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Detecting disease outbreak regions using multiple data streams

Abstract

A novel approach for biosurveillance using multiple data streams is presented. The proposed
method is computationally simple, has rapid detection ability, and produces few false alarms.
The proposed algorithm is applied to three popular statistical process control (SPC) charts:
the Shewhart Chart, the EWMA, and the CUSUM. The proposed method collects disease
counts from multiple data streams, computes charting statistics, and then compares these to
empirical in-control distributions generated using bootstrap methods to decide whether to
signal an alarm. As bootstrap methods are used, no assumption is made about the in-control
distributions corresponding to a specific parametric distribution — an assumption that is
common with most conventional SPC methods. The proposed method relies on p-values and
controls the false discovery rate; which distinguishes it from traditional SPC methods. The
relatively low false alarm rate is a highlight of the proposed method, as higher false alarm
rates are a common problem with conventional SPC charts. Through extensive simulations,
the EWMA and CUSUM methods are shown to have superior performance over the widely-
used Shewhart charts, with the EWMA having a slight advantage over the CUSUM. The
proposed method is applied to the 2011 E.coli outbreak in Germany.

Keywords: Biosurveillance; CUSUM control chart; EWMA control chart; false discovery

rate; Shewhart control chart; statistical methods for disease surveillance

1. Introduction

Disease surveillance systems use data to signal the existence of a potential outbreak based on
statistical anomalies in the observed data. Early detection is critical in disease surveillance, as
the main objective is to inform the public health authorities as early as possible so that harmful
consequences from an outbreak can be reduced. Traditional disease surveillance systems
confirmed outbreak occurrence retrospectively. Confirmed laboratory results were collected,
analyzed and reported to decision makers after the outbreak occurrence. As Shmueli and

Burkom (19) explain “... in most situations they (public health data) are collected, delivered, and



analyzed days, weeks, or even months after.” As a result, with this kind of analysis, it is not
possible for the decision makers to take any preventive measures. In the late 1990s, research
focus shifted from these retrospective methods to biosurveillance, which is ... the practice of
monitoring data to detect, investigate, and respond to disease” (19). Biosurveillance is
performed prospectively to detect an outbreak as early as possible.

During the past two decades, many methods have been proposed for biosurveillance (19).
Some of these methods use statistical process control charts (SPC) that originated in industrial
process control. Woodall (22) pointed out that SPC methods have a long history of applications
to problems in biosurveillance. Control charts are the main tools used in statistical process
control to monitor quality characteristics of industrial processes. The Shewhart Chart, the
exponentially weighted moving average chart (EWMA), and the cumulative sum chart
(CUSUM), are popular statistical process control charts. Of the three charts, the Shewhart chart
has been widely used for disease surveillance. For example, the Shewhart chart has been used to
monitor anesthesia related adverse effects (7) and risk-adjusted mortality rates in patients
admitted to hospitals for myocardial infarction (4). The CUSUM chart has also been frequently
applied in biosurveillance (8). Elbert and Burkom (6) discussed an adaptation of the EWMA
control chart for biosurveillance. Fricker (8) pointed out that “the EWMA, although popular in
industrial SPC, is less commonly used in biosurveillance.”

We propose a method for detecting disease outbreaks that improves on weaknesses of
traditional SPC methods in several ways: (i) our approach uses empirical p-values based on the
bootstrap method, as suggested by Li et al. (12), allowing the research to quantify strength of
evidence for an outbreak (or more accurately, one can quantify how incompatible the data are

with a specified no outbreak model), (ii) because we must monitor multiple attribute variables,



such as disease counts from multiple geographic regions, we address the multiple comparisons
problem by controlling the false discovery rate (FDR), as suggested by Li and Tsung (11) , in
order to improve the power of our method in comparison to methods that control the familywise
error rate (FWER), which can be unnecessarily restrictive, (iii) the proposed method uses the
FDR-controlling procedure proposed by Storey and Tibshirani (21) for FDR control, instead of
the more conservative FDR control methods proposed by Benjamini and Hochberg (1).

This paper is organized in the following manner. Section 2 gives preliminary information
about the standard Shewhart, EWMA, and CUSUM methods. Section 3 provides details about
the proposed methodology. A comparison of the proposed method with standard methods is also
provided. Section 4 describes the results of a simulation study conducted to compare the
performance of this methodology in combination with the Shewhart, EWMA, and CUSUM
methods. Initial conclusions based on these extensive simulation studies are also provided in this
section. Section 5 describes an application of the proposed method to the 2011 E.coli outbreak
in Germany. Finally, Section 6 explains the pros and cons of the proposed method, along with

directions for future work.

2. Preliminaries

The proposed algorithm was applied to three popular control charts: (i) Shewhart Chart (i1)

EWMA, and (iii)) CUSUM. We briefly describe each of these methods in more detail.

2.1. Shewhart chart

Shewhart (18) invented the control chart to determine when the mean of an industrial process has

changed. A Shewhart chart is defined by three characteristics: the centerline, the lower control



limit (LCL), and the upper control limit (UCL). The process is declared to be out-of-control
when the value of the observed process falls outside the interval [LCL, UCL].

Let the mean of the process that we are interested in monitoring be y and the standard
deviation be 0. The centerline of the Shewhart chart is u. The LCL and UCL are defined in

Montgomery (14) as

LCL = u— Lo,

UCL =pu+ Lo,

where L defines how far the upper and lower control limits are from the centerline.

