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Abstract. We prove a central limit theorem for the entropic transportation cost between subgaussian probability
measures, centered at the population cost. This is the first result which allows for asymptotically
valid inference for entropic optimal transport between measures which are not necessarily discrete.
In the compactly supported case, we complement these results with new, faster, convergence rates
for the expected entropic transportation cost between empirical measures. Our proof is based on
strengthening convergence results for dual solutions to the entropic optimal transport problem.
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1. Introduction. Optimal transport has emerged as a leading methodology in many areas
of data science, machine learning, and statistics [1, 3, 7, 8, 10, 11, 13, 16, 17, 22, 29, 30, 34,
38, 39, 40, 41, 44, 48, 49, 55, 56, 62, 65, 66, 70, 71, 72, 75], with applications in fields ranging
from high-energy physics [47, 67] to computational biology [69, 79]. Central to its recent
success in practice is the paradigm of entropic regularization, popularized by [15], which leads
to a highly e�cient parallelizable algorithm suitable for large-scale data analysis [60]. This
regularization is defined by augmenting the standard optimal transportation problem by a
penalization term based on relative entropy, defined between two probability measures ↵ and
� as H(↵|�) =

R
log(d↵d� (x))d↵(x) if ↵ is absolutely continuous with respect to �, ↵⌧ �, and

+1 otherwise. Given P,Q2P(Rd) and ✏> 0, the resulting problem reads

S✏(P,Q) = min
⇡2⇧(P,Q)

Z

Rd⇥Rd

1

2
kx� yk2d⇡(x, y) + ✏H(⇡|P ⇥Q),(1.1)

where ⇧(P,Q) denotes the set of couplings between P and Q.
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640 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

Alongside its computational virtues, entropic regularization also brings substantial sta-
tistical benefits: entropically regularized transportation costs enjoy faster convergence rates
than their unregularized counterparts, even in high dimensions, making them useful for esti-
mation tasks [12, 31, 54, 61]. Moreover, entropic regularization seems well suited to problems
involving data corrupted with Gaussian noise [64]. Together, this body of results suggests the
strengths of entropic optimal transport as an applied and theoretical statistical tool.

Obtaining limit theorems for the unregularized transportation costs is a long-standing
question in probability theory and statistics. (See the recent work [43] for references and
an account of the history of this problem.) Under relatively stringent assumptions on the
measures, it is known that the empirical unregularized transport cost possesses asymptotically
Gaussian fluctuations around its expectation [20, 23]; stronger results can be obtained when
one or both of the measures are discrete [21, 73, 74], when the measures are smooth [53], and
in one dimension [18, 19].

The strict convexity and di↵erentiability of the regularized optimal transportation problem
make it possible to prove significantly more general results. A central limit theorem (CLT)
for entropy regularized transportation costs, centered at the expectation of the empirical
cost, was first obtained by [54] (see (1.2) below). Generalizations and extensions for discrete
measures have been proved by [6, 46]. A growing body of work investigates the properties
of the entropy regularized optimal transport problem from the perspective of probability and
analysis, including its asymptotic properties as ✏! 0 [2, 5, 9, 25, 26, 33, 42, 58, 59], opening
the door to further statistical applications of entropy regularized transport.

A crucial question in statistical applications of entropic optimal transport costs is the
construction of asymptotic confidence intervals, to permit asymptotically valid inference. The
most general results known in this direction are due to [54], which showed that if P and Q
are subgaussian probabilities on Rd, then

p
n(S✏(Pn,Q)�ES✏(Pn,Q))

w�!N(0,VarP (f
⇤
✏ )),(1.2)

with S✏(·, ·) as in (1.1). (See section 2 for further background and definitions.) A limitation
of this result in practical inference problems is the centering at ES✏(Pn,Q) rather than at
the population quantity S✏(P,Q). This result parallels known results for the unregularized
transport cost: [20, 23] show that, under suitable technical conditions on P and Q, there
exists �� 0 such that

p
n(W p

p (Pn,Q)�EW p
p (Pn,Q))

w�!N(0,�2) ,(1.3)

where Wp denotes the unregularized p-transportation cost, p > 1. See also [36] for its gen-
eralization to the flat torus. In this case, it is known that the centering at EW p

p (Pn,Q) is
unavoidable, and that it is not possible in general to replace EW p

p (Pn,Q) by W p
p (P,Q), in

view of the fact that known lower bounds on convergence rates of the Wasserstein distance
imply that

p
n(W p

p (Pn,Q)�W p
p (P,Q)) is typically not stochastically bounded when d> 2p.

However, this limitation does not apply to the entropically regularized transport costs.
Indeed, the results of [31] imply that, for compactly supported measures,

|S✏(P,Q)�ES✏(Pn,Q)|CP,Qn
�1/2(1.4)
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 641

for a positive constant CP,Q depending exponentially on ✏. A further refinement due to [54]
showed that the same bound holds for subgaussian distributions, and that CP,Q can be taken
to have only polynomial dependence on ✏. As a consequence, prior work does not rule out the
possibility that

p
n(S✏(Pn,Q)� S✏(P,Q)) enjoys a CLT, but neither does it provide a proof

that such a theorem holds. In this paper, we close this gap. We show a CLT of the form

p
n(S✏(Pn,Q)� S✏(P,Q))

w�!N(0,VarP (f
⇤
✏ )),(1.5)

valid for any subgaussian probabilities P and Q in any dimension. Prior to our work, such a
bound was known only when P and Q were supported on a finite or countable set [6, 46]. Our
results represent a significant generalization of these results and imply that, under su�ciently
strong moment conditions, asymptotically valid inference is always possible for the entropic
transportation cost.

Our proof of (1.5) is based on an important strengthening of (1.4). Specifically, we show
that, for subgaussian probability measures,

|ES✏(Pn,Q)� S✏(P,Q)|= o(n�1/2) as n!1.(1.6)

Combining this result with (1.2) yields (1.5).
When P and Q are supported on a bounded set ⌦, we are able to obtain substantially more

precise results, which are of independent interest. Our techniques imply that for compactly
supported P and Q,

|ES✏(Pn,Q)� S✏(P,Q)|CP,Qn
�1 .

(See Remark 3.5.) This result implies that the bias of S✏(Pn,Q) decays at the fast n�1 rate,
thereby recovering the rate typically obtained for parametric estimation problems.1 Our proof
also yields new sample complexity results for the Sinkhorn divergence, defined as D✏(P,Q) =
S✏(P,Q)� 1

2(S✏(P,P ) + S✏(Q,Q)). For probability measures on compact sets, convergence in
Sinkhorn divergence is equivalent to weak convergence [27], implying that D✏(Pn, P )! 0 a.s.
In Theorem 5.1, we show the quantitative bound

ED✏(Pn, P )CPn
�1,

valid for all compactly supported P . This convergence rate could have been anticipated from
known distributional limits for Sinkhorn divergences between finitely supported measures
[6, 46], but was unknown prior to our work.

In the bounded case, these results are all derived as corollaries of new convergence results
for the optimal dual potentials in the entropic transport problem. In Theorem 4.5, we prove
that, when P and Q are bounded, the entropic potentials converge fast in Hölder norm:

Ekgn � g⇤k2Cs(⌦), Ekfn � f⇤k2Cs(⌦) CP,Qn
�1 ,(1.7)

1A similar result was obtained in independent concurrent work [63].
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642 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

where s= [d/2]+ 1. We prove this result, as well as its two-sample analogue, in section 4. To
our knowledge, these bounds for the derivatives are new, even for finitely supported probability
measures. A similar bound showing convergence of the potentials in L1 has been proved using
completely di↵erent techniques in [51], though the bounds obtained do not seem to be strong
enough to obtain Theorem 5.1.

When P and Q are not necessarily bounded but have subgaussian tails, we prove a
nonquantitative analogue of (1.7), showing that fn and gn converge to f⇤ and g⇤ a.s. in
a suitably strong topology. This result is a strengthening of a similar convergence result
obtained by [54].

The results we develop here have multiple applications in statistics; here we underline
some of them. Since the first version of this work appeared, the bounds on the potentials have
been used to define and analyze a new Gaussian process on the space of distributions with
a.s. continuous sample paths [4], with applications to uncertainty quantification and Bayesian
modeling based on regularized optimal transport. These potential bounds have also been used
to obtain weak limits for estimators of the Sinkhorn divergence [37]. Theorem 5.1 also implies
improvements to tests already existing in the literature. Prior work has suggested the use of
the Sinkhorn divergence for independence testing [50], but that paper’s theoretical results use
a bound similar to that of [31] which implies that the critical value for valid independence
testing with the Sinkhorn divergence should be chosen to be of order n�1/2. The results of
this paper show that this bound is unnecessarily conservative at the null and can be improved
to n�1, which, of course, increases the power of the proposed tests.

The remaining sections of this paper are organized as follows. Section 2 provides some
background results on entropic transportation costs. The CLT (1.5) and the faster rate (1.6)
are given in section 3. Section 4 contains the announced results about the convergence rates
of the potentials. The bounds for Sinkhorn divergences are proved in section 5. Finally we
include a section with some numerical illustration of our limit theorems.

2. Preliminaries on entropic transportation costs. This selection collects several back-
ground results on the entropic transportation problem (1.1).

