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It Was “All” for “Nothing”: Sharp Phase Transitions
for Noiseless Discrete Channels

Jonathan Niles-Weed and Ilias Zadik

Abstract— We establish a phase transition known as the
“all-or-nothing” phenomenon for noiseless discrete channels. This
class of models includes the Bernoulli group testing model and the
planted Gaussian perceptron model. Previously, the existence of
the all-or-nothing phenomenon for such models was only known
in a limited range of parameters. Our work extends the results to
all signals with arbitrary sublinear sparsity. Over the past several
years, the all-or-nothing phenomenon has been established in
various models as an outcome of two seemingly disjoint results:
one positive result establishing the “all” half of all-or-nothing,
and one impossibility result establishing the “nothing” half. Our
main technique in the present work is to show that for noiseless
discrete channels, the “all” half implies the “nothing” half, that
is, a proof of “all” can be turned into a proof of “nothing.” Since
the “all” half can often be proven by straightforward means—for
instance, by the first-moment method—our equivalence gives a
powerful and general approach towards establishing the existence
of this phenomenon in other contexts.

Index Terms— All-or-nothing phenomenon, discrete channels,
group testing, Gaussian perceptron.

I. INTRODUCTION

A SURPRISING feature of high-dimensional inference
problems is the presence of phase transitions, where

the behavior of estimator changes abruptly as the parameters
of a problem vary. Often, these transitions help illuminate
fundamental limitations of an optimal estimation procedure,
by showing, for instance, that a certain inference task is
impossible when the noise is too large or the number of
samples too few. There is a large and growing literature on
proving rigorously the presence of such transitions and on
establishing their implications for learning and inference tasks
in a variety of settings. (see, e.g. [15])

A particularly striking phase transition is known as the
all-or-nothing phenomenon [10], [22], [26]. In problems
evincing this phenomenon, there is a sharp break: below a
critical number of samples, it is impossible to infer almost any
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information about a parameter of interest, but as soon as that
critical point is reached, it is possible to infer the parameter
almost perfectly. Such problems exhibit a sharp dichotomy,
where either perfect inference is possible or nothing is.

In this work, we develop general tools for proving the
all-or-nothing phenomenon for a class of models we call
“noiseless discrete channels.” In such models, we fix a func-
tion g and observe identically distributed copies of a pair
(Y, X) ∈ Y × RL generated by

Y = g(X, θ) ,

where X is a random draw from some known distribution on
RL, and θ is an unknown parameter to be estimated. Under
the assumption that |Y| < ∞, we can view g as a discrete
channel, parametrized by θ, which maps RL to Y , and our
goal is to ascertain how many samples (i.e., how many uses
of this channel) we need to reliably recover θ.

We highlight two special cases of the above model which
have seen recent attention:

• Group testing [1], [9]: θ ∈ {0, 1}N indicates a subset of
infected individuals in a population, and X ∈ {0, 1}N

indicates a random subset chosen to be tested as a batch.
We observe g(X, θ) = 1(Support(X) ∩ Support(θ) %=
∅), where for a vector v ∈ RN , Support(v) ⊆ [N ]
denotes the set of the non-zero coordinates of v. How
many tests do we need to determine which individuals
are infected?

• Planted Gaussian perceptron [27]: in this simple “teacher-
student” setting, θ ∈ {0, 1}N represents the weights
of a “teacher” one-layer neural network, and we
observe g(X, θ) = 1(

∑N
j=1 θjxj ≥ 0), where the xj

are i.i.d. standard Gaussian random variables. How many
samples do we need for a “student” to learn the teacher’s
hidden weights?

Both models have recently been studied in the all-or-nothing
framework [14], [25]. However, the range of parameters
for which the all-or-nothing phenomenon has been rigor-
ously established in either model is limited. [25] show that
all-or-nothing holds for group testing in the extremely sparse
regime when the number of infected individuals is o(Nε) for
all ε > 0. Their proof is combinatorial and proceeds by the
second-moment method. [14] give a heuristic derivation of the
all-or-nothing phenomenon for the planted Gaussian percep-
tron based on the replica method from statistical physics, and
establish that this phenomenon holds if ‖θ‖0 := |{i ∈ [N ] :
θi %= 0}| is both ω(N 8

9 ) and o(N).
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A. Contribution

We give a simple criterion for the all-or-nothing phe-
nomenon to hold in noiseless discrete channels. For such
settings, we measure success in terms of the minimum mean
squared error (MMSE) and the signal is assumed to lie on the
Euclidean unit sphere. The “all” property corresponds to a
vanishing MMSE, while the “nothing” property corresponds
to MMSE being asymptotically equal to one, which is the
mean squared error achieved by the trivial zero estimator.
As a corollary of our result, we show that the all-or-nothing
phenomenon holds for all relevant sparsity regimes in both
the group testing and planted perceptron models, substantially
generalizing prior work.

Our key technical contribution is to show that, under suitable
conditions, proving the “all” condition immediately implies
that the “nothing” condition holds as well. More specifically,
we show that if the mean squared error vanishes for all
n ≥ (1 + ε)n∗ for some critical n∗, then for n ≤ (1 − ε)n∗

no recovery is possible. In other words, for these models,
“all” implies “nothing” in a suitable sense. Crucially, the “all”
condition can often be proven directly, by simple means, as it
suffices to establish that a specific estimator is successful,
via for example a simple “union bound” or “first-moment”
argument. On the other hand, the “nothing” lower bound
requires proving the failure of any estimation method, and has
typically been proven by using more subtle techniques, such as
delicate second moment method arguments (see e.g. [22] for
the regression setting and [25] for the Bernoulli group testing
setting). Our “all” implies “nothing” result shows that this
complication is unnecessary for a class of noiseless discrete
channels.

We apply our techniques to both non-adaptive Bernoulli
group testing and the planted Gaussian perceptron model.
We report the following.

• For the Bernoulli group testing model (BGT), we focus
on the case, common in the group testing literature, where
there are k infected individuals, with k = o(N). We
model the infected individuals as a binary k-sparse vector
on the unit sphere, and as mentioned above we measure
success in terms of the MMSE. In the BGT setting each
individual is assumed to participate in any given test in
an i.i.d. fashion, and independently with everything, with
probability ν

k , for some ν = νk satisfying q = (1 − ν
k )k.

Here q ∈ (0, 1) is a fixed constant, again as customary
in the literature of Bernoulli group testing [1]. We show
as an application of our technique that the all-or-nothing
phenomenon holds for the BGT design for all k = o(N)
and for any q ≤ 1

2 at the critical number of tests

n∗
q = k log

N

k
/h(q),

where h(q) denotes the (rescaled) binary entropy at q
defined in (18). In words, with less than nq samples the
MMSE is not better than “random guess”, while with
more than nq samples it is almost zero. To the best of
our knowledge this result was known before only in the
case where k = o(Nε) for all ε > 0 and q = 1

2 [25].

• For the Gaussian perceptron model, we focus on the
case where θ is a a binary k-sparse vector on the unit
sphere, with k = o(N). We study a more general class of
noiseless Boolean models than the Gaussian perceptron,
where Yi = 1(〈Xi, θ〉 ∈ A) for some arbitrary Borel
A ⊆ R with (standard) Gaussian mass equal to 1

2 .
Equivalently we consider any Boolean function f : R →
{−1, 1} which is balanced under the standard Gaussian
measure, i.e. Ef(Z) = 0, Z ∼ N(0, 1), and assume Yi =
f(〈Xi, θ〉). Notice that the perceptron model corresponds
to the case A = [0, +∞) and f(t) = 21(t > 0)−1, but it
includes other interesting models such as the symmetric
binary perceptron A = [−u, u] with u the median of
|Z|, Z ∼ N(0, 1) which has recently been studied in the
statistical physics literature [2]. We apply our technique
in this setting to prove a generic result; all such models
exhibit the all-or-nothing phenomenon at the same critical
sample size

n∗ = k log2
N

k
.

To the best of our knowledge this sharp phase transition
was known before only in the case where A = [0, +∞)
and k is ω(N 8

9 ) and o(N) [14]

B. Comparison With Previous Work
1) All-or-Nothing: The all-or-nothing phenomenon has been

investigated in a variety of models, and with different tech-
niques [4], [5], [10], [14], [17], [21], [22], [25]. More specifi-
cally, the phenomenon was initially observed in the context
of the maximum likelihood estimator for sparse regression
in [10] and was later established in the context of MMSE
for sparse regression [21], [22], sparse (tensor) PCA [4],
[5], [17], Bernoulli group testing [25] and generalized linear
models [14].

A common theme of these works is that all-or-nothing
behavior can arise when the parameter to be recovered is
sparse, with sparsity sublinear in the dimensions of the prob-
lem. Though it is expected that this phenomenon should arise
for all sublinear scalings, technical difficulties often restrict
the range of applicability of rigorous results. In the present
work we circumvent this challenge by showing that a version
of the “all” condition suffices to establish the all-or-nothing
phenomenon for the whole sublinear regime. As mentioned
above, usually the “all” result is easier to establish than the
“nothing” result. Leveraging this, we are able to establish
the all-or-nothing phase transitions throughout the sublinear
sparsity regimes of both the Bernoulli group testing and
Gaussian perceptron models, where only partial results have
been established before [14], [25].