2.2. Exponentially weighted moving average chart (EWMA)
Roberts (17) introduced the EWMA control chart for independent, identically distributed (iid)

normal random variables. Borror ef al. (2) extended the EWMA to Poisson data.
Assume Y3, Ys, ..., Y, are iid Poisson counts with mean u observed at times t = 1, 2, ..., n.
When the monitoring process is in control, we assume u = p,. Borror et al. (2) proposed

monitoring the process behaviour at time t using the test statistic

Et = AYt + (1 - A)Et—li

where 4 is a weighting constant such that 0 < A < 1, and the starting value Ej is set to the in-
control mean or the target count rate p.
Montgomery (14) recommends using the following UCL and LCL for a Poisson EWMA

control chart with centerline p,:
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where Ay and Ajare upper and lower control limit factors and the expression in square roots is
the in-control process standard deviation. In many applications, the limits are chosen to be
symmetric around zero, so that —A; = Ay (14). After determining the in-control mean p,
usually from historical data, and specifying A, standard tables such as the tables provided by
Borror et al. (2) can be used to select a control limit factor A that would give a desired in-control
average run length ARLy.

The ARL, is related to the tolerable false alarm rate. The centerline specifies where the
process characteristic should be when the process is in control. When the process is in control,
nearly all of the sample points fall between the upper and the lower control limits. Sometimes,
even when the process is in control, a sample point can still be plotted outside of the control
limits: this is a false alarm and is similar to Type I error in classical hypothesis testing. ARLy, is
defined as the average time between two such false alarms.

In contrast to an industrial process control setting, where out-of-control processes are
likely to be under the LCL or above the UCL, in a disease surveillance setting, we are only
interested in identifying mean disease counts above what is typically seen during a non-outbreak
period. In that context, Shu et al. (20), proposed the one-sided EMWA statistic to detect upward

shifts from the mean:

Ey = max[ug, AY; + (1 — DE;_4]. 3)



In this one-sided context, an alarm is signalled when the statistic in Equation (3) is above the

UCL in Equation (1).

2.3. The cumulative sum chart (CUSUM)

The CUSUM control chart was proposed by Page (15) for iid normal responses. Later, Lucas
(13) extended the method to iid Poisson responses. Consider the iid Poisson responses

Y1, Y,, ..., Y, with mean A taken at times t = 1, 2, ..., n. The control chart is designed to signal an
alarm when the process mean shifts from an in-control mean of A = A to an out-of control mean

of 1 = A;. The monitoring CUSUM statistic is defined as
C: = max(0,Cy_y + Y, — k), 4)
where Y; is the observed count at time 7, C; is the CUSUM statistic at time ¢, and

11 _AO

= A —Iniy ®)

is a constant value defined to minimize the time to detect a mean shift from the in-control mean
of A, to the out-of-control mean of 4;.

The starting value of the CUSUM chart Cj is often set to C; = 0. An alarm is signaled
when C; > h, where the threshold h is pre-determined. In fact, h is a function of both k and
ARL,. After the desired ARL, is specified and the constant k is determined using 4, and

Ay values, the threshold h can be determined using Monte Carlo simulations or statistical tables.

2.4. Multivariate statistical process control charts using p-values and controlling FDR

Conventional statistical process control charts use control limits to signal alarms. An alarm is

signalled when the charting statistic exceeds pre-determined control limits. Li et al. (12)



proposed a method using p-values instead of the traditional control limits to signal alarms. They
proposed two methods for computing p-values in a control chart setting: we use their second
method, based on bootstrapping. Suppose we want to compute a p-value for a statistic at
monitoring time t. Then t observations are sampled with replacement from the in-control
observations and treated as a time series of 7 in-control observations; the charting statistic is

computed over time for these ¢ observations to get the charting statistic at time ¢. This process is

*(1) S*(B)}
Ot

repeated for B bootstrap samples, resulting in B bootstrap statistics at time t. Let {5, ...

denote the set of charting statistics computed at time ¢ for each of the B bootstrap samples. The
distribution of these statistics represents the bootstrap distribution or the typical distribution of
the charting statistic at time t when the process is in control. In classical hypothesis testing, this
is referred to as the null distribution. Next, during the monitoring period, the usual statistic is
computed for each measurement taken from the industrial process, with S; denoting the charting
statistic at time t. The observed test statistics are compared with the bootstrap distribution to

calculate a p-value using the formula

1+32,1(s; = 5,)
B+1

The method proposed by Li et al. (12) is so general that it can be used with most commonly used
control charts. We used this approach with all three of the control charts — Shewhart, EWMA,
and CUSUM.

The method proposed by Li ef al. (12) was for a single control chart. However, in order
to monitor multiple geographic regions simultaneously, we need to use multiple control charts.
When multiple control charts are used, we run into the multiple testing problem that inflates the

probability of a false alarm. Li and Tsung (11) used false discovery rate (FDR) to address the



multiple testing problem using conventional SPC charts with traditional control limits. We also
use FDR to address the multiple testing problem: however, we use p-values instead of traditional
control limits.

Benjamini and Hochberg (1) popularized the use of FDR to handle the multiple testing
problem. The false discovery rate is defined as the expected proportion of false discoveries

among all discoveries. Formally, FDR is defined as

FDR = E[V/R],

where V is the number of false alarms and R the number of total alarms. Several methods have
been proposed to control FDR, such as the widely used Benjamini Hochberg procedure (1). We
used a method more recently proposed by Storey and Tibshirani (21) to address the multiple

testing problem in genomewide studies when the tests may be correlated.

3. Methods

3.1. The proposed method

Consider a study area partitioned into m regions. The disease count in region i at time t is Yj;,
and the set of disease counts across all regions at time t is ¥; = {Yj, ..., Vit ). We will assume
that this disease count represents the number of cases observed in the past week, which is a
common reporting time period.

We detail the steps of the proposed method:

We start by specifying the tolerable level of false discoveries a. For example, if @ =
0.05, then on average we expect 5 false alarms for every 100 alarms.

Next, we identify a non-outbreak period from historical data. For example, for weekly

data the non-outbreak period could be the most recent year without an outbreak. Thus, we can



potentially update the baseline period every year in order to account for changing factors such as
population change.

