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Detecting disease outbreak regions using multiple data streams  

Abstract 

A novel approach for biosurveillance using multiple data streams is presented.  The proposed 

method is computationally simple, has rapid detection ability, and produces few false alarms.  

The proposed algorithm is applied to three popular statistical process control (SPC) charts: 

the Shewhart Chart, the EWMA, and the CUSUM.  The proposed method collects disease 

counts from multiple data streams, computes charting statistics, and then compares these to 

empirical in-control distributions generated using bootstrap methods to decide whether to 

signal an alarm.  As bootstrap methods are used, no assumption is made about the in-control 

distributions corresponding to a specific parametric distribution – an assumption that is 

common with most conventional SPC methods.  The proposed method relies on p-values and 

controls the false discovery rate; which distinguishes it from traditional SPC methods.  The 

relatively low false alarm rate is a highlight of the proposed method, as higher false alarm 

rates are a common problem with conventional SPC charts.  Through extensive simulations, 

the EWMA and CUSUM methods are shown to have superior performance over the widely-

used Shewhart charts, with the EWMA having a slight advantage over the CUSUM.  The 

proposed method is applied to the 2011 E.coli outbreak in Germany. 

 

Keywords: Biosurveillance; CUSUM control chart; EWMA control chart; false discovery 

rate; Shewhart control chart; statistical methods for disease surveillance 

1.  Introduction  

Disease surveillance systems use data to signal the existence of a potential outbreak based on 

statistical anomalies in the observed data.  Early detection is critical in disease surveillance, as 

the main objective is to inform the public health authorities as early as possible so that harmful 

consequences from an outbreak can be reduced.  Traditional disease surveillance systems 

confirmed outbreak occurrence retrospectively. Confirmed laboratory results were collected, 

analyzed and reported to decision makers after the outbreak occurrence.  As Shmueli and 

Burkom (19) explain “… in most situations they (public health data) are collected, delivered, and 



analyzed days, weeks, or even months after.” As a result, with this kind of analysis, it is not 

possible for the decision makers to take any preventive measures.  In the late 1990s, research 

focus shifted from these retrospective methods to biosurveillance, which is “… the practice of 

monitoring data to detect, investigate, and respond to disease” (19).  Biosurveillance is 

performed prospectively to detect an outbreak as early as possible.   

During the past two decades, many methods have been proposed for biosurveillance (19).  

Some of these methods use statistical process control charts (SPC) that originated in industrial 

process control.  Woodall (22) pointed out that SPC methods have a long history of applications 

to problems in biosurveillance.  Control charts are the main tools used in statistical process 

control to monitor quality characteristics of industrial processes.  The Shewhart Chart, the 

exponentially weighted moving average chart (EWMA), and the cumulative sum chart 

(CUSUM), are popular statistical process control charts.  Of the three charts, the Shewhart chart 

has been widely used for disease surveillance.  For example, the Shewhart chart has been used to 

monitor anesthesia related adverse effects (7) and risk-adjusted mortality rates in patients 

admitted to hospitals for myocardial infarction (4).  The CUSUM chart has also been frequently 

applied in biosurveillance (8).  Elbert and Burkom (6) discussed an adaptation of the EWMA 

control chart for biosurveillance.  Fricker (8) pointed out that “the EWMA, although popular in 

industrial SPC, is less commonly used in biosurveillance.”   

 We propose a method for detecting disease outbreaks that improves on weaknesses of 

traditional SPC methods in several ways: (i) our approach uses empirical p-values based on the 

bootstrap method, as suggested by Li et al. (12), allowing the research to quantify strength of 

evidence for an outbreak (or more accurately, one can quantify how incompatible the data are 

with a specified no outbreak model), (ii) because we must monitor multiple attribute variables, 



such as disease counts from multiple geographic regions, we address the multiple comparisons 

problem by controlling the false discovery rate (FDR), as suggested by Li and Tsung (11) , in 

order to improve the power of our method in comparison to methods that control the familywise 

error rate (FWER), which can be unnecessarily restrictive, (iii) the proposed method uses the 

FDR-controlling procedure proposed by Storey and Tibshirani (21) for FDR control, instead of 

the more conservative FDR control methods proposed by Benjamini and Hochberg (1).  

This paper is organized in the following manner.  Section 2 gives preliminary information 

about the standard Shewhart, EWMA, and CUSUM methods. Section 3 provides details about 

the proposed methodology.  A comparison of the proposed method with standard methods is also 

provided.  Section 4 describes the results of a simulation study conducted to compare the 

performance of this methodology in combination with the Shewhart, EWMA, and CUSUM 

methods.  Initial conclusions based on these extensive simulation studies are also provided in this 

section.  Section 5 describes an application of the proposed method to the 2011 E.coli outbreak 

in Germany.  Finally, Section 6 explains the pros and cons of the proposed method, along with 

directions for future work.  

2.  Preliminaries  

The proposed algorithm was applied to three popular control charts: (i) Shewhart Chart (ii) 

EWMA, and (iii) CUSUM.  We briefly describe each of these methods in more detail. 

2.1.  Shewhart chart 

Shewhart (18) invented the control chart to determine when the mean of an industrial process has 

changed. A Shewhart chart is defined by three characteristics: the centerline, the lower control 



limit (LCL), and the upper control limit (UCL). The process is declared to be out-of-control 

when the value of the observed process falls outside the interval [LCL, UCL]. 

Let the mean of the process that we are interested in monitoring be 𝜇 and the standard 

deviation be 𝜎.  The centerline of the Shewhart chart is 𝜇. The LCL and UCL are defined in 

Montgomery (14) as  

𝐿𝐶𝐿 =  𝜇 − 𝐿𝜎, 

𝑈𝐶𝐿 = 𝜇 + 𝐿𝜎, 

where L defines how far the upper and lower control limits are from the centerline.   

2.2.  Exponentially weighted moving average chart (EWMA) 

Roberts (17) introduced the EWMA control chart for independent, identically distributed (iid) 

normal random variables.  Borror et al. (2) extended the EWMA to Poisson data. 