We say that a distribution ⌫ is the pushforward by a map T of a distribution µ if ⌫ = µ�T�1.
A simple computation shows that if P " and Q" denote the pushforwards of P and Q under
the map x 7! "�

1
2x, then S✏(P,Q) = "S1(P ",Q"). Hence, we focus on the case " = 1 and

write simply S(P,Q) instead of S1(P,Q). The minimization problem (1.1) admits a dual
formulation. In fact, if ⇡ 2⇧(P,Q) and r= d⇡

d(P⇥Q) , then, for any f 2L1(P ), g 2L1(Q),

Z 
1

2
kx� yk2 + log r(x, y)

�
r(x, y)dP (x)dQ(y)�

Z
f(x)dP (x) +

Z
g(y)dQ(y)

�
Z

ef(x)+g(y)� 1
2
kx�yk2

dP (x)dQ(y) + 1,

with equality if and only if r(x, y) = ef(x)+g(y)� 1
2
kx�yk2

P ⇥ Q-a.s. (This follows from the
elementary fact that s log s� s� 1, s > 0, with equality if and only if s= 1.) This inequality
implies the following version of weak duality:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 643

S(P,Q)� sup
f2L1(P ),g2L1(Q)

⇢Z

Rd

f(x)dP (x) +

Z

Rd

g(y)dQ(y)

�
Z

Rd⇥Rd

ef(x)+g(y)� 1
2
kx�yk2

dP (x)dQ(y) + 1

�
.

It shows also that if d⇡
d(P⇥Q) = ef(x)+g(y)� 1

2
kx�yk2

for some f 2L1(P1) and g 2L1(Q), then ⇡ is
a minimizer for the entropic transportation problem (indeed, by the strict convexity of H, it
is the unique minimizer). The theory of entropic optimal transportation (see [14, 57]) shows
that the last inequality is, in fact, an equality, namely,

S(P,Q) = sup
f2L1(P ),g2L1(Q)

⇢Z

Rd

f(x)dP (x) +

Z

Rd

g(y)dQ(y)

�
Z

Rd⇥Rd

ef(x)+g(y)� 1
2
kx�yk2

dP (x)dQ(y) + 1

�
.(2.1)

Maximizing pairs in (2.1) are called optimal potentials. These optimal potentials exist and
satisfy some regularity conditions under integrability assumptions on P and Q.

Following the framework in [54], we say that a probability P is �2-subgaussian if

E(e
kXk2

2d�2 ) 2 when X ⇠ P . When P and Q are subgaussian there exist optimal potentials,
denoted by f⇤, g⇤, satisfying the optimality conditions, i.e.,

Z
ef

⇤(x)+g⇤(y)� 1
2
kx�yk2

dQ(y) = 1 8x2Rd,
Z

ef
⇤(x)+g⇤(y)� 1

2
kx�yk2

dP (x) = 1 8y 2Rd;(2.2)

see Proposition 6 in [54]. Moreover, the pair (f⇤, g⇤) satisfying (2.2) is unique up to constant
shifts, and is uniquely specified by adopting the normalization convention

Z
f⇤(x)dP (x) =

Z
g⇤(y)dQ(y).(2.3)

In what follows, we tacitly assume that (2.3) holds unless we explicitly specify an alternate
convention.

The above considerations imply that the minimizer in the primal formulation is

d⇡⇤ = ef
⇤(x)+g⇤(y)� 1

2
kx�yk2

dQ(y)dP (x),

where f⇤ and g⇤ satisfy

f⇤(x) =� log

✓Z
eg

⇤(y)� 1
2
kx�yk2

dQ(y)

◆
,

g⇤(y) =� log

✓Z
ef

⇤(y)� 1
2
kx�yk2

dP (y)

◆
.(2.4)

Let ↵ = (↵1, . . . ,↵d) 2 Nd be a multi-index. If P,Q 2 P(Rd) are �2-subgaussian, then (see
Proposition 1 in [54]), the optimal potential f⇤ specified above is such that

����D
↵

✓
f⇤ � 1

2
k · k2

◆
(x)

����Ck,d

(
1 + �4 if k= 0

�k(�+ �2)k otherwise
if kxk 

p
d�,(2.5)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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644 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

����D
↵

✓
f⇤ � 1

2
k · k2

◆
(x)

����Ck,d

(
1 + (1 + �2)kxk2 if k= 0

�k(
p

�kxk+ �kxk)k otherwise
if kxk �

p
d�,(2.6)

and likewise for g⇤, where in both cases k := |↵|, and the constant Ck,d depends only on d
and k.

Throughout the paper, we will assume that P,Q2P(Rd) are �2-subgaussian probabilities
and X1, . . . ,Xn and Y1, . . . , Ym are independent samples of independent and identically dis-
tributed (i.i.d.) random variables with laws P and Q, respectively. We will denote by Pn and
Qm the associated empirical measures. We will require that the measures Pn and Qn are also
subgaussian, which is guaranteed by the following result, which summarizes Lemmas 2 and 4
in [54].

Lemma 2.1. Let X1, . . . ,Xn be i.i.d. random variables with �2-subgaussian law P 2P(Rd),
and let Pn be the associated empirical measure. Then, there exists a random variable �̃, such
that

1. for every n2N, the probabilities P and Pn are uniformly �̃2-subgaussian a.s.,
2. for any k 2N, we have E(�̃2k) 2kk�2k.

3. An improved central limit theorem for subgaussian probability measures. This sec-
tion shows that, for subgaussian probability measures, the expected empirical entropic trans-
portation cost converges to its population counterpart with rate o(n�1/2). This is an
improvement over the bound (1.4) derived in [54] and has, as a main consequence, a CLT
for the empirical entropic transportation cost with the natural centering constants (see The-
orem 3.6), which, in turn, yields an asymptotically valid confidence interval for S"(P,Q) re-
gardless of the dimension, d.

Let s be a nonnegative integer. To prove the main result in this section, we introduce the
class Gs(C), consisting of all f 2 Cs(Rd) such that

|f(x)|C(1 + kxk3),
|D↵f(x)|C(1 + kxks+1), |↵| s.(3.1)

Our next results gives an estimate of the complexity of this class, in terms of covering numbers2

with respect to the random metric L2(dPn). The proof can be easily adapted from the proof
of Proposition 3 in [54]. We omit further details.

Lemma 3.1. Assume Gs(C) is as above. If X1, . . . ,Xn are i.i.d. random variables with �2-

subgaussian law P 2P(Rd), Pn is the associated empirical measure, and L= 1
n

Pn
i=1 e

� kXik
2

4d�2 ,
then, for a constant Cs,d depending only on s and d,

logN (✏,Gs(C),L2(dPn))Cs,dL
d
2s ✏

�d
s (1 + �d)(1 + �s)

d
s .(3.2)

2Here N (✏,Gs(C),L2(dPn)) denotes the covering numbers of the class Gs(C) with respect to the metric
L2(Pn), i.e., the minimal number of balls of radius ✏ needed to cover that class (see [77, Definition 2.1.5] for
the definition).
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 645

Finally, we introduce the space Gs =
S

C�0 Gs(C) endowed with the norm

kfks =
����

f

1 + k · k3

����
1

+
sX

i=1

X

|k|=i

����
Dkf

1 + k · ks+1

����
1
.

Let (Gs)0 denote the dual space of Gs, endowed with the dual norm

kGk0s = sup
f2Gs, kfks1

|G(f)|.

With these ingredients we are ready to prove the main technical result of this section, from
which we obtain the CLT for the entropic transportation cost with natural centering constants
(Theorem 3.6 below).

Lemma 3.2. If P,Q2P(Rd) are �2-subgaussian probabilities, then
p
n |ES(Pn,Q)� S(P,Q)|! 0.(3.3)

Moreover, if m=m(n) and � := limn!1
n

n+m 2 (0,1), then
r

nm

n+m
|ES(Pn,Qm)� S(P,Q)|! 0.(3.4)

Proof. Let (fn, gn) 2 L1(Pn)⇥ L1(Q) be the unique pair of optimal potentials satisfying
(2.2) and (2.3) for Pn,Q. As noted above, by Proposition 6 in [54], this pair satisfies (2.5)
and (2.6). We observe that, by optimality of the potentials,

S(P,Q)�
Z

Rd

fn(x)dP (x) +

Z

Rd

gn(y)dQ(y)�
Z

Rd⇥Rd

efn(x)+gn(y)� 1
2
kx�yk2

dP (x)dQ(y) + 1,

which yields

0
p
n (ES(Pn,Q)� S(P,Q))E

Z

Rd

fn(x)
p
n(dPn � dP )(x)

�E
Z

Rd⇥Rd

efn(x)+gn(y)� 1
2
kx�yk2p

n(dPn � dP )(x)dQ(y).

Now the optimality condition
Z

Rd⇥Rd

efn(x)+gn(y)� 1
2
kx�yk2

dQ(y) = 1 8x2Rd

implies that

0
p
n (ES1(Pn,Q)� S1(P,Q))E

Z

Rd

fn(x)
p
n(dPn � dP )(x).

