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Abstract

Popa introduced the tensor category x (M) of approximately inner, centrally trivial
bimodules of a Il factor M, generalizing Connes’ x (M). We extend Popa’s notions
to define the W*-tensor category Endjoc (C) of local endofunctors on a W*-category C.
We construct a unitary braiding on Endj,.(C), giving a new construction of a braided
tensor category associated to an arbitrary W*-category. For the W*-category of finite
modules over a Il factor, this yields a unitary braiding on Popa’s x (M), which extends
Jones’ k invariant for x (M). Given a finite depth inclusion My € M of non-Gamma
II; factors, we show that the braided unitary tensor category x (M) is equivalent
to the Drinfeld center of the standard invariant, where M, is the inductive limit of
the associated Jones tower. This implies that for any pair of finite depth non-Gamma
subfactors No € Njand My € M), if the standard invariants are not Morita equivalent,
then the inductive limit factors N, and M, are not isomorphic.
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1 Introduction

Tensor categories have come to play an important role in noncommutative analysis,
arising as categories of bimodules of C* and von Neumann algebras and as representa-
tion categories of compact quantum groups. In subfactor theory, the standard invariant
of a finite index II; subfactor [40, 71] can be described by a unitary tensor category
(ak.a. a semisimple rigid C*-tensor category), together with a chosen unitary Frobe-
nius algebra object internal to this category [29, 44, 51, 57]. In operator algebraic
approaches to quantum field theories (AQFT) and topologically ordered spin systems,
braided tensor categories arise in the DHR theory of superselection sectors of nets of
von Neumann algebras [17, 22, 30, 50, 63]. Here, the presence of a braiding yields an
incredibly rich structure theory which does not have an obvious analog in the purely
‘noncommutative’ world of ordinary subfactors.

There are, however, less widely recognized instances of braided tensor categories
arising in the theory of II; factors. In [16], Connes introduced an invariant x (M) of
a II; factor M, which is the abelian subgroup of Out(M) consisting of the image
of approximately inner and centrally trivial automorphisms. In [38], Jones defines
a quadratic form « on the group x (M). These invariants can be used to distinguish
various II; factors from group von Neumann algebras. An abelian group together
with a quadratic form defines (uniquely up to braided equivalence) a braided 2-group
[21], which linearizes to a braided unitary tensor category. Generalizations of these
constructions in the relative context were studied by Kawahigashi [48, 49] and utilized
in the study of orbit equivalence of group actions by loana [35].

In his groundbreaking work [68, 72], Popa introduced notions of approximately
inner and centrally free for finite index subfactors, which played a key role in his
classification result for subfactors in terms of their standard invariants. In [68, Def. 2.5],
Popa also considers a definition of a centrally trivial subfactor (as an ‘opposite’ to his
notion of centrally free), and in [68, Rem. 2.7], he discusses how this definition and his
definition of approximately inner subfactor have a natural generalization to bimodules.
He introduces the unitary tensor category x (M) of dualizable approximately inner
and centrally trivial bimodules of a II; factor, generalizing Connes’ x (M). Popa asks
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whether this y (M) is a ‘commutative’ tensor category, i.e., does it admit a braiding?
In this article, we answer Popa’s question positively.

Theorem A Let M be a 11, factor. Then x (M) admits a unitary braiding (see Eq. (5)).
Furthermore, if N is another 11| factor stably isomorphic to M, then x (M) = x(N)
as braided unitary tensor categories.

Notably, x (M) recovers Connes’ x (M) as the equivalence classes of invertible
bimodules in y (M) whose left and right von Neumann dimension are equal (to one),
and our braiding on yx (M) recovers Jones’ « (see Example 4.11 for more details).
We may thus think of x (M) as a unitary braided categorical extension of the braided
2-group (x (M), ).