Assume 𝑌1, 𝑌2, … , 𝑌𝑛 are iid Poisson counts with mean 𝜇 observed at times 𝑡 = 1, 2, … , 𝑛.  

When the monitoring process is in control, we assume 𝜇 = 𝜇0.  Borror et al. (2) proposed 

monitoring the process behaviour at time 𝑡 using the test statistic  

𝐸𝑡 = 𝜆𝑌𝑡 + (1 − 𝜆)𝐸𝑡−1, 

where 𝜆  is a weighting constant such that 0 < 𝜆 ≤ 1, and the starting value 𝐸0 is set to the in-

control mean or the target count rate 𝜇0.  

Montgomery (14) recommends using the following UCL and LCL for a Poisson EWMA 

control chart with centerline 𝜇0:     



𝑈𝐶𝐿 = 𝜇0 + 𝐴𝑈√
𝜆𝜇0

2 − 𝜆
[1 − (1 − 𝜆)2𝑡],                                                       (1) 

𝐿𝐶𝐿 = 𝜇0 − 𝐴𝑈√
𝜆𝜇0

2 − 𝜆
[1 − (1 − 𝜆)2𝑡],                                                       (2) 

where 𝐴𝑈 and 𝐴𝐿are upper and lower control limit factors and the expression in square roots is 

the in-control process standard deviation.  In many applications, the limits are chosen to be 

symmetric around zero, so that −𝐴𝐿 = 𝐴𝑈 (14).  After determining the in-control mean 𝜇0, 

usually from historical data, and specifying 𝜆, standard tables such as the tables provided by 

Borror et al. (2) can be used to select a control limit factor A that would give a desired in-control 

average run length 𝐴𝑅𝐿0. 

The 𝐴𝑅𝐿0 is related to the tolerable false alarm rate.  The centerline specifies where the 

process characteristic should be when the process is in control.  When the process is in control, 

nearly all of the sample points fall between the upper and the lower control limits.  Sometimes, 

even when the process is in control, a sample point can still be plotted outside of the control 

limits: this is a false alarm and is similar to Type I error in classical hypothesis testing.  𝐴𝑅𝐿0 is 

defined as the average time between two such false alarms. 

In contrast to an industrial process control setting, where out-of-control processes are 

likely to be under the LCL or above the UCL, in a disease surveillance setting, we are only 

interested in identifying mean disease counts above what is typically seen during a non-outbreak 

period.  In that context, Shu et al. (20), proposed the one-sided EMWA statistic to detect upward 

shifts from the mean: 

𝐸𝑡 = max[𝜇0, 𝜆𝑌𝑡 + (1 − 𝜆)𝐸𝑡−1].                                                   (3) 



In this one-sided context, an alarm is signalled when the statistic in Equation (3) is above the 

UCL in Equation (1). 

2.3.  The cumulative sum chart (CUSUM) 

The CUSUM control chart was proposed by Page (15) for iid normal responses.  Later, Lucas 

(13) extended the method to iid Poisson responses.  Consider the iid Poisson responses 

𝑌1, 𝑌2, … , 𝑌𝑛  with mean 𝜆 taken at times 𝑡 = 1, 2, … , 𝑛.  The control chart is designed to signal an 

alarm when the process mean shifts from an in-control mean of 𝜆 = 𝜆0 to an out-of control mean 

of 𝜆 = 𝜆1.  The monitoring CUSUM statistic is defined as 

𝐶𝑡 = max(0, 𝐶𝑡−1 + 𝑌𝑡 − 𝑘),                                                        (4) 

where 𝑌𝑡 is the observed count at time t, 𝐶𝑡 is the CUSUM statistic at time t, and 

𝑘 =
𝜆1 − 𝜆0

ln 𝜆1 − ln 𝜆0
,                                                        (5) 

is a constant value defined to minimize the time to detect a mean shift from the in-control mean 

of 𝜆0 to the out-of-control mean of 𝜆1. 

The starting value of the CUSUM chart 𝐶0 is often set to 𝐶0 = 0.  An alarm is signaled 

when 𝐶𝑡 > ℎ, where the threshold ℎ is pre-determined.  In fact, ℎ is a function of both 𝑘 and 

𝐴𝑅𝐿0.  After the desired 𝐴𝑅𝐿0 is specified and the constant 𝑘 is determined using 𝜆0 and 

𝜆1values, the threshold ℎ can be determined using Monte Carlo simulations or statistical tables.   

2.4.  Multivariate statistical process control charts using p-values and controlling FDR 

Conventional statistical process control charts use control limits to signal alarms.  An alarm is 

signalled when the charting statistic exceeds pre-determined control limits.  Li et al. (12) 



proposed a method using p-values instead of the traditional control limits to signal alarms.  They 

proposed two methods for computing p-values in a control chart setting: we use their second 

method, based on bootstrapping.  Suppose we want to compute a p-value for a statistic at 

monitoring time 𝑡. Then 𝑡 observations are sampled with replacement from the in-control 

observations and treated as a time series of t in-control observations; the charting statistic is 

computed over time for these t observations to get the charting statistic at time t. This process is 

repeated for 𝐵 bootstrap samples, resulting in B bootstrap statistics at time 𝑡.  Let {𝑆𝑡
∗(1)

… , 𝑆𝑡
∗(𝐵)

} 

denote the set of charting statistics computed at time 𝑡 for each of the 𝐵 bootstrap samples. The 

distribution of these statistics represents the bootstrap distribution or the typical distribution of 

the charting statistic at time 𝑡 when the process is in control.  In classical hypothesis testing, this 

is referred to as the null distribution.  Next, during the monitoring period, the usual statistic is 

computed for each measurement taken from the industrial process, with 𝑆𝑡 denoting the charting 

statistic at time 𝑡.  The observed test statistics are compared with the bootstrap distribution to 

calculate a p-value using the formula 

1 + ∑ 𝐼(𝑆𝑡
∗(𝑗)

≥ 𝑆𝑡)𝐵
𝑗=1

𝐵 + 1
. 