Suppose we want to perform surveillance over a period of L time steps. Let {Y?, ..., Y9}
denote the collection of disease counts across the m regions for s times during the most recent
non-outbreak period. We want to create B bootstrap samples of L observations using the data

from the non-outbreak period. Let Y*U) denote the jth bootstrap sample. A single bootstrap
sample Y*&) = {Y:(j), s Yz(j )} is obtained by sampling L observations with replacement from

(Y9, ..., Y9}, with Yz(j ) = {Yl*b(j ).y )} denoting the bth bootstrap observation.

e Ly

During the surveillance period the following steps are performed.

1. Create B bootstrap samples, {Y*@, ..., Y*®} using most recent non-outbreak data, as
discussed above.

2. For each bootstrap sample, the charting statistic is computed across the L monitoring
times for each of the m regions. The charting statistic for bootstrap sample j for region i
at time step t is denoted S i*t(j ),

3. The charting statistics at time t across all L times are computed for each region, with S;;
denoting the charting statistic of region i for time ¢.

4. The p-value of the ith region at time step t is computed as

143 (s = sy)
Pic = B+ 1
At each time step, there will be a vector of associated p-values p; = (p1¢, ..., Pme)- Figure
1 provides a flow chart describing this basic process.

Finally, to address the multiple testing problem, we use the ST procedure for FDR
control. FDR control relies on knowing the number of tests that are being considered. Since we
are trying to control the FDR across m regions but a potentially unknown number of time steps,
we control the FDR with respect to each individual time step, but not necessarily across the
entire data stream of a single region.

The final output of the algorithm is a set of m alarm decisions from which we can

identify the regions that need attention.



3.2. Comparison with existing methods

We now describe several advantages of the proposed method for disease surveillance over
conventional methods.

First, p-values are more flexible for testing than the traditional control limits. A p-value
is a fundamental statistical quantity used in a variety of disciplines, whereas control limits are
primarily limited to industrial process control. Testing via control limits results in a binary
decision of either an alarm or no alarm. In contrast, a p-value quantifies the strength of
incompatibility of the data with the null hypothesis. Thus, even when there is no alarm, a p-
value can still be used to assess whether there may be an embryonic outbreak in its earliest
stages.

Second, the FDR is a more useful error criterion for disease surveillance than ARL,. The
ARL, is defined as the expected run length time between false alarms. In industrial process
control, a process is calibrated to be in-control when it starts. When the charting statistic exceeds
the control limits, an alarm is signalled and the process is stopped, recalibrated, and started
again. In disease surveillance, we cannot stop an outbreak after an alarm, making the control of
ARL, of little value in that context.

Additionally, ARL, is directly related to the Type I error. In a disease surveillance setting
Type I error would indicate the probability of an alarm when there is no outbreak. However, a
non-detected outbreak is likely to be of greater concern than incorrectly concluding there is an
outbreak. Consequently, it is more natural to control the expected proportion of false alarms,
which is what FDR measures. The additional benefit of controlling the FDR instead of ARL is
an expected increase in testing power. Li and Tsung (11) note that in conventional SPC charts,
“the control limits are determined by fixing the overall in-control average run length. However,

the power of such Bonferroni-Type control charts is rather low, when the number of charts is



large.” By choosing to control the FDR, it is possible to use more powerful and up-to-date
multiple testing procedures, such as the ST method, in contrast to methods designed to control
the FWER.

Third, the proposed method makes modest distributional assumptions, increasing its
applicability to observed data. Conventional SPC methods typically rely on theoretically defined
alarm thresholds based on parametric assumptions. However, the proposed method does not
assume the disease counts follow a specific distribution, as the empirical non-outbreak
distribution is generated using bootstrap methods. Buckeridge ef al. (3) recommend using
empirical methods as opposed to relying on traditional SPC distributional assumptions.

Fourth, in-control parameters need to be regularly updated in a disease surveillance
setting. When monitoring disease rates over geographic regions for extended periods of time,
one needs to consider various changes that occur over time that affect the typical mean disease
count observed during a non-outbreak period. These changes may include medical coding
changes related to disease diagnosis, new treatments such as vaccines, population shifts, changes
in data participation or information systems, and other factors. Similarly, in-control parameter
estimates should be re-estimated in an industrial process control context when the underlying
process is thought to have changed. All three of the methods employed in what follows — the
Shewhart, EWMA, and CUSUM methods - need to be regularly updated with the “in-control
mean” or the expected mean disease count during a non-outbreak period. By utilizing the most
recent non-outbreak time period to obtain the in-control distribution, our method allows these
parameters to change gradually over time without additional user intervention.

There has been some similar research that enables FDR control in charting statistics. Lee

et al (10) assume that data come from a iid normal distribution, and define a statistic that follows



the standard normal distribution asymptotically when the null hypothesis is true (i.e. when there
is no outbreak). Then, p-values are calculated using the standard normal distribution.

Most conventional SPC methods rely on this assumption that data come from an iid
normal distribution. However, Buckeridge et al. (3) point out that “Public health surveillance
data tend to violate assumptions of (conventional) SPC methods”. The proposed method makes
minimal distributional assumptions. Bootstrap samples are collected from a non-outbreak period
(an in-control period) from which the corresponding bootstrap statistics are calculated.
Empirical in control distributions are generated using these bootstrap statistics from which p-
values are calculated. Buckeridge et al. (3) recommend using empirical methods as opposed to
relying on traditional SPC distributional assumptions. The proposed method is more suitable for
public health surveillance data that violate traditional distributional assumptions.

