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Abstract

Background: Teachers often rely on the use of open-ended questions to assess stu-
dents' conceptual understanding of assigned content. Particularly in the context of
mathematics; teachers use these types of questions to gain insight into the processes
and strategies adopted by students in solving mathematical problems beyond what is
possible through more close-ended problem types. While these types of problems
are valuable to teachers, the variation in student responses to these questions makes
it difficult, and time-consuming, to evaluate and provide directed feedback. It is a
well-studied concept that feedback, both in terms of a numeric score but more
importantly in the form of teacher-authored comments, can help guide students as to
how to improve, leading to increased learning. It is for this reason that teachers need
better support not only for assessing students' work but also in providing meaningful
and directed feedback to students.

Obijectives: In this paper, we seek to develop, evaluate, and examine machine learn-
ing models that support automated open response assessment and feedback.
Methods: We build upon the prior research in the automatic assessment of student
responses to open-ended problems and introduce a novel approach that leverages
student log data combined with machine learning and natural language processing
methods. Utilizing sentence-level semantic representations of student responses to
open-ended questions, we propose a collaborative filtering-based approach to both
predict student scores as well as recommend appropriate feedback messages for
teachers to send to their students.

Results and Conclusion: We find that our method outperforms previously published
benchmarks across three different metrics for the task of predicting student perfor-
mance. Through an error analysis, we identify several areas where future works may

be able to improve upon our approach.
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1 | INTRODUCTION

Educational technologies strive to support educators and students in
ways that augment instructional practices. These technologies, for
example, can help an instructor monitor student performance at levels
of granularity and at scales that are infeasible or impractical in more
traditional classroom environments. Advancements in machine learn-
ing and artificial intelligence have enabled educational technologies to
aid in teachers' decision-making processes; with access to large sums
of current and historic educational data, these technologies show
promise in their capacity to suggest effective actions that teachers
can take to support their students' learning.

These systems are developed to support both teachers and stu-
dents through functions and tools that utilize collected data in various
ways. These functions include scaffolding problems (Ringenberg &
VanLehn, 2006), worked examples (Roll et al., 2011), or even answer-
specific feedback to help remedy known common errors (Selent &
Heffernan, 2014). Even simple correctness feedback provided to stu-
dents can be beneficial for their learning (Kehrer et al., 2013), and is
one of the most prominent benefits of learning systems. In consider-
ing these supports, there still remain several challenges in addressing
all types of problems that teachers commonly assign to students.

Common across domains, though particularly in the domain of
mathematics on which this paper is primarily focused, there are two
types of question: close-ended and open-ended. Close-ended prob-
lems have a single or finite number of accepted answers (for example
a multiple-choice question or fill-in questions) that are easily recogniz-

able by a system through a simple matching approach; student

Elena, Lin, and Noah all found the area of Triangle Q to be 14 square units but reasoned
about it differently, as shown in the diagrams. Explain at least one student’s way of thinking
and why his or her answer is correct.

a

Elena Lin

Noah

copled for free from openupresources.org

Type your answer below

FIGURE 1 Example of an open-ended question taken from
openupresources.org
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answers can be compared, character by character, to a set of recog-
nized answers for a direct match to determine correctness. Support
learning systems is generally confined to these close-ended problem
types. For instance, it is easy for a system to understand that the
accepted value for x in the equation x + 4 = 8 is 4. If a student were
to answers with the value of 12, the system may easily be able to pro-
vide the correctness score with a feedback message that highlights
the student's mistake. Open-ended questions, however allow students
to express their understanding of concepts through natural language
(e.g., Figure 1); while there are still a finite number of conceptually
acceptable answers, such responses can vary greatly making it impos-
sible to utilize a direct matching approach as can be used for close-
ended problems. In many K-12 mathematics classrooms, these types
of open-ended questions are used by teachers to assess their stu-
dent's understanding and thought process about the assigned topic.
The challenges posed by open-ended problems in developing
tools to better support the provision of various forms of feedback
become even more apparent in mathematics-prevalent domains. Dis-
tinctive even from other contexts pertaining to language arts, student
answers to open-ended questions in mathematics often include a
combination of natural language with other artefacts including images,
tables, mathematical symbols, as well as equations and expressions.
While the number of words in a language such as English is large, it is
finite, making it easier to represent words (or sequences of
commonly-occurring words) as distinctive components when building
automated systems to process natural language. The inclusion of num-
bers, as an infinite set, complicates traditional approaches to natural
language processing, especially when appearing within more complex

expressions.

1.1 | Research questions

In this paper,® we provide a deeper examination into the methods and
framework underlying recent work in the space of automating assess-
ment in the domain of mathematics (Baral et al., 2021). We introduce,
and develop, an approach which utilizes sentence level semantic rep-
resentation of student open responses through Sentence-BERT
(SBERT). With the ultimate goal of helping teachers assess and pro-
vide feedback to open-ended problems in mathematics through the
development of an automated assessment system, this work explores
the following overarching research questions:

1. How can historic student data be leveraged in assessing and sug-
gesting feedback for student answers to open-ended problems in
mathematics?

2. When examining student open-response answers, which similarity
metrics most closely align with how a teacher may group similar
student answers?

LIt is important to acknowledge that this work expands upon previously published research
conducted in this space (Baral et al., 2021).
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3. What are the characteristics of student work that impact the per-
formance of our proposed methods?
In addressing our research questions, we identify four contribu-
tions presented in this work. First, we conduct an empirical analy-
sis to compare different feedback recommendation policies
utilizing traditional and state-of-the-art NLP and machine learning
methods. Focusing on developing methods to suggest feedback as
well as assessment, we develop a data-driven metric and proce-
dure to evaluate automated feedback recommendation policies in
an offline manner based on how teachers identify similar student
answers. We then introduce a method to provide automated
scores and feedback suggestions to teachers to give to their stu-
dents' open-ended work based on the similarity of student
responses. Finally, to explore what impacts the performance of our
methods, we conduct an error analysis to investigate the answer-
level characteristics that correlate with the magnitude of error

observed in our proposed methods.

2 | BACKGROUND

Intelligent tutoring systems (ITS) and computer-based learning
platforms have been utilized by teachers and students for several
decades (c.f. Corbett et al., 1997), but their adoption has increased in
recent years. With the rise of COVID-19, teachers' reliance on these
online learning platforms such as ASSISTments (Heffernan &
Heffernan, 2014), McGraw Hill's ALEKS™ and others have grown.
Studies conducted to evaluate online learning platforms, have identi-
fied promising results that point toward their success in helping to
improve student learning over more traditional instructional
approaches. In the case of ASSISTments, as it is the platform from
which the data used in this work was collected, such an efficacy trial
found that use of the platform nearly doubled student learning over
the course of a year (Roschelle et al., 2016); at least part of this out-
come has been attributed to the simple offering of immediate feed-
back, as previous studies have identified (Kehrer et al, 2013).
Similarly, the study from (VanLehn, 2011) highlights the positive
effects of intelligent tutoring systems on student learning, and that
these intelligent tutoring systems have the opportunity to be almost
as effective as human tutors. Most learning platforms, particularly in
the context of mathematics, largely focus on closed-ended problem
types as they are well-structured and are easier to automatically
grade. As these types of problems are easier to automate, there has
been a considerable amount of work and research in improving feed-
back to these types of questions. However, Ku (2009) discussed that
providing only one question type, such as multiple-choice, would be
inadequate in capturing the students' rationale or process of thinking.
Similarly, Chi et al. (1994) highlights that pedagogically engaging stu-
dents in explanation about their works and making arguments and jus-
tifications about their understanding of the concept, leads to the
development of conceptual understanding and finally better learning.
Similarly, in comparing close-ended questions (such as multiple-

choice) and open-ended questions, Martinez (1999) has identified and
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examined the different levels of cognition required for each question
type, suggesting that open-ended questions require a wider spectrum
of cognition than that of a close-ended question. A similar study by
Kramarski and Zeichner (2001) highlights the importance of metacog-
nitive feedback on questions that asks for the understanding of the
approach has better impact on math learning than just a result based
feedback on result problems.

While past studies have suggested the importance of open-ended
questions, there is still only limited support in most learning platforms
for this type of problem; many systems do not even support this prob-
lem type in the context of mathematics. As Buckles and Siegfried
(2006) highlights, there are certain affordances in omitting open-
ended problems as they are considerably more difficult to assess with
support from automation. Recognizing the benefits of these problems,
however, efforts are being made to automate the assessment of
open-ended answers (c.f. Attali & Burstein, 2006; Foltz et al., 1999;
Zhao et al., 2017; Erickson et al., 2020). In this work, we present an
approach to help provide support for not only the assessment of
open-ended problems, but also to help aid in the writing of feedback

in support of student learning.