2) “All” Implies “Nothing”: As mentioned already, our key
technical contribution is showing that the “all” result suffices
to establish the all-or-nothing phenomenon. This potentially
counterintuitive result relates to a technique used in infor-
mation theory known as the area theorem [13], [16], [20].
A heuristic explanation of this connection in the regression
context appears in [23, Section 1.1.]; however, despite this
intuition, the authors of [22] do not proceed by this route.
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To the best of our knowledge, our results are the first to
rigorously prove that in certain sparse learning settings, the
“all” result indeed implies the all-or-nothing sparse phase
transition.

3) Bernoulli Group Testing: Now, we comment on our
contribution for the BGT model, as compared to the BGT
literature. In the Bernoulli group testing model, it is well-
known that for all k = o(N) and q = (1 − ν

k )k, it is
possible to obtain a vanishing MMSE (“all”) with access to
(1 + ε)n∗

q = (1 + ε)k log N
k /h(q) tests [1], [25]. Furthermore,

it is also known that if q = 1/2 with less than (1−ε)n∗
1/2 test it

is impossible to achieve an “all” result [24, Theorem 3]. To the
best of our knowledge, this (weak) negative result of “all”
being impossible is not known when q %= 1

2 and one has access
to fewer than (1− ε)n∗

q tests, though some relevant discussion
appears in [23]. Finally, as mentioned above, [25] do establish
the strong negative “nothing” result that if k = o(N δ) for all
δ > 0 and q = 1

2 with less (1 − ε)n∗
1/2 it is impossible to

achieve a non-trivial MMSE [25].
In the present work, we show as a corollary of our methods

that for all k = o(N) and q ≤ 1
2 , “nothing” holds when the

number of tests is fewer than (1−ε)n∗
q , substantially improving

the literature of impossibility results in Bernoulli group testing.
While to the best of our knowledge, the appropriate “all”
result needed for our argument to work is not known for
any q < 1

2 it has been established before when q = 1
2 [see,

e.g.][Lemma 1.3.] [12]. Finally, it is worth pointing out that
some form of non-trivial information can still be extracted
from the Bernoulli group testing instance even in the “nothing”
regime where the MMSE is trivial. For example, [25] showed
that for some values of k it is possible even when n < (1−ε)n∗

q

to successfully hypothesis test between the Bernoulli group
testing model and a “pure noise” model where the tests
outcomes are random and independent from everything else
(see also the more recent work [8] on the same topic).

4) Gaussian Perceptron Model: For the Gaussian percep-
tron model, to the best of our knowledge the most relevant
result is in [14] where the authors prove the all-or-nothing
phenomenon at n∗ = k log2

N
k samples when k is ω(N 8

9 )
and o(N). While they characterize the free energy of the
model and therefore provide more precise results than we do,
their results apply to a restricted sparsity regime. We do not
precisely characterize the limiting free energy, but our much
simpler argument shows that the all-or-nothing phenomenon
holds for all sparsity levels k = o(N).

II. MAIN RESULTS

A. General Framework: Noiseless Discrete Channels

1) The Family of Models: We define a sequence of obser-
vational models we study in this work, indexed by N ∈ N.
Assume that an unknown parameter, or “signal”, θ ∈ RN

is drawn from some uniform prior PΘ = (PΘ)N supported
on a discrete subset Θ of the unit sphere in RN . We set
|Θ| = M = MN and make the following “non-negativity”
assumption on the overlap between two parameters that for
any θ, θ′ ∈ Θ it holds

〈θ, θ′〉 ≥ 0.

For some distribution D = DN supported on RL, where L =
LN , we assume that for n = nN i.i.d. samples Xi ∼ DX , i =
1, 2, . . . , n we observe (Yi, Xi), i = 1, 2, . . . , n where

Yi = g(Xi, θ), i = 1, 2, . . . , n. (1)

The function g = gN : RL × RN → Y is referred to as
the channel. We assume throughout that Y is finite and of
cardinality that remains constant as N grows, e.g., Y = {0, 1}.
We denote by Y n the n-dimensional vector with entries Yi, i =
1, 2, . . . , n and Xn the n×L matrix with columns the vectors
Xi, i = 1, 2, . . . , n. We write P = PN for the joint law of
(Y n, Xn, θ).

We are given access to the pair (Y n, Xn),and our goal is
to recover θ. We measure recovery with n samples in terms
of the minimum mean squared error (MMSE),

MMSEN (n) = E‖θ − E[θ|Y n, Xn]‖2 . (2)

2) The All-or-Nothing Phenomenon: We say that a sequence
of models ((PΘ)N , gN ,DN ) satisfies the all-or-nothing phe-
nomenon with critical sequence of sample sizes nc = (nc)N

if

lim
N→∞

MMSEN (0βnc1) =

{
1 if β < 1
0 if β > 1 .

(3)

This condition expresses a very sharp phase transition: when
β > 1, we can identify the signal nearly perfectly, but when
β < 1, we can do no better than a trivial estimator which
always outputs zero.

3) Assumptions: To establish our result we make throughout
the following further assumptions on our models.

Recall that we have assumed that our prior PΘ is the
uniform distribution on some finite subset of cardinality M =
MN . We assume throughout that MN → ∞ as N → ∞.
We also make the following assumption, which requires that
the distribution PΘ is sufficiently spread out.

Assumption 1: For θ and θ′ chosen independently from PΘ

we have

lim
δ→0+

lim
N→+∞

log(MP⊗2
Θ (〈θ, θ′〉 ≥ 1 − δ))

log M
= 0. (4)

Moreover, we assume for θ and θ′ chosen independently from
PΘ and any ε > 0,

lim
N

P⊗2
Θ (〈θ′, θ〉 ≥ ε) = 0. (5)

Assumption (4) guarantees that the that for two independent
draws from the prior θ, θ′, the asymptotic probability that θ′

is very near to θ is dominated by the probability that θ = θ′.
This condition is the same as the one employed by [17] in
the analysis of the all-or-nothing phenomenon for Gaussian
models.

Assumption (5) implies that independent samples from
the prior are asymptotically uncorrelated with each other.
This condition is natural in the context of the all-or-nothing
phenomenon, since if Assumption (5) fails to hold, then it
is possible to obtain an estimator with non-trivial correlation
with the signal by simply drawing a fresh sample from the
prior, independent of the observations.
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Assumptions (4) and (5) are easy to verify in a variety of
sparse models. For instance, they hold if the rate function

r(ρ) = − lim
N

1
log M

log P⊗2
Θ (〈θ′, θ〉 ≥ ρ) ρ ∈ [0, 1]

exists and is a strictly increasing continuous function on [0, 1].
We make also assumptions on the probability a θ′ ∈ Θ\{θ}

is able to fit the observations generated by the signal θ.
Assumption 2: We assume there exists a fixed function R :

[0, 1] → [0, 1], independent of N , such that

PN (g(X, θ) = g(X, θ′)) = R(〈θ, θ′〉) ∀N ∈ N, θ, θ′ ∈ Θ .

That is, that the probability that g(X, θ) and g(X, θ′) agree is
a function of 〈θ, θ′〉 alone. We assume that R is continuous at
0+ and strictly increasing on [0, 1].

B. Main Result: How “All” Implies “Nothing”

Notice that since our prior distribution is a uniform dis-
tribution over the finite parameter space Θ and our observa-
tion model is noiseless, the posterior distribution of θ given
Y n, Xn satisfies that for any θ′,

P (θ′|Y n, Xn) =
P (θ′)P (Y n|Xn, θ′)

P (Y n|Xn)

∝ P (Y n|Xn, θ′) =
n∏

i=1

1(Yi = g(Xi, θ
′)).

In words, the posterior distribution is simply the uniform
measure over the vectors θ′ ∈ Θ satisfying

Yi = g(Xi, θ
′), i = 1, 2, . . . , n. (6)

As an easy corollary, the distance of the posterior mean from
the ground truth vector, or equivalently the MMSEN (n), can
be naturally related to the behavior of the following “counting”
random variables.

Definition 1: For any N ∈ N and δ ∈ [0, 2], let ZN,δ =
ZN,δ(Y n, Xn) be the random variable which is equal to the
number of solutions θ′ ∈ Θ of equations (6) where ‖θ −
θ′‖2 ≥ δ.

Using the definition above, the following simple proposition
holds.

Proposition 1: For θ′ drawn from the posterior distribution
of θ given Y n, Xn it holds almost surely that

P (‖θ − θ′‖2 ≥ δ|Y n, Xn) =
ZN,δ

ZN,0
. (7)

Hence,

MMSEN (n) =
1
2

E
∫ 2

δ=0

ZN,δ

ZN,0
dδ. (8)

Furthermore, the property that

for all δ ∈ (0, 2], lim
N

EZN,δ

ZN,0
= 0 (9)

is equivalent with the “all” property

lim
N

MMSEN (n) = 0. (10)

Finally the property

for all δ ∈ (0, 2], lim
N

P (ZN,δ > 0) = 0, (11)

implies the “all” condition (10).
Proposition 1 offers a clean combinatorial way of estab-

lishing the vanishing MMSE (“all”) in our context; one needs
to prove the (relative) absence of solutions of (6) which are
at a constant distance from θ, establishing for example (11).
A clear benefit of such an approach is that one could possibly
establish such a result by trying a (possibly conditional) union
bound—or “first moment”—argument. We investigate further
the power of establishing the “all” result in what follows.