Set s = [d/2] + 1, and let (f⇤, g⇤) 2 L1(P )⇥ L1(Q) be the unique pair of optimal potentials
satisfying (2.2) and (2.3) for P,Q. Since E

R
Rd f⇤(x)

p
n(dPn � dP )(x) = 0,

0
p
n (ES1(Pn,Q)� S1(P,Q))E

Z

Rd

{fn(x)� f⇤(x)}
p
n(dPn � dP )(x).
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646 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

We write now Gn for the empirical process indexed by Gs, that is, Gn(f) =
p
n(Pn(f)�P (f)),

f 2 Gs, and note that

|Gn(f)|
p
n(Pn + P )(|f |)

���
f

1 + k · k3
���
1

p
n(Pn + P )(1 + k · k3)


p
n(Pn + P )(1 + k · k3)kfks 

p
n(2 + 48(d�̃2)3)kfks,

where the last inequality comes from Lemma 1 in [54]. Consequently, we deduce that Gn

belongs to the dual space (Gs)0 for all n2N, and we get the bound

p
n (ES1(Pn,Q)� S1(P,Q))E

�
kGnk0skf⇤ � fnks

 
.

Using the Cauchy–Schwarz inequality we see that

p
n (ES1(Pn,Q)� S1(P,Q))

q
EkGnk0s

2Ekf⇤ � fnk2s.(3.5)

Note that kGnk0s is the sup taken on the unit ball of Gs, which is contained in Gs(1). We
can conclude, by using (3.2) and Theorem 3.5.1 and Exercise 2.3.1 in [35], that there exists a
constant Cs,d > 0 such that

EkGnk0s
2 Cs,dE

 Z maxkfks1 kfkL2(dPn)

0

q
L

d
2s ✏

�d
s (1 + �d)(1 + �s)

d
s d✏

!2

 (1 + �d)(1 + �s)
d
sCs,dE

 Z 1+4
p
3d3/2�̃3

0
L

d
4s ✏

�d
2s d✏

!2

C 0
s,d(1 + �2d)EL

d
2s (1 + �̃3)

2s�d
s ,

where we have used first Lemma 1 in [54] to bound

max
kfks1

kfkL2(dPn)  1 +

✓Z
kxk6dPn(x)

◆1/2

 1 + 4
p
3d3/2�̃3

and then the fact that s= [d/2] + 1. Using the Cauchy–Schwarz inequality we see that

EL
d
2s (1 + �̃3)

2s�d
s 

q
EL d

sE(1 + �̃3)
2(2s�d)

s ,

where we can use the fact that EL < C for a positive constant C independent of n and
Lemma 2.1 to conclude that limsupEkGnk0s

2 <1.
To deal with the second term in (3.5) we denote �n = f⇤ � fn. We prove next that

k�nks ! 0 a.s., and then that it is dominated by a random variable with finite second
moment. Together, these facts imply that Ekf⇤ � fnk2s ! 0 and conclude the proof. The first
claim is given by the following result.

Lemma 3.3. Let P,Q2P(Rd) be �-subgaussian probabilities, and Pn,Qn associated empir-
ical measures. Then, the optimal transport potentials (fn, gn) for Pn,Qn satisfy kfn�f⇤ks ! 0
and kgn � g⇤ks ! 0 a.s.
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 647

Proof. We prove the result for fn, with the same conclusion following for gn by symmetry.
First, we use induction to prove convergence of the derivatives up to order s. We follow
classical arguments in real analysis (see [68]):

(1) For J = 0, Proposition 4 in [54] shows that, a.s., �n := f⇤ � fn ! 0 uniformly in
compact sets.

(2) Assume that for every k with |k|  J � 1, we have Dk�n ! 0, uniformly in compact
sets. Let k = (k1, . . . , kd) be such that |k| = J , and let BR ⇢ Rd be the ball of radius R
centered at 0. Using the fact that all the derivatives of Dk�n are bounded and Dk�n is
itself pointwise bounded (see Proposition 1 and Lemma 2 in [54]), we derive that the sequence
Dk�n is equicontinuous and bounded for all points. We can then apply the Arzelà–Ascoli
theorem on BR to deduce that, up to subsequences, Dk�n !�k uniformly on BR. Suppose,
without loss of generality, that k1 � 1, set k0 = (k1 � 1, . . . , kd), and note that

Dk0
�n(x) =

Z x1

0
Dk�n(t, , x2, . . . , xd)dt+Dk0

�n(0, x2, . . . , xd),

which implies that
����D

k0
�n(x)�

Z x1

0
�k(t, , x2, . . . , xd)dt

����


Z x1

0
|Dk�n(t, , x2, . . . , xd)��k(t, , x2, . . . , xd)|dt+ |Dk0

�n(0, x2, . . . , xd)|.

As a consequence,

sup
x2BR

����D
k0
�n(x)�

Z x1

0
�k(t, , x2, . . . , xd)dt

����

R sup
x2BR

|Dk�n(x)��k(x)|+ |Dk0
�n(0, x2, . . . , xd)|! 0,

where the limit follows from the induction hypothesis (recall that supx2BR
|Dk0

�n(x)| ! 0).
By uniqueness of the limit we conclude that 0 =

R x
0 �kdx1, which implies that �k = 0. By

taking R!1 we conclude that Dk�n ! 0 uniformly on the compact sets of Rd.
To show convergence in the norm k · ks, it su�ces to show that for any ✏> 0, there exists

an n0 such that k�nks  ✏ for all n� n0. Recall that by Lemma 2.1(1) and Proposition 1 in
[54], there exists an a.s. finite random variable �̃ and a constant Ks,d such that for all n 2N
and x2Rd,

|�n(x)|
1 + kxk3 Ks,d

1 + �̃4

1 + kxk ,

|Dk�n(x)|
1 + kxks+1

Ks,d
1 + �̃3s

1 + kxk 8|k| s.

(3.6)

We obtain that there exists a finite random variable K̃ such that

|�n(x)|
1 + kxk3 +

sX

i=1

X

|k|=i

|Dk�n(x)|
1 + kxks+1

 ✏/2 8kxk> K̃✏�1, n� 0 .
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648 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

Since �n and Dk�n converge uniformly to zero on the compact set {x2Rd : kxk  cd,sK̃✏�1},
there exists an n0 for which

|�n(x)|
1 + kxk3 +

sX

i=1

X

|k|=i

|Dk�n(x)|
1 + kxks+1

 ✏/2 8kxk  K̃✏�1, n� n0 .

Combining these claims, we obtain that k�nks  ✏ for all n� n0, as desired.

To complete the proof of Lemma 3.2 it only remains to prove that kfn � f⇤ks can be
dominated by a random variable with finite second moment. We have from (3.6) above that
k�nk2s K 0

s,d(1+�̃3s)2 for some constant K 0
s,d. It only remains to show that E

�
1 + �̃3s

�2
<1.

But Lemma 2.1 implies that all moments of �̃ are finite, which completes the proof.
To deal with the two-sample case, we split the di↵erence as follows:

r
nm

n+m
|ES1(Pn,Qm)� S1(P,Q)|


r

nm

n+m
|ES1(Pn,Qm)� S1(P,Qm)|+

r
nm

n+m
|ES1(P,Qm)� S1(P,Q)|.

The second term tends to 0 by using (3.3). For the first one we denote gn,m a potential of
S1(Pn,Qm) and gm a potential of S1(P,Qm). Applying (3.5) we derive

p
m| (ES(Pn,Qm)� S(P,Qm)) |

q
EkFmk0s

2Ekgn,m � gmk2s

 2
q
EkFmk0s

2 (Ekgn,m � g⇤k2s +Ekgm � g⇤k2).

We conclude using Lemma 3.3 (which can be trivially adapted to this setup) and the subse-
quent argument.

As a consequence of Lemma 3.2, by simply considering the change of variables x 7! x✏�
1
2

(recall the comments at the beginning of this section) we obtain the generalization to any
✏> 0.

Corollary 3.4. Let P,Q 2 P(Rd) be �-subgaussian probabilities and Pn, Qm associated
empirical measures. Then

p
n |ES✏(Pn,Q)� S✏(P,Q)|! 0

and
r

nm

n+m
|ES✏(Pn,Qm)� S✏(P,Q)|! 0.

As announced, Corollary 3.4 improves over Corollary 1 in [54], which implied |ES✏(Pn,Q)�
S✏(P,Q)|=O(n�1/2) rather than |ES✏(Pn,Q)� S✏(P,Q)|= o(n�1/2).

Remark 3.5. In some cases we can go much further in this direction. In fact, if P and Q
are compactly supported, then (see Theorem 4.5 below)

Ekfn � f⇤k2Cs(⌦) 
c⌦
n

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/2

4/
23

 to
 2

16
.1

65
.9

5.
18

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 649

for some constant c⌦. Plugging this into (3.5) and using again the fact that limsupnEkGnk0s
2 <

1, we conclude that

|ES✏(Pn,Q)� S✏(P,Q)| C⌦

n
(3.7)

for some constant C⌦ > 0, which depends exponentially on the diameter of ⌦. A similar
conclusion holds for the two-sample problem. Whether this improved rate remains valid for
general subgaussian probabilities is an open question. The exponential dependence of C⌦

on the diameter of the support makes (3.7) tighter than [54]—where the rate is K⌦p
n
, with

K⌦ polynomially dependent on the diameter of ⌦—for big sample sizes. However, since the
constant goes from polynomial to exponential in the diameter, the bound in [54] may be more
appropriate for small data sets.