The method proposed by Li et al. (12) is so general that it can be used with most commonly used 

control charts.  We used this approach with all three of the control charts – Shewhart, EWMA, 

and CUSUM.   

The method proposed by Li et al. (12) was for a single control chart.  However, in order 

to monitor multiple geographic regions simultaneously, we need to use multiple control charts.  

When multiple control charts are used, we run into the multiple testing problem that inflates the 

probability of a false alarm.  Li and Tsung (11) used false discovery rate (FDR) to address the 



multiple testing problem using conventional SPC charts with traditional control limits.  We also 

use FDR to address the multiple testing problem: however, we use p-values instead of traditional 

control limits.   

Benjamini and Hochberg (1) popularized the use of FDR to handle the multiple testing 

problem.  The false discovery rate is defined as the expected proportion of false discoveries 

among all discoveries.  Formally, FDR is defined as 

FDR = E[𝑉/𝑅], 

where 𝑉 is the number of false alarms and 𝑅 the number of total alarms.  Several methods have 

been proposed to control FDR, such as the widely used Benjamini Hochberg procedure (1).  We 

used a method more recently proposed by Storey and Tibshirani (21) to address the multiple 

testing problem in genomewide studies when the tests may be correlated.  

3. Methods 

3.1.  The proposed method 

Consider a study area partitioned into 𝑚 regions.  The disease count in region 𝑖 at time 𝑡 is 𝑌𝑖𝑡, 

and the set of disease counts across all regions at time 𝑡 is 𝒀𝑡 = {𝑌1𝑡, … , 𝑌𝑚𝑡}.  We will assume 

that this disease count represents the number of cases observed in the past week, which is a 

common reporting time period. 

We detail the steps of the proposed method: 

We start by specifying the tolerable level of false discoveries 𝛼.  For example, if 𝛼 =

0.05, then on average we expect 5 false alarms for every 100 alarms.   

Next, we identify a non-outbreak period from historical data.  For example, for weekly 

data the non-outbreak period could be the most recent year without an outbreak.  Thus, we can 



potentially update the baseline period every year in order to account for changing factors such as 

population change.    

Suppose we want to perform surveillance over a period of 𝐿 time steps. Let {𝒀1
0, … , 𝒀𝑠

0} 

denote the collection of disease counts across the 𝑚 regions for 𝑠 times during the most recent 

non-outbreak period. We want to create 𝐵 bootstrap samples of 𝐿 observations using the data 

from the non-outbreak period. Let 𝐘∗(𝑗) denote the 𝑗th bootstrap sample. A single bootstrap 

sample 𝐘∗(𝑗) = {𝒀1
∗(𝑗)

, … , 𝒀𝐿
∗(𝑗)

} is obtained by sampling 𝐿 observations with replacement from 

{𝒀1
0, … , 𝒀𝑠

0}, with 𝒀𝑏
∗(𝑗)

= {𝑌1𝑏
∗(𝑗)

, … , 𝑌𝑚𝑏
∗(𝑗)

} denoting the 𝑏th bootstrap observation.  

During the surveillance period the following steps are performed. 

1.  Create 𝐵 bootstrap samples, {𝐘∗(1), … , 𝐘∗(𝐵)} using most recent non-outbreak data, as 

discussed above. 

2. For each bootstrap sample, the charting statistic is computed across the 𝐿 monitoring 

times for each of the 𝑚 regions. The charting statistic for bootstrap sample 𝑗 for region 𝑖 

at time step 𝑡 is denoted 𝑆𝑖𝑡
∗(𝑗)

. 

3. The charting statistics at time 𝑡 across all 𝐿 times are computed for each region, with 𝑆𝑖𝑡 

denoting the charting statistic of region 𝑖 for time 𝑡. 

4. The p-value of the 𝑖th region at time step 𝑡 is computed as 

𝑝𝑖𝑡 =
1 + ∑ 𝐼(𝑆𝑖𝑡

∗(𝑗)
≥ 𝑆𝑖𝑡)𝐵

𝑗=1

𝐵 + 1
. 

At each time step, there will be a vector of associated p-values 𝒑𝑡 = (𝑝1𝑡, … , 𝑝𝑚𝑡). Figure 

1 provides a flow chart describing this basic process. 

Finally, to address the multiple testing problem, we use the ST procedure for FDR 

control. FDR control relies on knowing the number of tests that are being considered. Since we 

are trying to control the FDR across 𝑚 regions but a potentially unknown number of time steps, 

we control the FDR with respect to each individual time step, but not necessarily across the 

entire data stream of a single region. 

The final output of the algorithm is a set of 𝑚 alarm decisions from which we can 

identify the regions that need attention.   



3.2.  Comparison with existing methods 

We now describe several advantages of the proposed method for disease surveillance over 

conventional methods. 

First, p-values are more flexible for testing than the traditional control limits.  A p-value 

is a fundamental statistical quantity used in a variety of disciplines, whereas control limits are 

primarily limited to industrial process control.  Testing via control limits results in a binary 

decision of either an alarm or no alarm.  In contrast, a p-value quantifies the strength of 

incompatibility of the data with the null hypothesis.  Thus, even when there is no alarm, a p-

value can still be used to assess whether there may be an embryonic outbreak in its earliest 

stages. 

Second, the FDR is a more useful error criterion for disease surveillance than 𝐴𝑅𝐿0.  The 

𝐴𝑅𝐿0 is defined as the expected run length time between false alarms.  In industrial process 

control, a process is calibrated to be in-control when it starts.  When the charting statistic exceeds 

the control limits, an alarm is signalled and the process is stopped, recalibrated, and started 

again.  In disease surveillance, we cannot stop an outbreak after an alarm, making the control of 

𝐴𝑅𝐿0 of little value in that context. 

