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I. Introduction

HE energy, transportation, and manufacturing sectors require

advanced cooling methods to meet their challenging thermal
management demands. Spray cooling is established as one of the most
efficient methods of cooling heated surfaces due to its ability to remove
high heat fluxes [1]. For example, spray cooling has contributed to
a profound 30% size reduction between Apple’s A10 and A11 chips
[2]. Cooling with continuous water sprays can dissipate heat flux up
to 1000 W /cm?, whereas pulsing sprays result in an improved heat
transfer due to an increase in film evaporation during periods of no
spray [3]. Moreover, increasing the number of nozzles leads to a
superior critical heat flux (CHF) for a given mass flow rate [4]. For
instance, applying multinozzle spray cooling in nuclear reactor power-
plants was shown to achieve a heat flux margin of 2.97 W /cm? [5]. A
coordinated high-pressure multinozzle spray improves the cooling
uniformity and avoids warping by making mechanical, thermal, and
chemical properties more consistent over large surfaces [4].

To study the unknown heat transfer limits of multinozzle spray
cooling, it is necessary to construct a testbed. To date, low-pressure
spray cooling testbeds with one nozzle [3,6,7] have been built to
explore surface impaction, film formation, nucleate boiling regimes,
and CHF. Another example developed an experimental setup to study
system-level impingement cooling with cryogens [8]. Conversely,
common rails are extensively employed in diesel fuel injection sys-
tems to accumulate high-pressure fuel before injection, ensuring that
each nozzle has the same pressure and an equal flow rate [9-11].
Therefore, by employing a common rail, a unform and high-pressure
environment is created, enabling equal flow rates and droplet sizes to
be maintained across all nozzles that are required by the multinozzle,
pulsed spray cooling system. The diesel fuel direct injection testbeds
presented in Refs. [12,13] used experimental results to investigate
fault detection and output rotational speed, respectively. Further-
more, a mathematical model describing the relationships among
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the input and output variables is necessary when designing advanced
controllers for such multinozzle spray testbeds.

Models of common-rail systems can be categorized as system level
(meaning from a macroperspective) or component level (meaning from
a subsystem perspective). Due to the complexity of the involved hydro-
dynamic and electromagnetic processes, piezoelectric-based common-
rail systems are typically modeled using component-level approaches
with varying fidelity levels. For example, the model in Ref. [9] describes
correlations between piezoelectric characteristics and the injection flow
rate, whereas the model in Ref. [10] uses continuity relations to esti-
mate the fuel injection mass flow rate and needle lift. Both results are
validated via the Bosch method [9,10], in which the injection flow rate
is found by measuring the dynamic pressure of the fluid out of an
injector nozzle. In the Bosch method, the injector is encapsulated in a
fixture with a dynamic pressure transducer, which is then attached to a
coil of tubing filled with fluid [9,10]. The injector flow rate can be
realized by measuring the pressure increase inside the coil; however,
this cannot be extended to a real cooling scenario where the injector
cannot be encapsulated [9,10]. Furthermore, analytical piezoelectric
injector models are unrealizable because of undisclosed manufacturing
parameters. Other common-rail subsystem models have achieved
promising forecasts of pressure fluctuation on acommon rail controlled
by the electric control unit [11,14]. In contrast, system-level models of a
diesel engine approximated ignition, combustion, and emission param-
eters [15,16].

Common-rail-based systems can be modeled using either physical
laws or data-driven approaches. Thus far, common-rail injection has
been frequently modeled via physical laws [9-11]. However, many
assumptions and approximations are involved in these models, with
transient dynamics and practical hardware constraints generally omit-
ted for simplicity. For example, the piezoelectric model in Ref. [10]
contains numerous assumptions regarding temperature effects and
needle actuation events. Contrarily, a data-driven model applied two-
dimensional bilinear interpolation mapping to predict Nitrogen Oxide
and diesel engine soot emissions that achieved excellent results when
compared to experimental data [17].