The existence of a braiding on x (M) is surprising from a categorical viewpoint.
Indeed, von Neumann algebras form a 2-category whose 1-morphisms are bimodules
and whose 2-morphisms are intertwiners. The unitary tensor category x (M) is a full
subcategory of End(M) = Bim(M) in this 2-category. Braidings arise formally in the
context of 3-categories by looking at endomorphisms of some identity 1-morphism.
This is the algebraic structure underlying conformal nets, which produces unitary
modular tensor categories in the rational setting [4, 5, 50]. The presence of a braiding,
together with its behavior under local extensions in Theorem B below, suggests that
von Neumann algebras may be objects in a yet to be discovered 3-category.

As expected from experience with Connes’ x, using [16, 68, 74], it is straight-
forward to show that x (R), x(N) and x(R ® N) are trivial where R denotes the
hyperfinite II; factor and N is any non-Gamma II; factor. In order to leverage these
facts to compute some non-trivial examples, we prove the following theorem, which is
similar in spirit to Connes’ short exact sequence [16] (c.f. [7, Prop. 6.4] for a parallel
result in the conformal net context).

TheoremB Let N C M be a finite index 11| subfactor such that Q = NL2MN S
X (N) is a commutative Q-system. Then x (M) = x (N )BC as braided unitary tensor
categories.

In [74], Popa studied Connes’ x in the context of inductive limits of Jones towers
of finite depth finite index non-Gamma II; subfactors N € M. He shows x (M) = 1
for a large class of non-Gamma inclusions N € M for which M, is McDuff but not
isomorphic to R ® N for N non-Gamma, resolving a question of Connes. Building off
Popa’s techniques, in this paper we will directly compute x (M) as a unitary braided
tensor category.

To state our results, recall the standard invariant of a finite depth finite index II; sub-
factor N € M consists of the indecomposable 2 x 2 multifusion category C(N € M)
of N-N, N-M, M—M, and M—N bimodules generated by L>M, together with the
choice of generating object y L>Mj;. We define Morita equivalence of two standard
invariants C(N; € N,) and C(M| C M) as Morita equivalence of the underlying
multifusion categories [19, Sect. 7.12]. The Drinfeld center Z(C(N € M)) is a braided
unitary fusion category, and indecomposable multifusion categories are Morita equiv-
alent if and only if their Drinfeld centers are equivalent as braided fusion categories
[19, Sect. 8.5]. We have the following theorem.
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TheoremC Let N C M be a finite depth finite index inclusion of non-Gamma
Iy factors, and let M, denote the inductive limit factor of the Jones tower. Then
X(Mx) = Z(C(N € M)) as braided unitary tensor categories.

We get the following immediate corollary.

Corollary D If Ny € Ny and M| C M, are finite depth inclusions of non-Gamma 11,
factors with C(N1 € N») not Morita equivalent to C(M| C M>), then the 11| factors
Noo and M, are not stably isomorphic.

This corollary shows that remarkably, the (stable) isomorphism class of the induc-
tive limit II; factor My, remembers the standard invariant of the initial finite depth
subfactor N € M up to Morita equivalence. In fact, our result complements the rigid-
ity result of Popa, which states that the II; factor M, remembers the inclusion N € M
up to weak equivalence [75, Def. 3.1.4 and Cor. 3.6]. As another consequence, our
computation for x (M) also computes the ordinary x (M) and « invariants as the
braided subcategory of invertible objects in Z(C(N S M)). By Popa’s result [74,
Thm. 4.2], this is isomorphic to the relative x (M’ N Mo € N’ N My) studied by
Kawahigashi [48]. The latter inclusion is a finite index hyperfinite II; subfactor with
standard invariant equivalent to C(N € M).

There are many examples of finite depth non-Gamma inclusions. Popa and
Shlyakhtenko showed that every subfactor standard invariant can be realized as
an inclusion of II; factors isomorphic to LFy, [78]. In [24], Guionnet—Jones—
Shlyakhtenko provide an alternative realization of finite depth standard invariants
as inclusions of interpolated free group factors [25] in their diagrammatic reproof of
Popa’s celebrated subfactor reconstruction theorem [69]. As every indecomposable
unitary multifusion category is Morita equivalent to any of its unitary fusion category
diagonal summands, we obtain the following corollary.