2.1 | Natural language processing

To address the problem of automatically assessing student answers to
open-ended problems, such approaches need to be able to quantify
aspects of student responses. In most modern approaches, this is usu-
ally accomplished through the application of natural language proces-
sing (NLP) methodologies. While the study and application of NLP
broadly encompasses numerous aspects of the study of language, for
the purpose of this work we refer to NLP in terms of the narrow
scope of methodologies used to convert language into numeric repre-
sentations; the primary goal of most modern methods, as described
further below, is to represent language in such a way that describes
syntactic and semantic features.

Within this, there has been a long history of research pertaining
to automated short-answer grading (ASAG), following several trends
distinguishing scoring for what we would refer to as close-ended
problems and more open-ended formats (see, for example, Burrows
et al., 2015). Within this work, the authors also highlight several dis-
tinctions between ASAG and the scoring of longer essay responses
(automated essay grading, or AEG). Our specific context is character-
ized by open-ended responses that consist of, at most, a couple of
sentences. Across these areas of automatic scoring of language,
Burrows et al. (2015) identifies sets of methods used to approach this
problem as following "eras" ranging from concept mapping (e.g. C-
Rater; Leacock & Chodorow, 2003) to machine learning approaches
discussed later in this section.

There have been many methods proposed in the past as to how
to best represent text in a manner that captures syntactic as well as
semantic meaning. The simplest way to represent language is perhaps
with a bag of words approach. By adding up the number of times the
word occurs, that can be the number which represents said word.
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While this has been the foundation of recent studies (e.g. Graesser
et al., 2000; Sordoni et al., 2015), the bag of words approach is often
utilized as a baseline of comparison for more complex methods. Simi-
larly, some research utilizes n-gram approaches for text classification
(Cavnar & Trenkle, 1994). In such a method, instead of having a list of
individual words, a list of grouped words could be counted
(e.g. perhaps observing two- or three-word sequences as a single
grouping to form a bi-gram and tri-gram representation, respectively);
such a method helps to capture the context of particular words by
observing how each word is situated in relation to others. Not only
has this been used in interpreting speech or text, it has also been uti-
lized in other contexts, such as in detecting malicious code (Abou-
Assaleh et al., 2004). Other common foundational methods attempt to
measure the importance of words based on the frequency or scarcity
of their usage; term frequency inverse document frequency (TF-IDF),
for example, was developed to provide a weighting measure designed
to discount overly-common words and focus on keywords that help
to provide better meaning (Ramos, 2003). A recent study showed suc-
cess in automatically grading student open-ended questions using
TF-IDF (Erickson et al., 2020).

What is missing from a bag-of-words-based approaches is any rela-
tional or contextual understanding of the words; even considering n-gram
methods, though context is represented through adjacent words, such
methods are unable to measure deeper relationships between the ideas
present in the given text. These foundational methods provide some mea-
sure of word frequency (and perhaps importance), but it fails to provide
and relational information; we argue that both of these characteristics are
important in considering the assessment of student open-ended work.
With recent advancements in deep learning, researchers have developed
approaches that attempt to embed contextual information within high-
dimensional language representations; two such notable methods are
those of Word2Vec (Mikolov et al, 2013) and GloVe (Pennington
et al., 2014). Though varying in the specific formulation, these deep-learn-
ing-based embedding methods attempt to project words into an embed-
ding space such that the semantic relationship between words is
maintained in their distance in that space; if the two vectors are far apart
within the vector space, it is presumed that they are less likely to be
related or similar. An additional benefit to such embedding methods is the
ability to “export” the learned representations so that they can be utilized
in broader applications; embeddings can be generated on large corpora of
language data and then be used in various contexts as a pre-trained repre-
sentation, supporting applications where such a robust corpus may be dif-
ficult to collect (and also such pre-trained methods add statistical power
in that the representations can incorporate semantic and contextual
information from a large and diverse sample set).

Expanding from the development of word embeddings, higher
representations at the sentence- and document-level have also
emerged. Instead of developing a vector representation of each indi-
vidual word, approaches such as Doc2Vec (Le & Mikolov, 2014), aim
to generate a single embedding to represent an entire document or
multiple paragraphs. Likewise, other approaches such as the Universal
Sentence Encoder (Cer et al., 2018) and Sentence-BERT (Reimers &
Gurevych, 2019) have gained popularity in their ability to represent

BOTELHO ET AL.

sentences as a single vector, offering opportunities to use such repre-
sentations to capture the relationships between broader ideas that

may be split across words, clauses, sentences, and paragraphs.

2.2 | Auto assessment of open-ended problems
There has been a growing body of research around the automated
assessments of open-ended response in conjunction with the emer-
gence of improved NLP methodologies. Prior works on automated
assessment of student open-responses are of ranging complexities
that are based on the type of the answer text and the subject domains
(Burrows et al., 2015). Such works present various automated
methods to help teachers assess short answers and essays in several
domains (Basu et al., 2013; Brooks et al., 2014; Goularte et al., 2019;
Leacock & Chodorow, 2003; Sultan et al., 2016; Zhao et al., 2017).
Studies such as Basu et al. (2013) and Brooks et al. (2014) have imple-
mented various clustering based techniques to grade short textual
answers. C-rater (Leacock & Chodorow, 2003) used grading rubrics
and the decomposition of scores into multiple knowledge components
to assess the correctness of short answer questions. Study from Sul-
tan et al. (2016) proposes methods on short answer grading tasks
based on the semantic similarity of the student response with the cor-
rect response. Other more recent works (e.g. Riordan et al., 2017,
Zhao et al., 2017) have been based on various deep learning methods
to assess open-ended answers. While these works have mostly been
applied in non-mathematical domains, there are other works such as
Lan et al. (2015) which focuses on the auto-assessment of open-
ended questions in mathematics, emphasizing the unique challenges
present in representing mathematical language and expressions. Sub-
sequent work in the context of mathematics (i.e. Erickson et al., 2020)
discusses challenges in developing auto-scoring models for open-
ended questions in such a context. In their work, they offer a compari-
son of various models utilizing machine learning (e.g. random forest
and XGBoost; Chen & Guestrin, 2016) and more complex deep learn-
ing (e.g. Long Short Term Memory (LSTM) networks; Hochreiter &
Schmidhuber, 1997) techniques; they combined these with NLP
methods to automatically score open-ended responses.

Beyond correctness feedback, there are also some works that
have explored the generation of other forms of feedback for natural
language contexts. Recent work, for example, has developed and eval-
uated a discourse-based feedback system that communicates with
students through a chat-like interface (Grenander et al., 2021). Other
prior research has explored the delivery of feedback through more

structured scaffolding (Grossman et al., 2019).

2.3 | Developing QUICK-Comments tool

Building upon these prior works, the studies on which we report in
this work follow the development and pilot-testing of an automated
assessment and feedback recommendation tool called QUICK-

Comments Tool. The design of this tool draws inspiration from
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Google's SmartReply (Kannan et al., 2016). This tool, and others like it
that have since been developed, have become widely-used to help
users respond to email and other forms of textual communication.
Like SmartReply, the goal of QUICK-Comments Tool is to provide
teachers with three suggested feedback messages to provide for each
student answer to an open-ended math problem; in addition, the tool
provides a suggested assessment score for each response, allow
teachers to utilize these suggestions or ignore them to formulate their
own scores and feedback for students.

These technologies often rely on their ability to effectively com-
pare new experiences with historic data. If a particular observed sce-
nario has been seen in the past, it is likely that a course of action that
was previously successful in such a case may be appropriate in the
present as well. In the case of SmartReply, email responses may be re-
used in other contexts (consider how certain replies such as “sounds
good” or “thanks!” are appropriate for a wide range of contexts).
Expanding this example to the context of education, historic contexts
are often used to inform how to approach similar scenarios in the
future. If a student under-performed in mathematics classes in high
school, for example, it may be appropriate to recommend that the stu-
dent enrols in a remedial math course in college based on similar stu-
dents benefiting from such a selection in previous years. In such a
practice, however, the success of the recommendation is based on
the system's ability to compare and quantify similarities between two
artefacts (i.e. the system needs to be able to find historic examples
that are similar to what is currently being observed). In the course rec-
ommendation example, the system must quantify and compare stu-
dent performance in high school mathematics courses using, for
example, letter grades or students' grade point averages.

Tools like SmartReply typically utilize natural language processing
along with several machine learning methods such as LSTM deep
learning networks (Hochreiter & Schmidhuber, 1997) to process users'
email and then recommend appropriate responses. While the original
SmartReply paper describes a generative approach (where responses
are being generated word-for-word), many similar recommendation
systems instead rely on a case-selection method (i.e. from a pool of
known possible artefacts, select the one that best applies). In either
case, however, this technology, like other recommendation systems,
relies on the method's ability to identify similar known examples in

order to make informed recommendations as to how to proceed.

3 | DEFINING SIMILARITY

As the concept of “similarity” is a prominent aspect of this current
work, it is important to discuss our definition of this term as it aligns
with different measures of distance and relatedness.