Neural networks (NNs), as one branch of data-driven modeling
methods, have gained prevalence with improved machine learning
techniques and increased computational power. Specifically, neural
network models of common-rail injection and spray cooling show
promising representations of nonlinearities and transient effects over
the aforementioned physical law-based models. For instance, a recur-
rent neural network (RNN) model was able to relate the duty cycles of
neighboring injectors to preinjection common-rail pressure fluctua-
tions [14]. Likewise, a model of continuous, multinozzle spray cooling
in casting processes via a convolution recurrent neural network pre-
dicted temperature profiles on a cooling surface [18]. In Ref. [19],
an artificial NN (ANN) was superior to computational fluid dyna-
mics when modeling spray cooling parameters in three boiling
regimes. Furthermore, data-driven NN models have a preferable
ability to represent system-level processes rather than focusing on
subsystem components. The testbed model presented in Ref. [20]
had better resolution, as compared to the physical emissions
models in Refs. [15,16], by employing two sequentially connected
neural networks for predicting the relationship between common-
rail injection parameters and emission indices. Similarly, Ref. [3]
modeled a pulsed spray cooling testbed, with a constant nozzle
pressure (2 bar), using a classification ANN to predict the heat flux
from the surface temperature, duty cycle, and pulse width modu-
lation (PWM) frequency. Lastly, a neural network modeled the
temperature uniformity of a near-space-oriented spray cooling
testbed [21], achieving a 7% maximum relative error.

In this study, an RNN is used to model the time-sequential relation-
ship between the input (e.g., PWM signals and common-rail pressure)
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and the output (e.g., injector volumetric flow rate) of an accumulator-
common-rail-injection subsystem. This subsystem is part of a recently
built multinozzle spray cooling testbed. This testbed consists of a high-
pressure common rail with two piezoelectric injectors controlled by
PWM signals, an accumulator, a water reservoir, and a heating
assembly.

To the best knowledge of the authors, this is the first effort of
modeling a piezoelectric injector in a common-rail-based multispray
cooling testbed using an RNN. The advantages of the approach are
summarized as follows.

1) The data-driven approach avoids approximations and assump-
tions required in physical law modeling approaches.

2) Practical challenges observed in the testbed, such as the head
loss between the accumulator and the common rail, can be mitigated
using the RNN modeling method.

3) An RNN model can recognize trends in sequential data and
identify its temporal order [22].

4) Trends of the volumetric flow rate for the cooling process can be
predicted in real time with an accurate RNN model, where the Bosch
method [9,10] falls short.

5) The data-driven RNN model bypasses the analytical model’s
need for manufacturer data.

This Technical Note is organized as follows. Section II briefly
discusses the testbed: particularly the accumulator-common-rail-
injector subsystem. The parameter relationships and the RNN
structure are discussed in Sec. III. Section IV shows the experiment
settings along with the training, validation, and test results of the
RNN model using experimental data. Finally, conclusions are given
in Sec. V.

II. Experimental Testbed

Figure 1 shows a schematic and image of the multinozzle spray
cooling testbed. The working fluid is distilled water at room temper-
ature. The BMW® common rail is filled from a 2 gal reservoir at
300 psi through a low-pressure PM® 190 liter lifting pump and sifted
by a 100 pm filter. Subsequently, a valve closes the system from the
reservoir. The system is then pressurized by the 2.5 gal accumulator
using a continuous supply of air acting on the bladder from the high-
pressure 2.26 ft3 air tank. Various pressure settings over the range of
900-2500 psi, controlled by a pressure regulator, are used to deter-
mine its effects on the system output (i.e., the injector volumetric flow
rate). The National Instruments (NI) cRIO 9056 controller and NI
9751 driver module send PWM signals to two piezoelectric N54
injectors positioned along the common rail. The injectors are posi-
tioned horizontally, 3 in. perpendicular to the heating plate and 6 in.
parallel to one another.

The pressure of the common rail is measured by an Ashcroft®
G2 transducer with an accuracy of £0.25%. Signal processing and
data accumulation are performed by a USB-6361 data acquisition

board (DAQ) via LabView. The PWM injector control signals are
measured using high-voltage probes viaa MD04104C mixed domain
oscilloscope, whereas the injected mass is measured by a JF-series
analytical balance digital scale.

III. Volumetric Flow Rate Modeling via RNN

An RNN is constructed to model the continuous input—output rela-
tionship of the exit volumetric flow rate for the testbed’s accumulator-
common-rail-injector subsystem. The PWM waveform along with the
common-rail pressure forms the inputs of model, whereas the output is
the injector exit volumetric flow rate. These parameters are time series in
nature, taken at each time step ¢ € [t . . ., ty]. For the training, vali-
dation, and testing, the PWM and pcg are directly measured; whereas
the volumetric flow rate is calculated using the common-rail pressure
and digital scale data.

