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A B S T R A C T   

Photolysis of β-enaminones within the supramolecular cavity of octa acid leads to dihydropyran products. The supramolecular cavity can be recycled in a sustainable 
fashion through multiple cycles with sequential addtion of β- enaminones leading to the products with moderate to good yields. The overall process involves the use 
of 20 mol% of supramolecularr host over 10 cycles.   

1. Introduction 

Nature has engineered enzymatic reactions by manipulating the 
environment around reactant molecules leading to enhanced chemical 
reactivity and selectivity.[1–3] Chemists have been attempting to mimic 
this feature to gain control over reactivity and selectivity with molecular 
systems by employing synthetic nanocontainers [4] with the ability to 
confine and orient reactive substrate(s).[5–7] Over the last four decades, 
while manipulation of molecules through confinement has made prog-
ress, solution to the problem of supramolecular photocatalysis is yet to 
be found. Surprisingly, there are only very limited examples in litera-
ture.[8–12] The challenges involved in developing a versatile organic/ 
inorganic supramolecular photocatalytic system include cavity size, 
built-in weak-interactions to hold the guest reactant relative to the 
product, and recyclability.[10–12] In this report we disclose the results 
of influence of a supramolecular capsule made up of two molecules of 
octa acid (OA) cavitand [13–16] on the photoreaction of β-enaminones 
(Fig. 1).[17] Interestingly, while the capsule meets the criteria required 
for recycling, at this stage supramolecular photocatalysis has to be 
carried out manually. To our knowledge this is one of the few examples 
where a synthetic reaction cavity has shown a tendency to function as a 
photocatalyst. In this context, the results presented here are valuable to 
design in future host molecules that can act as a supramolecular pho-
tocatalyst.[18,19]. 

Octa acid (OA), (Fig. 1) with its hydrophobic cavity has the ability to 
include organic molecules in water at pH ~ 8.5. Unlike well-known 
hosts such as cyclodextrins [20,21] and cucurbiturils,[22–24] OA 

forms a capsular assembly within which the reactant guest molecules are 
well protected from water.[14–16] This prompted us to examine the 
photochemistry of β-enaminones 1a-c (Fig. 1) which was recently 
established to undergo a novel type of excited-state transformation to 
yield the cyclic product 2.[17] The goal was to probe whether the 
confined space would permit the transformation, and if it does would the 
reaction be catalytic with respect to the host. 

2. Results and discussion 

We initiated the investigation by evaluating the feasibility of 
encapsulation of β-enaminones 1a-c within OA. β-Enaminones 1a-c 
were insoluble in water/borate buffer as evidenced by a turbid solution, 
which upon addition of OA, led to complexation with the solution 
becoming transparent. 1H NMR titration experiments revealed the for-
mation of a 2:1 (host:guest) complex (capsuleplex; Fig. 1).[25] Irradia-
tion of β-enaminones 1a-c encapsulated within OA with ~ 350 nm lamps 
in a Rayonet reactor gave the corresponding dihydropyran photo-
product 2a-c (Scheme 1) as confirmed from their 1H NMR spectra and by 
comparison with authentic samples.[25] In cases where 2 was included 
within OA, the bridge methyl resonances were broad suggesting that it 
experiences multiple environments during the lifetime of the NMR sig-
nals collection (Figures S1-S11).[25] This is likely when the capsule is 
not tightly closed and opens and closes within the lifetime of NMR. To 
support this possibility, MD simulations of the host–guest complexes of 
OA and 2a-c were performed (Fig. 2).[25] The simulation revealed 
partial opening of the OA capsule in the case of 2a and 2c and not in the 
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case of photoproduct 2b (Fig. 2). This is likely due to the size of 
photoproduct 2b that features a R1 alkyl substituent when compared to 
photoproducts 2a and 2c both of which feature R1 aryl substitution. MD 
simulations suggested that photoproducts 2a and 2c form a weaker 
complex than the corresponding reactants 1a and 1c. A point to note 
from the estimated MD simulation binding energies is that in the case of 
substrate 1b the corresponding photoproduct 2b, forms a stable complex 
with OA capsule than the reactant (Fig. 2b). One should be aware that 
the binding affinities of 1a-c and 2a-c derived from MD simulation are 
not absolute but rather present the trend in the system. This created an 
ideal condition for exploring supramolecular catalysis in the case of 1a 
and 1c but not in the case of 1b. To test the supramolecular photo-
catalytic ability of OA in the case of 1a and 1c, expecting the product 
could be displaced by the reactant, we added aliquots of the reactants 
upon completion of the irradiation. This expectation was indeed real-
ized. Irradiation of the newly formed complex gave additional products. 
Since the reactants when present outside OA is insoluble in buffer so-
lution, we were unable to have excess of the reactant in solution. 

Therefore, the feasibility of catalysis can only be established manually. 
The sequence of experiments is detailed below as steps a-g employing 
the reactant 1a as an example. 

Experimental sequence that revealed the occurrence of photo-
catalysis is described in detail below: (a) A 2:1 capsular complex of OA 
and 1a was formed by stirring 1 mM OA and 0.5 mM 1a in aqueous 
borate buffer and characterized by 1H NMR spectroscopy. (b) The 

Fig. 1. 1H NMR spectroscopy of i) 1 mM OA in 10 mM borate buffer, ii) 1a 
@OA2, iii) 1b @OA2, and iv) 1c @OA2. “a-e” represents the methyl resonances 
of encapsulated guests. 