Corollary E For C a unitary fusion category, its Drinfeld center Z(C) is realized as
X (M) for some McDuff 11 factor M.

We remark that (M) is a distinct construction from the Drinfeld center
Z(Bim(M)). Indeed, whenever M has full fundamental group R- ¢, there is an R- ¢
grading on Bim(M) from the modular distortion, i.e., the square root of the ratio of
the left and right von Neumann dimensions [2, 67]. This grading gives a canonical
copy of Hilbgg(R) in Z(Bim(M)) which forgets to the trivial bimodule [28, Sect. 3B].
Hence for R or for the examples M, from Theorem C, x (M) is not Z(Bim(M)).

While we have stated our results above for x (M), our analysis actually occurs
in a much more general categorical setting. We define the notions of approximately
inner and centrally trivial for endofunctors on an arbitrary W*-category with separable
preduals (see Sect. 3.2). Functors which are both approximately inner and centrally
trivial are said to be local. We construct a unitary braiding on this category (without
any dualizability assumptions), and prove all the axioms are satisfied here. Thus we
get a new construction of a canonical braided W*-tensor category Endj.(C) from an
arbitrary W*-category C.

When C = Modgy,(M), the finitely generated projective modules of a sep-
arable finite von Neumann algebra, under the well known equivalence between
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End(Modsgp(M)) and Bimgg, (M), our definitions of approximately inner and cen-
trally trivial agree with Popa’s from [68]. We use this equivalence to express the
braiding as a bimodule intertwiner in Eq. (5). Aside from the greater generality, one
of the reasons we use the functor language for our constructions and proofs is that
the category of endofunctors is strict, making some commuting diagrams significantly
simpler. In addition, in the categorically oriented functor approach, the concept of
approximately commuting diagram significantly reduces the complexity of proofs
and their verification.

Outline

In Sect. 2, we recall the notion of W*-category, and we pay special attention to the W*
2-category of von Neumann algebras, bimodules, and intertwiners. In Sect. 2.3, we
discuss the canonical o -strong* topology on the hom spaces of a W*-category, which
is essential to our construction.

In Sect. 3, we introduce the notion of an approximate natural transformation
between endofunctors of a W*-category, which we use to define the notions of approxi-
mately inner and centrally trivial for endofunctors. We show that the local endofunctors
which are both approximately inner and centrally trivial admit a canonical unitary
braiding in Sect. 3.3.

In Sect. 4, we translate our construction into the language of dualizable bimodules
over a Il factor M, and we calculate many examples of y (M) in Sect. 4.3. In Sect. 5,
we prove Theorem B, and in Sect. 6, we prove Theorem C. To prove these theorems,
we make heavy use of the Q-system realization machinery developed in [13, 44] and
the graphical calculus for unitary tensor categories.

2 Preliminaries

We assume the reader is relatively familiar with the basics of von Neumann algebras,
in particular II; factors, where our main references include [1, 8, 41, 85]. Most von
Neumann algebras that appear in this article are assumed to be separable (their preduals
are separable), with the exception of ultraproducts in Sect. 4.3 below.

We also assume the reader is relatively familiar with the basics of tensor cate-
gories and 2-categories, where our main references include [19, 34, 47]. Of particular
importance is the graphical string diagrammatic calculus for 2-categories and tensor
categories [34, Sect. 1.1.1 and 8.1.2]. For a 2-category C, objects are represented by
2D shaded regions, 1-morphisms are represented by labelled 1D strands read from
left-to-right, and 2-morphisms are represented by labelled 0D coupons which are read
bottom-to-top. 1-composition is read left-to-right similar to the relative tensor product
of bimodules, and 2-composition is read bottom-to-top.

These string diagrams are formally dual to pasting diagrams, and typically associ-
ators and unitors are suppressed whenever possible. As a tensor category is equivalent
to a 2-category with one object, the graphical calculus for tensor categories has no
shadings for regions; objects are represented by labelled 1D strings, and morphisms
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are represented by labelled OD coupons read bottom-to-top. Tensor product is read
left-to-right, and composition of morphisms is read bottom-to-top. Our 2-categories
and tensor categories are C*/W™* (see Sects. 2.1 and 2.2 below), and we represent the
t-operation by vertical reflection of diagrams.