Dassanayake and French (5) presented a spatio-temporal method using the CUSUM
statistic. A spatio-temporal statistic was calculated pooling counts of neighbouring regions to
signal alarms. The proposed method is a purely temporal method (using three popular SPC
charts - the EWMA, the CUSUM, and the Shewhart chart), which considerably simplifies the

computational burden only using the disease count data at each time step.

3.3. Summary

The first step of the proposed method is to set a tolerable FDR level a. Next, using historical
data, a non-outbreak period is identified. The non-outbreak period is regularly updated for each
region to account for relevant factors changing over time. E.g., the weekly disease counts from
the most recent year without an outbreak are used as the in-control period. The proposed method
is applied using the output from the desired SPC chart (Shewhart, EWMA, or CUSUM).

Afterwards, bootstrap samples are taken from each region during the non-outbreak period. For



these bootstrap samples, the appropriate SPC chart is calculated. An empirical in-control (i.e.
non-outbreak) distribution for each region is developed using these bootstrap statistics. Then at
each time step ¢ after the non-outbreak period, disease counts are collected from each region and
the relevant SPC method is applied to the counts for that region. These statistics are compared
with the corresponding in-control distributions for each region to determine p-values. As there is
a p-value from each region at each time step, we get a vector of p-values. Finally, for each time
step, the ST procedure is used to address the multiplicity problem encountered when testing

multiple p-values simultaneously.

4. Simulation experiment

4.1. Experiment setup

Disease counts were simulated in 36 contiguous regions arranged in a 6 X 6 grid. The time
period for the simulation was 100 time points, where each time point represented a “day.” In
each of the 36 regions, independent Poisson counts were simulated. The first half of the
simulation (days 1-50) represented the no outbreak period and the second half (days 51-100)
represented the outbreak period. For the no outbreak period from days 1-50, independent
Poisson counts were simulated in each of the 36 regions with a constant mean of 1y; = 4, i =
1, ...,36. However, for the outbreak period from days 51-100, independent Poisson counts were
simulated with out-of-control means (denoted by 4,;, i = 1, ...,36) peaking at the central regions
and gradually thinning towards the perimeter regions, as illustrated in Figure 2. Note that in all
regions along the perimeter, no outbreak was simulated. Also note that, spatial contiguity of the
data streams in Figure 2 has nothing to do with the analysis but helps with visualization of a

stylized scenario.



[Figure 2 near here]

No outbreak was simulated in the 20 perimeter regions, regions 1, 2, 3,4, 5,6, 7, 12, 13,
18,19, 24, 25, 30, 31, 32, 33, 34, 35, and 36. Corner regions in the inner 4 x 4 grid (shaded in
medium dark grey), specifically, regions 8, 11, 26, and 29 get a 1 standard deviation shift in the
mean. The remaining 8 perimeter regions in the inner 4 x 4 grid (shaded in light grey) — regions
9,10, 14, 17, 20, 23, 27, and 28 — get a 2 standard deviation shift in the mean. Finally, the four
central regions — regions 15, 16, 21, and 22 — gets a 3 standard deviation shift in the mean.

In this simulation, the proposed method was implemented using three popular statistical
process control charts: (i) the Shewhart, (i1) the EWMA, and (iii) the CUSUM control charts.

First, the proposed method was applied using 36 Shewhart charts — one chart for each
region. B = 10,000 bootstrap samples were randomly selected from the non-outbreak period to
construct an empirical in-control distribution (null distributions) for each region. At each time
step, p-values for each region were calculated by comparing the simulated disease counts at each
time step with the corresponding empirical distribution for each region. The FDR level for each
test was set to 0.05.

Second, the proposed method was implemented using 36 EWMA statistics — one EWMA
statistic for each region. The weighting constant A was set to 0.20 (Montgomery (14)
recommends selecting a A value where 0.05 < A < 0.25.) An in-control mean of 1, = 4 was
used as the starting value E| for each chart. An empirical in-control distribution for each region
was generated using B = 10,000 bootstrap samples randomly selected from in-control data for

each region. The FDR level for each test was set to 0.05.



Third, the proposed method was applied using 36 CUSUM statistics — one statistic for
each region, like the implementation of the EWMA statistics. Each CUSUM statistic was
designed with an in-control Poisson mean (A,) of 4 and an out-of-control Poisson mean (4,) of
6, 8, 10, depending on the region. Thus, each CUSUM statistic was designed to detect a change
of one standard deviation increase in the mean. Similar to the EWMA method, an empirical in-
control distribution for each of the 36 regions was generated using B = 10,000 bootstrap
samples randomly selected from the non-outbreak period. The FDR level was set to 0.05, as

before.

4.2. Simulation results

Figure 3 shows the results for a single simulation over a 100-day period for region 26. Recall
that for region 26, the in-control mean is 4 from days 1-50 and the out-of-control mean is 6 from
days 51-100. Region 26 is one of the four regions — 8, 11, 26, 29 — to receive the smallest shift
in the mean of 1.0 standard deviation. Figure 3 (a) shows the simulated disease counts for the
surveillance period from days 1-100. Figure 3 (b) shows the standardized statistics for all three
methods: the statistics were standardized by dividing each statistic by its maximum value within
the surveillance period from days 1-100. Note that the standardized EWMA statistic (red) has a
higher reference line compared to the other two standardized statistics —Shewhart (blue) and
CUSUM (dark green) — both of which have a reference line of zero. The reason is that in
calculating the EWMA statistic, we plot the maximum of the two numbers, the in-control mean
for the region or the current EWMA statistic at time ¢, following equation (3) from Section 2.2
for the EWMA computation. However, with the CUSUM statistic, we plot the maximum of the
two numbers, zero or the current CUSUM statistic at time ¢, using equation (4) from Section 2.3

for the CUSUM computation. Therefore, it is possible for the CUSUM statistic to return to zero,