To illustrate the concept of similarity, consider the example illus-
trated by Figure 2. Which of the three objects, A, B, or C, is most simi-
lar to the target object in the upper left? Is it possible to order these
artefacts from most similar to least similar? Ignoring context, it is not
likely that readers would unanimously agree on the answers to these
questions due to the number of dimensions in which the artefacts can
be compared. Similarity here can be expressed in regard to shape,

Journal of Computer Assisted Learning_W[]_Eyjﬂ
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FIGURE 2 Example of how similarity can be defined along
multiple dimensions of comparison.

rotation, colour, or any number of other attributes. Each artefact
exhibits similarities and differences along each of these dimensions;
without more information (or more structure to the problem) it is
impossible to know which dimensions should be given higher impor-
tance. In other words, the difficulty of this task stems from the combi-
nation of the dimensionality of the artefacts and the unknown
weights of these dimensions for comparison.

In a practical sense, this challenge is even greater when even the
artefacts are difficult to describe, such as is the case with natural lan-
guage. Consider, for example, the sentences "see Spot run” and “Spot
runs fast” for comparison. In what ways are these sentences similar?
Semantically, they both refer to “Spot” and describe Spot's action of
running, but there are many other ways to compare these. Both of
these are similar in their count of the letter “s,” both use the same
number of spaces and have the same number of words. Likewise,
apparent similarities could be viewed as differences; the word “Spot”
appears earlier in the second sentence. In this way, there are multiple
“correct” ways of measuring the similarity of these sentences; it is just
likely the case, however, that some methods of measuring similarity
are more useful than others depending on the context.

In the most abstract sense, similarity can be defined as the dis-
tance between quantified artefact representations. Once an artefact
can be quantified along its various attribute dimensions, these values
then represent the artefact's point within a representation space.
Measuring the distance between these points reveals the similarity of
the given artefacts.

4 | LEVERAGING HISTORIC DATA

In this work, we propose a method, or framework, for leveraging his-
toric student responses for the tasks of automated assessment and
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feedback recommendation based on the idea of collaborative filtering
(Su & Khoshgoftaar, 2009). Collaborative filtering is a common
method utilized by recommendation systems based on the idea of
removing irrelevant suggestions to better focus on relevant relation-
ships in data. Distinctive from other works that have approached this
problem from a supervised learning perspective, we instead re-
envision the task as a similarity ranking problem that intends to utilize
the large amount of historic data that is collected through educational
technologies. The reason for this is due to the nature of open-ended
problems, where the sample space is too expansive and sparse to
effectively evaluate supervised approaches using traditional methods.
For example, if | wanted to predict an appropriate feedback message
to give to a student, this is often a near one-to-one relationship
between student answers and feedback messages (i.e. it is rare that a
teacher says exactly the same thing for two different student
answers); as the label space is nearly just as large as the sample space,
it would be nearly impossible to train (and evaluate) a machine learn-
ing model in a traditional supervised manner. Instead, the problem can
be re-framed to identify groups of student work for which feedback
for one member is appropriate for all members, in which case the chal-
lenge becomes developing methods that accurately identify group
membership as represented by a binary outcome (does a student sam-
ple belong to a given group or not) or as a continuous similarity mea-
sure (e.g. a likelihood that two student samples belong to the same
group for all pair-wise comparisons). Thus, if we are presented with a
reasonable way of identifying “ground truth” groupings by, for exam-
ple, letting teachers define categories of student work, we can evalu-
ate measures of similarity (and other estimation methods) in terms of
how well they agree with teacher-provided groupings. In the remain-
der of this section, we describe the framework proposed, with the
next section then describing an empirical study used to evaluate this
approach with data collected from teachers.

To begin, let us assume that, for a given problem or context Py,
we have a list of historic samples Ap_,_1. For a new student sample,
A,, we want to rank samples Ag_,,_1 in regard to their measured simi-
larity to A,. In order to achieve this, we must project all samples Aq_,
onto a feature space using one of a set of representation methods
Ro..), such that answers are characterized as comparable feature vec-
tors Xo_ . For every pair-wise comparison of X,, to Xo_,_1, one of a
set of similarity-measuring methods Sy () are applied to generate a
set of scalar distance values Dq_,,_4 that measure how close, in terms
of the representation space, the new sample is compared to each of
the historic samples. Finally, Do_,_1 can then be sorted to identify the
ranking.

It is important to note that we present this framework in such
notation as to be agnostic to the type of student data observed. While
we present this work in the context of student answers to open-
ended problems, we posit that this framework could extend to com-
pare other types of data as well including, for example, student pro-
cess data to identify similar sequences of student interactions.

We must identify some assumptions that must be met in practical
application of this framework. First, given a particular problem or con-

text of interest, we assume that this context has a sufficient number
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of student samples and that those student samples have been previ-
ously assessed by a trained assessor. In terms of our application to
student open-ended work, we must assume that there is a sizable
number of historic answers that have teacher-provided scores and
feedback messages so that we may recommend these for a newly-
collected student response.

The second assumption we make is that there is a set of historic
samples that belong to the same conceptual grouping as a newly-
observed sample, in a binary sense. This may be unreasonable, as just
because a particular historic sample is the “closest” to a given new
sample within the representation space, does not necessarily mean
that it should belong to the same conceptual grouping. For this rea-
son, it is recommended that, in practical application, the framework be
expanded with a determined threshold Ty_, which acts as a cut-off
for considering two samples as similar or not Such a threshold could
then, for example, help to account for scenarios where a new student
sample is completely unlike anything previously recorded in the set of
historic samples. In either case, this risk may be further mitigated
through a human-in-the-loop approach, where a trained assessor
(i.e. teacher) can simply choose to ignore recommendations that are
inappropriate before they are given to a student.

A third assumption here is that we have an appropriate represen-
tation method R and similarity procedure S that collectively produce a
meaningful distance value for each comparison. While this is perhaps
the largest assumption, it is also one that can be tested and evaluated.
In reality, we have access to a large number of procedures, Ry_; and
So..k» collectively representing potential “recommendation policies” to
measure similarity. In comparing different policies, however, we need
a ground-truth value of similarity as defined by teachers with which
we can compare. The method by which we calculate this value is
described in the next section.

5 | STUDY 1: COMPARING MEASURES OF
SIMILARITY

While this framework provides a quantitative ranking of historic sam-
ples based on a likelihood of each pair-wise set of samples A,o._n-1
belonging to the same conceptual group, we must define R() and S(),
as previously stated. As we are observing answers to open-ended
problems, we can compare existing NLP representation methods in
conjunction with existing measures of similarity to evaluate which
combinations most closely align with teachers' definitions of
similarity.

In order to evaluate recommendation polices, there are potential
online and offline approaches that can be utilized. To evaluate the pol-
icies in an online sense, we could simply build the proposed system,
and compare the effectiveness of policies based on how often the
recommendations are chosen by teachers. There are of course several
issues with this method in that it could take a long time to evaluate a
large number of policies. Ideally, we would want to use an offline
method, effectively simulating or approximating teachers' choices of

recommendations; in this way, a large number of policies can be
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evaluated simultaneously using a common dataset. While only an
approximation of how teachers would utilize recommendations, off-
line methods are often used to first filter the number of likely-optimal
policies to a small number of candidates that are then further evalu-

ated in an online manner.

5.1 | Evaluating recommendation policies

In this work, we evaluate the proposed policy in an offline manner
using a dataset constructed through close collaboration with a cohort
of 17 teachers from across the United States. The goal in constructing
this dataset was to develop a measure representing similarity as
defined by the group of teachers as a whole. Having such a measure
provides a ground-truth value of similarity with which we can com-
pare our recommendation policy distance values.

The data was constructed by first sampling student answers to
open-ended problems from widely-assigned open educational
resources (OER) in the context of middle school mathematics. We then
randomized sets of student answers from the same problem and pre-
sented them to subsets of the teachers. With these responses, per
problem, we asked the teachers to group the responses into any num-
ber of desired categories. We gave no further instruction regarding
how to group the student answers nor the number of categories to use.
In this way, the teachers could decide, through heuristics or inherent
processes, how to identify “similar’ answers by placing them within the
same abstract category. Not only this, but since multiple teachers per-
formed this categorization for the same set of responses and problems,
we also are able to capture variation in how teachers define and iden-
tify similarity. There were initially 78 distinct open-ended problems
with sampled student answers, but was ultimately filtered to 67 prob-
lems due to some problems having been categorized by fewer than two
teachers. As a final filtering step, empty student responses were also
dropped from the dataset. After all filtering, there were a total of 5,539
student answers across 67 problems. A sample of these responses and
their associated teacher response categories are presented in Table 1.

From Tables 1, 3 separate student responses are presented from
the same problem. In this case, correct answers tend to include the
value 34.5. Within the table you can see for this problem, Teacher
1 has used the category “C” when a student provided a correct
answer. Therefore we can infer student answers with the category
“C”, the teacher considered similar, and would elicit a similar
response. Within our data, teachers created an average of 5.53
(SD = 1.93) distinct student answer categories across all problems,
with a median of 5 categories (min = 2, max = 18).