We consider the following critical sample size,

n∗ = (n∗)N = 0 H(θ)
H(Y )

1, (12)

where by H(·) we refer to the Shannon entropy of a discrete
random variable and Y = g(X, θ) for a sample of X ∼ DN

and θ ∼ (PΘ)N . The significance of the sample size n∗ is
highlighted in the following proposition which establishes that
the “all” condition (10) can only hold if the number of samples
is at least n∗.

Proposition 2: Suppose that Assumption 1 is true. If the
“all” condition (10) holds for some sequence of sample sizes
n = nN , then

lim inf
N

n

n∗ ≥ 1.

While we defer the proof of Proposition 2 to the Appendix VI,
we highlight some aspects of it which will be important
in what follows. The key identity behind the proof of the
proposition is it always holds that

H(θ) − H(θ|Y n, Xn) (13)

= nH(Y ) − D(P (Y n, Xn)||Q(Y n, Xn)) (14)

≤ nH(Y ), (15)

where 1) D stands for the Kullback-Leibler (KL) divergence
(see e.g. [20, Definition 2.1.]), 2) P (Y n, Xn) stands for the
joint law of (Y n, Xn) generated by the observation model
(1) and 3) Q(Y n, Xn) stands for the law of a “null” model
where the columns of Xn are i.i.d. samples drawn from D
and the entries of Y n are drawn in an i.i.d. fashion from
the distribution of Y = g(X, θ) but independently from Xn.
As a result, the law of a single observation (Xi, Yi) is the
same under P and Q, but P and Q are distinct as joint
distributions, as for example the latter has no hidden signal.
The identity (14) follows from algebraic manipulations which
can be found in Appendix II. The inequality in (15) is implied
by the non-negativity of the KL divergence.

The proof of the proposition is based on the fact that the
“all” condition (10) implies that the entropy of the posterior
is of smaller order of magnitude than the entropy of the prior
(see Proposition 4). This property allows us to conclude that
the left hand side of (15) is (1− o(1))H(θ) which concludes
the proof.

Now we present the main technical result of the present
work. We establish that if Proposition 2 is tight, that is if (10)
can be proven to be true when n ≥ (1 + ε)n∗ for arbitrary
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ε > 0, then (10) is a sufficient to establish that the the all-or-
nothing phenomenon holds at sample size n∗ as well.

Theorem 1 (“All” Implies “Nothing”): Suppose that
Assumptions 1, 2 are true. Assume that if n ≥ (1 + ε)n∗,
for some arbitrary fixed ε > 0, then the “all” condition (10)
holds. Then if n ≤ (1 − ε)n∗ for arbitrary fixed ε ∈ (0, 1), it
holds

lim
N

MMSEN (n) = 1. (16)

In particular, the all-or-nothing phenomenon (3) holds at
critical samples sizes nc = n∗.

We provide here some intuition behind such a potentially
surprising implication. Notice that if (10) holds at sample sizes
(1 + ε)n∗ for arbitrary fixed ε > 0, then from the sketch of
the proof of Proposition 2 the inequality (15) needs to hold
(approximately) with equality. In fact one can show that at
n = n∗, it must necessarily hold that

lim
N

D(P (Y n∗
, Xn∗

)||Q(Y n∗
, Xn∗

))
H(θ)

= 0. (17)

At an intuitive level, (17) seems already a significant step
towards what we desire to prove. Indeed, (17) suggests that
(Y n, Xn) drawn from our model P are close in distribution
to the samples (Y n, Xn) drawn from the null model Q. This
strongly suggests that outperforming the random guess in
mean-squared error should be impossible.

While we think that this argument hints at the right direc-
tion for proving the “nothing” property, we do not know
a complete proof along these lines. The reason is that one
cannot conclude that P and Q are “sufficiently close”, e.g.,
in the total variation sense, to argue the above. The reason
is that the KL distance in (17) vanishes only after rescaling
by the factor H(θ) = log MN → +∞. For this reason, (17)
does not imply any nontrivial bound for the total variation
distance between P, Q. Notably though, such an obstacle has
already been tackled in the literature of “nothing” results
in the context of sparse tensor PCA [6], [17]. In these
cases the “nothing” result can be established by the use of
the I-MMSE formula combined with weak detection lower
bound such as (17). The I-MMSE formula is an identity for
Gaussian channels between the derivative (with respect to the
continuous signal to noise ratio (SNR) ) of the corresponding
KL divergence and the MMSE for this value of SNR. We are
not aware of any such formula for the noiseless discrete
models considered in this work. Nevertheless, inspired by the
I-MMSE connection, we study the discrete derivative of the
KL divergence for noiseless models. Specifically we prove
a result of potentially independent interest, that a vanishing
discrete derivative (with respect to the sample size n) of the
sequence D(P (Y n, Xn)||Q(Y n, Xn))/H(θ), n ∈ N, at n ≤
n∗, implies indeed a trivial MMSE at n < n∗. We conclude
then the result by using classical real analysis results, to show
that the convexity of the vanishing sequence for n ≤ n∗,
implies its the discrete derivative of the sequence is also
vanishing for n ≤ n∗.

C. The Case of Boolean Channels: A Simple Condition

One can naturally ask whether for various models of interest
there exist a simple sufficient condition which can establish the
positive result (11) at n∗ (e.g. by a union bound argument)
and therefore prove the all-or-nothing phenomenon. In this
subsection, we provide such a simple sufficient condition for
the subclass of Boolean (or 1-bit) noiseless models, i.e. when
Y = {0, 1}. Perhaps not surprisingly, our result follows from
an appropriate “union-bound” or “first-moment” argument.
In the next section we apply our condition to various such
models.

Notice that in these Boolean binary settings the critical sam-
ple size simplifies to n∗ = 0H(θ)

h(p) 1 where p = P (g(X, θ) = 1)
and h is the binary entropy

h(t) = −t log t − (1 − t) log(1 − t), t ∈ (0, 1), (18)

where log is, as always in this work, with base e.
To proceed, we need some additional definitions. The first is

about the two possible outcomes of the channel, and it extends
Assumption 2 to further properties on the probability of a fixed
θ′ ∈ Θ \ {θ} satisfying (6).

Assumption 3: There exist fixed functions R1 : [0, 1] →
[0, 1], R0 : [0, 1] → [0, 1], independent of N, such that for all
N ∈ N and θ, θ′ ∈ Θ it holds

R1(〈θ, θ′〉) = P (g(X, θ) = g(X, θ′) = 1), (19)

R0(〈θ, θ′〉) = P (g(X, θ) = g(X, θ′) = 0). (20)

For all ρ ∈ [0, 1], R(ρ) = R0(ρ)+R1(ρ), where R(ρ) is as in
Assumption 2. We assume that both R0 and R1 are increasing
on [0, 1].

The second is about the distribution of the overlap between
two independent copies of the prior distribution. Again we
borrow the definition from [17].

Definition 2: Given a non-decreasing continuous function
r : [−1, 1] → R≥0, we say {PΘ} admits an overlap rate
function r, if for all ρ ∈ [0, 1] it holds

lim sup
N

1
log MN

log P⊗2
Θ [〈θ′, θ〉 ≥ ρ] ≤ −r(ρ) ,

where θ and θ′ are independent draws from PΘ.
We state our result.
Corollary 1: Let Y = {0, 1} and let p = P (g(X, θ) = 1) ∈

(0, 1) be constant. Suppose that Assumptions 1, 2 and 3 are
true. If {PΘ} admits an overlap rate r(ρ) satisfying

r(ρ) ≥ 1
h(p)

(
p log

R1(ρ)
p2

+ (1 − p) log
R0(ρ)

(1 − p)2

)
,

∀ρ ∈ [0, 1], (21)

then the all-or-nothing phenomenon holds at n∗ = 0 log M
h(p) 1.

III. APPLICATIONS

In this subsection we use our results, and specifically
Corollary 1, to establish the all-or-nothing phenomenon for
various sparse Boolean models of interest.
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A. Application 1: Nonadaptive Bernoulli Group Testing

We start with nonadaptive Bernoulli group testing. In this
context, we fix some parameter k = kN ∈ N with k → +∞
and k = o(N), which corresponds to k infected individuals
out of a population of cardinality N . We also fix a constant q ∈
(0, 1/2], which controls the size of each group which is getting
tested. The goal is to perform nonadaptive tests for a disease
on different “groups” or subsets of the N individuals at a time.
The logic is that by doing so we may be able to use fewer
tests, say, from testing each individual separately, and still
recover the infected individuals. Notice that such a Bernoulli
group testing model is characterized by the two parameters q
and k = kN .

1) The Model: We assume a uniform prior PΘ, which
following our notation we encode as the uniform measure on
the k-sparse binary vectors on the sphere in N -dimensions, i.e.