unlike the EWMA. In addition, the Shewhart statistic shows the standardized observed counts
during the surveillance period. Therefore, the Shewhart statistic does not return to zero as all
simulated counts during the surveillance period are positive values. Figure 3(c) shows the
alarms signalled by each method. The Shewhart statistic (blue) signals the first alarm on day 72
— 21 days after the onset of the outbreak on day 51. However, the CUSUM statistic (dark green)
signals the first alarm 9 days earlier than the Shewhart statistic on day 63. The quickest to signal
alarms is the EWMA statistic which signals the first alarm on day 61. Furthermore, the
Shewhart statistic signals alarms sporadically — only four alarms on days 72, 85, 93, and 98 -
during the outbreak period from days 51 -100. However, the CUSUM statistic is more persistent
in signalling alarms during the outbreak period signalling a total of 38 alarms during the
outbreak period from days 51-100. The EWMA method also signals alarms rather persistently
over the outbreak period — signalling a total of 33 alarms— even for a moderate 1.0 standard

deviation shift in the mean in this region.

[Figure 3 near here]

Figure 4 shows the results for region 22, one of the four center regions in Figure 2 with
the largest shift in the mean. In region 22, the in-control mean changes from 4 to 10 at the onset
of the outbreak on day 51. The Shewhart method (blue) starts to signal 2 days after the start of
the outbreak, on day 53. Note that the alarms are more frequent during the outbreak period for
region 22 (with a 3 standard deviation increase in the mean) compared to region 26 (with a 1
standard deviation increase in the mean). The CUSUM method (dark green) also detects the

outbreak on day 53. Of all three methods, the EWMA method is the quickest to signal the



outbreak on day 52. Also note that all three methods signal alarms more frequently in region 22
than in region 26, as the shift in the mean is much larger: the EWMA method signals
continuously after detecting the outbreak on day 52; the CUSUM also signals continuously after
detecting outbreak on day 53; Shewhart method signals more persistently in region 22 than in

region 26.

[Figure 4 near here]

In order to verify that all three methods were controlling FDR at 0.05 level, 100
independent simulations following the method outlined in Section 3.2 were carried out using the
three statistics. The empirical FDR was computed at each time step for the three independent
simulations and the mean of these statistics was computed. The mean empirical FDR was 0.044
for the EWMA with a 95% confidence interval of 0.040 to 0.047; CUSUM had a mean FDR of
0.049 with a 95% confidence interval of 0.046 to 0.052; the Shewhart had a mean FDR of 0.044
with a 95% confidence interval of 0.042 to 0.047. Thus, for all three methods the empirical FDR
was controlled at each time step across regions. The mean FDR values for both the EWMA and
the Shewhart were comparable; compared to both EWMA and Shewhart statistics, the mean
FDR was slightly higher for the CUSUM as it takes a little longer for the CUSUM to decrease
after signalling an alarm.

We also computed statistics related to the power of each method. The empirical power is
the percentage of the time that an outbreak is detected across all regions at times that an outbreak

occurred. Shewhart charts had an empirical power of 28.57% with a 95% confidence interval of



28.02% to 29.04%; CUSUM had 96.19% mean power with a confidence interval of 96.00% to

96.41%; EWMA had a 90.23% mean power with a confidence interval of 89.93% to 90.62%.

4.3. Comparing performance of the three methods

In evaluating the performance of the three surveillance methods, certain measures should be
adopted. Frisen and Sonesson (9) highlight that “good properties (of a disease surveillance
system) are quick detection and few false alarms.” They list (i) conditional expected delay
(CED) and (ii) probability of a false alarm (PFA) as two common measures for evaluating the
speed of detection and rate of false alarms, respectively. Conditional expected delay (CED) is

the average delay time until an alarm when the change occurs at time point T, and defined as

CED(t) = E[t, — |ty = T].

In the event of an outbreak, CED is the expected number of time periods from the beginning of

the outbreak to the first alarm. The other measure, probability of a false alarm is defined as,

PFA = P(t, < 1).

In other words, this is the probability of an alarm before the actual outbreak.

In calculating the CED and PFA measures, data sets were generated with a range of
change points (5, 10, 15, ..., 95). For example, for the first change point T = 5, 100 data sets
were simulated with no outbreaks from days 1-4 having an in-control Poisson mean (4,) of 4; for
the outbreak period from days 5 — 100, Poisson data were simulated with out-of-control means
(14) specified in Figure 2. Then for each data set, the delay from the start of the outbreak on day
number 5 was calculated. For instance, if the first signal after the onset of the outbreak on day 5

occurred, let’s say, on day 7 for region 1, then the delay in detection for that region was



calculated to be 2 days. Similarly, delays in detection were calculated for each of the 36 regions
in all 100 data sets. Next, the delays were averaged for each region. In other words, for each
region there were 100 detection delay measures calculated from the 100 data sets. These
detection delays were averaged for each region to determine the CED values for the change point
when T = 5. Likewise, for the other change points (t = 10, 15, 20, ...,95), the CED values were
computed for each region. In order to make accurate CED calculations for change points near
the end of the 100-day surveillance period, the simulation time period was extended to 150 days,
with outbreaks extending from their start until time 150. By using multiple change points for the
start of the outbreak, we are able to assess the impact of having more or less null data when
applying the methodology: in other words, we assessed the impact of different warm-up periods.
Figure 5 shows the CED values versus change points for regions 9, 11, and 16 — three
regions that experience the outbreak during the outbreak period. Since there are regions that do
not experience the outbreak during the outbreak period such as regions 1, 2, and 3, only a
selection of regions experiencing the outbreak were illustrated as CEDs cannot be calculated for
regions not experiencing outbreaks. Recall that region 11 received a 1 standard deviation shift in
the mean, region 9 a 2 standard deviation shift in the mean, and region 16 a 3 standard deviation
shift in the mean. One-way ANOVA tests for all 16 regions that experience the outbreak in the
inner 4 x 4 region were conducted using the CED values for all three statistics. It is important to
observe that in all three regions — regardless of the magnitude of the shift in the in-control mean,
the EWMA has the lowest CED values, implying speedier detection. In the four regions that
receive the highest shift (3 standard deviation) in the mean, namely regions, 15, 16, 21, and 22,
the Shewhart statistic which uses the current disease count was faster than the CUSUM which

cumulates current and past observations. In all other regions in the inner 4 x 4 region, the



CUSUM was faster than the Shewhart. The key finding was that the EWMA was the quickest to
detect an outbreak in all regions.