Additionally, 𝐴𝑅𝐿0 is directly related to the Type I error.  In a disease surveillance setting 

Type I error would indicate the probability of an alarm when there is no outbreak.  However, a 

non-detected outbreak is likely to be of greater concern than incorrectly concluding there is an 

outbreak.  Consequently, it is more natural to control the expected proportion of false alarms, 

which is what FDR measures.  The additional benefit of controlling the FDR instead of 𝐴𝑅𝐿0 is 

an expected increase in testing power.  Li and Tsung (11) note that in conventional SPC charts, 

“the control limits are determined by fixing the overall in-control average run length.  However, 

the power of such Bonferroni-Type control charts is rather low, when the number of charts is 



large.” By choosing to control the FDR, it is possible to use more powerful and up-to-date 

multiple testing procedures, such as the ST method, in contrast to methods designed to control 

the FWER.  

Third, the proposed method makes modest distributional assumptions, increasing its 

applicability to observed data.  Conventional SPC methods typically rely on theoretically defined 

alarm thresholds based on parametric assumptions.  However, the proposed method does not 

assume the disease counts follow a specific distribution, as the empirical non-outbreak 

distribution is generated using bootstrap methods.  Buckeridge et al. (3) recommend using 

empirical methods as opposed to relying on traditional SPC distributional assumptions.   

Fourth, in-control parameters need to be regularly updated in a disease surveillance 

setting.  When monitoring disease rates over geographic regions for extended periods of time, 

one needs to consider various changes that occur over time that affect the typical mean disease 

count observed during a non-outbreak period.  These changes may include medical coding 

changes related to disease diagnosis, new treatments such as vaccines, population shifts, changes 

in data participation or information systems, and other factors.  Similarly, in-control parameter 

estimates should be re-estimated in an industrial process control context when the underlying 

process is thought to have changed. All three of the methods employed in what follows – the 

Shewhart, EWMA, and CUSUM methods - need to be regularly updated with the “in-control 

mean” or the expected mean disease count during a non-outbreak period.  By utilizing the most 

recent non-outbreak time period to obtain the in-control distribution, our method allows these 

parameters to change gradually over time without additional user intervention. 

There has been some similar research that enables FDR control in charting statistics. Lee 

et al (10) assume that data come from a iid normal distribution, and define a statistic that follows 



the standard normal distribution asymptotically when the null hypothesis is true (i.e. when there 

is no outbreak).  Then, p-values are calculated using the standard normal distribution.  

Most conventional SPC methods rely on this assumption that data come from an iid 

normal distribution. However, Buckeridge et al. (3) point out that “Public health surveillance 

data tend to violate assumptions of (conventional) SPC methods”.  The proposed method makes 

minimal distributional assumptions.  Bootstrap samples are collected from a non-outbreak period 

(an in-control period) from which the corresponding bootstrap statistics are calculated.  

Empirical in control distributions are generated using these bootstrap statistics from which p-

values are calculated. Buckeridge et al. (3) recommend using empirical methods as opposed to 

relying on traditional SPC distributional assumptions.  The proposed method is more suitable for 

public health surveillance data that violate traditional distributional assumptions. 

Dassanayake and French (5) presented a spatio-temporal method using the CUSUM 

statistic. A spatio-temporal statistic was calculated pooling counts of neighbouring regions to 

signal alarms.  The proposed method is a purely temporal method (using three popular SPC 

charts - the EWMA, the CUSUM, and the Shewhart chart), which considerably simplifies the 

computational burden only using the disease count data at each time step. 

3.3.  Summary 

The first step of the proposed method is to set a tolerable FDR level 𝜶.  Next, using historical 

data, a non-outbreak period is identified.  The non-outbreak period is regularly updated for each 

region to account for relevant factors changing over time.  E.g., the weekly disease counts from 

the most recent year without an outbreak are used as the in-control period.  The proposed method 

is applied using the output from the desired SPC chart (Shewhart, EWMA, or CUSUM).  

Afterwards, bootstrap samples are taken from each region during the non-outbreak period.  For 



these bootstrap samples, the appropriate SPC chart is calculated.  An empirical in-control (i.e. 

non-outbreak) distribution for each region is developed using these bootstrap statistics.  Then at 

each time step t after the non-outbreak period, disease counts are collected from each region and 

the relevant SPC method is applied to the counts for that region.  These statistics are compared 

with the corresponding in-control distributions for each region to determine p-values.  As there is 

a p-value from each region at each time step, we get a vector of p-values.  Finally, for each time 

step, the ST procedure is used to address the multiplicity problem encountered when testing 

multiple p-values simultaneously.  

4.  Simulation experiment  

4.1.  Experiment setup 

Disease counts were simulated in 36 contiguous regions arranged in a 6 × 6 grid.  The time 

period for the simulation was 100 time points, where each time point represented a “day.”  In 

each of the 36 regions, independent Poisson counts were simulated.  The first half of the 

simulation (days 1-50) represented the no outbreak period and the second half (days 51-100) 

represented the outbreak period.  For the no outbreak period from days 1-50, independent 

Poisson counts were simulated in each of the 36 regions with a constant mean of 𝜆0𝑖 = 4, 𝑖 =

1, … ,36.  However, for the outbreak period from days 51-100, independent Poisson counts were 

simulated with out-of-control means (denoted by 𝜆1𝑖, 𝑖 = 1, … ,36) peaking at the central regions 

and gradually thinning towards the perimeter regions, as illustrated in Figure 2.  Note that in all 

regions along the perimeter, no outbreak was simulated.  Also note that, spatial contiguity of the 

data streams in Figure 2 has nothing to do with the analysis but helps with visualization of a 

stylized scenario. 