Θ = {θ ∈ {0,
1√
k
}N : ‖θ‖0 = k},

where there is a natural correspondence between the identities
of the infected individuals and the support of the vectors
θ ∈ Θ. For each k, we define ν = νk to be the unique
positive number satisfying

(
1 − ν

k

)k
= q .

The group of individuals being tested is modeled by the
binary vector X ∈ {0, 1}N , with D = Bernoulli(ν

k )⊗N .
In words, we choose whether in individual participates at any
given test independently from everything and with probability
ν/k, with the parameter ν chosen so that the probability that
each group contains no infected individuals is exactly q.

We model the channel by the step function at 1√
k

, i.e.
Y = g(X, θ) = 1(〈Xi, θ〉 ≥ 1√

k
), which simply outputs the

information of whether at least one of the individuals in the
selected group is infected (which is equivalent to

√
k〈Xi, θ〉 =

|Support(Xi) ∩ Support(θ)| ≥ 1) or not. The sample size n
corresponds to the number of tests conducted.

Corollary 1 when applied to this context establishes the
following result.

Theorem 2: Let q ∈ (0, 1
2 ] be a constant. Suppose k =

o(N) and νk satisfies (1 − νk
k )k = q. Then the non-adaptive

Bernoulli group testing model satisfies the all-or-nothing

phenomenon at number of tests n∗ = 0 log (N
k)

h(q) 1 = (1 +

o(1))k log N
k

h(q) .

The q = 1/2, k = No(1) case of Theorem 2 was proved
by [25]. Our theorem extends their result to all sublinear
sparsities and all q ≤ 1/2. In particular, we cover the
commonly used choices of q = 1/e − o(1), with ν = 1, and
q = 1/2 − o(1) with ν = ln 2 (see e.g. [1, Section 2]). When
q > 1/2, condition (21) fails, and whether a result similar to
Theorem 2 holds in this regime remains open.

B. Application 2: Sparse Gaussian Perceptron and Sparse
Balanced Gaussian (SBG) Models

In this subsection, we turn our study to a family of what
we call as Sparse Balanced Gaussian (SBG) models. Every
such model can be characterized by some sparsity parameter

k = kN = o(N) and a fixed “balanced” Borel subset A ⊆ R
with P (Z ∈ A) = 1/2 for Z ∼ N(0, 1).

1) The Model: We assume as above that the signal θ is
sampled from the uniform measure on the k-sparse binary
vectors on the sphere in N -dimensions, i.e. Θ = {θ ∈
{0, 1√

k
}N : ‖θ‖0 = k}. We assume that the distribution

for X ∈ RN is given by the standard Gaussian measure
D = N(0, IN ). Finally the channel is given by the formula
Y = g(X, θ) = 1(〈Xi, θ〉 ∈ A).

We highlight two models of this class that have been studied
in different contexts.

• The case A = [0, +∞) corresponds to the well-studied
Gaussian perceptron model with a sparse planted signal
Y = 1(〈X, θ〉 ≥ 0). Variants of the Gaussian percep-
tron model have received enormous attention in learning
theory and statistical physics (see e.g. [3], [27] and
references therein). Recently the sparse version has been
studied by [14].

• The case A = [−u, u] for some u with u such that
P (|Z| ≤ u) = 1

2 , which corresponds to what is known
as the symmetric binary perceptron model with a sparse
planted signal Y = 1(|〈X, θ〉| ≤ u) [2].

We establish a general result that all SBG models exhibit the
all-or-nothing phenomenon at the same critical sample size.

Theorem 3: Suppose k = o(N) and A ⊆ R be an arbitrary
fixed Borel subset with P (Z ∈ A) = 1/2 for Z ∼ N(0, 1).
Then the Sparse Balanced Gaussian model defined by k and A

exhibits the all-or-nothing phenomenon at n∗ = 0 log (N
k)

log 2 1 =
(1 + o(1))k log2

N
k .

In the context of Gaussian perceptron it has recently been
proven [14] that the all-or-nothing phenomenon holds for any
ω(N 8

9 ) = k = o(N). Theorem 3 generalizes this result to any
k = o(N), even constant. To our knowledge, the existence
of such a transition for the symmetric binary perceptron and
other SBG models is new.

APPENDIX I
AUXILARY RESULTS AND IMPORTANT

PRELIMINARY CONCEPTS

All the results in this auxilary section holds under our
framework and assumptions as described in Section II-A.

We start with an elementary lemma.
Lemma 1: The sequence of critical sample sizes n∗ defined

in (12) satisfies,
(i) limN n∗ = +∞

(ii) n∗ = (1 + o(1)) H(θ)
H(Y ) , as N → +∞.

Proof: Recall that in all our models we assume H(θ) =
log MN → +∞ as N → +∞. Furthermore, we assume that
Y = g(X, θ) is a random variable supported on a subset
of Y where |Y| = O(1). Hence, H(Y ) ≤ log |Y| = O(1).
In particular in all our models it holds

lim
N

H(θ)
H(Y )

= +∞.

This establishes the first property. The second property fol-
lows since for any real valued sequence XN , N ∈ N with
limN xN = +∞, it holds limN

xN
(xN) = 1.

!
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We continue with a crucial proposition for our main result.
This proposition establishes a connection between the critical
sample size n∗, the estimation error manifested in the form of
the entropy of the posterior distribution.

To properly establish it we need some additional notation,
and the definition of an appropriate “null” distribution on the
observation (Y n, Xn).

Definition 3: We denote by Pn = Pn(Y n, Xn) the law of
the observation under our model, i.e. for any measurable A,
Pn(A) = Eθ∼PΘP ((Y n, Xn, θ) ∈ A). In words, Pn generates
(Y n, Xn) by first sampling θ from the prior, independently
sampling Xn in an i.i.d. fashion from D, and then generating
Y n by the conditional law P (Y n|θ, Xn).

Notice that in the noiseless case studied in this work, the
latter conditional law greatly simplifies to a dirac mass at
Y n = (g(Xi, θ))n

i=1.
Definition 4: Denote, as usual, by Y = g(X, θ) the random

variable where X ∼ D and θ ∼ PΘ are independent.
We define by Qn = Qn(Y n, Xn) the “null” distribution on
n samples, where the observations are generated as follows.
We sample Xn in an i.i.d. fashion from D and then generate
Y n in an i.i.d. fashion from the law of Y , independently
from Xn.

Notice first that the marginals of Yi under Qn are identical
to the marginals of Yi under Pn. Yet, the joint law of Qn

does not include any “signal” θ and Y n are independent of
Xn. Naturally, is not possible to estimate any signal θ with
observations coming from the null model Qn.

The following proposition holds.
Proposition 3: For (θ, Y n, Xn) generated according to Pn,

and Qn defined in Definition 4 we have,

I(θ; Y n|[Xn]) = nH(Y ) − D(Pn||Qn). (22)

and therefore
(

1 − H(θ|Y n, Xn)
H(θ)

)
+

D(Pn||Qn)
H(θ)

= (1 + o(1))
n

n∗ . (23)

Proof: Note that (23) follows from (22) directly from part
(ii) of Lemma 1, along with the identity

I(θ; Y n|[Xn]) = H(θ|Xn) − H(θ|Y n, Xn)
= H(θ) − H(θ|Y n, Xn),

where the second equality uses that Xn is independent of θ.
We now prove (23). We have

I(θ; Y n|[Xn]) = EXn

[
Eθ,Y n|Xn log

P(Y n | Xn, θ)
P(Y n | Xn)

]

= EXn

[
Eθ,Y n|Xn log

1
P(Y n | Xn)

]

= EXn

[
Eθ,Y n|Xn log

1
Q(Y n)

]

− EXn

[
Eθ,Y n|Xn log

P(Y n | Xn)
Q(Y n)

]

The second term is D(Pn||Qn). For the first term, we have
that Q(Y n) =

∏n
i=1 Q(Yi) by the definition of Q. Since by

assumption also Q(Yi) = P (Yi) for each i we conclude

EXn

[
Eθ,Y n|Xn log

1
Q(Y n)

]
= nEX1

[
Eθ,Y1|X1 log

1
P(Y1)

]

= nH(Y ).

The proof is complete.
!

Proposition 4: Suppose that (10) holds for some sequence
of sample size n = nN . Then we also have

lim
N→+∞

H(θ|Y n, Xn)
H(θ)

= 0. (24)

Proof:
Recall that since the prior is uniform and the model is

noiseless, the posterior is simply the uniform distribution over
the solutions θ′ of the system of equations (6). Hence, using
the notation of Definition 1, ZN,0 is the random variable
which is equal to the number of such solutions. Hence, (24)
is equivalent to

lim
N→+∞

E log ZN,0

log M
= 0.

where we used that H(θ) = log M .
Now fix a δ ∈ (0, 2] and let Aδ := {θ′′ ∈ Θ : ‖θ′′−θ‖ ≥ δ}.

Notice that almost surely

ZN,δ

ZN,0
ZN,0 = ZN,δ ≤ |Aδ|

and

(1 − ZN,δ

ZN,0
)ZN,0 = ZN,0 − ZN,δ ≤ |Θ \ Aδ|.