The following central limit becomes a direct consequence of Theorem 3 in [54], which
shows that the fluctuations around the mean are asymptotically Gaussian, i.e.,

p
n(S✏(Pn,Q)�ES✏(Pn,Q))

w�!N(0,VarP (f
⇤
✏ )).(3.8)

Here (f⇤
✏ , g

⇤
✏ ) are optimal potentials for S✏(P,Q). We observe that, while the pair of optimal

potentials is not uniquely defined, it follows from the uniqueness of the minimizer in (1.1) that
if (f̃✏, g̃✏) is another pair of optimal potentials, then f̃✏ = f⇤

✏ +K P -a.s. for some constant K.
Hence, VarP (f⇤

✏ ) is well defined in the sense that it does not depend on the choice of optimal
potential.

Theorem 3.6. Let P,Q2P(Rd) be �-subgaussian probabilities; then

p
n(S✏(Pn,Q)� S✏(P,Q))

w�!N(0,VarP (f
⇤
✏ )),

where (f⇤
✏ , g

⇤
✏ ) are optimal potentials for S✏(P,Q). Moreover, if � := limn,m!1

n
n+m 2 (0,1),

r
nm

n+m
(S✏(Pn,Qm)� S✏(P,Q))

w�!N(0, (1� �)VarP (f
⇤
✏ ) + �VarQ(g

⇤
✏ )).

The limits appearing in Theorem 3.6 are nondegenerate as long as the potentials have
positive variance; that is, degeneracy can only occur when f⇤

✏ is P -a.s. constant in the one-
sample case, or when f⇤

✏ and g⇤✏ are P -a.s. and Q-a.s. constant, respectively, in the two-sample
case. It is easy to see that this situation can occur, for instance, when both P and Q are
concentrated on a single point. In the case of the unregularized optimal transport problem, it
is known that degenerate limits can arise in other situations as well [43, section 4], including
when the distributions are absolutely continuous. However, the following result shows that, in
the regularized case, a degenerate limit cannot arise when at least one of the two distributions
is mutually absolutely continuous with the Lebesgue measure. We believe that the hypothesis
can be relaxed, but leave a further investigation of the degeneracy of the limit to future work.

Proposition 3.7. Let P,Q2P(Rd), and assume that one of the two measures is equivalent to
the Lebesgue measure. Then f⇤

✏ and g⇤✏ cannot both be constant. In particular, the two-sample
limit in Theorem 3.6 is nondegenerate.
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650 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

Proof. We prove the claim for ✏ = 1 and proceed by contradiction. Assume without loss
of generality that Q is mutually absolutely continuous with the Lebesgue measure. Suppose
that f⇤(x) + g⇤(y) = c for P ⇥Q-a.e. (x, y). Then by the optimality condition (2.2),

Z
ec�

1
2
kx�yk2

dP (x) = 1 Q-a.e.

Since Q is equivalent to the Lebesgue measure, this equality holds Lebesgue-a.e. In particular,
integrating both sides with respect to the Lebesgue measure, we obtain

Z Z
ec�

1
2
kx�yk2

dP (x)dy=+1 .

On the other hand, since the integrand is nonnegative, we can switch the order of integration
and explicitly evaluate the inner integral, yielding

Z Z
ec�

1
2
kx�yk2

dydP (x) =

Z
ec(2⇡)d/2dP (x)<+1 ,

since P is a probability measure. This results in a contradiction, so f⇤ and g⇤ cannot both be
constant.

One important advantage of Theorem 3.6 over (3.8) is that it can be exploited for inferen-
tial purposes. For instance, it enables us to build confidence intervals for S✏(P,Q) as follows.
Note that we can estimate the asymptotic variance in the one-sample CLT by

�̂2
n := VarPn

(fn,✏) =
1

n

nX

i=1

f2
n,✏(Xi)�

⇣ 1
n

nX

i=1

fn,✏(Xi)
⌘2

,(3.9)

where (fn,✏, gn,✏) is a pair of optimal potentials for S✏(Pn,Q). It follows from the proof of
Lemma 3.2 that Ekfn,✏ � f⇤

✏ k2s ! 0. Hence, kfn,✏ � f⇤
✏ ks ! 0 in probability. Using the

elementary bound |a2 � b2| |a� b|2 + 2|b||a� b|, we see that
����
1

n

nX

i=1

f2
n,✏(Xi)�

1

n

nX

i=1

f⇤
✏
2(Xi)

���� (kfn,✏ � f⇤
✏ k2s + 2kf⇤

✏ kskfn,✏ � f⇤
✏ ks)

1

n

nX

i=1

(1 + kXik3).

Since 1
n

Pn
i=1 f

⇤
✏
2(Xi)! EP (f⇤

✏
2) a.s., we conclude that 1

n

Pn
i=1 f

2
n,✏(Xi)! EP (f⇤

✏
2) in proba-

bility and, arguing similarly for 1
n

Pn
i=1 fn,✏(Xi), that

�̂2
n !VarP (f

⇤
✏ ) in probability.

We conclude that
p
n

�̂n
(S✏(Pn,Q)� S✏(P,Q))

w�!N(0,1)

and, as a consequence, that, writing z� for the � quantile of the standard normal distribution,

S✏(Pn,Q)± �̂np

n
z1�↵/2

�
(3.10)

is a confidence interval for S✏(P,Q) of asymptotic level 1�↵. A similar confidence interval can
be constructed from the two-sample statistic. Such results will be illustrated in the simulations
in section 6.
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 651

4. Convergence rates for optimal potentials. The goal of this section is to prove a
bound on the di↵erence between empirical potentials and their population counterparts. In
this section we assume that both measures, P,Q, are supported on a compact set ⌦ ⇢ Rd.
By translation invariance of the optimal transport problem, we may assume without loss
of generality that 0 2 ⌦. We write D⌦ for the diameter of ⌦ and let (f⇤, g⇤) be a pair
of optimal potentials (maximizers of (2.1) for P and Q) and (fn, gn) their empirical coun-
terpart (maximizers of (2.1) for Pn and Q). As noted above, these optimal potentials are
unique up to an additive constant. In this section, we adopt the following normalization
convention:

Z
g⇤(y)dQ(y) =

Z
gn(y)dQ(y) = 0,(4.1)

We show below that derivatives of the optimal potentials are uniformly bounded (see
Lemma 4.1). Additionally, the choice of optimal potentials in (4.1) allows us to control uni-
formly the optimal potentials, as we show in Lemma 4.4. These are key ingredients for the
aim of the section, namely, showing that the convergence rate of fn (resp., gn) towards f⇤

(resp., g⇤) is Op(
1p
n
).

The optimal potentials belong to the space Cs(⌦) for s =
⌃
d
2

⌥
+ 1, in which we consider

the norm

kfkCs(⌦) =
sX

i=0

X

|↵|=i

kD↵fk1.

In this section, we use the notation cd,s, c0d,s, . . . to indicate unspecified positive constants
depending on d and s whose value may change from line to line. The optimality conditions
(2.4) imply the following bounds (see Proposition 1 in [31]).

Lemma 4.1. Let ⌦ ⇢ Rd be a compact set and P,Q 2 P(⌦). Then the optimal potentials
(f⇤, g⇤) satisfy

(i) miny2⌦{1
2kx� yk2 � g⇤(y)} f⇤(x)maxy2⌦{1

2kx� yk2 � g⇤(y)},
(ii) f⇤(x) is D⌦-Lipschitz,
(iii) f⇤ 2 C1(⌦) and kD↵f⇤k1  Cd,↵(1 +D|↵|

⌦ ) for all multi-indices ↵ with |↵| � 1, for
some constant Cd,↵ depending only on d and ↵.

Proof. The first two claims are proven in Proposition 1 of [31], so it su�ces to consider
the last claim. We prove it for f⇤, the case of g⇤ being similar. Define f̄⇤(x) = f⇤(x)� 1

2kxk
2.

As in the proof of Proposition 1 in [54], the Faà di Bruno formula yields

�D↵f
⇤
(x) =

X

�1+···+�k=↵

�↵,�1,...,�k

kY

j=1

µ�j ,g 8x2⌦,

where �↵,�1,...,�k
are combinatorial quantities and for a multi-index � we define
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652 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

µ�,g =

R
y�eg

⇤(y)� 1
2
kyk2+hx,yidQ(y)

R
eg

⇤(y)� 1
2
kyk2+hx,yidQ(y)

=

Z
y�eh

⇤(x,y)� 1
2
kx�yk2

dQ(y)

=

Z dY

i=1

y�i

i eh
⇤(x,y)� 1

2
kx�yk2

dQ(y).

By the optimality condition (2.4),
R
eh

⇤(x,y)� 1
2
kx�yk2

dQ(y) = 1. As a consequence, there exists

C 0
d,↵ such that kD↵f

⇤k1  C 0
d,↵D

|↵|
⌦ . Since kD↵ 1

2kxk
2k1  1 + D⌦ for |↵| � 1, we obtain

kDaf⇤k C 0
d,↵D

↵
⌦ + 1+D⌦ Cd,↵(1 +D|↵|

⌦ ).