 

[Figure 2 near here] 

 

No outbreak was simulated in the 20 perimeter regions, regions 1, 2, 3, 4, 5, 6, 7, 12, 13, 

18, 19, 24, 25, 30, 31, 32, 33, 34, 35, and 36.   Corner regions in the inner 4 x 4 grid (shaded in 

medium dark grey), specifically, regions 8, 11, 26, and 29 get a 1 standard deviation shift in the 

mean.  The remaining 8 perimeter regions in the inner 4 x 4 grid (shaded in light grey) – regions 

9, 10, 14, 17, 20, 23, 27, and 28 – get a 2 standard deviation shift in the mean.    Finally, the four 

central regions – regions 15, 16, 21, and 22 – gets a 3 standard deviation shift in the mean.  

In this simulation, the proposed method was implemented using three popular statistical 

process control charts: (i) the Shewhart, (ii) the EWMA, and (iii) the CUSUM control charts.   

First, the proposed method was applied using 36 Shewhart charts – one chart for each 

region.  𝐵 = 10,000 bootstrap samples were randomly selected from the non-outbreak period to 

construct an empirical in-control distribution (null distributions) for each region.  At each time 

step, p-values for each region were calculated by comparing the simulated disease counts at each 

time step with the corresponding empirical distribution for each region. The FDR level for each 

test was set to 0.05. 

Second, the proposed method was implemented using 36 EWMA statistics – one EWMA 

statistic for each region.  The weighting constant 𝜆 was set to 0.20 (Montgomery (14) 

recommends selecting a 𝜆 value where 0.05 < 𝜆 ≤ 0.25.)  An in-control mean of 𝜆0 = 4 was 

used as the starting value  𝐸0 for each chart.  An empirical in-control distribution for each region 

was generated using 𝐵 = 10,000 bootstrap samples randomly selected from in-control data for 

each region.  The FDR level for each test was set to 0.05. 



Third, the proposed method was applied using 36 CUSUM statistics – one statistic for 

each region, like the implementation of the EWMA statistics.  Each CUSUM statistic was 

designed with an in-control Poisson mean (𝜆0) of 4 and an out-of-control Poisson mean (𝜆1) of 

6, 8, 10, depending on the region.  Thus, each CUSUM statistic was designed to detect a change 

of one standard deviation increase in the mean.  Similar to the EWMA method, an empirical in-

control distribution for each of the 36 regions was generated using 𝐵 = 10,000 bootstrap 

samples randomly selected from the non-outbreak period. The FDR level was set to 0.05, as 

before. 

4.2.  Simulation results 

Figure 3 shows the results for a single simulation over a 100-day period for region 26.  Recall 

that for region 26, the in-control mean is 4 from days 1-50 and the out-of-control mean is 6 from 

days 51-100.  Region 26 is one of the four regions – 8, 11, 26, 29 – to receive the smallest shift 

in the mean of 1.0 standard deviation.   Figure 3 (a) shows the simulated disease counts for the 

surveillance period from days 1-100.  Figure 3 (b) shows the standardized statistics for all three 

methods: the statistics were standardized by dividing each statistic by its maximum value within 

the surveillance period from days 1-100.  Note that the standardized EWMA statistic (red) has a 

higher reference line compared to the other two standardized statistics –Shewhart (blue) and 

CUSUM (dark green) – both of which have a reference line of zero.  The reason is that in 

calculating the EWMA statistic, we plot the maximum of the two numbers, the in-control mean 

for the region or the current EWMA statistic at time t, following equation (3) from Section 2.2 

for the EWMA computation.  However, with the CUSUM statistic, we plot the maximum of the 

two numbers, zero or the current CUSUM statistic at time t, using equation (4) from Section 2.3 

for the CUSUM computation.  Therefore, it is possible for the CUSUM statistic to return to zero, 



unlike the EWMA.  In addition, the Shewhart statistic shows the standardized observed counts 

during the surveillance period.  Therefore, the Shewhart statistic does not return to zero as all 

simulated counts during the surveillance period are positive values.  Figure 3(c) shows the 

alarms signalled by each method.  The Shewhart statistic (blue) signals the first alarm on day 72 

– 21 days after the onset of the outbreak on day 51.  However, the CUSUM statistic (dark green) 

signals the first alarm 9 days earlier than the Shewhart statistic on day 63.  The quickest to signal 

alarms is the EWMA statistic which signals the first alarm on day 61.  Furthermore, the 

Shewhart statistic signals alarms sporadically – only four alarms on days 72, 85, 93, and 98 - 

during the outbreak period from days 51 -100.  However, the CUSUM statistic is more persistent 

in signalling alarms during the outbreak period signalling a total of 38 alarms during the 

outbreak period from days 51-100.  The EWMA method also signals alarms rather persistently 

over the outbreak period – signalling a total of 33 alarms– even for a moderate 1.0 standard 

deviation shift in the mean in this region.   

 

[Figure 3 near here] 

 

Figure 4 shows the results for region 22, one of the four center regions in Figure 2 with 

the largest shift in the mean.  In region 22, the in-control mean changes from 4 to 10 at the onset 

of the outbreak on day 51.  The Shewhart method (blue) starts to signal 2 days after the start of 

the outbreak, on day 53.  Note that the alarms are more frequent during the outbreak period for 

region 22 (with a 3 standard deviation increase in the mean) compared to region 26 (with a 1 

standard deviation increase in the mean).  The CUSUM method (dark green) also detects the 

outbreak on day 53.  Of all three methods, the EWMA method is the quickest to signal the 



outbreak on day 52.  Also note that all three methods signal alarms more frequently in region 22 

than in region 26, as the shift in the mean is much larger: the EWMA method signals 

continuously after detecting the outbreak on day 52; the CUSUM also signals continuously after 

detecting outbreak on day 53; Shewhart method signals more persistently in region 22 than in 

region 26. 