Hence if we denote for simplicity pδ := ZN,δ

ZN,0
we have,

log ZN,0 ≤ pδ log(
|Aδ|
pδ

) + (1 − pδ) log(
|Θ \ Aδ|
1 − pδ

)

≤ pδ log M + log |Θ \ Aδ| + h(pδ),

where h is the binary entropy. Since h(pδ) ≤ ln 2 and
limN log MN = +∞, we conclude that for any δ ∈ (0, 2]

E log ZN,0

log M

≤ Epδ + E log |Θ \ Aδ|
log M

+
ln 2

log M

= EZN,δ

ZN,0
+ E log(MPθ′∼PΘ(‖θ − θ′‖ < δ))

log M
+

ln 2
log M

= EZN,δ

ZN,0
+ E log(MPθ′∼PΘ(〈θ, θ′〉 > 1 − δ2/2))

log M

+
ln 2

log M

≤ EZN,δ

ZN,0
+

log(MP⊗2
Θ (〈θ, θ′〉 > 1 − δ2/2))

log M

+
ln 2

log M
.

where in the last inequality we used Jensen’s inequality and
the fact that the logarithm is concave. Now we send first N to
infinity and then δ to zero and show that the right hand side
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of the last inequality converges to zero. The third term clearly
vanishes. The second first term vanishes by the double limit
by using Assumption 1. The first term vanishes by the first
limit since (9). The proof follows.

!
We state and prove here a foklore result in the statistical

physics literature called the “Nishimori” identity, which will
be useful in what follows.

Lemma 2: It always holds that if θ′ is a random variable
drawn from the posterior distribution Pθ|Y n,Xn that

MMSEN (n) = 1 − E〈θ, θ′〉.

Proof: Bayes’ rule implies that the joint distribution
of 〈θ′, θ〉 is identical with the distribution of 〈θ′, θ′′〉 of
two independent random variables drawn from the posterior
distribution of θ given Y n, Xn. Therefore,

E〈E[θ|Y n, Xn], θ〉 = E〈θ′, θ〉
= E〈θ′, θ′′〉 = E‖E[θ|Y n, Xn]‖2.

The result follows since

MMSEN (n) =1 + E‖E[θ|Y n, Xn]‖2

− 2E〈E[θ|Y n, Xn], θ〉.

!

APPENDIX II
CONVEX ANALYSIS

A. Background

In this work, we use the following two results from convex
analysis on the real line.

The first result concerns the left differentiability of a convex
function on the interior of its domain.

Theorem 4: [11, Proposition I.4.1.1] For any interval I ⊂
R, convex function f : I → R and x in the interior of I , the
left derivative of f exists at x.

The second result establishes that if a sequence of convex
function defined on an open interval converges to a convex
differentiable function, the pointwise convergence can be
generalized to their (left) derivatives.

Theorem 5: [11, Proposition I.4.3.4] Fix an open interval
I ⊂ R, and consider a sequence (fn)n∈N : I → R of
convex functions. Assume that fn converges pointwise to a
differentiable f : I → R. Then the left derivatives of fn

converge pointwise to the derivative of f , f ′.

B. A Key Proposition

Towards employing certain analytic techniques we consider
the following function defined on R>0, which simply
linear interpolates between the values of the sequence
D(Pn||Qn)/H(θ), n ∈ N. We establish that the analytic
properties of this function express various fundamental sta-
tistical properties of the inference setting of interest. Here
and throughout this section, Pn, Qn are defined as in
Definitions 3, 4.

Definition 5: Let DN : (0, +∞) → [0, +∞), N ∈ N be the
sequence of functions defined by

DN (β) :=(1 − βn∗ + 0βn∗1)
D(P(βn∗)||Q(βn∗))

H(θ)

+ (βn∗ − 0βn∗1)
D(P(βn∗)+1||Q(βn∗)+1)

H(θ)
. (25)

Notice that the normalization of the argument of DN is
appropriately chosen such that DN (1) = D(Pn∗ ||Qn∗)/H(θ).

Proposition 5: Consider the sequence of functions DN , per
Definition 5. Then under our framework and assumptions
described in Section II-A the following hold.
(a) For each N , DN is a convex, increasing, nonnegative

function.
(b) For all fixed β > 0,

lim sup
N

DN (β)=β − 1+lim sup
N

H(θ|X(βn∗), Y (βn∗))
H(θ)

.

(c) For all fixed β > 0 and for each N , the function DN is
left differentiable at β and the left derivative at β satisfies

(DN )′−(β) = 1 −
H(Y-βn∗.|Y -βn∗.−1, X-βn∗.)

H(Y )
+ o(1),

(26)

where the o(1) term tends to zero as N → +∞.
Proof: We start with part (a).

Since DN is a linear interpolation of the sequence
D(Pn||Qn)

H(θ) , n ∈ N and H(θ) > 0, it suffices to show the
same properties for the sequence D(Pn||Qn), n ∈ N. The
nonnegativitiy is obvious. For a fixed n ∈ N we have using
the identity (22) from Proposition 3 that

D(Pn+1||Qn+1) − D(Pn||Qn)
= H(Y ) − I(θ; Y n+1|[Xn+1]) + I(θ ; Y n | Xn)

By the chain rule for mutual information, its definition and
the independence of the Xi’s we have

I(θ ; Y n+1 | Xn+1)
= I(θ ; Yn+1 | Xn+1, Y n) + I(θ ; Y n | Xn+1)
= I(θ ; Yn+1 | Xn+1, Y n) + I(θ ; Y n | Xn).

Combining the above and using the definition of the mutual
information and the fact that our channel Yi = g(Xi, θ) is
noiseless, we obtain

D(Pn+1 ‖Qn+1) − D(Pn||Qn)
= H(Y ) − I(θ ; Yn+1 | Xn+1, Y n)
= H(Y ) − H(Yn+1|Xn+1, Y n)
+ H(Yn+1|Xn+1, Y n, θ)
= H(Y ) − H(Yn+1|Xn+1, Y n) (27)

= I(Yn+1 ; Xn+1, Y n) (28)

Now the increasing property of the sequence follows from
the fact that the mutual information is non-negative. For the
convexity, it suffices to show that the right hand side of (28)
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is nondecreasing. Indeed, notice that for each n from the fact
that conditioning reduces entropy,

I(Yn+1 ; Xn+1, Y n)
= H(Yn+1) − H(Yn+1|Xn+1, Y n)
≥ H(Yn+1) − H(Yn+1|X2, . . . , Xn+1, Y2, . . . Yn)
= I(Yn+1 ; X2, . . . , Xn+1, Y2, . . . Yn)
= I(Yn ; X1, . . . , Xn, Y1, . . . Yn−1)
= I(Yn ; Xn, Y n−1).

This completes the proof of part (a).
For part (b) notice that from Proposition 3 we have for each

fixed β > 0

D(P(βn∗) ‖Q(βn∗))
H(θ)

(29)

= (1 + o(1))
0βn∗1

n∗ − 1 +
H(θ|X(βn∗), Y (βn∗))

H(θ)

= β − 1 +
H(θ|X(βn∗), Y (βn∗))

H(θ)
+ o(1), (30)

since n∗ → +∞ by Lemma 1. By (27),

D(P(βn∗)+1 ‖Q(βn∗)+1)
H(θ)

−
D(P(βn∗) ‖Q(βn∗))

H(θ)

≤ H(Y )
H(θ)

= o(1) ,

since H(Y ) = O(1) and H(θ) → ∞.
Since DN(β) is a convex combination of D(P#βn∗$ ‖Q#βn∗$)

H(θ)

and D(P#βn∗$+1 ‖Q#βn∗+1))
H(θ) , we conclude that

lim sup
N

DN (β) = β − 1 + lim sup
N

H(θ|X(βn∗), Y (βn∗))
H(θ)

,

as we wanted.
For part (c), recall that DN is the piecewise linear

interpolation of the convex sequence D(Pn ‖Qn)
H(θ) . By [11,

Proposition I.4.1.1], stated also in Theorem 4, DN pos-
sesses a left derivative on the interior of its domain, so that
DN is left-differentiable at β for all β > 0. More-
over, this left derivative is simply the slope of the seg-

ment which connects ( -βn∗.−1
n∗ ,

D(P%βn∗&−1 ‖Q%βn∗&−1)
H(θ) ) and

( -βn∗.
n∗ ,

D(P%βn∗& ‖Q%βn∗&)
H(θ) ), which equals

D(P%βn∗& ‖Q%βn∗&)
H(θ) − D(P%βn∗&−1 ‖Q%βn∗&−1)

H(θ)

-βn∗.
n∗ − ( -βn∗.−1

n∗ )

= n∗D(P-βn∗. ‖Q-βn∗.) − D(P-βn∗.−1 ‖Q-βn∗.−1)
H(θ)

= (1+o(1))
D(P-βn∗. ‖Q-βn∗.)−D(P-βn∗.−1 ‖Q-βn∗.−1)

H(Y )
,

where we use the second part of Lemma 1 for n∗ and the o(1)
term tends to zero as n∗ tends to infinity. Now using (27) we

conclude that the slope is

(1 + o(1))

(
1 −

H(Y-βn∗.|Y -βn∗.−1, X-βn∗.)
H(Y )

)

= 1 −
H(Y-βn∗.|Y -βn∗.−1, X-βn∗.)