Remark 4.2. Since the probabilities Pn and Qn are also supported on the same compact
set ⌦, Lemma 4.1 holds also for fn and gn.

We also obtain bounds on the derivatives of eh
⇤(x,y)� 1

2
kx�yk2

.

Lemma 4.3. For any multi-index �, the function x 7! x�eh
⇤(x,y)� 1

2
kx�yk2

has Cs(⌦) norm
at most cd,seD

2
⌦(1 +Ds+|�|

⌦ ).

Proof. By Lemma 4.1, kx�eh⇤(x,y)� 1
2
kx�yk2k1 D|�|

⌦ eD
2
⌦ . For any 1  |↵|  s, the Faà di

Bruno formula implies

D↵eh
⇤(x,y)� 1

2
kx�yk2

= eh
⇤(x,y)� 1

2
kx�yk2

X

�1+···+�s=↵

�↵,�1,...,�s

sY

j=1

D�j

✓
h⇤(x, y)� 1

2
kx� yk2

◆

for some combinatorial coe�cients �↵,�1,...,�s
, where the derivative operators are taken with

respect to the x variable. By Lemma 4.1, this quantity is bounded in magnitude by cd,seD
2
⌦(1+

D|↵|
⌦ ) for some constant c0d,s. This implies

|D↵x�eh
⇤(x,y)� 1

2
kx�yk2 | c00d,se

D2
⌦(1 +Ds+|�|

⌦ ) 81 |↵| s.

Therefore, choosing cd,s to be a su�ciently large constant depending on d and s yields the
claim.

For our particular choice of optimal potentials we can also control the uniform norm, as
follows.

Lemma 4.4. Under (4.1), we have

kf⇤k1,kfnk1,kg⇤k1,kgnk1  1

2
D2

⌦.

Proof. Since

S✏(P,Q) =

Z

Rd

f⇤(x)dP (x) +

Z

Rd

g⇤(y)dQ(y)� 0,

(4.1) implies
R
Rd f⇤(x)dP (x) � 0. Therefore, using first the optimality conditions, then

Jensen’s inequality, and finally (4.1), we obtain

g⇤(y) =� log

✓Z
ef

⇤(y)� 1
2
kx�yk2

dP (y)

◆

Z ⇢

1

2
kx� yk2 � f⇤(y)

�
dP (y) 1

2
D2

⌦
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 653

for all y 2 ⌦. By the same argument, f⇤(x)  1
2D

2
⌦ for all x 2 ⌦. Set x 2 ⌦; then by

Lemma 4.1,

f⇤(x)�min
y2⌦

⇢
1

2
kx� yk2 � g⇤(y)

�
��max

y2⌦
g⇤(y)��1

2
D2

⌦,

and the same for g⇤.

For any a, b2 Cs(⌦) denote

L(a, b) =

Z

Rd

a(x)dP (x) +

Z

Rd

b(y)dQ(y)�
Z

Rd⇥Rd

ea(x)+b(y)� 1
2
kx�yk2

dP (x)dQ(y) + 1

and its semi-empirical counterpart

Ln(a, b) =

Z

Rd

a(x)dPn(x) +

Z

Rd

b(y)dQ(y)�
Z

Rd⇥Rd

ea(x)+b(y)� 1
2
kx�yk2

dPn(x)dQ(y) + 1.

Let us denote by h⇤ and hn the functions, belonging to Cs(⌦⇥⌦), defined by

h⇤(x, y) = f⇤(x) + g⇤(y), hn(x, y) = fn(x) + gn(y),(4.2)

and by ⇡⇤ 2 P(⌦ ⇥ ⌦) the optimal coupling defined by d⇡⇤ = eh
⇤(x,y)�||x�y||2dP (x)dQ(y).

Abusing notation, we write L(fn, gn) = L(hn) and L(f⇤, g⇤) = L(h⇤). As a consequence of
Lemma 4.4 we obtain the following useful bound:

kh⇤k1, khnk1 D2
⌦ 8n2N.(4.3)

At this point, we can state the main theorem of this section.

Theorem 4.5. Let ⌦⇢Rd be a compact set and P,Q 2P(⌦). Assume (f⇤, g⇤) are optimal
potentials for P,Q and (fn, gn) for Pn,Q satisfying (4.1). Then there exists a constant Cd,
depending only on d, such that

Ekgn � g⇤k2Cs(⌦), Ekfn � f⇤k2Cs(⌦) 
Cd

n
D5(d+1)

⌦ e15D
2
⌦ .

Moreover, if (fn,m, gn,m) are optimal potentials for Pn,Qm satisfying (4.1), then

Ekgn,m � g⇤k2Cs(⌦), Ekfn,m � f⇤k2Cs(⌦) 
Cd

min{n,m}D
5(d+1)
⌦ e15D

2
⌦ .

The proof is divided in a sequence of technical lemmas, of some independent interest. We
show first (Lemma 4.6) that the functional L is well-behaved in the sense of being strongly
concave near its maximum. Then (in Lemma 4.7) we show that the functional Ln �L is Lip-
schitz. Typically, these two results are enough to prove convergence at the fast n�1 rate (see,
e.g., Theorem 3.2.5 of [77]). Unfortunately, in our case, the norms appearing in Lemmas 4.6
and 4.7 are di↵erent. This technical issue can be handled thanks to Lemmas 4.8 and 4.9.

Lemma 4.6. Let ⌦⇢Rd be a compact set and P,Q2P(⌦); then

L(hn)�L(h⇤)�1

2
khn � h⇤k2L2(d⇡⇤)e

�khn�h⇤k1 ,(4.4)

where h⇤, hn, and ⇡⇤ are defined in (4.2).
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654 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

Proof. The inequality ex � 1 + x+ e�|x|

2 x2, which can be checked by elementary means,
implies that

Z
ehn(x,y)� 1

2
||x�y||2dP (x)dQ(y)

=

Z
ehn(x,y)�h⇤(x,y)eh

⇤(x,y)� 1
2
||x�y||2dP (x)dQ(y)

�
Z ⇢

1 + (hn(x, y)� h⇤(x, y)) +
1

2
(hn(x, y)� h⇤(x, y))2e�|hn(x,y)�h⇤(x,y)|

�
d⇡⇤(x, y)

�
Z ⇢

1 + (hn(x, y)� h⇤(x, y)) +
1

2
(hn(x, y)� h⇤(x, y))2e�||hn�h⇤||1

�
d⇡⇤(x, y).

The optimality conditions yield L(h⇤) =
R
h⇤(x, y)dP (x)dQ(y). Hence,

Z
ehn(x,y)� 1

2
||x�y||2dP (x)dQ(y)

��L(h⇤) +

Z ⇢
1 + hn(x, y) +

1

2
(hn(x, y)� h⇤(x, y))2e�||hn�h⇤||1

�
d⇡⇤(x, y).

We conclude by using the relation
R
hn(x, y)d⇡⇤ =

R
hn(x, y)dP (x)dQ(y), which follows from

the optimality conditions.

Lemma 4.7. Under the assumptions of Lemma 4.6, we have

Ln(hn)�L(hn)�Ln(h
⇤) +L(h⇤) kP � PnkCs

1(⌦)khn � h⇤kCs(⌦2), a.s.,(4.5)

where

kP � PnkCs
1(⌦) := sup

kfkCs(⌦)1

Z
f(x)(dPn(x)� dP (x)).(4.6)

Proof. As noted above, the optimality conditions imply that

Ln(hn) =

Z
hn(x, y)dPn(x)dQ(y), L(hn) =

Z
hn(x, y)dP (x)dQ(y),

Ln(h
⇤) =

Z
h⇤(x, y)dPn(x)dQ(y), L(h⇤) =

Z
h⇤(x, y)dP (x)dQ(y).

Therefore we have

Ln(hn)�L(hn)�Ln(h
⇤) +L(h⇤)

=

Z
hn(x, y)dQ(y)(dPn(x)� dP (x))�

Z
h⇤(x, y)dQ(y)(dPn(x)� dP (x))

=

Z
(hn(x, y)� h⇤(x, y))dQ(y)(dPn(x)� dP (x))

 khn � h⇤kCs(⌦) sup
khkCs(⌦2)1

h(x,y)=f(x)+g(y)

Z
h(x, y)dQ(y)(dPn(x)� dP (x)).
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 655

Note that

sup
khkCs(⌦2)1

h(x,y)=f(x)+g(y)

Z
h(x, y)dQ(y)(dPn(x)� dP (x))

= sup
khkCs(⌦2)1

h(x,y)=f(x)+g(y)

Z
g(y)dQ(y)(dPn(x)� dP (x)) +

Z
f(x)dQ(y)(dPn(x)� dP (x)).

Since the first term is 0 and the second is not a↵ected by adding a constant to f , we see that
it equals

sup
kfkCs(⌦)1

Z
f(x)(dPn(x)� dP (x)).

As anticipated, Lemma 4.7 works with the norm k·k2Cs(⌦2) and Lemma 4.6 with k·kL2(d⇡⇤).
Both norms are di↵erent, but the next technical results show how these norms are related in
the present setup.