With this data, we constructed a metric which we call the Teacher
Agreement Score (TAS). This value is calculated for a given recom-
mendation policy by first applying the proposed recommendation
method presented in Section 4 to generate the top R most-similar
responses (where R = 3 in our particular evaluation) from a selected
holdout answer as A,. From these selected answers, the sample-level

TAS is calculated as follows:

Journal of Computer Assisted Learning_W[]_Eyjﬁ

TABLE 1 Sample student answers for a single problem and
associated teacher response categories

Each Teacher's category:
Student answer Category T1, T2, T3

| divided 7.5 by 0.75 and got 10 then | C,B, K
did 10 times 3.45 and got 34.5.

| divided 3/4 by 3.45 and got 0.21 then 1,D,)
i multiplied 3.45 by 0.21 until i got
7.5

I know this because | divided 3.45 by C A K
3/4 and got 4.6 and times 4.6 by 7.5
and got 34.5

| did 3.45 divided by 0.75. | got 0.75 C A K
because 3 divided by 4 is 0.75. When
| divided 3.45 and 0.75, | got 4.6. |
then did 4.6 multiplied by 7.5 and got
34.5.

1 R 1 T |fClt* j,t
TAS ==% =
' R;TZ{OOtherwse

This equation calculates TAS for holdout sample i by comparing
the teacher-given categories of this response in comparison to the
categories provided for the selected R responses for all teachers
T with provided categories. In other words, for each pairwise compari-
son of sample i to samples in R, the metric simply counts the number
of teachers that agree that the two belong to the same category, aver-
aging this over all teachers and response pairings. This process is
repeated in a hold-one-out manner (observing each student answer as
the selected holdout) and an average TAS is calculated for the
observed policy in regard to the given problem. Finally, this process is
repeated across all 67 problems and an average and per-problem TAS
is used to compare each policy.

To give an example of this calculation, consider Table 1. If the last
row was used as a holdout sample and the first 3 rows were the iden-
tified 3 most-similar responses, the calculated TAS; for this sample
would be 0.556. This is, again, calculated by comparing for matching
categories within each teacher for each response; the categories
match for 2/3 teachers when comparing to the first row, 0/3 for the
second row, and 3/3 when comparing to the third row. These values
are then simply averaged to find the 0.556 value. The process would
then continue by rotating the holdout sample.

Ultimately, a TAS close to 1 suggests that the observed policy
agrees with how teachers would define similar student responses. To
clarify, TAS represents a percentage of teachers that would agree with a
method that identifies sets of similar answers. In this way, policies exhi-

biting higher scores are, in theory, more likely to be utilized by teachers.

5.2 | Evaluating policies

Now that we have defined both our proposed method for recom-

mending feedback and our evaluation method derived from real
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data, we present an empirical analysis to both exemplify these
methods as well as compare several potential recommendation poli-
cies of varying complexity. These methods are further detailed in the

sections below.

5.2.1 | Universal sentence encoder
As introduced in the Background Section, several NLP methods of
representing text have grown in popularity for their ability to capture
the semantic meaning of not only words, but also full sentences and
even paragraphs. The first method that we explore within our empiri-
cal analysis is the Universal Sentence Encoder (USE; Cer et al., 2018).
While other NLP methods often build numeric representations of indi-
vidual words, the USE builds a single vector representation for a given
sequence of words within a high-dimensional vector.

Once a sentence-level embedding is generated for each response,
a distance measure (described below) can be applied to measure the
“closeness” of other student answers in vector-space. As this method
is meant to capture the semantic meaning of the sentence, and lever-
ages complex deep learning methods to do so, this method has the
potential to allow for comparisons beyond the surface-level features
of the text.

5.2.2 | Sentence-BERT

Developed even more recently and arguably considered to be the cur-
rent state-of-the-art of sentence representation is the second method
of comparison: Sentence-BERT (Reimers & Gurevych, 2019). Devel-
oped from the word-level representation method of BERT, this
method constructs a high dimensional vector representation of
sentence- or paragraph-level text similar to that of the Universal Sen-
tence Encoder. This method, however, is based on what is known as a
“siamese network” architecture. This type of network attempts to
incorporate textual and semantic similarity into the generated
embeddings. In this way, this method represents the most complex of
representation methods compared in the current analysis.

Throughout all our analyses, we utilize a pre-trained version of
Sentence-BERT. This model has been trained on a large corpus of
samples collected from Wikipedia. It is important to note that, while
prior research has explored ways in which pre-trained models such as
these may be "fine-tuned" or trained on context-specific data (Shen
et al., 2021), no parameter tuning was applied in any of the analyses

described in this work.

5.2.3 | Levenshtein ratio

Among the simplest methods of comparing the likeness of two sam-
ples of text is that of Levenshtein Distance. This approach examines
strings of characters and calculates a distance based on how many

need to be changed to turn one string into its comparison string. For

BOTELHO ET AL.

example, if a student A said ‘the answer is 45’ and student B submit-
ted an answer with ‘the answer is 46°, the distance would be 1. How-
ever, if student B answered with ‘I think the answer is 46°, the
distance would be 9. Clearly, there are disadvantages to this approach,
mainly the distance could be larger between two answers, but their
content is the same. However, when considering a character level dis-
tance metric, could this out perform more modern approaches? For
the purposes of the paper, we utilize the Levenshtein Ratio which cal-
culates the distance and converts it to a similarity ratio which is meant
to account for the comparison of strings of different lengths.

This method acts as a baseline comparison method due to the
simplicity of the approach. However, it is likely that surface-features
of text (i.e. the use of particular keywords within student answers)
may actually prove to be a highly-weighted attribute among the

teacher comparisons.

5.2.4 | Distance metrics for similarity

While the above methods generate representations of student
answers, the method of calculating the distance between representa-
tions is still needed. In this regard, we observe three different
methods within this analysis: Euclidean Distance, Cosine Similarity,
and Canberra Distance; these were chosen both for their prominent
usage in previous NLP research and also for their notable differences
in meaning. As described in an earlier section, Euclidean Distance
observes the magnitude of the geometric distance between two vec-
tors while Cosine similarity observes the difference in angles pro-
duced by two representation vectors. Canberra Distance, while not as
widely known as the other two, has been applied in areas of computer
science as a means of comparing ranked lists (Jurman et al., 2009).
Each of these distance measures are applied to the above representa-
tion methods (excluding the Levenshtein Ratio) and the TAS measure

is calculated for each as described in Section 5.1.

6 | STUDY 1 RESULTS

As mentioned earlier, after all the filtering, there were 67 total prob-
lems with 5,539 student answers. From this, we calculated the overall
Teacher Agreement Scores for each approach and distance measure
as shown in Table 2. In comparing representations, Sentence-BERT
appears to outperform the other methods to a statistically significant
degree, as observed by the non-overlapping 95% confidence bounds;
while statistical significance and overlapping/non-overlapping confi-
dence bounds are not necessary to compare performance differences,
they provide evidence in this case that Sentence-BERT may provide
representations that better align with teachers' implicit heuristics.
While USE exhibits a higher average TAS than the raw character rep-
resentation across distance metrics, the differences are not found to
be statistically significant. Observing the TAS metric of all of these
approaches, however, even the lowest-performing approach (i.e. raw

character representation with Levenshtein Ratio) exhibits an
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TABLE 2 Overall teacher agreement
scores

Representation (R)

N/A

Journal of Computer Assisted Learning_W[]_Eyjﬂ

Universal sentence encoder
Universal sentence encoder

Universal sentence encoder

Sentence-BERT
Sentence-BERT
Sentence-BERT

Distance metric (S) Average TAS 95% Confidence bounds
Levenshtein ratio 0.536 [0.510, 0.562]
Euclidean 0.556 [0.530, 0.582]
Canberra 0.554 [0.527,0.581]
Cosine 0.556 [0.530, 0.582]
Euclidean 0.621 [0.596, 0.646]
Canberra 0.623 [0.598, 0.648]
Cosine 0.623 [0.598, 0.648]

TABLE 3 Teacher agreement scores per problem. It should be noted that the'Number of Times Best Teacher Agreement Score for Problem’
sums to over 76/67; this occurs because there were 9 cases where two approaches scored the same score for that problem. Thus, either of the

approaches would be considered acceptable

Representation (R) Distance metric (S)

% best teacher agreement score

Number of times best teacher
agreement score for problem

N/A

Levenshtein

Universal sentence encoder Euclidean
Universal sentence encoder Cosine
Universal sentence encoder Canberra
Sentence-BERT Euclidean
Sentence-BERT Cosine
Sentence-BERT Canberra

1.492 1/67
11.94 8/67
11.94 8/67
4.48 3/67
1791 12/67
25.37 17/67
40.30 27/67

agreement score that indicates greater than 50% agreement with
teachers; in other words, even in the worst-performing case, we see
that the method utilizing Levenshtein Ratio identifies pairs of student
responses that 53.6% of teachers would agree to represent similar
student answers.