A careful study of Figure 5 shows how the speed of detection for the three methods
improves with the magnitude of the increase in the mean. Recall that the magnitude of the
increase in mean gradually increases from region 11, to region 9, to region 16, with region 16
having the largest increase in the mean. With the increase in the magnitude of the mean shift, the
CED values steadily decrease for all three methods. For the Shewhart method the CED values
for regions 11 are between 9.5 — 18.8. With the increase in the mean shift for region 9, the CED
values for Shewhart statistic decrease to values between 3.2 —4.4. With the largest increase in
the mean, for region 16, the CED values further decrease to values between 0.8 — 1.5. This
pattern can be observed for both the CUSUM and the EWMA methods: with higher shifts in the
mean, the CED values systematically decrease to lower values. All three methods are generally

speedier in detecting larger shifts in the mean.

[Figure 5 near here]

Figure 6 shows the PFA values for the three methods versus change points. Similar to the
simulation for the CED, in calculating PFA values, 100 data sets were simulated for the same
change points (t = 5,10,15, ...,95). For example, for the change point T = 5, in-control data
were simulated for days 1-4 and out-of-control data for days 5-100. For each simulation, PFA
values were calculated as the proportion of false alarms during the no outbreak period from days
1-4. For all 100 simulations with change point T = 5, PFA values were calculated for each

region and averaged, as before. The same calculation was carried out for all other change points



(t =10, 15,20, ...,95). Figure 6 shows PFA values versus change points for the same three
regions: region 9, 11, and 16. A careful analysis using one-way ANOVA (at « = 0.05 level of
significance) for all 16 regions that experience the outbreak in the inner 4 x 4 region revealed
that Shewhart had the highest PFA for all 16 regions. There was no statistically significant
difference in PFA between the EWMA and CUSUM (except for regions 11, 20, and 26 where
the CUSUM has a slightly higher PFA). Figure 6 also reveals the extremely low occurrence of
false alarms for all three statistics using the proposed algorithm. Note the scale of the y-axis -
the highest PFA value for all three plots is below 0.03. This low false alarm rate is a highlight of

the proposed method.

[Figure 6 near here]

We also computed empirical FDR across each time step for the 100 simulated data sets
associated with each of the 19 change points starting at time T = 5, 10,15, ...,95. The empirical
FDR was computed for each time step, and then for a specific changepoint, the mean empirical
FDR was computed. Figure 7 displays the mean empirical FDR plotted against the change
points. The figure shows that FDR is not sensitive to different change points.

[Figure 7 near here]

5. Application to 2011 German E.coli outbreak

The proposed algorithm was applied to the 2011 German E.coli O104:H4 outbreak. The data
were obtained from the Robert Koch Institute in Germany (16). The outbreak recorded the
highest number of Hemolytic Uremic Syndrome (HUS) cases reported in an outbreak. HUS can

be classified as a food/waterborne disease. HUS causes excessive destruction of red blood cells;



the damaged blood cells clog the kidneys leading to fatal kidney failure. The E.coli O104:H4
outbreak affected 3,950 German residents; 800 of these suffered from HUS and 51 people died
from their illness. The foodborne outbreak largely affected northern German states and
continued from May to June of 2011.

All three statistics — Shewhart, CUSUM, and EWMA — were used with the proposed
algorithm. The in-control data for each year corresponded to the data from the most recent year
without an outbreak. For each state, bootstrap samples of size B = 10,000 were collected from
the in-control period and used to estimate the p-values for each region at each time step.

The methodology was applied in a manner similar to the previous simulation study, with
certain important choices related to the null distribution. The observed disease counts during in-
control periods were frequently zero, so the mean disease count of the in-control data was often
quite low. E.g., the sample mean of a year’s worth of in-control data could be close to 0.3, but
the maximum disease count during that period could be 7. Consequently, in order to make our
analysis meaningful for detecting a true outbreak, the null mean value chosen for each testing
period (u, for the EWMA and 4, for the CUSUM method) was taken to be the maximum of the
associated in-control period (typically, the data from the previous year); the null mean value of
the bootstrap distribution was also shifted to the maximum of the associated in-control period.

Figure 8 shows the results for the state of Hesse. Figure 8 (a) shows the weekly disease
counts for a 5-year period starting from January of 2006 to the end of 2011. The large spike on
week 285 (orange line) signals the start of the outbreak on the second week of May 2011. Figure
8 (b) shows the three statistics over the same time interval and 7 (c) illustrates the alarm signals
for all three methods. All three statistics — the Shewhart (blue), the EWMA (red), and the

CUSUM (green) — detect the outbreak right at the onset on week 285. This is consistent with the



simulation results shown in Figure 5, which illustrates how the detection speeds of all three
statistics converge for relatively large shifts in mean disease counts, such as this spike on week
285.

In addition to displaying detection speeds, Figure 8 (c) also exhibits the extremely low
occurrence of false alarms for all three methods. In fact, for the state of Hesse for all three
methods, there was only one false alarm on week 66 over the entire five-year period from 2006
to 2011; in other words, there was only a single false alarm over 318 weeks. This result is
consistent with the simulation results on Figure 6 illustrating the very low occurrence of false
alarm rates. Figure 8 (c) was created to highlight this feature of the algorithm; therefore, the
alarm signals for the entire five-year period were illustrated.