H(Y )
+ o(1).

The proof is complete. !

APPENDIX III
PROOF OF THEOREM 1: TURNING “ALL” INTO “NOTHING”

Recall that from Proposition 4, condition (10) implies that
at (1+ε)n∗ samples the entropy of the posterior distribution is
of smaller order than the entropy of the prior. Our first result
towards proving Theorem 1 establishes two implications of
this property of the entropy of the posterior.

Lemma 3: Suppose that for all ε > 0 and n ≥ (1 + ε)n∗,
(24) holds. Then we have,
(1) (KL closeness)

lim
N

D(Pn∗ ‖Qn∗)
H(θ)

= 0, (31)

and
(2) (prediction “nothing”) for any fixed ε > 0, if n ≤ (1 −

ε)n∗, then

lim
N

H(Yn+1|Y n, Xn+1)
H(Y )

= 1. (32)

In words, the sublinear entropy of the posterior implies 1) a
“KL-closeness” between the planted distribution Pn∗ and the
null distribution Qn∗ , and 2) that the entropy of the observation
Yn+1 conditioned on knowing the past observations Y n and
Xn+1 is (almost) equal to the unconditional entropy of Y =
Yn+1. While the first condition is, as already mentioned, hard
to interpret (because of the H(θ) normalization), the second
condition has rigorous implication of the recovery problem of
interest, because of the following lemma. We emphasize to
the reader that towards establishing this lemma the use of an
assumption such as Assumption 2 is crucial.

Lemma 4: Suppose that (32) holds. Then for any fixed ε ∈
(0, 1), if n = nN ≤ (1 − ε)n∗, then

lim
N

MMSEN(n) = 1,

i.e. (16) holds.
Notice that combining Proposition 4, the part (2) of

Lemma 3 and Lemma 4, the proof of Theorem 1 follows in
a straightforward manner. We proceed by establishing the two
lemmas.

A. Proof of Lemma 3

Proof: We start with establishing (31). Notice that for any
ε > 0, combining Proposition 5 part (b) for β = 1+ ε and the
condition (24), we have

lim sup
N

DN (1 + ε) = ε.
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Using now that DN is increasing from Proposition 5 part (a),
we conclude

lim sup
N

DN (1) ≤ ε,

or as ε > 0 was arbitrary and DN is non-negative,

lim
N

DN (1) = 0. (33)

The identity (31) follows because for β = 1, βn∗ ∈ N and
therefore DN(1) = D(Pn∗ ‖Qn∗ )

H(θ) .

We now show that (31) implies (32). Notice that using
Proposition 5 part (a), DN is a sequence of increasing, convex
and non-negative functions which we restrict to be defined on
the compact interval [0, 1]. Hence combining with (31) or the
equivalent (33), we have

lim
N

sup
β∈[0,1]

|DN (β)| = lim
N

DN(1) = 0.

Therefore DN converges uniformly to the zero function.
Now to establish our result notice that since conditioning

reduces entropy it suffices to consider the case where n =
6βn∗7 − 1 for some fixed β ∈ (0, 1). Using standard analysis
result [11, Proposition I.4.3.4], stated also in Theorem 5, since
the functions DN are convex and converge uniformly to 0 in
the open interval (0, 1) we can conclude the left derivatives
of DN (β) converge to the derivative of the zero function as
well, i.e.

lim
N

(DN )′−(β) = 0.

Using now (26) from Proposition 5 part (c) for this β we
conclude the proof.

!

B. Proof of Lemma 4

Proof: Fix some ε ∈ (0, 1) and assume n ≤ (1 − ε)n∗.
Denote the probability distribution P̃n+1 on (Y n+1, Xn+1)
where (Y n, Xn) are drawn from Pn and Yn+1, Xn+1 are
drawn independently from the marginals PY ,D respectively.
Notice that P̃ is carefully chosen so that

D(Pn+1 ‖ P̃n+1)

= E log
P (Yn+1|Y n, Xn+1)

P (Yn+1)
= H(Y ) − H(Yn+1|Y n−1, Xn+1) .

Hence using (32),

D(Pn+1 ‖ P̃n+1) = o(H(Y )) = o(1) ,

where we used the assumption that H(Y ) ≤ log |Y| = O(1).
Using Pinsker’s inequality we conclude

lim
N

dTV(Pn+1, P̃n+1) = 0.

Now we denote by θ′ a sample from the posterior distrib-
ution Pn(θ|Y n, Xn). Using the total variation guarantee we
have

Pn+1 {g(Xn+1, θ
′) = Yn+1}

= P̃n+1 {g(Xn+1, θ
′) = Yn+1} + o(1) .

Under P̃ , because of its definition, we can write Yn+1 as
g(Xn+1, θ′′), where θ′′ ∼ Pθ is independent of everything
else. Using Assumption 2 we conclude

ER(〈θ, θ′〉) = ER(〈θ′′, θ′〉) + o(1).

Furthermore, using (5) and the fact that θ′′ is independent from
θ′ we conclude that for any ε > 0,

lim sup
N

ER(〈θ, θ′〉) ≤ R(ε)

Hence by continuity of R at 0 we have

lim sup
N

ER(〈θ, θ′〉) ≤ R(0).

Recall that 0 is the unique minimizer of R on [0, 1] which
allows us to conclude

E|R(〈θ, θ′〉) − R(0)| = o(1) .

and therefore by Markov’s inequality for any ε > 0,

P (R(〈θ, θ′〉) > R(0) + ε) = o(1).

As R is strictly increasing we conclude that, for any ε > 0,

P (〈θ, θ′〉 > ε) = o(1).

Since the integrand is bounded from above we conclude that

lim sup
N

E〈θ, θ′〉 ≤ 0.

Using now Lemma 2, we conclude

lim inf
N

MMSEN (n) ≥ 1,

which concludes the proof.
!

APPENDIX IV
PROOF OF COROLLARY 1: ESTABLISHING THE “ALL”

Proof: We apply Theorem 1. We fix some ε > 0 and
want to show that for if n ≥ (1 + ε)n∗, (11) holds, which
based on Proposition 1] implies the desired “all” condition
(10). We also assume without loss of generality that n ≤ Cn∗

for an absolute positive constant C, since the random variables
ZN,δ are decreasing in the stochastic order as functions of the
samples size n. By assumption p is a fixed constant in (0, 1)
independent of N . Hence since h(p) is a positive constant
itself we conclude from the definition of n∗ that for all n =
Θ(n∗) it also holds

n = Θ(log M). (34)

In particular, n → +∞ as N → +∞.
Consider n1 the number of samples where Yi = 1 and notice

that n1 is distributed as a Binomial distribution Bin(n, p).
We condition on the event that F = {|n1 − np| ≤√

n log log n}. Standard large deviation theory on the Bino-
mial distribution yields that since p ∈ (0, 1) and n → +∞,
it holds limN P (F) = 1.

Therefore, by Markov’s inequality it suffices to prove that
for every δ > 0,

lim
N

E[ZN,δ1(F)] = 0. (35)
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or equivalently by linearity of expectation and the indepen-
dence of Yi, Xi, i = 1, 2, . . . , n given θ,

lim
N

E




1(F)
∑

θ′:‖θ′−θ‖2≥δ

P

(
n⋂

i=1

{Yi = g(Xi, θ
′)}
∣∣∣∣n1

)

=0.

Now fix any θ′ with ‖θ′ − θ‖2 ≥ δ or equivalently ρ =
〈θ, θ′〉 ≤ 1− δ

2 and some n1 satisfying F . Using the definitions
of Ri, i = 0, 1 from Assumption 3 we have that

P

(
n⋂

i=1

{Yi = g(Xi, θ
′)}
∣∣∣∣n1

)

equals

(
n

n1

)
P (g(X, θ) = g(X, θ′) = 1)n1

× P (g(X, θ) = g(X, θ′) = 0)n−n1

=
(

n

n1

)
R1(ρ)n1R0(ρ)n−n1

=exp
(
nh(

n1

n
)+n1 log R1(ρ)+(n − n1) log R0(ρ) + o(n)

)

(36)

where h is defined in (18), and we used the standard applica-
tion of Stirling’s formula log

(
n
nx

)
= nh(x) + o(n) when x is

bounded away from 0 and 1. The last expression equals to

exp
(
n
(
h(

n1

n
)+

n1

n
log R1(ρ)+(1−n1

n
) log R0(ρ)

)
+o(n)

)

=exp (n (h(p) + p log R1(ρ)) + (1 − p) log R0(ρ)) + o(n))
(37)

=exp
(

n

(
p log

R1(ρ)
p

+ (1 − p) log
R0(ρ)
(1 − p)

)
+ o(n)

)
,

(38)

and for (37) we used the continuity of h and that n1/n =
p (1 + O(log log n/

√
n)) = p(1 + o(1)), since n → +∞.

Importantly, since p ∈ (0, 1) the o(n) term in (38) can be taken
to hold uniformly over the specific choices of n1 satisfying F .