2.1 C*/W*-categories

We begin with the basics of C* and W*-categories. The latter were first introduced in
[26].

Definition 2.1 A C*-category is a C-linear category C such that:

e for each pair of objects a, b € C, there is a conjugate linear involution } : C(a —
b) — C(b — a), satisfying (f - g)" = ¢ - 7,

e for each pair of objects a, b € C, there is a Banach norm on C(a — b) satisfying
IAZ=0f"-fll=1f- fTlforall f €C(a— b),and

e forall f € C(a — b), f1- f is a positive element in the C*-algebra C(a — a).
That is, there isa g € C(a — a) such that fT. f = g7 . g.

A W*-category is a C*-category such that every hom space C(a — b) admits a predual
Banach space. We call a W*-category separable if all such preduals are separable
Banach spaces.

Assumption 2.2 In this article, we assume all C*/W*-categories are unitarily Cauchy
complete, meaning they admit all finite orthogonal direct sums and are orthogonal
projection complete. There is a formal construction to complete any C*/W*-category
which satisfies a universal property; we refer the reader to [27, Sect. 3.1.1] for more
details.

Remark 2.3 Every unitarily Cauchy complete C*/W*-category admits a canonical left
Hilbsg-module category structure. That is, for each ¢ € C and finite dimensional Hilbert
space H, there is an object H > ¢ € C, unique up to canonical unitary isomorphism.
Moreover, there is a canonical unitary associator H > (K >a) = (H @ K) > a. In
the sequel, we will assume our Hilbsg-module category structure is strictly unital, i.e.,
Cr>c=cforallc eC.

Definition 2.4 A f-functor between between C*-categories is a functor F : C — D
such that F(fT) = F(f)' for all morphisms f in C. Two C*-categories are (unitarily)
equivalent if there are T-functors each way whose appropriate composites are unitarily
naturally isomorphic to the appropriate identity f-functors.

For W*-categories, one restricts to the normal f-functors which are weak*-
continuous on hom spaces. Equivalence is defined similarly as before, but restricting
to normal f-functors.

Example 2.5 The mostimportant example of a W*-category for our article is the finitely
generated projective right modules for a I factor M. There are two dagger equivalent
such categories that one can work with:

e Hilbert spaces H equipped with a normal right M-action such that the von Neu-
mann dimension dim(Hyy) is finite, or
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e finitely generated projective right Hilbert W*-modules (see Sect. 2.2 below for
more details).

To see the equivalence, the map from the first to the second is taking bounded vectors
(the & € H such that i1 — &m extends to a bounded map LM — H), and the map
from the second to the firstis —® 7 L M (the inner product is given by (n®7i, & @7) :=
((Elmymm, 1) 2pp).

We will use the second definition above for the convenience that we may state many
results for all £ € X rather than for all bounded vectors. However, one can work with
the first definition provided that one restricts to bounded vectors when appropriate.

Example 2.6 For a separable C*-algebra A, Rep(A) is the W*-category of (non-
degenerate) x-representations of A on separable Hilbert spaces. This category is
relevant in the operator algebraic study of quantum statistical mechanics.

Definition 2.7 Given a Hilbgg-module C* category C, a finite dimensional Hilbert space
H, and any f-functor F € End(C), we have a canonical braid-like unitary natural
isomorphism

opH:F(H>—-)—> HD> F(-)

defined as follows. For an orthonormal basis {e;}, we may identify its elements as
bounded operators ¢; € B(C, H) defined by 1 + ¢;. Then e,.T € B(H, C) is given by
ejei = §;,j. We then define o g in components by

of =Y (&> F(la) - Fle] > 1a),

1

which does not depend on the choice of orthonormal basis of H.
Unitarity is straightforward to verify. To show naturality, let f € C(a — b). Then

(I > F()-of = (e > F() - Fle > 1a)

1

=Y (ei>1p) - F(f) Fle] > 14)

=Y (ei>1p) Fle] > f)=0p - F(lu > f).