 

[Figure 4 near here] 

 

In order to verify that all three methods were controlling FDR at 0.05 level, 100 

independent simulations following the method outlined in Section 3.2 were carried out using the 

three statistics.  The empirical FDR was computed at each time step for the three independent 

simulations and the mean of these statistics was computed. The mean empirical FDR was 0.044 

for the EWMA with a 95% confidence interval of 0.040 to 0.047; CUSUM had a mean  FDR of  

0.049 with a 95% confidence interval of 0.046 to 0.052; the Shewhart had a mean FDR of 0.044 

with a 95% confidence interval of 0.042 to 0.047. Thus, for all three methods the empirical FDR 

was controlled at each time step across regions. The mean FDR values for both the EWMA and 

the Shewhart  were comparable; compared to both EWMA and Shewhart statistics, the mean 

FDR was slightly higher for the CUSUM as it takes a little longer for the CUSUM to decrease 

after signalling an alarm.  

We also computed statistics related to the power of each method. The empirical power is 

the percentage of the time that an outbreak is detected across all regions at times that an outbreak 

occurred. Shewhart charts had an empirical power of 28.57% with a 95% confidence interval of 



28.02% to 29.04%; CUSUM had 96.19% mean power with a confidence interval of 96.00% to 

96.41%; EWMA had a 90.23% mean power with a confidence interval of 89.93% to 90.62%. 

4.3.  Comparing performance of the three methods 

In evaluating the performance of the three surveillance methods, certain measures should be 

adopted.  Frisen and Sonesson (9) highlight that “good properties (of a disease surveillance 

system) are quick detection and few false alarms.”  They list (i) conditional expected delay 

(CED) and (ii) probability of a false alarm (PFA) as two common measures for evaluating the 

speed of detection and rate of false alarms, respectively.  Conditional expected delay (CED) is 

the average delay time until an alarm when the change occurs at time point τ, and defined as 

𝐶𝐸𝐷(τ) = E[𝑡𝐴 − τ|𝑡𝐴 ≥ τ]. 

In the event of an outbreak, CED is the expected number of time periods from the beginning of 

the outbreak to the first alarm.  The other measure, probability of a false alarm is defined as, 

𝑃𝐹𝐴 = P(𝑡𝐴 < τ). 

In other words, this is the probability of an alarm before the actual outbreak. 

 In calculating the CED and PFA measures, data sets were generated with a range of 

change points (5, 10, 15, …, 95).  For example, for the first change point τ = 5, 100 data sets 

were simulated with no outbreaks from days 1-4 having an in-control Poisson mean (𝜆0) of 4; for 

the outbreak period from days 5 – 100, Poisson data were simulated with out-of-control means 

(𝜆1) specified in Figure 2.  Then for each data set, the delay from the start of the outbreak on day 

number 5 was calculated.  For instance, if the first signal after the onset of the outbreak on day 5 

occurred, let’s say, on day 7 for region 1, then the delay in detection for that region was 



calculated to be 2 days.  Similarly, delays in detection were calculated for each of the 36 regions 

in all 100 data sets.  Next, the delays were averaged for each region.  In other words, for each 

region there were 100 detection delay measures calculated from the 100 data sets.  These 

detection delays were averaged for each region to determine the CED values for the change point 

when τ = 5.  Likewise, for the other change points (𝛕 = 10, 15, 20, … ,95), the CED values were 

computed for each region.  In order to make accurate CED calculations for change points near 

the end of the 100-day surveillance period, the simulation time period was extended to 150 days, 

with outbreaks extending from their start until time 150.  By using multiple change points for the 

start of the outbreak, we are able to assess the impact of having more or less null data when 

applying the methodology: in other words, we assessed the impact of different warm-up periods. 

Figure 5 shows the CED values versus change points for regions 9, 11, and 16 – three 

regions that experience the outbreak during the outbreak period.  Since there are regions that do 

not experience the outbreak during the outbreak period such as regions 1, 2, and 3, only a 

selection of regions experiencing the outbreak were illustrated as CEDs cannot be calculated for 

regions not experiencing outbreaks.  Recall that region 11 received a 1 standard deviation shift in 

the mean, region 9 a 2 standard deviation shift in the mean, and region 16 a 3 standard deviation 

shift in the mean. One-way ANOVA tests for all 16 regions that experience the outbreak in the 

inner 4 x 4 region were conducted using the CED values for all three statistics.  It is important to 

observe that in all three regions – regardless of the magnitude of the shift in the in-control mean, 

the EWMA has the lowest CED values, implying speedier detection.  In the four regions that 

receive the highest shift (3 standard deviation) in the mean, namely regions, 15, 16, 21, and 22,  

the Shewhart statistic which uses the current disease count was faster than the CUSUM which 

cumulates current and past observations.  In all other regions in the inner 4 x 4 region, the 



CUSUM was faster than the Shewhart.  The key finding was that the EWMA was the quickest to 

detect an outbreak in all regions. 

A careful study of Figure 5 shows how the speed of detection for the three methods 

improves with the magnitude of the increase in the mean.  Recall that the magnitude of the 

increase in mean gradually increases from region 11, to region 9, to region 16, with region 16 

having the largest increase in the mean.  With the increase in the magnitude of the mean shift, the 

CED values steadily decrease for all three methods.  For the Shewhart method the CED values 

for regions 11 are between 9.5 – 18.8.  With the increase in the mean shift for region 9, the CED 

values for Shewhart statistic decrease to values between 3.2 – 4.4.  With the largest increase in 

the mean, for region 16, the CED values further decrease to values between 0.8 – 1.5.  This 

pattern can be observed for both the CUSUM and the EWMA methods: with higher shifts in the 

mean, the CED values systematically decrease to lower values.  All three methods are generally 

speedier in detecting larger shifts in the mean. 