Using (38) it suffices to establish for G(ρ, p) =
p log R1(ρ)

p + (1 − p) log R0(ρ)
(1−p) that

lim
N

Eθ

∑

ρ∈R:ρ≤1− δ
2

|{θ′ ∈ Θ : 〈θ, θ′〉 = ρ}|enG(ρ,p)+o(n) = 0,

(39)

where R denotes the support of the overlap distribution of
two independent samples from the prior PΘ. Now since the
prior is uniform over Θ if ρ is drawn from the law of the inner
product between two independent samples from the prior, (39)
is equivalent with

lim
N

Eρ1(ρ ≤ 1 − δ

2
)MenG(ρ,p)+o(n) = 0. (40)

Now notice that since n∗ = (1 + o(1)) log M
h(p) by Proposition 1

we have

MenG(ρ,p)+o(n)

= exp(log M + n∗G(ρ, p)
+ (n − n∗)G(ρ, p) + o (n))
= exp(n∗h(p) + n∗G(ρ, p)
+ (n − n∗)G(ρ, p) + o (n + log M))

= exp(n∗(p log
R1(ρ)

p2

+ (1 − p) log
R0(ρ)

(1 − p)2
) + (n − n∗)G(ρ, p) + o(log M)),

(41)

where we used that n is of order log M , by (34).
Now Assumption 3 implies that the functions Ri, i =

0, 1 are increasing in [0, 1] and Assumption 2 that their sum
is strictly increasing in [0, 1]. Furthermore, notice that at full
correlation it holds R1(1) = p, R0(1) = 1 − p. Hence we
conclude that for some δ′ > 0 the following holds; for any
ρ ≤ 1 − δ

2 ,

min{log
R1(ρ)

p
, log

R0(ρ)
1 − p

}

≤ min{log
R1(1)

p
, log

R0(1)
1 − p

}− δ′ = −δ′

and

max{log
R1(ρ)

p
, log

R0(ρ)
1 − p

}

≤ max{log
R1(1)

p
, log

R0(1)
1 − p

} = 0.

Hence, since p ∈ (0, 1), from the definition of G(ρ, p) we
conclude that for δ′′ = δ′ min{p, 1 − p} > 0 it holds that for
all ρ ≤ 1 − δ

2 , G(ρ, p) ≤ −δ′′. Hence since n ≥ (1 + ε)n∗

and n∗ = Θ(log M) we conclude that for all ρ ≤ 1 − δ
2 ,

(n − n∗)G(ρ, p) ≤ −εδ′′n∗ = −Ω(log M). (42)

Combining (41) with (42), and then using

n∗ =
log M

h(p)
+ o(log M),

we conclude

Eρ1(ρ ≤ 1 − δ

2
)MenG(ρ,p)+o(n)

≤ e−Ω(log M)×

Eρ exp
(

n∗(p log
R1(ρ)

p2
+ (1 − p) log

R0(ρ)
(1 − p)2

)
)

= e−Ω(log M)×

Eρ exp
(

log M

h(p)
(p log

R1(ρ)
p2

+ (1 − p) log
R0(ρ)

(1 − p)2
)
)

.

Hence we are left with establishing

lim sup
N

1
log M

log Eρ exp (W (ρ, p) log M) = 0, (43)

for W (ρ, p) " 1
h(p) (p log R1(ρ)

p2 + (1 − p) log R0(ρ)
(1−p)2 ).
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To prove it, let us fix a positive integer k. We have

Eρ exp (W (ρ, p) log M)

≤
k−1∑

'=0

P [ρ ≥ )/k] sup
t∈['/k,('+1)/k)

exp (W (t, p) log M)

≤k ·max
0≤'<k

sup
t∈['/k,('+1)/k]

exp (W (t, p) log M +logP [ρ≥)/k]).

Therefore by using the overlap rate function r,

lim sup
N

1
log M

log Eρ exp (W (ρ, p) log M)

≤ max
0≤'<k

sup
t∈['/k,('+1)/k]

(
W (t, p) − r

(
)

k

))

≤ sup
t∈[0,1]

(W (t, p) − r(t)) + sup
t,t′∈[0,1]:|t−t′|≤ 1

k

|r(t) − r(t′)|.

Sending k → +∞ using the uniform continuity of r (implied
by e.g. the Heine-Cantor theorem) we conclude

lim sup
N

1
log M

log Eρ exp (W (ρ, p) log M)

≤ sup
t∈[0,1]

(W (t, p) − r(t)) .

The assumption (21) completes the proof.
!

APPENDIX V
APPLICATIONS: THE PROOFS

In this section we present the proofs for the three families
of models we establish the all-or-nothing phenomenon using
our technique. The proof concept remains the same across
the different models; we apply Corollary 1 and check that all
assumptions apply.

A. Proof of Theorem 2

Proof: We apply Corollary 1. Notice that for any fixed
θ ∈ Θ the random variable

√
k〈Xi, θ〉 follows a Binomial

distribution Bin(k, ν
k ). Therefore

p = 1 − P (g(X, θ) = 0) = 1 −
(
1 − ν

k

)k
= 1 − q. (44)

Hence h(p) = h(q) and the critical sample size is indeed n∗ =
0 log (N

k)
h(q) 1, and Stirling’s formula implies that since k = o(N),

H(θ) = log
(N

k

)
= (1 + o(1))k log N

k and therefore it also

holds n∗ = (1 + o(1))k log N
k

h(q) .
We now check the assumptions of the Corollary.
1) Assumption 1: We start with Assumption 1, which

concerns properties of the prior. We use [18, Lemma 6] to
conclude that the prior PΘ admits the overlap rate function
r(t) = t, per Definition 2. Now, notice that the first part of
Assumption 1 is directly implied by the fact that r(1 + δ) =
1 + δ > 1 for any fixed δ > 0. For the second part notice
that since the law of the prior is permutation-invariant with
respect to the N dimensions, for any fixed θ ∈ Θ and θ′

chosen from the prior, 〈θ, θ′〉 is equal in distribution to the
law of 〈θ, θ′〉 where θ, θ′ are two independent samples from

the prior. Hence using the overlap rate function r(t) = t we
have that for MN =

(N
k

)
it holds that for any ε > 0,

P (〈θ, θ′〉 > ε) ≤ exp (− (ε + o(1)) log MN) = o(1),

as desired.
2) Assumptions 2, 3: For Assumption 2 and Assumption 3

we directly compute by elementary combinatorics the func-
tions Ri(ρ), i = 1, 2 and R(ρ). Recall that {g(X, θ′) = 1}
is the event that the supports of θ′ and X have a non-empty
intersection. Given a N -dimensional vector v ∈ Rn, we denote
its support by S(v) := {i ∈ [N ] : vi %= 0}. First, fix some
ρ ∈ [0, 1] and we compute Rρ(1) by considering two arbitrary
θ, θ′ which share ρk indices in their support. Notice that for
the argument to be non-vacuous we assume also that ρ = )/k
for some ) ∈ {0, 1, 2, . . . , k}. Conditioning on whether S(X)
intersects S(θ) ∩ S(θ′), we have

R1(ρ) = P (g(X, θ) = g(X, θ′) = 1)
= P (S(X) ∩ S(θ) %= ∅, S(X) ∩ S(θ′) %= ∅)

= 1 −
(
1 − ν

k

)'

︸ ︷︷ ︸
case S(X)∩S(θ)∩S(θ′) 2=∅

+
(
1 − ν

k

)'
(

1 −
(
1 − ν

k

)k−'
)2

︸ ︷︷ ︸
case S(X)∩S(θ)∩S(θ′)=∅

= 1 − 2
(
1 − ν

k

)k
+
(
1 − ν

k

)2k−'

= 1 − 2q + q2−ρ.

Likewise,

R0(ρ) = P (g(X, θ) = g(X, θ′) = 0)
= P (S(X) ∩ S(θ) = S(X) ∩ S(θ′) = ∅)

=
(
1 − ν

k

)2k−'

= q2−ρ

We obtain

R(ρ) = 1 − 2q + 2q2−ρ.

It can be straightforwardly checked that all three functions are
strictly increasing and continuous in [0, 1].

3) Condition (21): Finally, we need to check the condition
(21). First notice that since r(t) = t we need to show that for
all ρ ∈ [0, 1],

ρh(p) ≥
(

p log
R1(ρ)

p2
+ (1 − p) log

R0(ρ)
(1 − p)2

)
,

or using the definition of h,

0 ≥ p log
R1(ρ)
p2−ρ

+ (1 − p) log
R0(ρ)

(1 − p)2−ρ
. (45)

Notice that for any ρ,

R0(ρ)
(1 − p)2−ρ

= 1.

Therefore it suffices to show that for every ρ ∈ [0, 1],

R1(ρ) ≤ p2−ρ
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or equivalently with respect to q = 1 − p,

1 − 2q + q2−ρ ≤ (1 − q)2−ρ.