The family o also satisfies the following monoidality conditions (where we have
suppressed the module category associator).

K>a

Proposition 2.8 (1) For any F € End(C), 0}‘,»H®K ={g> af-’K) O g -

(2) Forany G € End(C) we have oféoG’H = Ug(;_;) . F(oé‘;’H).
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Proof. Let {f;} be an orthonormal basis for K, which we identify with bounded
operators f; € B(C, K). Then

Iy >of ) of =" Ay fj > Fa) - (lu > F(f] & 14))
i,j
(e > F(lgpa) - Fle] > 1kpa)
=Y A fj > Fa) - (e > F(12) - F(f] & 1a)
i,j

: F(e; > lgpa) = U;,H‘g[(
and

op ) FOb )= (e > FG(10) - Fle] > G(10)) - Flei > G(1a)) - FG(ef > 14)

=) (ei > FG(1y) - FG(e] > 1a) = 0 -

1

2.2 Modules and correspondences of W*-algebras

We now recall the definition of the W* 2-category W"‘Algfgp of finitely generated
projective right W*-correspondences, after which we formally define the finitely gen-
erated projective right modules Mod¢g,(M). Our exposition follows [13, Sect. 2.2],
which was adapted from [9, Sect. 8]. Other references include [65, 81].

Definition 2.9 The W* 2-category W*Algg,, is given as follows.

e objects are von Neumann algebras

e l-morphisms are finitely generated projective right W*-corresponendences. In
more detail, given von Neumann algebras A, B, a 1-morphism 4 X g is a Banach
space equipped with a right B-action and a right B-valued inner product satisfying

nlé1 +&b)p = (nlé1)p + (nl&2) 8D,
n +mbl&)p = (ml&)p + b*(n21€) B,

(

(

(nl§)p = (§In)p, and

(£1&)p = 0 with equality if and only if £ = 0.

By the Cauchy—Schwarz inequality, ||(§|£) g p defines a norm on X, which is
required to be complete. Moreover, we require the left A-action to be by adjointable
operators.

The finitely generated projective condition says that as a right B-module, X p is
unitarily isomorphic to pB" for some (adjointable) orthogonal projection p €
End_p(B").

The W* condition amounts to requiring that:

— A Xp has a predual,
— the B-valued inner product (- | - ) p is separately weak*-continuous, and
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— the left A-action A — End(Xp) is normal.

Composition of 1-morphisms is the relative tensor product.
e 2-morphisms 4 Xp = 4Yp are the adjointable right B-linear operators that com-
mute with the left A-action.

Definition 2.10 Foravon Neumann algebra M, we define Modsgp (M) := W*Algfgp (C
— M).

Given Xy € Modysgp(M), a finite X y-basis is a finite subset {#} C X such that
Zﬂ B(BIE)y = & forall & € X [69, Sect. 1.1.3], [10, Sect. 3.1.1]. As we only work
with finitely generated projective modules in this article, all X y7-bases will be finite, so
we omit the word ‘finite’ without confusion. We call such a basis orthogonal if (B|8') m
is equal to dg—g’ times an orthogonal projection in M. Given an X ys-basis, one can
always obtain an orthogonal X ,s-basis using the Gram-Schmidt orthogonalization
procedure [1, Lem. 8.5.2].

Remark 2.11 It is well known that the W*-tensor category End(Modfgp(M )) of nor-
mal f-endofunctors is dagger equivalent to Bim¢g, (M)™P, the monoidal opposite of
Bimg¢gp (M). Thatis, every normal -endofunctor of Modsg, (M) is of the form —X, X
for some X € Modsy,(M). For example, this equivalence is explained in [33, Sect.
3.2] for infinite von Neumann algebras using the fact that End(Modsgp (M)) is uni-
tarily equivalent to the orthogonal projection completion of the W*-tensor category
End(M).