Overall, the strongest performing approach, in terms of Teacher
Agreement Scores, was Sentence-BERT. Consistently, Sentence-BERT
managed the highest average Teacher Agreement Score across all the
problems with all distance measures. However, there were only small
differences in performance observed across distance metrics paired
with the Sentence-BERT representation. Of these metrics, Canberra
and Cosine similarity results in the highest observed average TAS of
0.623; this suggests that an estimated 62.3% of teachers would agree
with the sets of similar answers identified by these methods. While
the highest performing among methods examined in this work, a
62.3% agreement leaves a large margin for improvement and suggests
that teachers are considering several dimensions of comparison that
are seemingly missed by our observed policies.

What is evident is that different combinations of representations
and similarity methods varies in their ability to identify suitable similar
student answers, as seen in Table 2. While this exhibits our ability to
evaluate our similarity calculations, and could be scaled to apply to
new answers within the same problem, we set out to see how the
models performed not just overall, but on a per problem basis.

Table 3 provides a breakdown of the performance of each combi-
nation of representations and similarity methods at a per-problem

level. What is apparent is that there is not a policy which dominates

all other methods. Every approach manages to agree with teachers
the most on at least one problem. Overall, utilizing Sentence-BERT
managed to have the most agreement with teachers on which student
answers were similar. What is also apparent is the number of prob-
lems which Sentence-BERT performed well varied among distance
measures. When using Canberra to calculate the distance between
the vectors, it managed to have the highest Teacher Agreement Score
with 27 out of the 67 problems. As compared to utilizing Cosine and
Euclidean distance measures, which only managed to have the highest
Teacher Agreement Score on 17/67 problems and 12/67 respectively.
It should also be noted that the Number of Times Best Teacher Agree-
ment Score for Problem in Table 3 will total to over 67 problems by
9. This is because there were 9 cases where two policies could be
deemed acceptable for a problem; they had the same Teacher Agree-
ment Score.

In the end, it is evident that there is not a single policy which
agrees the most with teachers on which student answers are the most
similar, but Sentence-BERT combined with Canberra distance is per-
haps the closest of those methods explored in this work. There is a
wide distribution of problems which certain method combinations
outperform others, but then there are many problems in which they
struggle. From this study we are able to identify those methods and
problems and select when the Levenshtein ratio should be used vs
Universal Sentence Encoder or the Sentence-BERT. We can use these
approaches with future unseen responses (for this set of problems).
By utilizing our validation results from the Teacher Agreement Scores,

we can choose the best method, find the most similar current problem
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FIGURE 3 The design of the SBERT-Canberra method, that
suggests scores based on similarity between the answers.

we have seen and select the teacher responses associated with that

student answer as the teacher response for the new answer.

7 | STUDY 2: AUTOMATING ASSESSMENT

Following the proposed framework and results of study 1, we illus-
trate how this method can be utilized for the task of assessing student
answers to open-ended problems. Given the previous results, we
instantiate the method using a combination of Sentence-BERT and
the Canberra distance measure and compare this approach to a
previously-established benchmark (Erickson et al., 2020).

For this study, we use a dataset? composed of student answers
to open-ended questions in mathematics along with the teacher-
provided scores and feedback messages to these responses as used in
Erickson et al. (2020). This dataset, collected from the ASSISTments
(Heffernan & Heffernan, 2014), consists of 150,477 total student
responses from 27,199 different students to 2076 unique open-
ended questions graded by 970 different teachers. To directly com-
pare with the methods presented in Erickson et al. (2020), we use this
dataset to develop and evaluate the auto-scoring methodology. In
processing the data, as was done in the previous work, we remove all
responses containing only uploaded images. It is important to note

2All data used in this work cannot be publicly posted due to the potential existence of
personally identifiable information contained within student open response answers. In
support of open science, this data may be sharable through an IRB approval process. Inquiries
should be directed to the trailing author of this work.
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that this process does leave some empty responses in the data (a total
of 5,704), but are treated as any other response within this study;
these empty responses will be discussed further in Study 3. Each stu-
dent response is paired with a teacher-provided integer-valued score
ranging from O to 4, with O being the lowest and 4 being the high-
est score achievable by the student for the given answer. Within
the dataset, the distribution of labels is quite imbalanced, with
66.64%, 6.78%, 6.93%, 4.56% and 16.07% scored as 4, 3, 2, 1, and
0, respectively. The average number of responses to each problem
in the dataset is 70.76 with an 85.63 standard deviation, and
median of 47. Example student responses are included in Table 4.

Similarly as was done in the prior work, the ordinal-valued score
is treated as a multiclass label, with the goal of predicting each score
as a one-hot encoded vector (e.g. a score of 4 is denoted as
{0,0,0,0,1}). We acknowledge that there are several limitations in fram-
ing the task in this way (as the ordering of scores is ignored in evaluat-
ing model performance), but is maintained for direct comparison to
the previous work.

Using the framework described in Section 4 (illustrated in
Figure 3), we convert each student answer into a 768-valued feature
vector using Sentence-BERT and, for each student answer for which
we want to predict a score, we compare that answer to answers
within the respective training set to identify the single most-similar
student response from that set. The score associated with that
selected, most-similar sample is then used as the prediction for the
new student answer. We also acknowledge that more sophisticated
methods could be used to extend this, such as taking an average, or
majority vote, but evaluate the method using this simplified approach
as a means of exemplifying the framework. We do include a model
that applies a regression over the top 3-most-similar answers as an
additional model for comparison.

As an additional component of this model, a “fallback” condition
is implemented to be able to produce scoring estimates for problems
where there are no historic answers on which to compare. We
acknowledge that this is an unconventional addition to such a
machine learning model, as may normally be dropped from analyses
(or otherwise handled in a different manner). The choice to use a fall-
back condition, implemented as a simpler model, comes from the
intended practical use case of an automated scoring model; the model
is intended to be implemented into a learning system to provide help
to teachers who would normally manually score each student
response. It may be confusing for the model to sometimes provide
this aid and other times not (particularly within a single problem
where some students receive a score and others receive nothing), and
thus we chose to incorporate this fallback condition such that the
model can provide a score based on simple features that have been
found to correlate with scores in other problems. The use of the fall-
back model was needed on 65 problems, affecting 3.13% of the prob-
lems in our dataset. As this affects only the problems with the fewest
sample responses, the overall impact on the analyses described in this
paper is negligible. This may, however, have implications in practice if
teachers utilize never-before-seen content as the fallback model is

currently only applied when there are exactly O historic answers on
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which to compare, but this is likely a case that could be addressed by
other means (i.e. deciding not to suggest scores for never-before-seen
content or defining an evidence-based threshold for including/
excluding problems to support).

In this case, we train a single multinomial regression model over
all known answers (across all problems), utilizing (1) the number of
words in the answer and (2) the average length of each word in the
answer; this model produces a probability distribution over five cate-
gorical labels (observing the 0-4 grading scale as a multinomial regres-
sion formulation). This one model is trained over all known answers
and used then only in the case that no historic answers are available
for the SBERT-Canberra model. This component is viewed as being
part of our SBERT-Canberra approach.

7.1 | Evaluating the SBERT-Canberra
scoring model

While there are few components of the described framework that
“model” student work in the traditional machine learning connotation,
it is worth noting that we describe this constructed SBERT-Canberra
scoring method as a model given its dependence on a set of training
samples (e.g. it is, in some form, modelling how teachers have previ-
ously assessed student work).

We calculate the model performance and compare our method to
the previous works based on 3 performance metrics: AUC, treating

the label as multinomial and calculated as described in Hand and Till

TABLE 4 Sample student responses (selected from across
multiple problems for illustrative purposes) and the teacher-provided
scores on a scale of O to 4

Sample response Score

y = 4x-2

| counted

| multiply —3 and 2x

diagram is on paper

Yes Because Y =mx + b

| got 2/9 by dividing by 4

| was not in class for this so | do not know.

| went multiplication first then division then multiplication

| got this by doing 45/75. | knew that 75 + 75 = 150 and
150 goes into 450 3 times and 3 x 2 = 6. So the answer is
6.

A W P, W O W N B B

You would need an example and then you would need to 4
draw a line and find out far away your shape is from the
line and mark it and then do that on the rest of your lines
on the shape

The distributive property means that a number outside a set 1
of parentheses can be multiplied by each of the numbers
within the parentheses and the answer will be the same. It
works because it would be the same as multiplying each
number by the number outside the parentheses and then
adding them together.