Scheme 1. Photoreactivity of β-enaminone 1a-c leading to the corresponding 
dihydropyran type photoproduct 2a-c in the presence of octa acid (OA). 

Fig. 2. TOP Molecular dynamics (MD) simulated in water representative 
structures of 2a, 2b, and 2c in OA. Bottom: Binding affinity trends in 
β-enaminones 1a-c and the corresponding photoproducts 2a-c determined by 
MD simulations. 

Table 1 
The yield of photoproducts from photolysis of β-enaminone@OA2 complex.  

Entry Photolyzed Complexa Total cycles % Yield of 2 b 

1 1a @OA2 1 51 
2 1a @OA2 10 46 
3 1b @OA2 1 75 
4 1c @OA2 1 51  

a [β-enaminone] = 2 mM. 
b Yield based on 1H NMR spectroscopy with triphenylmethane internal 

standard. 

Table 2 
The irradiation of 1a with various mole % of OA.  

Entry [1a] mole% OA % 2a [1a: 2a] a 

1 2 mM 10 (0.2 mM) 7 92:08 
2 2 mM 20 (0.4 mM) 10 88:12 
3 2 mM 30 (0.6 mM) 16 72:28 
4 2 mM 50 (1 mM) 22 71:29 
5 2 mM 100 (2 mM) 24 71:29 
6 2 mM 150 (3 mM) 39 51:49 
7 2 mM 200 (4 mM) 50 40:60  

a Ratio by 1H NMR spectroscopy based on unreacted β-enaminone. bDue to 
solubility issues higher concentration was not employed in the absence of OA. 
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sample was irradiated at ~ 350 nm and the progress was monitored by 
1H NMR spectroscopy. (c) Complete consumption of 1a was noted after 
25 min of irradiation. At this stage a fresh batch of 0.5 mM of 1a was 
added. 1H NMR spectrum revealed the formation of fresh complex 
resulting from expulsion of the product 2a from the capsule. Presence of 
2a in water resulted in the solution becoming turbid. To avoid scattering 
during irradiation, 2a was precipitated out by centrifuging the solution. 
(e) The transparent solution containing the second batch of 1a@OA2 
complex was irradiated, and the corresponding photoproduct was 
centrifuged as before. (f) The sequential addition of β-enaminone reac-
tant followed by irradiation and photoproduct removal by centrifuga-
tion was repeated for up to 10 cycles. (g) After 10 cycles, all the 
centrifuged photoproduct 2a were combined and analysed by recording 
1H NMR spectra and the combined yield is provided in Table 1. The same 
sequence was also employed for the β-enaminone 1c with OA. A point 
we want to note is that despite full conversion of reactant β-enaminone 
the yield of the photoproduct was 46% for 1a (after 10 cycles), 75% for 
1b (after 1 cycle), and 51% for 1c (after 1 cycle). We currently do not 
have a clear explanation of why the yields are moderate in spite of near 
quantitative conversion under our experimental conditions and only 
speculate about the likely reason for the observed yield. The reduced 
total yield could be attributed to lack of total complexation of the re-
actants under the conditions employed for irradiation. The experiments 
carried out with different ratios of OA and 1a supported this rationale. 
As shown in Table 2 the yield of the final product increased with 
increasing amounts of OA. A point to note is that under our condition 
only the 1@OA2 complex reacts as the uncomplexed form is insoluble at 
the concentration employed i.e., the observed photoproduct is from 
within the OA cavity and not from outside. As a control study heating 1a 
in borate buffer at 85◦ C for 100 min did not give 2a suggesting that light 
is required for the transformation. 

Based on the observed reactivity of β-enaminone we propose a su-
pramolecular process (Scheme 2) in which OA enhances the photo-
chemical reactivity in water/buffer. In the presence of OA, β-enaminone 
1 forms a 2:1 host–guest complex 1@OA2. Irradiation of this 1@OA2 
complex at ~350 nm, results in the formation of photoproduct 2 that 
remains encapsulated within the OA i.e., 2@OA2. Addition of β-enami-
none 1 to this irradiated mixture, results in the expulsion of the 
photoproduct 2 from OA with concurrent formation of 1@OA2 complex 

due to the weak binding of the photoproduct 2 when compared toβ- 
enaminone 1. 

3. Conclusions 

Thus, our study has shown that one can carry out the photochemical 
reaction within a supramolecular capsule. The supramolecular capsule 
can be recycled effectively in which the overall transformation is carried 
out in sub-stochiometric amounts with respect to the reactant. The re-
sults presented here are for a model system based on β-enaminone and 
OA that will aid in the conceptual design and development of host–guest 
systems for supramolecular photocatalysis. 
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Scheme 2. Supramolecular photocatalysis mediated by octa acid.  
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Appendix A. Supplementary data. Electronic Supplementary 
information (ESI) available: Host-guest complexation by NMR 
spectroscopy of both the reactants and the photoproducts. 
Experimental procedures for irradiation and photoproduct 
characterization. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jphotochem.2023.115175. 
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