The volumetric flow rate cannot be directly measured with flow
meters because of the minuscule amount of volume being expelled
by the injector per injection event (i.e., mostly on the order of 10 uL
for spray durations lasting between 1 and 5 ms). Other methods for
calculating the flow rate (e.g., the Bernoulli relation of the Pois-
euille’s law [23]) do not apply when considering that the injector exit
pressure is unmeasurable. An attempt to measure the driving pressure
between the accumulator and the common rail was influenced by the
head loss resulting from the difference in height and length between
locations. Additionally, measuring the pressure difference across the
common rail had issues due to pressure fluctuations from a combi-
nation of transducer noise and the ensuing water hammer of injection
actuation. Furthermore, calculating the flow rate exiting the accumu-
lator with the ideal gas law [24] could produce the average flow rate of
the total system but not the real-time injector flow rate.

As expected by the Poiseuille’s law [23], a linear relationship was
observed between the common-rail pressure and the mass expelled
by an injector during a single-pulse event using a JF-series analytical
balance digital scale. Applying this linear relationship, the following
equation is proposed to approximate the mass expelled for a single
injection event as

m(t) = I:rninijRDmp (t) - minjpmax]/prange (1)

where myy; is the total expelled mass measured by the digital scale as a
single event at the end of the impulse, and pCRDmp(t) = Pmax — Pcr(?)
is the common-rail pressure drop at time 7 from its beginning. Note that
Prange = Pmin — Pmax> Where pp,, and p i, represent the common-rail
pressure at the beginning and end of an injection event, respectively.
The volumetric flow rate is then calculated by taking the time derivative
of m(#) and dividing by the density as Qmj = m(t)/p,in which p is the
water density. The pressure and, therefore, the flow rate are identical
across multiple nozzles due to the use of the common rail. Therefore,
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Fig. 3 LSTM structure (customized based on Ref. [25]): the current
input of the PWM and CRP are concatenated with the encoded informa-
tion from the previous time step, also known as the hidden state. Long-
term information is encoded in the cell state, short-term information is
encoded in the hidden state, and information deemed unimportant is
forgotten.

the model describing the correlations between the PWM, the common-
rail pressure, and the flow rate is independent of the number of nozzles.

The overall RNN structure is shown in Fig. 2 [25], where each
time step has three long short-term memory (LSTM) [22] layers and
one linear layer. The PWM signals and common-rail pressure at ¢ €
[t0, - .., ty] are the input to LSTM layer 1, and the outputs of the linear
layer are the RNN’s prediction of volumetric flow rate at the injec-
tor exit.

The LSTM cell, shown in Fig. 3 [25], helps mitigate the vanishing
gradient issue and allows for enhanced capturing of long-term trends
[22]. The values of the cell and hidden states are fed to the layer to
predict the states of the next time step. The hidden state values also
compose the LSTM layer’s output and are passed as an input to the
next LSTM layer. Finally, the hidden state output of the last LSTM
layer will be the input to the linear layer.

The RNN is programmed using PyTorch® and runs on a laptop
with an Intel Core i7 Processor and 15.8 GB of RAM. The network
was trained via CUDA-GPU parallelization on a NVIDIA GeForce
MX450 card.

IV. Experiment Setting, Results, and Discussion

A total of 85 experiments were conducted to study the relationship
between the PWM signals, the common-rail pressure, and the volu-
metric flow rate. The PWM pulse width spanned between 1 and 5 ms,
with increments of 1 ms. Similarly, the common-rail pressure ranged
from 900 to 2500 psi, with increments of 100 psi. The PWM voltage
was set to switch between 0 and 150 V during all cases; however,

an error of +5 V was measured. All experiments were performed at
ambient room temperature and pressure.

The pressure and PWM measurements were taken at a sampling
frequency of 2 kHz (a sampling period of 0.5 ms) and a time length of
12 ms, in which three trials of each experimental case were taken to
increase validity. To reduce noise, a moving mean filter was applied
to the raw pressure signal. The volumetric flow rate was then calcu-
lated for a total of 25 data points per experiment.