Journal of Computer Assisted Learning_W[]_Eyjﬂ

(2001), Root mean squared error (RMSE) calculated over the ordinal-
valued representation of the multinomial estimates and scores, and
Cohen's Kappa, again using the multinomial estimates and scores. The
model is trained and evaluated using a 10-fold student-level cross val-
idation, where the model is problem-specific to compare only
responses within each respective problem for similarity when generat-
ing a prediction. To evaluate these models solely based on its ability
interpret the words in student responses, we make use of a
1-parameter ordinal IRT model (van Schuur, 2011), known as a Rasch
model (Rasch, 1993), within the evaluation procedure, similar to that
of prior work (Erickson et al., 2020); while 2- and 3-parameter IRT
models observing problem discrimination and item guessing could also
be leveraged to evaluate these models, the 1-parameter Rasch model
used here is able to sufficiently account for student- and problem-
level factors that should not be considered by the auto-scoring model
and is therefore sufficient to compare model performance beyond
these factors. While the output of the IRT model is not intended to be
used for automated scoring itself, it does provide a structure to more
fairly compare different scoring methods in their ability to understand
student textual answers. The method accomplishes this by learning
two parameters corresponding to one-value-per-student representing
general student ability (referred to as discrimination in terms of IRT),
and one-value-per-problem representing item difficulty (referred to as
location in terms of IRT). As student ability and the difficulty of the
item are not factors that should influence the scoring decisions of our
models, IRT controls for these aspects to form a basis for comparison.
The predictions of each model (i.e. the five probability predictions of
our SBERT-Canberra model corresponding with each of the 5 grade
scale values from 0-4) can be included into the model as additional
covariates (e.g. the model will learn the IRT parameters of student
ability and problem difficulty as well as beta coefficients correspond-
ing with the five probability estimates produced by the scoring
models). The performance of an IRT with these added covariates can
be compared to a baseline IRT without covariates, where the magni-
tude of the difference describes the scoring model's ability to assess
the student answer independent of the student's ability and the diffi-
culty of the problem.

7.2 | Study 2 results

For the auto-scoring method we developed in this work, we com-
pare the methods directly to the works from (Erickson et al., 2020)
and the results are presented in the Table 5. In addition to the
SBERT-Canberra method previously described, we also compare
another formation of this approach. This method, referred to as
“SBERT-Canberra (top 3),” uses the SBERT-Canberra method to
identify the three most similar student responses to a given student
answer (as opposed to the single most-similar historic answer as
described for the base SBERT-Canberra model). The teacher-given
scores for these top three-most-similar responses are included into
a multinomial logistic regression to produce five probability esti-

mates corresponding with each of the integer grade scale values of
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Model AUC RMSE Kappa
Current paper

IRT* + SBERT-Canberra 0.851 0.591 0.469
IRT* 4+ SBERT-Canberra (top 3) 0.850 0.583 0.472
Erickson et al. (2020)

Baseline IRT 0.827 0.709 0.370
IRT + Number of words 0.829 0.696 0.382
IRT* + Random forest 0.850 0.615 0.430
IRT* + XGBoost 0.832 0.679 0.390
IRT* 4+ LSTM 0.841 0.637 0.415

zero through four. The inclusion of this method for comparison
allows us to further understand how incorporating less-similar
responses, as determined by our approach, impacts model
performance.

This results suggest that the proposed method of SBERT-
Canberra to predict a score for the student answer, outperforms the
previously developed methods in (Erickson et al., 2020) across all
three evaluation metrics. The Kappa value suggests that teachers are
likely to agree with the score prediction from our method 47% of the
time accounting for random chance, and from the RMSE, the score
predictions from our model are likely to be wrong by just over half a
grade point on average. While the difference in the AUC score
between the previous best method and the base SBERT-Canberra
method is notably small, the larger differences in other measures indi-
cate that this approach makes improvements upon the prior methods.
In observing the top-3 formulation of SBERT-Canberra, we observe
inferior performance in comparison to the base formulation, but
improvement over previous methods in regard to RMSE and Kappa;
AUC of this top-3 formulation is found to be slightly less than the
previous-best model from prior work. These findings suggest that the
use of the overall most-similar answer leads to better model perfor-
mance, further suggesting that our method of measuring similarity is
able to rank answers in a reasonable manner.

In observing the Kappa values, it is important to acknowledge that
even the highest value of 0.476 is lower than may be desired for a
method intended to be used by teachers in practical settings. To help
observe whether this value is an artefact of the strict grading scale
observed in the study, we also report on an “off-by-one” Kappa
(which treats predictions as agreeing with the label if the absolute dif-
ference between them is equal to or less than 1). Given the small dif-
ference observed, it is suggested that the model is making larger
misclassifications. This is particularly interesting given the compara-
tively high AUC, suggesting that the model is able to distinguish
between classes moderately well. This discrepancy suggests that there
may be heterogeneity in the optimal rounding threshold for each
score (i.e. the method for moving from a 5-valued prediction to an
ordinal-scale value is seemingly sub-optimal); in terms of AUC, this
may be represented by multiple intersecting curves for each class,
where such crosses indicate differences in optimal classification
thresholds (Ben-David, 2008). In recognizing that much of the
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TABLE 5 IRT model performance for
the auto-scoring method compared to
previously-developed models. *IRT

Off-by-one kappa

0.484 models also included the number of
0.480 words as a predictor

0.380

0.395

misclassification is likely not due to off-by-one predictions, it is even
more important to examine where error occurs and what characteris-
tics of the data likely contribute to larger error; this is the purpose of
Study 3 in this paper.

The relatively low Kappa may also be attributed to the subjectiv-
ity and inconsistency of teacher scoring. Gurung et al. (2022) con-
ducted a study with teachers using ASSISTments to examine their
intra-rater agreement (i.e. agreement with themselves) at different
time points. In that work, teachers were asked to re-grade student
work 1-2 months after initially grading the student work. It was found
that teachers' agreement with themselves ranged from as low as
Kappa = 0.2293 to as high as Kappa = 0.7368, suggesting surprisingly
low internal consistency among some teachers. This level of variance
makes it harder for an auto-scoring method to not only learn effective
patterns in the data from the outcome labels, but also introduces
implicit limits on how well a model can perform (i.e. if different scores
are being given to semantically similar answers).

It is also just as important to emphasize that the use of the IRT
model is meant purely for comparative evaluation and likely inflates
these performance metrics compared to what may be expected in a
real-world setting. The controlling for student ability and problem dif-
ficulty lead to higher performing models (and allow us to compare the
scoring models based on their ability to assess student text while con-
trolling for these factors), but would likely bias estimates in favour of
historically high-performing students if used in practice. The SBERT-
Canberra model without IRT, then, is what would be used in practice,
and is observed to have an AUC of 0.70 without the IRT model
(RMSE = 1.26 and a surprisingly higher Kappa of 0.53).

7.3 | Beyond correctness feedback

As has been discussed in earlier sections, it is the intention of this
work to lead to better teacher supports for providing more detailed
feedback to students beyond just simple correctness. Just as the
methods of Study 1 contributed to the development and application
of the SBERT-Canberra scoring model, the same method could be
used to recommend feedback based on teacher-written feedback
given to similar historic answers. In this way, the exact same SBERT-

Canberra model, as its sole purpose is to rank historic responses by
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similarity, can be used to select likely-appropriate messages that
teachers can give in response to student answers. Following a para-
digm of suggesting three possible feedback messages (i.e. as is done in
Google's SmartReply; Kannan et al., 2016), the SBERT-Canberra (top-
3) method explored in the previous section becomes a candidate
model for this task; rather than aggregate or ensemble the top-3
responses, the model simply suggests the teacher-provided feedback
previously written for these responses (continuing down the rank of
similar responses if no feedback had been provided for any of the
top-ranked answers).

While such a method produces potential estimates, this type of
task is much more difficult to evaluate in an offline manner. From
study 1, we can draw conclusions that we may expect teachers to
agree with the recommendations about 62% of the time, but as TAS is
a measure of teacher agreement of similarity, this may not translate to
a teacher agreeing that the feedback for identified answers is neces-
sarily appropriate.

To test the appropriateness of the SBERT-Canberra model as a
feedback recommendation method, we conducted a pilot study of the
QUICK-Comments Tool. Based on the SBERT-Canberra model,
QUICK-Comments Tool suggested automated scores and feedback
messages for open-ended responses in physical and virtual classroom
environments.® For the collection of this data, 12 middle school math-
ematics teachers were compensated during the Spring and Fall of
2020 to assign assess and provide feedback to student open
responses utilizing this tool; teachers were given complete freedom to
score and provide feedback as they deemed appropriate and were
encouraged to ignore suggested scores and feedback (overwriting
these with their own) in cases where they felt the model was
incorrect.

While the evaluation of the scoring component of QUICK-
Comments Tool is discussed in greater detail in the next section, we
found that teachers utilized one of the suggested feedback messages
on 12.6% of the 30,371 student answers scored by teachers during
the pilot study. While this percentage is well below the 62.3% sug-
gested by the TAS score and indicative that there is still a large margin
for improvement, this percent-age suggests that the recommenda-
tions were able to provide some utility to teachers for a portion of
student responses. Considering that the Google SmartReply tool
reported a usage rate of 10% (Kannan et al., 2016) in its pilot testing,
we view this as a promising initial result, yet emphasizes a larger need
to improve these methods, as discussed next.