It is important to note the stepwise increment in the EWMA statistic (red) on week 107 in
Figure 8 (b). For each year, the in-control means are updated based on data from the previous
year. Recall that the most current EWMA statistic is calculated as the higher of the two statistics
— the in-control mean or the current statistic. So, the reference line for the EWMA statistic is the
in-control mean for each year, calculated from the previous year’s data. Figure 8 (b) shows how
the in-control mean for the EWMA statistic shifts up in year 2008 (starting with week 107) for
the state of Hesse. However, the reference line for the CUSUM statistic is continuously zero,
since the current CUSUM statistic is calculated as the higher of the two — the current CUSUM

value or 0.

[Figure 8 near here]



In summary, out of the 16 German federal states, the outbreak occurred in 13 states.
There was no significant increase in disease counts in the remaining 3 states — Rhineland
Palatinate, Saxony, and Thuringia. The relatively faster EWMA and CUSUM statistics signalled
alarms at the same time right at the onset of the outbreak in 5 of these states and a week later in
the remaining 8. Similar to EWMA and CUSUM the Shewhart chart also detects the outbreak
right at the onset in the same five states as these 5 states experience relatively large increases in
disease counts. However, as the Shewhart chart is relatively slow, it detects the outbreak 3
weeks later in one state and 12 weeks later in another state.. The Shewhart chart fails to detect
the outbreak in the remaining 6 states. In terms of false alarms, all three methods performed
extremely well, signalling extremely few false alarms over the entire five-year surveillance

period from 2006 — 2011.

6. Discussion

A new purely temporal multivariate method is proposed using modified statistical process
control charts. Simulation studies were conducted using three charting statistics: the Shewhart,
EWMA, and CUSUM statistics. In general, we recommend using the EWMA statistic when
applying the proposed method because it is faster in detecting an outbreak compared to the other
two methods.

The proposed method has certain features that are more appropriate for disease
surveillance than most traditional multivariate SPC methods. First, the proposed method uses p-
values to quantify strength of evidence for an outbreak as opposed to using conventional control
limits, which only indicate whether an alarm should be signalled: specifically, the conventional
methods do not indicate the strength of incompatibility between the observed data and the non-

outbreak model. Second, the proposed method uses FDR for error control instead of



conventional FWER-based methods. In a disease surveillance setting, an FDR of 0.05 would
correspond to 5 false alarms out of a total of 100 alarms. However, with FWER based-methods,
if the type I error is set to 0.05, this would signify that we expect 5 false alarms for every 100
tests during a non-outbreak period, which is not that relevant in a disease surveillance setting.
Third, multivariate SPC methods that have already been proposed such as the method proposed
by Li and Tsung (11) use regular FDR-controlling procedures such as the Benjamini and
Hochberg (1) procedure. The proposed method uses a more powerful FDR control procedure —
the ST procedure (21) — in order to increase the speed of detection and allow for possible
correlation among the disease counts, which is critical in a disease surveillance setting. Fourth,
the method is computationally simple, using multiple time series data, employing popular SPC
charts, utilizing bootstrap resampling methods, and exploiting the easy to automate ST procedure
for error control. Fifth, the proposed method — as demonstrated by extensive simulation studies
— has rapid detection ability: this feature is critical in a disease surveillance setting, as the sooner
an outbreak is identified, the earlier it enables health authorities to take preventive measures.
Sixth, excessive false alarms rates are a common problem with conventional SPC charts. As
noted by Buckeridge et al. (3), “EWMA and other SPC methods tend to produce false alarm
rates in ranges that are not useful for public health practices.” As illustrated in Figure 6 of
section 3, the false alarms rates are mostly below 3% for all three statistics with the proposed
method. In fact, it is a highlight of the proposed method. Seventh, the proposed method does
not assume the disease counts to follow a particular distribution, unlike conventional SPC-based
methods. The proposed method builds empirical in-control distributions using bootstrap
methods. As “public health surveillance data tend to violate assumptions of SPC methods”, as

noted by Buckeridge et al. (3), the proposed method is more suitable for disease surveillance



than the conventional methods. Eighth, the proposed method regularly updates baseline data to
accommodate for changing population sizes, unlike conventional SPC methods that use data
from a fixed in-control period.

Naturally, there are some limitations to the proposed method. While the proposed
method is simple, it is not designed to deal with complex (e.g., seasonal or periodic) shifts in
mean disease counts. Thus, while the method is appropriate for diseases that do not have any
seasonality such as food and waterborne diseases like E. coli, it would need to be modified for
monitoring diseases such as flu and asthma that have strong seasonality. Also, the method
assumes that disease counts during the in-control period are independent. This is a common
assumption with standard SPC methods that use industrial data as opposed to disease count data.
However, as disease counts may have temporal correlation, the method can be further improved
by accounting for that correlation structure.

A difference between real-life disease data and the data from the simulation study is that
the simulation data had a persistent shift in the mean. Real-life disease patterns tend to
autocorrelate due to natural factors such as weather, public health intervention, vaccines, etc.
However, a major computational advantage of using persistent mean shifts in the simulation
study is that signals cannot be totally missed, so detection timeliness comparisons can be made

objectively without artificial penalties for undetected signals.
Acknowledgements
J. French was partially supported by NSF awards 1463642 and 1915277.

Conflict of Interest

The authors have declared no conflict of interest.



References

1.

10.

11.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful

approach to multiple testing, Journal of the Royal Statistical Society, Series B 57(1995), pp. 289-300.

C.M. Borror, C.W. Champ, and S.E. Rigdon, Poisson EWMA control charts, Journal of Quality
Technology 30(1998), pp. 352-361.