Remark 2.12 There is another way that the category of End(Mod¢g,(N)) is used in
practice, particularly among the II; factor community. This stems from the fact that
Modsgp(N) is equivalent to the unitary Cauchy completion of N thought of as a
W*-category with one object. Objects in the completion are pairs (n, p), where n €
N and p € M,(N) is a projection. Morphisms (n, p) — (m, g) are elements of
qM,,«n(N)p. By the universal property of Cauchy completion, an endofunctor is
determined by where it sends (1, 1) together with its action on End((1, 15)) = N.
In other words, an endofunctor in End(Modsg,(N)) is completely determined up to
unitary natural isomorphism by a (unital) homomorphism N — pM,,(N) p for some
projection p € M, (N), called a cofinite morphism of N in [84]. Furthermore, a natural
transformation is uniquely determined by its (1, 1y)-component.

2.3 The o-strong* topology on a W*-category

Let C be a separable W*-category, which has a canonical weak* topology on each
hom space.

Definition 2.13 Foreacha, b € C, the o-strong* topology t onC(a — b) is defined as
follows: f; — 0o -strong* if and only if fiT fi = Oand f; f;r — 0 weak* (o-weakly).

Facts 2.14 The o-strong* topology t on the hom spaces of C satisfies the following
properties:

(1) composition is jointly T-continuous on norm bounded subsets (if {a,}, {b,} are
uniformly norm bounded, and @, — a and b, — b then a,b,, — ab).
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(r2) ftis t-continuous on norm bounded subsets of morphism spaces.
(73) 7 restricted to the unit ball of any morphism space is completely metrizable.

The following proposition basically follows from [8, I11.2.2.2].

Proposition 2.15 Suppose M, N are von Neumann algebras and ® : M — N is a
unital x-homomorphism. Then ® is normal if and only if it is o-strong* continuous
on the unit ball of M.

Proof If ® is o-strong* continuous on bounded sets, then for any increasing bounded
net (x;) in M with x; /' x, x; — x in the o -strong* topology. Hence ® (x;)  ®(x),
and ® is normal.

The converse argument is similar to [8, [11.2.2.2]. If x; — 0 o-strong*, then )c,-xl?k —
0 and x/x; — 0 o-weakly. Hence ®(x;)*®(x;) — 0 and ®(x;)®(x;))* — 0 o-
weakly, which implies @ (x;) — 0 o -strong*. O

As all W*-categories were assumed to admit finite orthogonal direct sums, we have
the following immediate corollary.

Corollary 2.16 Suppose C, D are W*-categories and F : C — D is a -functor. Then
F is normal if and only if F is o -strong* continuous on norm bounded subsets of hom
spaces in C.

Example 2.17 Let (M, trys) be a finite von Neumann algebra equipped with a faithful
tracial state 7. In this case, the o-strong* topology on the unit ball of M is exactly
the || - ||2-topology, where ||x||% = tryr (x*x) [41, Prop. 9.1.1]. In fact, we may also
describe the entire o-strong* topology T on Modsgp (M) on norm bounded sets as
coming from a || - ||2-norm induced by canonical commutant traces.

In more detail, for X € MOdfgp(M ), the canonical commutant trace [69, Sect.
1.1.3(c)], [10, Def. 3.1.4] on the finite von Neumann algebra End(X /) is given by

Trx(f) =Y trp((blxb)§y)
b

where {b} is any finite X ys-basis. Observe that Try is independent of the choice of
basis. When M is a II; factor, Tr(idy) equals the right von Neumann dimension of
X ®u L*M.

Observe that the maps (Try) XeModggp (M) endow Modyg, (M) with a unitary cat-
egorical trace in the spirit of [83, Def. 3.7] (see also [27, Def. 3.59]). Indeed, for
f € Hom(X ) — Yu), we choose a finite X j/-basis {b} and a finite Yj;-basis {c},
and we calculate
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Tex(fTf) =Y wm(blfT o)) =Yt ((fbIfb)yy)
b b

= Y (Fblelel FB) 1) k)
b,c

= D tm(FBle)y (el Fh1) = 3 wu(Cf elb)i bl )il
b b,c

= > wu bl g1 )
b,c

=Y wn(fTelffeyyy = D wmel ffey = Ty (FF).