8 | STUDY 3: ERROR ANALYSIS

The final study presented in this work explores our framework and,
specifically, our SBERT-Canberra model to provide greater insights
into its strengths and limitations; the goal of this final study is to iden-

tify characteristics of student work that may correlate with model

3The pilot study of QUICK-Comments Tool began just prior to the shift to remote learning
adopted by most school systems in response to the COVID-19 pandemic and lasted through
Spring of 2020.
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FIGURE 4 The confusion matrix of the SBERT-Canberra model
after removing empty student responses.

error such that attributes with the strongest relationships can be
addressed with focused improvements in future iterations of the
method.

To explore the sources of error within our model for the task of
automated assessment (i.e. from observing the model and results in
Section 7) we use the same dataset as used in Study 2 to conduct a
set of error analyses using the SBERT-Canberra model. First, we
explore the results of this model across the set of class labels using a
simple confusion matrix to identify where misclassification is occur-
ring. After this, we conduct two regression analyses using a set of
answer-level features as independent variables to predict misclassifi-
cation and large prediction error exhibited by the model
(i.e. predictions with absolute differences greater than 0 and absolute
prediction differences greater than one, respectively). The purpose of
this study is to understand the potential weaknesses of the model in
order to guide targeted future improvements.

Before conducting this analysis, however, we examined the predic-
tions and labels in our data and found a counter-intuitive phenomenon
regarding empty student answers present in the data. In describing the
dataset in Study 2, there were a total of 5,704 empty student responses
that remained in the data after following the preprocessing procedures
of Erickson et al. (2020). It would normally be assumed that these empty
responses would reasonably be scored as O, given that the student did
not provide an answer. In beginning our error analysis, however, it was
found that the teacher-provided scores for this set of responses varied
across the entire grading scale, suggesting that teachers were either
scoring student work that was submitted outside the system
(e.g. perhaps on paper), or teachers were scoring based on some infor-
mation that could not be recorded in the system (although we find it dif-
ficult to speculate as to what the reasoning behind these scores may
be); while 62.6% of these responses were scored with a 0, 29.7% were
scored as 1, 4.4% were scored as 2, 1.8% were scored as 3 and 1.6%
were scored as 4. For this reason, and as these clearly deviate from our
intended use case in applying the model in practice (i.e. it would be
infeasible for the model to anticipate and correct for this scenario when
there is no student response to generate a prediction), we decided to
drop these responses from the data for Study 3. The SBERT-Canberra
model performance after removing these responses resulted in an AUC
of 0.695, RMSE of 1.325, and a Kappa of 0.503.
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TABLE 6 Features for the error analysis linear model
Title Description Mean
Answer length Length of the answer 14.93
Avg. characters The average number of characters 4.47
per word per words
Numbers count Total number of digits 2.56
Operators count Total mathematical symbols in the 1.89
response
Equation percent Percentage of mathematical 0.37

equations in answer

Presence of Indicator of presence of images inthe ~ 0.02
images answer

After removing the empty student responses, we generated a con-
fusion matrix, shown in Figure 4, to examine where misclassification
most occurs in the model predictions. From this figure, we see, unsur-
prisingly, that the scores are positively-skewed with a majority of
responses exhibiting a maximum score of 4/4. The model appears to
have the least misclassification in cases where responses are scored as
either a 4 or a 0, although it is observed that the model seems biased in
the direction of the majority class across all scores. We do see that the

model exhibits higher off-by-one misclassification for scores of 1 and 3.

8.1 | Regression error analyses

Prior work has conducted a similar error analysis study on the same
SBERT-Canberra model from Study 2 on a different dataset collected
from a set of teachers who piloted an early version of the QUICK-
Comments tool (Baral et al., 2021). In that study, however, it is found
that the model exhibited a lower Kappa than expected despite main-
taining a comparatively high AUC (AUC 0.76 and Kappa = 0.1). For
this study, we expand upon the methodology utilized in that work to
conduct a similar regression-based error analysis. While that work uti-
lized a linear regression to predict prediction error from a set of
answer-level features, we examine a similar approach using a logistic
regression to help account for the skewed label distribution; it is our
goal to examine whether the analyses lead to the same conclusions
when accounting for this factor.

The regression models are based on student answer-level character-
istics, comprised of a set of six answer-level features extracted from the
student open response data. These features are listed in Table 6. In cal-
culating these features, the answer is first tokenized using the Stanford
NLP tokenizer (Manning et al., 2014), dividing each textual answer into
smaller tokens. For example, if the response to a particular problem is I
got 2/9 by dividing by 47, a simple tokenizer splits this response text by
spaces which would give the list of tokens as: (“I”, “got”, “2/9”, “by”,
“dividing”, “by”, “4”). Then from the tokenized data, we separate the

tokens consisting of either digits or mathematical symbols. The number

“We acknowledge that this feature is a misnomer as it includes numeric terms, operators, and
expressions as well as equations, but chose this feature name for sake of brevity.

BOTELHO ET AL.

of such tokens is divided by the total number of tokens to calculate the
equation percentage.* The average equation percentage calculated by
the procedure mentioned above is 27% across the entire dataset. For
calculating the length of the answer text, we count the total words in the
text simply by splitting them by space. The average length of answers
across the dataset is 10.39. Similarly, within each response, the number
of numeric digits (i.e. Numbers count) and number of operator characters
(i.e. Operators count) are counted independent of the tokens.

ASSISTments, as a learning system, allows students to upload
images as part of the response to open-ended questions; this is most
commonly a picture taken of work done on paper. The response text
in such cases includes the URL of the uploaded image to the system.
About 15% of the total responses in the dataset contains images.
While the earlier preprocessing steps removed student responses that
contained only images, there are still many examples where students
included images alongside other textual language. Since these scoring
models are not yet designed to support images, we hypothesize that
the images' presence contributes significantly to the modelling error.

We examine two logistic regression models that use the same set
of features, but predicting off-by-one error and prediction error greater
than one, respectively. To calculate these, we first divide the dataset
into three categories consisting of samples that were correctly predicted
(i.e. the difference of predicted and actual score is 0), samples that were
off by one (i.e. the absolute value of the difference of predicted and
actual score is 1), and all remaining samples (i.e. where the absolute
value of the difference of the predicted and actual score is strictly
greater than 1). We fit the first regression model to observing any
degree of misclassification as the dependent variable (i.e. absolute error
> 0 as the positive class and correct classifications as the negative class).
This allows us to examine which response-level features may help
explain any degree of misclassification exhibited by the model.

For the second regression, we dropped all of the samples that were
correctly predicted and then observed the third category (where the
absolute difference is strictly greater than 1) as the dependent variable;
this left 36,206 responses to conduct our second regression analysis.
Again conducted as a binary prediction task, this regression can be used
to identify features that help distinguish between high degrees of error
(i.e. absolute error > 1 as the positive class) and low degrees of error
(i.e. absolute error = 1 as the negative class). As the largest possible
absolute error exhibited by the model is dependent on the actual label
(i.e. a true score of 2 can only exhibit maximum differences of 2 while a
true score of 4 can exhibit a maximum difference of 4), we do not con-
tinue to distinguish larger error differences in additional regressions
(i.e. to observe error > 2 as a dependent measure).

For both of these regressions, we report both the unstandardized
and standardized beta coefficients to examine the impact of each fea-
ture on each of the observed outcomes.

8.2 | Study 3results

The results of the error analysis of the SBERT-Canberra method are

presented in Table 7. It is found that each model explains
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TABLE 7 The resulting model
coefficients for the logistic regression
model of scoring error

Intercept
Answer length
Avg. word length
Numbers count
Operators count
Equation percent

Presence of images

Journal of Computer Assisted Learning_W[]_Eyjﬂ

Error >0 Error > 1

B p SE B p SE

—1.606***  —1.085"** 0.015 0.302*** 0.561*** 0.026
0.011*** 0.316* <0.001 -0.008***  -0.238"**  <0.001
0.016*** 0.065*** 0.002 0.010** 0.041** 0.003

<0.001 <0.001 <0.001 -0.017***  —1.125"* 0.003

—0.009***  —0.064*** 0.002 0.017*** 0.120*** 0.004
0.555*** 0.175*** 0.021 0.808™** 0.255*** 0.041
3.445%** 0.545*** 0.051 1.892%** 0.299*** 0.064

Note: *p < 0.05, B and j denote unstandardized and standardized coefficients, respectively.

**p < 0.01; ***p < 0.001.

approximately 6% of the outcome variance as measured by a Nagelk-
erke pseudo-r-squared estimate (r-squared = 0.0548 for the first
regression and 0.0549 for the second); this suggests that there is a
large degree of variance left unexplained by our error analyses that
may be attributed to other factors such as data scale per problem
(as explored by Erickson et al, 2020), teacher scoring variance
(as found by Gurung et al., 2022), or problem-level factors (as found
by Baral et al., 2021). Despite this, however, the statistical significance
and standardized beta coefficients can still identify factors that impact
model error to help guide future improvements to the model.