D.L. Buckeridge, H.S. Burkom, M. Campbell, W.R. Hogan and A. Moore, Algorithms for rapid

outbreak detection: a research synthesis, Journal of Biomedical Informatics 38(2005), pp. 99-113.

M. Coory, S. Duckett, and K. Sketcher-Baker, Using control charts to monitor quality of hospital
care with administrative data, International Journal for Quality in Health Care 20(2008), pp. 31-39.

Dassanayake, Sesha, and Joshua P. French. "An improved cumulative sum-based procedure for
prospective disease surveillance for count data in multiple regions." Statistics in Medicine 35.15

(2016): 2593-2608.

Y. Elbert and H.S. Burkom, Development and evaluation of a data-adaptive alerting algorithm for
univariate temporal biosurveillance data, Statistics in Medicine 28(2009), pp. 3226-3248.

S. Fasting and S.E. Gisvold, Statistical process control methods allow the analysis and improvement

of anesthesia care, Canadian Journal of Anesthesiology 50(2003), pp. 767-774

R.D. Fricker, Introduction to Statistical Methods for Biosurveillance, Cambridge University Press,

New York, 2013.

M. Frisen and C. Sonnesson, Optimal Surveillance, in Spatial and Syndromic Surveillance for Public

Health, A.B. Lawson and K. Kleinman, eds., Wiley, West Sussex, 2005, pp. 31-52.

Lee, Sang-Ho, Jang-Ho Park, and Chi-Hyuck Jun. "An exponentially weighted moving average chart
controlling false discovery rate." Journal of Statistical Computation and Simulation 84.8 (2014):

1830-1840.

Y. Li and F. Tsung, Multiple Attribute Control Charts with False Discovery Rate Control, Quality
and Reliability Engineering Internatoinal 28(2012), pp. 857-871.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Z. Li, P. Qui, S. Chatterjee, and Z. Wang, Using p values to design statistical process control charts,
Statistical Papers 54(2013), pp. 523-539.

J.M. Lucas, Counted data CUSUMS, Technometrics 28(1985), pp. 129-144.
D.C. Montgomery, Introduction to Statistical Quality Control, Wiley, New York, 2005.
E.S. Page, Continuous inspection schemes, Biometrika 41(1954), pp. 100-115.

Robert Koch Institute Survstat@RKI database, Retrieved September 17, 2018; from
https://survstat.rki.de/Content/Query/Create.aspx

S.W. Roberts, Control Chart Tests Based on Geometric Moving Averages. Technometrics 1(1959),
pp. 239-250.

W.A. Shewhart, Economic Control of Quality Manufactured Product, D. Van Nostrand Company
Inc., New York, 1931.

G. Shmueli and H. Burkom, Statistical challenges facing early outbreak detection in

biosurveillance, Technometrics 52(2010), pp. 39-51.

L. Shu, S. Jiang, and S. Wu, 4 one-sided EWMA control chart for monitoring process means,

Communications in Statistics - Simulation and Computation 36(2007), pp. 901-920.

J.D. Storey and R. Tibshirani, Statistical significance for genomewide studies. Proceedings of the

National Academy of Sciences 100(2003), pp. 9440-9445.

W.H. Woodall, Use of control charts in health care and public health surveillance (with discussion),

Journal of Quality Technology 38(2006), pp. 88-103.



Isolate the multivariate data from the most recent non-outbreak period,
{r?, .., Y%

Obtain a bootstrap sample with L observations, Yy*0) = {Yi, Y5, ...,Y;}, by
sampling B observations with replacement from {¥?, ..., ¥}

-

Treat each bootstrap sample as a time series and compute the desired test statistic for
each region at each time step. Let S i*t(] ) denote the test statistic for region I at time step ¢
for bootstrap sample j. Compute these statistics for bootstrap samples j = 1, ..., B.

During the surveillance period, for time step t, compute the observed test
statistics S1¢, So, --., Spe fOr the set of m regions.

1438 165,284

B+1

Compute the p-value for the ith region at time step t as p;; =

Figure 1. Flow chart describing the sampling and decision-making process.



Figure 2. The out-of-control mean disease counts (14;, i = 1, ...,36) for each region is shown in

the center and the region numbers are shown in the top left corner of each region.
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Figure 3. Summary plots for region 26 over time. Plot (a) shows the simulated weekly disease
counts for days 1-100, plot (b) shows the standardized statistics — Shewhart (blue), CUSUM
(dark green), and EWMA (red) — and plot (c) shows the alarms signalled by the Shewhart
method (blue), CUSUM method (dark green), and EWMA method (red). The dotted grey line

represents the start of the simulated outbreak period at week 51.
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Figure 4. Summary plots for region 22 over time. Plot (a) shows the simulated weekly disease
counts for days 1-100, plot (b) shows the standardized statistics — Shewhart (blue), CUSUM
(dark green), and EWMA (red) — and plot (c) shows the alarms signalled by the Shewhart
method (blue), CUSUM method (dark green), and EWMA method (red). The dotted grey line

represents the start of the simulated outbreak period at week 51.
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Figure 5. CED values versus change points for the three methods for regions 11, 9, and 16.
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Figure 6. PFA values versus change points for the three methods for regions 11, 9, and 16.
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Figure 7. Mean empirical FDR of each step for the three methods for 100 data sets simulated

with changepoints at T = 5,10, ...,95 days.
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Figure 8. Weekly disease counts from 2006-2011 in the state of Lower Saxony are shown in (a).
Shewhart (blue), CUSUM (dark green), and EWMA (red) statistics for the same period are
shown in (b). Alarms signalled from the three methods — Shewhart (blue), CUSUM (dark
green), and EWMA (red) - are shown in (c). The Orange line on week 285 signifies the start of

the outbreak in this state.



