly, though likely more difficult, incorporat-

ing image representations into the model may additionally help

improve model performance and reduce large degrees of error; prior

research has focused on building vector representations that combine

language and images into the same embedding space (Harwath &

Glass, 2015) and may be a direction to explore in future research.

Finally, better accounting for the length of responses can help reduce

off-by-one error as revealed by the second regression model. As this

suggests that longer responses are related to off-by-one error (due to

the reversed directionality of coefficients across the first and second

regressions), it may be the case that some of these responses contain

inherent distractor words that may lead to this model misclassification

(Filighera et al., 2020).

9 | DISCUSSION

Considering the results of the three studies reported in this work,

there are several notable characteristics of our approach that emerge.

In regard to the evaluation of recommendation policies in Study 1, for

example, the lack of a dominant method suggests that teachers' defi-

nition of similarity is more complex and, in also observing the error

analysis of Study 3, possibly contextual. Particularly in the domain of

mathematics, it is reasonable to assume that similarity will depend

largely on the problem that is being observed; it is likely that the pres-

ence of certain numbers, expressions, or equations in student answers

may contribute largely to whether or not a teacher would identify two

answers as belonging to the same conceptual category. Conversely,

TABLE 7 The resulting model
coefficients for the logistic regression
model of scoring error

Error > 0 Error > 1

B β SE B β SE

Intercept �1.606*** �1.085*** 0.015 0.302*** 0.561*** 0.026

Answer length 0.011*** 0.316*** <0.001 �0.008*** �0.238*** <0.001

Avg. word length 0.016*** 0.065*** 0.002 0.010** 0.041** 0.003

Numbers count <0.001 <0.001 <0.001 �0.017*** �1.125*** 0.003

Operators count �0.009*** �0.064*** 0.002 0.017*** 0.120*** 0.004

Equation percent 0.555*** 0.175*** 0.021 0.808*** 0.255*** 0.041

Presence of images 3.445*** 0.545*** 0.051 1.892*** 0.299*** 0.064

Note: *p < 0.05, B and β denote unstandardized and standardized coefficients, respectively.

**p < 0.01; ***p < 0.001.

BOTELHO ET AL. 837

 13652729, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jcal.12793 by W

orcester Polytechnic Institut, W
iley O

nline Library on [24/10/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



however, problems that address more abstract mathematics concepts

without the use of such terms and expressions may exhibit different

bases on which a teacher defines similarity. In other words, from our

analyses (particularly considering the performance of Levenshtein

Ratio in Table 2), we build the hypothesis that teachers consider

semantic, syntactic, and mathematical attributes when grouping stu-

dent answers and that the impact of these attributes may change

across problems.

Although it is true that the results across analyses are relatively

positive, many of these results suggest that our explored methods of

representation and similarity measurement only partially align with

how teachers compare student work. As identified in Study 3, the rep-

resentation method appears to be targeted as one contributing factors

to model error, given known difficulties of such methods and leading

to more recent developments in mathematics contexts (Shen

et al., 2021).

10 | LIMITATIONS AND FUTURE WORK

In regard to our approach as well as in light of our findings, there are

several limitations and opportunities for future directions. In regard to

the overall framework, the set of representation methods and similar-

ity measures represent a first step toward developing more sophisti-

cated approaches. With the re-framing of the underlying problem to

be that of identifying group membership, the data utilized in the eval-

uation of recommendation policies could be used to train machine

learning models in a more traditional manner to better learn how

teachers identify similarity. Although the SBERT-Canberra approach

emerged as the highest performing set of methods explored, no

“training” was conducted to improve the method, which could be fur-

ther explored in future works.

While the SBERT-Canberra model outperformed the prior bench-

marks in assessing student open responses, the difference in perfor-

mance is comparatively small. The manner in which the method

makes its prediction can be considered a greedy approach in that only

the closest historic answer is used to predict the score. While the

inclusion of the top-3 similar answers did not lead to notable improve-

ments, there may be better ways to ensemble similar responses

beyond the single-most similar response to generate estimates. Simi-

larly, the use of the word count model as a fallback may further be

improved; while it was the case that there were arguably few

instances of problems not having enough data within the cross valida-

tion, improving this fallback method may help to improve the model

when applied in practical settings where the “cold start” problem is

more prevalent; as the method currently relies heavily on having a

sufficiently-sized pool of human-scored historic answers, future

research can focus on utilizing unlabeled student answers or exploring

other unsupervised methods that may additionally support these

methods in cases where labelled data is scarce.