Lemma 4.8. Under the assumptions of Lemma 4.6,

kD↵f⇤ �D↵fnk21  cd,sD
2|↵|
⌦ khn � h⇤k21,

kD↵g⇤ �D↵gnk21  cd,sD
2|↵|
⌦ e2D

2
⌦

⇣
khn � h⇤k21 +D2s

⌦ kP � Pnk2Cs
1(⌦)

⌘

for every multi-index ↵, with 1 |↵| s.

Proof. We let cd,s denote a positive constant depending on d and s whose value may
change from line to line. We note first that f⇤(x)� fn(x) = f̄⇤(x)� f̄n(x), where

f̄⇤(x) = f⇤(x)� 1

2
kxk2 and f̄n(x) = fn(x)�

1

2
kxk2.(4.7)

As in the proof of Lemma 4.1, the Faá di Bruno formula implies

D↵fn(x)�D↵f⇤(x) =D↵fn(x)�D↵f
⇤
(x)

=
X

�1+···+�s=↵

�↵,�1,...,�s

0

@
sY

j=1

Z
y�jehn(x,y)� 1

2
kx�yk2

dQ(y)�
sY

j=1

Z
y�jeh

⇤(x,y)� 1
2
kx�yk|2dQ(y)

1

A .

Splitting the product, this last term equals

X

�1+···+�s=↵

�↵,�1,...,�s

sX

i=1

Y

j<i

Z
y�jehn(x,y)� 1

2
kx�yk2

dQ(y)

Y

j>i

Z
y�jeh

⇤(x,y)� 1
2
kx�yk2

dQ(y)

Z
y�ie�

1
2
kx�yk2

n
ehn(x,y) � eh

⇤(x,y)
o
dQ(y).
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656 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

Since 02⌦, it follows that |y�j |D|�j |
⌦ . Using that |ex�ey| (ey+ex)|x�y| we upper bound

|D↵fn(x)�D↵f⇤(x)| by

D|↵|
⌦

X

�1+···+�s=↵

|�↵,�1,...,�s
|

sX

i=1

Z
(eh

⇤(x,y)� 1
2
kx�yk2

+ehn(x,y)� 1
2
kx�yk2

)|hn(x, y)�h⇤(x, y)|dQ(y)

 2sD|↵|
⌦

X

�1+···+�s=↵

|�↵,�1,...,�s
|khn � h⇤k1,

where we have used (2.4) to bound the integral. We conclude that kDafn(x)�Daf⇤(x)k21 
cd,sD

2|↵|
⌦ khn � h⇤k21.

Turning to gn and g⇤n, we can argue similarly to obtain

|D↵gn(y)�D↵g⇤(y)|= |D↵gn(y)�D↵g⇤(y)|


X

�1+···+�s=↵

|�↵,�1,...,�s
|

0

@
sY

j=1

Z
x�jehn(x,y)� 1

2
kx�yk2

dPn(x)�
sY

j=1

Z
x�jeh

⇤(x,y)� 1
2
kx�yk2

dP (x)

1

A

=
X

�1+···+�s=↵

|�↵,�1,...,�s
|

sX

i=1

Y

j<i

Z
x�jehn(x,y)� 1

2
kx�yk2

dPn(x)
Y

j>i

Z
x�jeh

⇤(x,y)� 1
2
kx�yk2

dP (x)·

✓Z
x�jehn(x,y)� 1

2
kx�yk2

dPn(x)�
Z

x�jeh
⇤(x,y)� 1

2
kx�yk2

dP (x)

◆
.

Note that

���
Z

x�jehn(x,y)� 1
2
kx�yk2

dPn(x)�
Z

x�jeh
⇤(x,y)� 1

2
kx�yk2

dP (x)
���


���
Z
x�j (ehn(x,y)� 1

2
kx�yk2 �eh

⇤(x,y)� 1
2
kx�yk2

)dPn(x)
���+
���
Z
x�jeh

⇤(x,y)� 1
2
kx�yk2

(dP (x)�Pn(x))
���.

Since khnk1,kh⇤k1 D2
⌦ by (4.3), the first term can be bounded by 2D|�j |

⌦ eD
2
⌦khn � h⇤k1.

For the other term observe that by Lemma 4.3, the function x 7! x�jeh
⇤(x,y)� 1

2
kx�yk2

belongs
to Cs(⌦), with norm at most cd,seD

2
⌦(1+Ds+|�j |

⌦ ). We conclude that there exists some constant
cd,s such that

����
Z

x�jeh
⇤(x,y)� 1

2
kx�yk2

(dPn(x)� dP (x))

���� cd,sD
|�j |+s
⌦ eD

2
⌦kP � PnkCs

1(⌦).(4.8)

Combining the last two estimates we finally have

kDag⇤ �Dagnk21  cd,sD
2|↵|
⌦ e2D

2
⌦

⇣
khn � h⇤k21 +D2s

⌦ kP � Pnk2Cs
1(⌦)

⌘
,

which allows us to conclude the proof.

Now we need to compare the norms k · k1 and k · kL2(d⇡⇤). We set C = e�
3
2
D2

⌦ and note
that (4.1) implies
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 657

Z
(hn(x, y)� h⇤(x, y))2eh

⇤(x,y)� 1
2
kx�yk2

dP (x)dQ(y)

�C

Z
(hn(x, y)� h⇤(x, y))2dP (x)dQ(y)

=C

⇢Z
(fn(x)� f⇤(x))2dP (x) +

Z
(gn(y)� g⇤(y))2dQ(y)

+2

Z
(fn(x)� f⇤(x))(gn(y)� g⇤(y))dP (x)dQ(y)

�
.

Since the last term equals 0, we obtain the bound

khn � h⇤k2L2(d⇡⇤) � e�
3
2
D2

⌦

⇣
kfn � f⇤k2L2(dP ) + kgn � g⇤k2L2(dQ)

⌘
.(4.9)

Finally, we prove the last technical result, which relates the L2 and L1 norms for the
di↵erence of the potentials.

Lemma 4.9. Under the assumptions of Lemma 4.6, we have

kfn � f⇤k2L2(dP ) + kgn � g⇤k2L2(dQ)

� 1

2
e�2D2

⌦
�
kfn � f⇤k21 + kgn � g⇤k21

�
� cd,sD

2s
⌦ kP � Pnk2Cs

1(⌦).

Proof. We will work separately with f⇤ and g⇤. Fixing x2⌦, Jensen’s inequality yields

|e�f⇤(x) � e�fn(x)|2 
Z ⇣

|eg⇤(y)� 1
2
kx�yk2 � egn(y)�

1
2
kx�yk2 |

⌘2
dQ(y).

Now, the mean value theorem implies

|x� y|emin{x,y}  |ex � ey| emax{x,y}|x� y|, x, y 2R,

yielding

e�2max{kf⇤k1,kfnk1}|fn(x)� f⇤(x)|2  |e�f⇤(x) � e�fn(x)|2

 e2max{kg⇤k1,kgnk1}kgn � g⇤k2L2(dQ).

Consequently, using Lemma 4.4, we have proved that

kgn � g⇤k2L2(dQ) � e�2D2
⌦kfn � f⇤k21.

Now we deal with kgn � g⇤k21. We fix y 2⌦. By the triangle inequality we have

|e�g⇤(y) � e�gn(y)|


Z ���ef

⇤(x)+ 1
2
kx�yk2 � efn(y)+

1
2
kx�yk2

���dP (y) +

����
Z

efn(x)+
1
2
kx�yk2

(dP (x)� dPn)

���� .

Squaring both sides we see that

|e�g⇤(y) � e�gn(y)|2

 2

Z ���ef
⇤(x)+ 1

2
kx�yk|2 � efn(y)+

1
2
kx�yk2

���
2
dP (y) + 2

����
Z

efn(x)+
1
2
kx�yk2

(dP (x)� dPn)

����
2

.
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658 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

The first term is bounded by 2eD
2
⌦kfn � f⇤k2L2(dP ) as in the previous case. Repeating the

arguments which led to the bound (4.8), the second term is at most cd,seD
2
⌦(1 +D2s

⌦ )kP �
Pnk2Cs

1(⌦). Together, these estimates yield

e�D2
⌦kgn � g⇤k21  2eD

2
⌦kfn � f⇤k2L2(dP ) + cd,sD

2s
⌦ eD

2
⌦kP � Pnk2Cs

1(⌦).

We conclude by rearranging this inequality and combining it with the bound on kgn�g⇤k2L2(dQ)
derived above.

We are ready now for the proof of the main result in this section.

Proof of Theorem 4.5. Combining Lemma 4.6, (4.9), and Lemma 4.9, we see that

L(h⇤)�L(hn)�
1

2
e�khn�h⇤k1e�

3
2
D2

⌦

⇣
kfn � f⇤k2L2(dP ) + kgn � g⇤k2L2(dQ)

⌘

� 1

2
e�

7
2
D2

⌦

⇣
kfn � f⇤k2L2(dP ) + kgn � g⇤k2L2(dQ)

⌘

� 1

2
e�

7
2
D2

⌦

✓
1

2
e�2D2

⌦
�
kfn � f⇤k21 + kgn � g⇤k21

�
� cd,sD

2s
⌦ kP � Pnk2Cs

1(⌦)

◆
.

Moreover, since kfn � f⇤k21 + kgn � g⇤k21 � 1
2khn � h⇤k21, we obtain

L(h⇤)�L(hn)�
1

2
e�

7
2
D2

⌦

✓
1

4
e�2D2

⌦khn � h⇤k21 �D2s
⌦ kP � Pnk2Cs

1(⌦)

◆
.