The results of the first regression model predicting any degree of
misclassification are reported on the left in Table 7. It is found that
nearly all answer-level features were found to be statistically signifi-
cant predictors of model error; in verifying these results, it was found
that all included covariates exhibited inter-correlations less than 0.3
(suggesting a moderately low impact of multicollinearity potentially
skewing the interpretation of these results). As this is a logistic regres-
sion, the coefficients are reported in log-odds units, where higher
values indicate higher likelihood of a sample being included within the
positive class (i.e. contributing to error) and negative values indicate
higher likelihood of a sample being in the negative class
(i.e. contributing to being correctly classified). While several of the
unstandardized coefficients are found to be close to 0, the standard-
ized coefficients reveal that the scale of these features changes the
interpretation of their impact. In regard to this first regression, answer
length, equation percent, and the presence of images in the student
responses emerge as exhibiting the highest correlation with model
misclassification.

The results of the second regression model predicting larger
degrees of error (error > 1 compared to error = 1), are reported on
the right in Table 7. In this case, all of the answer-level features
emerge as statistically significant, with all but the average word length
exhibiting comparably stronger relationships with the degree of error.
Similar to the first analysis, the presence of equations and images
emerge as contributing to larger degrees of error; the count of opera-
tors also contributes positively to higher error as well, to a lesser
degree. It is found, however, that the answer length and count of
numbers present in student answers contribute negatively to higher

degrees of error; this suggests that these are more attributable to

contributing to off-by-one error per the negative class observed in
this analysis. The count of numbers exhibits an especially strong rela-
tionship with off-by-one error from this analysis.

Across both regressions, responses containing equations and
images are found to have strong relationships with model misclassifi-
cation, and particularly, larger degrees of error. This set of analyses
aligns with the findings of prior work that examined the SBERT-
Canberra model error in a slightly different context (Baral et al., 2021).
Collectively, the error analyses conducted on this model suggest that
future developments should target the representation of numerical
values, mathematical expressions, and equations as a means of reduc-
ing modelling error. Similarly, though likely more difficult, incorporat-
ing image representations into the model may additionally help
improve model performance and reduce large degrees of error; prior
research has focused on building vector representations that combine
language and images into the same embedding space (Harwath &
Glass, 2015) and may be a direction to explore in future research.
Finally, better accounting for the length of responses can help reduce
off-by-one error as revealed by the second regression model. As this
suggests that longer responses are related to off-by-one error (due to
the reversed directionality of coefficients across the first and second
regressions), it may be the case that some of these responses contain
inherent distractor words that may lead to this model misclassification
(Filighera et al., 2020).

9 | DISCUSSION

Considering the results of the three studies reported in this work,
there are several notable characteristics of our approach that emerge.
In regard to the evaluation of recommendation policies in Study 1, for
example, the lack of a dominant method suggests that teachers' defi-
nition of similarity is more complex and, in also observing the error
analysis of Study 3, possibly contextual. Particularly in the domain of
mathematics, it is reasonable to assume that similarity will depend
largely on the problem that is being observed,; it is likely that the pres-
ence of certain numbers, expressions, or equations in student answers
may contribute largely to whether or not a teacher would identify two

answers as belonging to the same conceptual category. Conversely,
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however, problems that address more abstract mathematics concepts
without the use of such terms and expressions may exhibit different
bases on which a teacher defines similarity. In other words, from our
analyses (particularly considering the performance of Levenshtein
Ratio in Table 2), we build the hypothesis that teachers consider
semantic, syntactic, and mathematical attributes when grouping stu-
dent answers and that the impact of these attributes may change
across problems.

Although it is true that the results across analyses are relatively
positive, many of these results suggest that our explored methods of
representation and similarity measurement only partially align with
how teachers compare student work. As identified in Study 3, the rep-
resentation method appears to be targeted as one contributing factors
to model error, given known difficulties of such methods and leading
to more recent developments in mathematics contexts (Shen
et al., 2021).

10 | LIMITATIONS AND FUTURE WORK

In regard to our approach as well as in light of our findings, there are
several limitations and opportunities for future directions. In regard to
the overall framework, the set of representation methods and similar-
ity measures represent a first step toward developing more sophisti-
cated approaches. With the re-framing of the underlying problem to
be that of identifying group membership, the data utilized in the eval-
uation of recommendation policies could be used to train machine
learning models in a more traditional manner to better learn how
teachers identify similarity. Although the SBERT-Canberra approach
emerged as the highest performing set of methods explored, no
“training” was conducted to improve the method, which could be fur-
ther explored in future works.

While the SBERT-Canberra model outperformed the prior bench-
marks in assessing student open responses, the difference in perfor-
mance is comparatively small. The manner in which the method
makes its prediction can be considered a greedy approach in that only
the closest historic answer is used to predict the score. While the
inclusion of the top-3 similar answers did not lead to notable improve-
ments, there may be better ways to ensemble similar responses
beyond the single-most similar response to generate estimates. Simi-
larly, the use of the word count model as a fallback may further be
improved; while it was the case that there were arguably few
instances of problems not having enough data within the cross valida-
tion, improving this fallback method may help to improve the model
when applied in practical settings where the “cold start” problem is
more prevalent; as the method currently relies heavily on having a
sufficiently-sized pool of human-scored historic answers, future
research can focus on utilizing unlabeled student answers or exploring
other unsupervised methods that may additionally support these
methods in cases where labelled data is scarce.

The error analysis of the SBERT-Canberra model revealed several
areas where this approach, as well as others, may focus in future

works. Most notably, as highlighted, the use of mathematical
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expressions and terms were found to be correlated with higher error;
improving the representation of such elements can certainly be
addressed in future work. A limitation of this, however, is that both
models left variance unexplained in the outcome. We chose to look at
these factors based on prior work (Baral et al., 2021), but there may
be other large factors that can explain more of the error that we are
seeing. Subsequent works could conduct more thorough surveys of
both answer-level and higher-level factors. Future works can also
explore additional model structures and language features that may
lead to improvements to performance. The analyses presented in this
work, however, can act as a baseline to further evaluate if future itera-
tions of our approach truly improve upon these identified areas.

It is also the case that prior work conducting a similar error analy-
sis (i.e. Baral et al., 2021), found that the SBERT-Canberra model
exhibited conflicting performance measures when applied in a pilot
study. While exhibiting high AUC metrics, Kappa was considerably
low at a value of 0.1. It is unclear what the differences are between
the dataset used in this work and that collected for the previous study
to exhibit such a discrepancy. Future works could examine
population-based and contextual differences between the two sets of
studies to better understand why the differences in model perfor-
mance were observed and how they might be mitigated to improve
the application of these methods. Prior works in areas of machine
learning have identified distributional differences between contexts
to contribute largely to model performance disparities
(e.g. Ocumpaugh et al., 2014; Sagawa et al., 2019). Conversely, other
works have described several limitations of using AUC and kappa to
measure model performance for ordinal prediction tasks, perhaps also
emphasizing the need to improve how the model rectifies probabilistic
estimates into ordinal predictions (e.g. by optimizing its rounding
thresholds).

Extending on this, we have not deeply explored the different cat-
egories produced by teachers used to construct the TAS measure in
Study 1. The clusters of student responses identified by teachers pro-
vides the data necessary to both better understand how teachers
approach tasks pertaining to assessment and feedback, but also pro-
vide opportunities to explore methods of learning better similarity
methods. The apparent differences in how teachers approached the
task can create greater insights into the ways in which teacher assess-
ment varies and can be examined in future work.

It is also the case that in using a pre-trained Sentence-BERT
model performed reasonably well in our studies, future work could
observe whether fine-tuning this model leads to improvements. Other
works have started to explore the fine-tuning of BERT methods to
mathematics data (Shen et al., 2021), but it is uncertain how such
methods scale and generalize due to the challenges identified in the
introduction; as the use of numbers and mathematical terms form an
infinite set, the question is raised as to whether the set of such terms
that appear in student responses forms a sufficiently-bounded set for
such fine-tuning to learn meaningful representations. This question, as
well as how the scale and variation of data (particularly mixing lan-
guage and mathematics terms) may impact the generalized use of

these language models.
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11 | CONCLUSION

In considering the three studies presented in this work, the relatively
positive results act as a proof-of-concept for the proposed framework
which exhibited promise for application in real-world contexts. As
mentioned in presenting Study 2, a teacher support tool has already
undergone development and initial pilot testing utilizing these
methods; while the empirical results of initial studies are still ongoing
at the time of writing this paper and beyond the scope of the goals of
this work, the deployment of these methods in any capacity provide
suggestive evidence of their utility.

The framework itself represents an intentionally-simple structure
meant to help conceptualize student modelling from an unconven-
tional perspective. The methods used to instantiate the proposed
framework are by no means novel, and neither is the concept of utiliz-
ing similarity to make predictions (e.g. k-nearest neighbour methods
are based on this precise principle), but this work attempts to charac-
terize this approach in an abstract manner to help focus research in
areas of representation and the comparison of samples within a repre-
sentation space. It is the presumption that such a perspective may
provide utility in other educational spaces where a solution space is

both sparse and vast as in the case of open response feedback.
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