To prove the latter, recall that q ≤ 1
2 and consider the function

f(ρ) = (1− q)2−ρ − q2−ρ. Notice that f(0) = f(1) = 1− 2q
and therefore it suffices to prove that f is concave in [0, 1].
The second derivative of f is

f ′′(ρ) = log(1 − q)2(1 − q)2−ρ − (log q)2q2−ρ

= (1 − q)2−ρ

(
log(1 − q)2 − (log q)2(

q

1 − q
)2−ρ

)

≤ (1 − q)2−ρ

(
log(1 − q)2 − (log q)2(

q

1 − q
)2
)

,

since q ≤ 1
2 . Hence, it suffices to show log(1 − q)2 ≤

(log q)2( q
1−q )2 or (1−q) log(1−q) ≥ q log q. To prove the lat-

ter consider the function g(q) = (1−q) log(1−q)−q log q, q ∈
(0, 1

2 ]. Notice that g(0+) = g(1/2) = 0, and that for each
q ∈ (0, 1

2 ) g′′(q) = 2q−1
q(1−q) < 0. Hence, g(q) is concave on

the interval [0, 1/2], and g(q) ≥ min{g(0+), g(1/2)} = 0 as
we wanted. The proof is complete.

!

B. Proof of Theorem 3

Proof: We apply Corollary 1. Notice that since any fixed
θ ∈ Θ lies on the unit sphere in RN and Xi ∼ N(0, IN ),
it holds that 〈Xi, θ〉 ∼ N(0, 1). Hence

p = P (g(Xi, θ) = 1) = P (〈Xi, θ〉 ∈ A) =
1
2
.

Hence indeed the critical sample size is n∗ = 0 log (N
k)

h( 1
2 )

1 =
(1 + o(1))0k log2

N
k 1, where we have Stirling’s formula and

the assumption that k = o(N).
We now check the assumptions of the Corollary.
1) Assumption 1: Assumption 1 concerns properties of the

prior PΘ and they are already established in the corresponding
part of Theorem 2, since the prior is identical.

2) Assumptions 2, 3: For Assumption 2 and Assumption 3,
we study the functions Ri(ρ), i = 0, 1 and R(ρ).

Now we compute the functions. Recall that {g(X, θ) =
1} = {〈Xi, θ〉 ∈ A} and that for any θ, θ′ ∈ Θ with
〈θ, θ′〉 = ρ the pair 〈Xi, θ〉, 〈Xi, θ′〉 is a bivariate pair of
standard Gaussians with correlation ρ. Letting (Z, Zρ) be such
a pair, we therefore have

R1(ρ) = P (g(X, θ) = g(X, θ′) = 1) = P (Z ∈ A, Zρ ∈ A),
R0(ρ) = P (g(X, θ) = g(X, θ′) = 0) = P (Z %∈ A, Zρ %∈ A),
R(ρ) = P (g(X, θ) = g(X, θ′))

= P (Z ∈ A, Zρ ∈ A) + P (Z %∈ A, Zρ %∈ A).

Furthermore, because A is balanced we have for any ρ ∈ [0, 1],

R(ρ) = P ({Z ∈ A, Zρ ∈ A} ∪ {Z /∈ A, Zρ /∈ A})
= P (Z ∈ A, Zρ ∈ A) + P (Z /∈ A, Zρ /∈ A)
= P (Z ∈ A, Zρ ∈ A) + (1 − P (Z ∈ A)
− P (Zρ ∈ A) + P (Z ∈ A, Zρ ∈ A))

= 2P (Z ∈ A, Zρ ∈ A)
= 2R1(ρ)
= 2R0(ρ).

The uniform limits are all strictly increasing with respect to
ρ ∈ [0, 1] and continuous at 0+, by Lemma 5 applied to A
and AC .

3) Condition (21): Finally, we need to check the condition
(21). First notice that similar to Theorem 2 the prior admits
the overlap rate function r(t) = t and therefore the condition
is equivalent with (45). Notice that (45) simplifies since p =
1/2 in our case to

R1(ρ) ≤ 2ρ−2,

or

P (Z ∈ A, Zρ ∈ A) ≤ 2ρ−2. (46)

By Borell’s noise stability theorem [7], since P (Z ∈ A) =
1/2 = P (Z ≥ 0), we have

P (Z ∈ A, Zρ ∈ A)

≤ P (Z ≥ 0, Zρ ≥ 0) =
1
4

(
1 +

2
π

arcsin ρ

)
,

where the equality is by Sheppard’s formula [24].
Hence it suffices to show that for all ρ ∈ [0, 1] it holds

2ρ ≥ 1 + 2
π arcsin(ρ). We consider the function g(ρ) = 2ρ −

1− 2
π arcsin(ρ), ρ ∈ [0, 1]. It suffices to show g(ρ) ≥ 0 for all

ρ ∈ [0, 1].
Now notice g(0) = g(1) = 0 and g(1

2 ) =
√

2 − 4/3 > 0.
We claim that there is no root of g in (0, 1) which implies the
result by Bolzano’s theorem. Arguing by contradiction, if there
was a root then the derivative

g′(ρ) = 2ρ ln 2 − 2
π

1√
1 − ρ2

would have two roots in (0, 1) by Rolle’s theorem. Rearrang-
ing, this is equivalent to the equation

ρ ln 2 +
1
2

ln(1 − ρ2) = ln(
2

π ln 2
)

having two roots in (0, 1). But the function on the left side is
concave and is zero for ρ = 0, so it takes each negative value
at most once. Since ln( 2

π ln 2 ) < 0 we are done.
!

APPENDIX VI
REMAINING PROOFS

Proof of Proposition 1: The equality (7) follows in a
straightforward manner from the observation that the posterior
of θ given Y n, Xn is the uniform measure over the solutions
θ′ of equations (6), and the definition of ZN,δ.

For (8) notice that by Cauchy-Schwarz inequality that if θ′

is drawn from the posterior Pθ|Y n,Xn ,

MMSEN (n) = E‖θ − E[θ|Y n, Xn]‖2

=
1
2

E‖θ − θ′‖2
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=
1
2

∫ 2

δ=0
P (‖θ − θ′‖2 ≥ δ)

=
1
2

∫ 2

δ=0
EP (‖θ − θ′‖2 ≥ δ|Y n, Xn)

=
1
2

E
∫ 2

δ=0
P (‖θ − θ′‖2 ≥ δ|Y n, Xn),

where in the second line we have used Lemma 2 and where in
the last line we are allowed to exchange the order of integration
by Tonelli’s theorem as all integrands are non-negative. Notice
that finally (7) allows us to conclude (8).

For the second part, fix some arbitrary ε ∈ (0, 2] and set
A = {ZN,ε/ZN,0 > ε}. From (11) we have P (A) = o(1).
Notice that for any ε′ with 2 ≥ ε′ ≥ ε, it holds almost surely
ZN,ε′1(Ac)/ZN,0 ≤ ε. Hence, we have using (8),

MMSEN (n)

≤ E
∫ 2

δ=0

ZN,δ

ZN,0
dδ

= E
∫ 2

δ=0

ZN,δ

ZN,0
1(Ac)dδ + E

∫ 2

δ=0

ZN,δ

ZN,0
1(A)dδ

≤ E
∫ ε

δ=0

ZN,δ

ZN,0
dδ + 2ε + P (A)

≤ 3ε + o(1).

Therefore,

lim sup
N

MMSEN (n) ≤ 3ε.

As ε ∈ (0, 2] was arbitrary we conclude (10).
The other direction follows in a straightforward manner

since for any fixed ε > 0,

MMSEN (n) ≥ E
∫ ε

δ=0

ZN,δ

ZN,0
dδ ≥ εEZN,ε

ZN,0
.

!
Proof of Proposition 2: Using (23) from Proposition 3 we

have that since the KL divergence is non-negative,

1 − H(θ|Y n, Xn)
H(θ)

≤ (1 + o(1))
n

n∗ (47)

Using now Proposition 4 we conclude that (24) holds. Com-
bining (24) with (47) concludes the result. !

Lemma 5: Let Z and Zρ be a bivariate pair of standard
Gaussians with correlation ρ. Then for any Borel set A ⊆ R
such that P (Z ∈ A) ∈ (0, 1), the function

ρ 9→ P (Z ∈ A, Zρ ∈ A)

is strictly increasing on [0, 1] and continuous on [0, 1).
Proof: Write γ for the standard Gaussian measure on R.

We recall [see, e.g. [19], Proposition 11.37] that there exists
an orthonormal basis {hk}k≥0 for L2(γ) such that, for any
f ∈ L2(γ),

E[f(Z)f(Zρ)] =
∑

k≥0

ρkf̂2
k ,

where the coefficients {f̂k}k≥0 are defined by

f =
∑

k≥0

f̂khk in L2(γ).

Moreover, h0 = 1, so that if f is not γ-a.s. constant, there
exists a k > 0 for which f̂k %= 0. We obtain that, for any
non-constant f , the function E[f(Z)f(Zρ)] =

∑
k≥0 ρkf̂2

k is
strictly increasing on [0, 1]. Furthermore, by Parseval’s iden-
tity

∑
k≥0 f̂2

k = E[f2(Z)] < +∞. Hence then function
E[f(Z)f(Zρ)] =

∑
k≥0 ρkf̂2

k is also continuous on [0, 1).
Applying this result to the non-constant function f(x) =

1(x ∈ A) ∈ L2(γ) yields the claim. !
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