Lemma 4.8 implies the existence of some constant cd,s such that

khn � h⇤k21 � 1

cd,sD2s
⌦ e2D

2
⌦

⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘
�D2s

⌦ kP � Pnk2Cs
1(⌦),

which yields

(4.10) L(h⇤)�L(hn)� cd,se
� 15

2
D2

⌦D�2s
⌦

⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘

� c0d,se
� 7

2
D2

⌦D2s
⌦ kP � Pnk2Cs

1(⌦).

On the other hand, Lemma 4.7 yields

kP � PnkCs
1(⌦)

�
kfn � f⇤kCs(⌦) + kgn � g⇤kCs(⌦)

�
�Ln(hn)�L(hn)�Ln(h

⇤) +L(h⇤)

�Ln(h
⇤)�L(hn)�Ln(h

⇤) +L(h⇤)

=L(h⇤)�L(hn).

The previous bound and (4.10) yield

kP � PnkCs
1(⌦)

�
kfn � f⇤kCs(⌦) + kgn � g⇤kCs(⌦)

�

� cd,se
� 15

2
D2

⌦D�2s
⌦

⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘
� c0d,se

� 7
2
D2

⌦D2s
⌦ kP � Pnk2Cs

1(⌦),
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 659

which, by using the inequality (a+ b)2  2(a2 + b2), implies

p
2kP � PnkCs

1(⌦)

⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘1/2

� cd,se
� 15

2
D2

⌦D�2s
⌦

⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘
� c0d,se

� 7
2
D2

⌦D2s
⌦ kP � Pnk2Cs

1(⌦).

Denoting �n =
⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘ 1
2
, we get

kP � PnkCs
1(⌦)�n � cd,se

� 15
2
D2

⌦D�2s
⌦ �2

n � c0d,se
� 7

2
D2

⌦D2s
⌦ kP � Pnk2Cs

1(⌦).(4.11)

From this we obtain

�n  cd,sD
2s
⌦ e

15
2
D2

⌦

⇣
kP � PnkCs

1(⌦) +
q

kP � Pnk2Cs
1(⌦) + e�11D2

⌦kP � Pnk2Cs
1(⌦)

⌘

 cd,sD
2s
⌦ e

15
2
D2

⌦kP � PnkCs
1(⌦).

(4.12)

Next, we analyze kP �PnkCs
1(⌦). Theorem 3.5.1 and Exercise 2.3.1 in [35] imply that there

exists a numerical constant C such that

nEkP � Pnk2Cs
1(⌦) CE

 Z maxkfkCs(⌦)1 kfkL2(dPn)

0

q
log (2N(✏,Cs

1(⌦),k · k1))d✏

!2

.

By Proposition 1.1. in [76],

log (2N(✏,Cs
1(⌦),k · k1)) cs,dD

d
⌦

✓
1

✏

◆ d
s

.

Since kfkL2(dPn)  kfkCs(⌦) a.s., the choice s= [d/2] + 1 yields the bound

nEkP � Pnk2Cs
1(⌦) cs,dD

d
⌦

 Z 1

0

✓
1

✏

◆ d
d+1

d✏

!2

= cs,dD
d
⌦,(4.13)

which completes the proof for the one-sample case.
The two-sample case can be handled with the same argument plus some minor modifica-

tions, as follows. Let fn,m be the optimal potential for Pn and Qm. Then,

kfn,m � f⇤k2Cs(⌦)  2kfn � f⇤k2Cs(⌦) + 2kfn,m � fnk2Cs(⌦).

The first term can be controlled by (4.12). Moreover, observe that the derivation of (4.12) did
not use any facts about the measure Q apart from the fact that it is supported on ⌦. Since
Pn is also supported on ⌦, this implies that kfn,m� fnkCs(⌦) can also be controlled by (4.12),
so that the bound

kfn,m � f⇤k2Cs(⌦)  cd,sD
2s
⌦ e

15
2
D2

⌦

⇣
kP � Pnk2Cs

1(⌦) + kQ�Qmk2Cs
1(⌦)

⌘
(4.14)

holds. This and (4.13) complete the proof.
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660 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

5. Convergence rates for Sinkhorn divergences. In this section, we develop faster con-
vergence rates for the Sinkhorn divergence. The entropic transportation cost, S✏(P,Q), is not
symmetric in P,Q and does not satisfy S✏(P,P ) = 0. These observations motivated the intro-
duction of Sinkhorn divergences [32]: For probabilities P,Q 2 P(Rd) the quadratic Sinkhorn
divergence is defined as

D✏(P,Q) = S✏(P,Q)� 1

2
(S✏(P,P ) + S✏(Q,Q)) .

Clearly, D✏(P,Q) is symmetric in P,Q and D✏(P,P ) = 0. In fact (see Theorem 1 in [27]),
D✏(P,Q) � 0, with D✏(P,Q) = 0 if and only if P = Q, and for measures supported on a
compact set, convergence in Sinkhorn distance is equivalent to weak convergence. This makes
the Sinkhorn divergence a suitable measure of dissimilarity in applications.

In this section we obtain rates of convergence for empirical Sinkhorn divergences. More
precisely, we consider independent samples X1, . . . ,Xn, Y1, . . . , Ym of i.i.d. random variables
with law P 2P(⌦) and associated empirical measures Pn and P 0

m, respectively. Since Pn and
P 0
m converge weakly to P , the Sinkhorn divergence satisifes D✏(Pn, P 0

m) ! 0 a.s. The main
result of this section gives a rate for this convergence.

Theorem 5.1. Assume ⌦ ⇢ Rd is compact, P 2 P(⌦), and Pn and P 0
m are empirical

measures as above. Then there exist constants cd and c0d, depending only on d, such that
(i) (one-sample case)

ED1(Pn, P ) cd
n
D

3d
2
+1

⌦

32

(d+ 1)2
e

19
2
D2

⌦ ;

(ii) (two-sample case)

ED1(Pn, P
0
m)

c0d
min{n,m}D

3d
2
+1

⌦

32

(d+ 1)2
e

19
2
D2

⌦ .

Proof. We deal first with the one-sample case. We denote by (fn,n, gn,n) the optimal poten-
tials for S1(Pn, Pn), set hn,n(x, y) = fn,n(x)+gn,n(y), and write d⇡n,n(x, y) = ehn,n(x,y)� 1

2
kx�yk2

for the optimal measure. Further, as in (4.2), we write h⇤, ⇡⇤ for the corresponding objects
in the case of S1(P,P ) and hn, ⇡n in the case of S1(Pn, P ). Then we can write

D1(Pn, P ) =

Z
hn(x, y)d⇡n(x, y)�

1

2

✓Z
hn,n(x, y)d⇡n,n(x, y) +

Z
h⇤(x, y)d⇡⇤(x, y)

◆
.(5.1)

Moreover, using the optimality conditions, we have
Z

(hn(x, y)� h⇤(x, y))d⇡⇤(x, y) =L(hn)�L(h⇤) 0

and
Z

(hn(x, y)� hn,n(x, y))d⇡n,n(x, y) =Ln,n(hn)�Ln,n(hn,n) 0,
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 661

where L is defined as in the previous section and

Ln,n(h) =

Z n
h(x, y)� eh(x,y)�

1
2
||x�y||2 + 1

o
dPn(x)dPn(x).

Therefore, from (5.1) we obtain

D1(Pn, P )
Z

hn(x, y)d⇡n(x, y)�
1

2

✓Z
hn(x, y)d⇡n,n(x, y) +

Z
hn(x, y)d⇡

⇤(x, y)

◆
.(5.2)

Note, moreover, that the upper bound in (5.2) can be rewritten as
Z

fn(x)dPn(x) +

Z
gn(y)dP (y)

� 1

2

✓Z
fn(x)dPn(x) +

Z
gn(y)dPn(y) +

Z
fn(x)dP (x) +

Z
gn(y)dP (y)

◆

=
1

2

Z
(fn(x)� gn(x))dPn(x) +

1

2

Z
(gn(x)� fn(x))dP (x)

=
1

2

Z
(fn(x)� gn(x)) (dPn(x)� dP (x))

=
1

2

Z
(fn(x)� g⇤(x)) (dPn(x)� dP (x))

+
1

2

Z
(g⇤(x)� gn(x)) (dPn(x)� dP (x)) ,(5.3)

where (fn, gn) are optimal entropic potentials for Pn, P and (f⇤, g⇤) are optimal transport
potentials for (P,P ), where we adopt the normalization convention

R
g⇤(y)dP (y) =

R
gn(y)

dP (y) = 0. The symmetry of S1(P,P ) and the uniqueness of the entropic potentials up to
additive constants imply that f⇤ = g⇤ + a for some constant a 2 R. Plugging this into (5.3)
we obtain from (5.2) that

D1(Pn, P ) 1

2
kP � PnkCs

1(⌦)

�
kfn � f⇤kCs(⌦) + kgn � g⇤kCs(⌦)

�
.(5.4)

From (4.12), we obtain, for some constant cd,s, the bound

�
kfn � f⇤kCs(⌦) + kgn � g⇤kCs(⌦)

�
 2

⇣
kfn � f⇤k2Cs(⌦) + kgn � g⇤k2Cs(⌦)

⌘ 1
2

 cd,sD
2s
⌦ e

15
2
D2

⌦kP � PnkCs
1(⌦).