The error analysis of the SBERT-Canberra model revealed several

areas where this approach, as well as others, may focus in future

works. Most notably, as highlighted, the use of mathematical

expressions and terms were found to be correlated with higher error;

improving the representation of such elements can certainly be

addressed in future work. A limitation of this, however, is that both

models left variance unexplained in the outcome. We chose to look at

these factors based on prior work (Baral et al., 2021), but there may

be other large factors that can explain more of the error that we are

seeing. Subsequent works could conduct more thorough surveys of

both answer-level and higher-level factors. Future works can also

explore additional model structures and language features that may

lead to improvements to performance. The analyses presented in this

work, however, can act as a baseline to further evaluate if future itera-

tions of our approach truly improve upon these identified areas.

It is also the case that prior work conducting a similar error analy-

sis (i.e. Baral et al., 2021), found that the SBERT-Canberra model

exhibited conflicting performance measures when applied in a pilot

study. While exhibiting high AUC metrics, Kappa was considerably

low at a value of 0.1. It is unclear what the differences are between

the dataset used in this work and that collected for the previous study

to exhibit such a discrepancy. Future works could examine

population-based and contextual differences between the two sets of

studies to better understand why the differences in model perfor-

mance were observed and how they might be mitigated to improve

the application of these methods. Prior works in areas of machine

learning have identified distributional differences between contexts

to contribute largely to model performance disparities

(e.g. Ocumpaugh et al., 2014; Sagawa et al., 2019). Conversely, other

works have described several limitations of using AUC and kappa to

measure model performance for ordinal prediction tasks, perhaps also

emphasizing the need to improve how the model rectifies probabilistic

estimates into ordinal predictions (e.g. by optimizing its rounding

thresholds).

Extending on this, we have not deeply explored the different cat-

egories produced by teachers used to construct the TAS measure in

Study 1. The clusters of student responses identified by teachers pro-

vides the data necessary to both better understand how teachers

approach tasks pertaining to assessment and feedback, but also pro-

vide opportunities to explore methods of learning better similarity

methods. The apparent differences in how teachers approached the

task can create greater insights into the ways in which teacher assess-

ment varies and can be examined in future work.

It is also the case that in using a pre-trained Sentence-BERT

model performed reasonably well in our studies, future work could

observe whether fine-tuning this model leads to improvements. Other

works have started to explore the fine-tuning of BERT methods to

mathematics data (Shen et al., 2021), but it is uncertain how such

methods scale and generalize due to the challenges identified in the

introduction; as the use of numbers and mathematical terms form an

infinite set, the question is raised as to whether the set of such terms

that appear in student responses forms a sufficiently-bounded set for

such fine-tuning to learn meaningful representations. This question, as

well as how the scale and variation of data (particularly mixing lan-

guage and mathematics terms) may impact the generalized use of

these language models.
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11 | CONCLUSION

In considering the three studies presented in this work, the relatively

positive results act as a proof-of-concept for the proposed framework

which exhibited promise for application in real-world contexts. As

mentioned in presenting Study 2, a teacher support tool has already

undergone development and initial pilot testing utilizing these

methods; while the empirical results of initial studies are still ongoing

at the time of writing this paper and beyond the scope of the goals of

this work, the deployment of these methods in any capacity provide

suggestive evidence of their utility.

The framework itself represents an intentionally-simple structure

meant to help conceptualize student modelling from an unconven-

tional perspective. The methods used to instantiate the proposed

framework are by no means novel, and neither is the concept of utiliz-

ing similarity to make predictions (e.g. k-nearest neighbour methods

are based on this precise principle), but this work attempts to charac-

terize this approach in an abstract manner to help focus research in

areas of representation and the comparison of samples within a repre-

sentation space. It is the presumption that such a perspective may

provide utility in other educational spaces where a solution space is

both sparse and vast as in the case of open response feedback.
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