 

[Figure 5 near here] 

 

Figure 6 shows the PFA values for the three methods versus change points.  Similar to the 

simulation for the CED, in calculating PFA values, 100 data sets were simulated for the same 

change points (τ = 5, 10,15, … ,95).  For example, for the change point τ = 5, in-control data 

were simulated for days 1-4 and out-of-control data for days 5-100.  For each simulation, PFA 

values were calculated as the proportion of false alarms during the no outbreak period from days 

1-4.  For all 100 simulations with change point τ = 5, PFA values were calculated for each 

region and averaged, as before.  The same calculation was carried out for all other change points 



(τ = 10, 15, 20, … ,95).  Figure 6 shows PFA values versus change points for the same three 

regions: region 9, 11, and 16. A careful analysis using one-way ANOVA (at 𝛼 = 0.05 level of 

significance) for all 16 regions that experience the outbreak in the inner 4 x 4 region revealed 

that Shewhart had the highest PFA for all 16 regions.  There was no statistically significant 

difference in PFA between the EWMA and CUSUM (except for regions 11, 20, and 26 where 

the CUSUM has a slightly higher PFA).  Figure 6 also reveals the extremely low occurrence of 

false alarms for all three statistics using the proposed algorithm.  Note the scale of the y-axis - 

the highest PFA value for all three plots is below 0.03.  This low false alarm rate is a highlight of 

the proposed method.  

 

[Figure 6 near here] 

 

We also computed empirical FDR across each time step for the 100 simulated data sets 

associated with each of the 19 change points starting at time τ = 5, 10,15, … ,95. The empirical 

FDR was computed for each time step, and then for a specific changepoint, the mean empirical 

FDR was computed. Figure 7 displays the mean empirical FDR plotted against the change 

points. The figure shows that FDR is not sensitive to different change points.  

[Figure 7 near here] 

5.  Application to 2011 German E.coli outbreak 

The proposed algorithm was applied to the 2011 German E.coli O104:H4 outbreak.  The data 

were obtained from the Robert Koch Institute in Germany (16).  The outbreak recorded the 

highest number of Hemolytic Uremic Syndrome (HUS) cases reported in an outbreak.  HUS can 

be classified as a food/waterborne disease.  HUS causes excessive destruction of red blood cells; 



the damaged blood cells clog the kidneys leading to fatal kidney failure.  The E.coli O104:H4 

outbreak affected 3,950 German residents; 800 of these suffered from HUS and 51 people died 

from their illness.  The foodborne outbreak largely affected northern German states and 

continued from May to June of 2011. 

All three statistics – Shewhart, CUSUM, and EWMA – were used with the proposed 

algorithm.  The in-control data for each year corresponded to the data from the most recent year 

without an outbreak.  For each state, bootstrap samples of size 𝐵 = 10,000 were collected from 

the in-control period and used to estimate the p-values for each region at each time step.   

The methodology was applied in a manner similar to the previous simulation study, with 

certain important choices related to the null distribution.  The observed disease counts during in-

control periods were frequently zero, so the mean disease count of the in-control data was often 

quite low.  E.g., the sample mean of a year’s worth of in-control data could be close to 0.3, but 

the maximum disease count during that period could be 7.  Consequently, in order to make our 

analysis meaningful for detecting a true outbreak, the null mean value chosen for each testing 

period (𝜇0 for the EWMA and 𝜆0 for the CUSUM method) was taken to be the maximum of the 

associated in-control period (typically, the data from the previous year); the null mean value of 

the bootstrap distribution was also shifted to the maximum of the associated in-control period. 

Figure 8 shows the results for the state of Hesse.  Figure 8 (a) shows the weekly disease 

counts for a 5-year period starting from January of 2006 to the end of 201l.  The large spike on 

week 285 (orange line) signals the start of the outbreak on the second week of May 2011.  Figure 

8 (b) shows the three statistics over the same time interval and 7 (c) illustrates the alarm signals 

for all three methods.  All three statistics – the Shewhart (blue), the EWMA (red), and the 

CUSUM (green) – detect the outbreak right at the onset on week 285. This is consistent with the 



simulation results shown in Figure 5, which illustrates how the detection speeds of all three 

statistics converge for relatively large shifts in mean disease counts, such as this spike on week 

285. 

In addition to displaying detection speeds, Figure 8 (c) also exhibits the extremely low 

occurrence of false alarms for all three methods.  In fact, for the state of Hesse for all three 

methods, there was only one false alarm on week 66 over the entire five-year period from 2006 

to 2011; in other words, there was only a single false alarm over 318 weeks.  This result is 

consistent with the simulation results on Figure 6 illustrating the very low occurrence of false 

alarm rates.  Figure 8 (c) was created to highlight this feature of the algorithm; therefore, the 

alarm signals for the entire five-year period were illustrated. 

It is important to note the stepwise increment in the EWMA statistic (red) on week 107 in 

Figure 8 (b).  For each year, the in-control means are updated based on data from the previous 

year.  Recall that the most current EWMA statistic is calculated as the higher of the two statistics 

– the in-control mean or the current statistic.  So, the reference line for the EWMA statistic is the 

in-control mean for each year, calculated from the previous year’s data.  Figure 8 (b) shows how 

the in-control mean for the EWMA statistic shifts up in year 2008 (starting with week 107) for 

the state of Hesse.  However, the reference line for the CUSUM statistic is continuously zero, 

since the current CUSUM statistic is calculated as the higher of the two – the current CUSUM 

value or 0.    

 

[Figure 8 near here] 

 



In summary, out of the 16 German federal states, the outbreak occurred in 13 states.  

There was no significant increase in disease counts in the remaining 3 states – Rhineland 

Palatinate, Saxony, and Thuringia.  The relatively faster EWMA and CUSUM statistics signalled 

alarms at the same time right at the onset of the outbreak in 5 of these states and a week later in 

the remaining 8.  Similar to EWMA and CUSUM the Shewhart chart also detects the outbreak 

right at the onset in the same five states as these 5 states experience relatively large increases in 

disease counts.  However, as the Shewhart chart is relatively slow, it detects the outbreak 3 

weeks later in one state and 12 weeks later in another state.. The Shewhart chart fails to detect 

the outbreak in the remaining 6 states.  In terms of false alarms, all three methods performed 

extremely well, signalling extremely few false alarms over the entire five-year surveillance 

period from 2006 – 2011. 

6.  Discussion  

A new purely temporal multivariate method is proposed using modified statistical process 

control charts. Simulation studies were conducted using three charting statistics: the Shewhart, 

EWMA, and CUSUM statistics. In general, we recommend using the EWMA statistic when 

applying the proposed method because it is faster in detecting an outbreak compared to the other 

two methods. 