Among the 85 datasets, 75 were selected to form the training set that
covered the range of experiment scenarios. The remaining 10 datasets
formed the validation set (five datasets) and test set (five datasets).
Although both the validation and test sets were not trained on, the
validation set was used during the tuning process. The network was
trained based on a given combination of the network size, loss function,
and optimizer; it then made predictions on the validation set. These
parameters were then updated based on the network’s ability to rec-
ognize the trends, in addition to both the training and validation loss
values. Once the network performed well on the validation set and a
final tuned model was reached, predictions on the test set were made to
offer an unbiased metric of performance.

Two solvers in PyTorch were tried, with the limited-memory
Broyden-Fletcher—Goldfarb—Shanno [26] solver was shown to be
superior to the Adam optimizer [26]. Similarly, the Huber loss [22]
function demonstrated a preferable ability to model the impulsive
data trends as compared to the mean squared error and the log loss
functions, due to the fact that itis an adjustable squared loss and is less
sensitive to outliers [22]. The layer sizes of 25, 50, 100, 250, 500, 550,
600, 650, 700, and 1000 were tried, in conjunction with fluctuating
the number of layers between one, two, three, and four. Among these
combinations, the best network configuration was three layers with
sizes of 650, 25, and 25, respectively.

The training converged to a loss value of 2.059 x 103 after 60
training iterations (i.e., epochs). The five validation datasets and five
test datasets converged to the average loss values of 1.953 x 1073 and
3.568 x 1073, respectively. Figure 4 shows the loss convergence
evolution of the network’s 60 training iterations (i.e., epochs) for
both the training and validation sets. The maximum and minimum
loss value evolutions of the validation datasets are presented in Fig. 5.

Figure 6 depicts example results of the RNN’s volumetric flow rate
prediction for the training, validation, and test cases. All points fall
on or near the true values, indicating a high-fidelity level of model
accuracy. By integrating the volumetric flow rate and multiplying it
with the density of water, a comparison was made between the pre-
dicted and measured total expelled water masses. Table 1 presents
the errors between the predicted and measured masses for different
common-rail pressure and spray pulse duration cases in the test
datasets, with an average error of 7.05%.

This model will be combined with another model describing the
relationship between the flow rate and heat flux. With the combined
model, correlations between the spray parameters, heat flux, and/or
surface temperature can be found, allowing the heat flux to be predicted
for a given spray pressure and duration. Furthermore, the relationship
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Fig.4 Average Huber loss vs iterations of the training and the validation
datasets.
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Table 1 Errors between predicted and measured total masses for
different common-rail pressure and spray pulse duration settings

Pressure, Duration, Calculated Predicted Error of mass,
psi ms mass, ug mass, ug %
1600 4 148.0 140.5 54
1400 5 171.5 163.8 4.7
1800 3 115.5 103.7 11.4
1900 3 116.2 107.0 8.6
2100 2 81.5 85.9 5.1

between the PWM signal, the common-rail pressure, and the heat flux/
surface temperature can be used to design advanced feedback controls
for multinozzle, pulsed, spray cooling systems to achieve uniform
mechanical and chemical properties in the cooling process.

The main obstacle of this study is that there are no accurate cost-
efficient means of measuring real-time piezoelectric injection volu-
metric flow rates due to the small magnitude and duration time. Due
to the significant delay of the digital scale and its small maximum
sampling frequency of 4 Hz, the injected mass could not be measured
in real time. Consequently, a linear relationship between the injected

mass and the common-rail pressure was assumed based on experi-
ment observation as shown in Eq. (1). However, the total mass or
volume per injection event is accurate. Additionally, the NI 9751
driver module limited the maximum injection duration. Therefore,
this study was only able to model the injector volumetric flow rate for
spray durations of up to 5 ms.

V. Conclusions

This Note develops a data-driven RNN model, mapping PWM
control signals and common-rail pressure to the volumetric flow rate
of an accumulator-common-rail-injection subsystem in a multinozzle
spray cooling testbed. Covering a wide range of experiment scenar-
ios, the predicted flow rate profiles correspond very well to the true
values, with an average error of 7.05% in predicting the total volume/
mass. The achieved model will be used for advanced spray control
methods for the testbed in the future, although it is also anticipated
that this work can benefit piezoelectric injection research in engines.
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