We conclude as in the proof of Theorem 4.5.
For the two-sample case we can adapt the argument above without much e↵ort. Indeed,

observe that we can write

D1(Pn, P
0
m) =

Z
hn,m(x, y)d⇡n,m(x, y)

� 1

2

✓Z
hn,n(x, y)d⇡n,n(x, y) +

Z
hm,m(x, y)d⇡m,m(x, y)

◆
(5.5)
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662 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

and argue as in (5.2) to get

D1(Pn, P
0
m)

Z
hn,m(x, y)d⇡n,m(x, y)(5.6)

� 1

2

✓Z
hn,m(x, y)d⇡n,n(x, y) +

Z
hn,m(x, y)d⇡m,m(x, y)

◆
.

Now we can reuse the same arguments leading to (5.2)—just replacing P by P 0
m—to upper

bound D1(Pn, P 0
m) by

1

2

Z
(fn,m(x)� g⇤(x))

�
dPn(x)� dP 0

m(x)
�
+

1

2

Z
(g⇤(x)� gn,m(x))

�
dPn(x)� dP 0

m(x)
�
.

(5.7)

Once again, since (f⇤, g⇤) agree up to an additive constant, (5.7) is equivalent to

1

2

Z
(fn,m(x)� f⇤(x))

�
dPn(x)� dP 0

m(x)
�
+

1

2

Z
(g⇤(x)� gn,m(x))

�
dPn(x)� dP 0

m(x)
�
.

Finally, the two-sample case can be deduced directly from the inequality

D1(Pn, P ) 1

2
kPn � P 0

mkCs
1(⌦)

�
kfn,m � f⇤kCs(⌦) + kgn,m � g⇤kCs(⌦)

�

 1

2

�
kP 0

m � PkCs
1(⌦) + kPn � PkCs

1(⌦)

� �
kfn,m � f⇤kCs(⌦) + kgn,m � g⇤kCs(⌦)

�(5.8)

and (4.14), which yields

kfn,m � f⇤kCs(⌦) + kgn,m � g⇤kCs(⌦)  cd,sD
2s
⌦ e

15
2
D2

⌦
�
kP � PnkCs

1(⌦) + kP � P 0
mkCs

1(⌦)

�

for a constant cd,s depending on d and s. We conclude as above.

6. Implementation issues and empirical results. In this section we provide details about
the practical implementation and statistical performance of the two-sample analogue of the
confidence interval (3.10).

Recall from Theorem 3.6 that
r

nm

n+m

1

�✏,�(P,Q)
(S✏(Pn,Qm)� S✏(P,Q))

w�!N(0,1),(6.1)

where �2
✏,�(P,Q) is the asymptotic variance of the two-sample case. This variance can be

consistently estimated by

�̂2
n,m :=

m

n+m

 
1

n

nX

i=1

f2
n,✏(Xi)�

⇣ 1
n

nX

i=1

fn,✏(Xi)
⌘2
!

(6.2)

+
n

n+m

 
1

m

mX

i=1

g2n,✏(Yi)�
⇣ 1

m

mX

i=1

gn,✏(Yi)
⌘2
!
,

where (fn,✏, gn,✏) is a pair of empirical potentials. Since the optimal transport potentials can
be computed directly from the Sinkhorn iterates, the computation of (fn,✏, gn,✏) does not cost
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 663

more than the one of S✏(Pn,Qm); see [15]. Hence, writing z� for the � quantile of the standard
normal distribution and arguing as in section 3, we can conclude that the interval

CIn,m↵ =

"
S✏(Pn,Qm)± �̂n,m

r
n+m

nm
z1�↵/2

#

is an asymptotic confidence interval of level 1� ↵.
We investigate here the finite sample performance of this confidence interval. We consider

the scenario where P ⇠ N(0, Id/2) and Q ⇠ N((1, . . . ,1)t , Id/2). The population entropy
regularized cost has a closed form for Gaussian measures (see [24], [45], or [52]), which, for
our case, is

S✏(P,Q) = 2d� ✏

2

 
d

r
1 +

4

✏2
� d log

 
1 +

r
1 +

4

✏2

!
+ d log(2)� d

!
.

We focus on the case n = m for several choices of n = 50,100,250,500,1000,5000 and study
the influence of the parameters d and ✏ on the rate of convergence of the true confidence level
to the nominal level 1�↵ for ↵= 0.05. To approximate this true confidence level we use Monte
Carlo simulation, with 1000 replicates of the interval. The results are reported in Table 1. In
particular, we compute CIn,n0.05 for di↵erent values of ✏ 2 [0.5,2,5,10] and d 2 [2,10,15]. To
calculate S✏(Pn,Qn) and the empirical potentials—which allows us to compute CIn,n0.05—we
use the Python library POT; see [28].

We observe that both d and ✏ a↵ect the estimation of the asymptotic confidence interval
CIn,n0.05. A large sample size is required to achieve the nominal confidence interval for small
values of ✏ and large dimension. This is more or less expected: in view of Remark 3.5,
the value n |ES✏(Pn,Q)� S✏(P,Q)| can be upper bounded by a constant C⌦, which depends

Table 1

Evolution of the Monte Carlo estimation (number of iterations equals 1000) of P(S✏(P,Q) 2 CIn,n
0.05) for

di↵erent values of the dimension d and regularization factor ✏.

P (S✏(P,Q) 2 CIn,n
0.05)

n ✏ = 0.5 ✏ = 2 ✏ = 5 ✏ = 10
50 0.935 0.936 0.932 0.941
100 0.937 0.952 0.929 0.941
250 0.95 0.94 0.935 0.949

d = 2 500 0.954 0.947 0.95 0.958
1000 0.944 0.954 0.947 0.96
5000 0.939 0.957 0.947 0.955
50 0.781 0.945 0.958 0.932
100 0.787 0.937 0.951 0.945
250 0.775 0.941 0.948 0.943

d = 10 500 0.785 0.955 0.953 0.947
1000 0.803 0.94 0.945 0.954
5000 0.862 0.944 0.946 0.951
50 0.487 0.944 0.933 0.944
100 0.396 0.944 0.957 0.944
250 0.271 0.938 0.943 0.953

d = 15 500 0.194 0.94 0.941 0.947
1000 0.173 0.938 0.945 0.955
5000 0.134 0.942 0.943 0.943
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664 DEL BARRIO, GONZÁLEZ SANZ, LOUBES, AND NILES-WEED

exponentially on the support’s diameter, and—extrapolating this argument to the case where
the probabilities are not supported in a compact set—this provides a possible explanation of
the inaccuracy produced by the choice of small values ✏ or large d. (Note that this exponential
dependency on the diameter is translated directly to an exponential dependence on ✏�1 by
the change of variables x 7! ✏�

1
2x.) Moreover, as ✏ ! 0, the entropic regularized potentials

approach the unregularized optimal transport potentials (see [59]), whose n!1 convergence
su↵ers from the curse of dimensionality (see [78]). These observations help explain the results
of Table 1.

The most counterintuitive aspect we find in these simulations is the fact that in dimension
15 with ✏= 0.5, the performance worsens as sample size increases. It is reasonable to conjecture
that this failure is related to the fact that the bias |ES✏(Pn,Qn)�S✏(P,Q)| is still nonnegligible
for moderate sample sizes. To explore this phenomenon, Figure 1 computes |ES✏(Pn,Qn)�
S✏(P,Q)| for n= 10,20,30,50,100,200,500 and d= 2,5,10,15.

Figure 1. Estimation, via Monte Carlo with 1000 repetitions, of |ES✏(Pn,Qn) � S✏(P,Q)| for n =
10,20,30,50,100,200,500 and d = 2,5,10,15. The results are plotted in double logarithm scale. The orange

line represents the Monte Carlo standard deviation and the shadow the one given by (6.2).
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CLT AND CONVERGENCE RATES FOR ENTROPIC OPTIMAL TRANSPORT 665

Figure 2. Estimation, via Monte Carlo with 1000 repetitions, of the Sinkhorn divergence between X1, . . . ,Xn

and Y1, . . . , Yn uniformly distributed in the square [0, k]10 for k = 2,3,4,5 and n = 40,70,100,150,200. The

results are plotted in double logarithm scale.

The empirical conclusions could not be more clear: the error lies in the bias. Though our
bounds imply that the bias is asymptotically of order n�1, at small sample sizes the rate of
decay is slower and gets worse as the dimension increases. As Figure 1 indicates, the bias
is still negligible for d = 2,5,10 but becomes dominant for d = 15. Though our confidence
intervals are asymptotically valid, the large bias causes the coverage to worsen as n increases
when the overall number of samples is small.

To illustrate the rate given in Theorem 5.1, we sample X1, . . . ,Xn and Y1, . . . , Yn uniformly
distributed in the square [0, k]10 for k= 2,3,4,5 and n= 40,70,100,150,200. We estimate the
expectation of the divergence by Monte Carlo with 1000 independent samples. The results
are reported in Figure 2. This simulation agrees closely with the theoretical bounds.
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