The proposed method has certain features that are more appropriate for disease 

surveillance than most traditional multivariate SPC methods.  First, the proposed method uses p-

values to quantify strength of evidence for an outbreak as opposed to using conventional control 

limits, which only indicate whether an alarm should be signalled: specifically, the conventional 

methods do not indicate the strength of incompatibility between the observed data and the non-

outbreak model.  Second, the proposed method uses FDR for error control instead of 



conventional FWER-based methods.  In a disease surveillance setting, an FDR of 0.05 would 

correspond to 5 false alarms out of a total of 100 alarms.  However, with FWER based-methods, 

if the type I error is set to 0.05, this would signify that we expect 5 false alarms for every 100 

tests during a non-outbreak period, which is not that relevant in a disease surveillance setting.  

Third, multivariate SPC methods that have already been proposed such as the method proposed 

by Li and Tsung (11) use regular FDR-controlling procedures such as the Benjamini and 

Hochberg (1) procedure.  The proposed method uses a more powerful FDR control procedure – 

the ST procedure (21) – in order to increase the speed of detection and allow for possible 

correlation among the disease counts, which is critical in a disease surveillance setting.  Fourth, 

the method is computationally simple, using multiple time series data, employing popular SPC 

charts, utilizing bootstrap resampling methods, and exploiting the easy to automate ST procedure 

for error control.  Fifth, the proposed method – as demonstrated by extensive simulation studies 

– has rapid detection ability: this feature is critical in a disease surveillance setting, as the sooner 

an outbreak is identified, the earlier it enables health authorities to take preventive measures.  

Sixth, excessive false alarms rates are a common problem with conventional SPC charts. As 

noted by Buckeridge et al. (3), “EWMA and other SPC methods tend to produce false alarm 

rates in ranges that are not useful for public health practices.”  As illustrated in Figure 6 of 

section 3, the false alarms rates are mostly below 3% for all three statistics with the proposed 

method.  In fact, it is a highlight of the proposed method.  Seventh, the proposed method does 

not assume the disease counts to follow a particular distribution, unlike conventional SPC-based 

methods.  The proposed method builds empirical in-control distributions using bootstrap 

methods.  As “public health surveillance data tend to violate assumptions of SPC methods”, as 

noted by Buckeridge et al. (3), the proposed method is more suitable for disease surveillance 



than the conventional methods. Eighth, the proposed method regularly updates baseline data to 

accommodate for changing population sizes, unlike conventional SPC methods that use data 

from a fixed in-control period.   

Naturally, there are some limitations to the proposed method.  While the proposed 

method is simple, it is not designed to deal with complex (e.g., seasonal or periodic) shifts in 

mean disease counts.  Thus, while the method is appropriate for diseases that do not have any 

seasonality such as food and waterborne diseases like E. coli, it would need to be modified for 

monitoring diseases such as flu and asthma that have strong seasonality.  Also, the method 

assumes that disease counts during the in-control period are independent. This is a common 

assumption with standard SPC methods that use industrial data as opposed to disease count data.  

However, as disease counts may have temporal correlation, the method can be further improved 

by accounting for that correlation structure. 

A difference between real-life disease data and the data from the simulation study is that 

the simulation data had a persistent shift in the mean.  Real-life disease patterns tend to 

autocorrelate due to natural factors such as weather, public health intervention, vaccines, etc.  

However, a major computational advantage of using persistent mean shifts in the simulation 

study is that signals cannot be totally missed, so detection timeliness comparisons can be made 

objectively without artificial penalties for undetected signals. 
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Figure 1. Flow chart describing the sampling and decision-making process. 
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Treat each bootstrap sample as a time series and compute the desired test statistic for 

each region at each time step. Let 𝑆𝑖𝑡
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 denote the test statistic for region 𝑖 at time step 𝑡 

for bootstrap sample 𝑗. Compute these statistics for bootstrap samples 𝑗 = 1, … , 𝐵.

During the surveillance period, for time step 𝑡, compute the observed test 
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Figure 2. The out-of-control mean disease counts (𝜆1𝑖, 𝑖 = 1, … ,36) for each region is shown in 

the center and the region numbers are shown in the top left corner of each region. 



 

Figure 3. Summary plots for region 26 over time.  Plot (a) shows the simulated weekly disease 

counts for days 1-100, plot (b) shows the standardized statistics – Shewhart (blue), CUSUM 

(dark green), and EWMA (red) – and plot (c) shows the alarms signalled by the Shewhart 

method (blue), CUSUM method (dark green), and EWMA method (red).  The dotted grey line 

represents the start of the simulated outbreak period at week 51. 



 

Figure 4. Summary plots for region 22 over time.  Plot (a) shows the simulated weekly disease 

counts for days 1-100, plot (b) shows the standardized statistics – Shewhart (blue), CUSUM 

(dark green), and EWMA (red) – and plot (c) shows the alarms signalled by the Shewhart 

method (blue), CUSUM method (dark green), and EWMA method (red).  The dotted grey line 

represents the start of the simulated outbreak period at week 51. 

 

 



 

Figure 5. CED values versus change points for the three methods for regions 11, 9, and 16.  



 

Figure 6. PFA values versus change points for the three methods for regions 11, 9, and 16.  

  



 

Figure 7. Mean empirical FDR of each step for the three methods for 100 data sets simulated 

with changepoints at 𝜏 = 5,10, … ,95 days. 

 



 

Figure 8. Weekly disease counts from 2006-2011 in the state of Lower Saxony are shown in (a).   

Shewhart (blue), CUSUM (dark green), and EWMA (red) statistics for the same period are 

shown in (b).  Alarms signalled from the three methods – Shewhart (blue), CUSUM (dark 

green), and EWMA (red) - are shown in (c).  The Orange line on week 285 signifies the start of 

the outbreak in this state.   

 

 