Using this categorical trace, for f € Hom(Xy — Yy), we define || f» =
Trx(f" o £)1/2. Observe that || - |2 on Hom(X; — Yj) is exactly the restriction
of || - |2 on End(Xps @ Yar), which is again defined using the canonical commutant
trace Trygy. Thus the o-strong™* topology t on Mod¢g, (M) exactly corresponds to
the || - ||2-topology on norm-bounded sets.

The following remark will be used later in Sect. 5.2.

Remark 2.18 Suppose (M, trys) is a finite von Neumann algebra equipped with a
normal faithful trace try;. Suppose X € Modggp(M) and N C (M, try) is strongly
Markov inclusion [42, Def. 2.8], i.e., there is a finite M y-basis {c} which satisfies [M :

]:= ) .cc* € [1,00). (This definition was based on [3] and [69, Sect. 1.1.3 and
1.1.4].) Here, the right N-valued inner product on My is given by {(a|b)y = En(a*b)
where Ex : M — N is the unique trace-preserving conditional expectation.

We now compare Trx,, and Tryxx,, m, - If {b} is a basis for X, and {c} is a basis
for My, then {b X c} is a basis for X Xy, My. Thus for f € End(Xy,),

Trxwy ay (f Bida,) = Yty (bR el fb B e)y M)
b,c

- ZtrN (Exte*wlrno)

_ZtrM(c (bl fb)jre) = > trar (bl fb)jycc®)

b,c b,c

=M : N1)_ trp((blfb)yy) = [M : N1 Trx (f).
b

This says the (faithful) restriction functor — X My : Modzgp (M) — Modg,(N) is a
continuous embedding (a homeomorphism onto its image) of hom spaces with respect
to the 7jy — Ty topologies. This means that f;, — 01in 7y if and only if f, Xidps, — 0
in N -

@ Springer



Q.Chenetal.

3 Approximate natural transformations and local endofunctors

In this section, given a W*-category, we define its canonical braided W*-tensor cat-
egory of local endofunctors which are both approximately inner and centrally trivial.
To define these notions, we first introduce the concept of an approximate natural
transformation.

3.1 Approximate natural transformations

Suppose C is a separable W*-category, and recall End(C) denotes the normal -
endofunctors of C. We define £°(N, C) as the W*-category with the same objects
as C and whose morphisms are uniformly norm-bounded sequences of morphisms in
C. The composition and tin £>°(N, C) are defined pointwise.

Definition 3.1 For each a, b € C, we define

I(a — b) = {f = (fn) € L°(N,C(a — b))

Jn =< 0}

VeelIb —»> c)g-fela— c)andVh €
IZd — a), f- heI(d—>b)

C®(a — b) := {f € (N, C(a — b)) ‘
We view C* as the idealizer of Z in £°(N,C). We call f € C*®(a — b) an
approximate morphism, and we say two morphisms f, g € C*°(a — b) are equivalent
or approximately equal if f — g € T(a — b). Observe that C* is a category under
pointwise composition of approximate morphisms. By (1) and (t2), Z(a — b) C
C%®(a — b) forall a, b, andNI defines a f-closed ideal in C*°. _
We define a f-category C with the same objects as C, and hom spaces C(a —
b) := C*(a — b)/I(a — b).For f € C*(a — b), we write f for its image in
C (a — b). Observe we can view C as a {-subcategory of C by mapping f € C(a — b)
to the image of the constant sequence ( f ) € C(a . — b). In what follows, we identify
f €C(a — b) with (f)yen € C®(a — b) and (f),cy € Cla — D).

Definition 3.2 A diagram in C*° is said to approximately commute if the corresponding
diagram in the quotient c=c¢C /T actually commutes. That is, given a, b, c,d € C
and morphisms f € C®(a — b), g € C®°b — d),h € C®(a — c¢),and k €
C*®(c — d), the diagram

approximately commutes if g, - f,, — k, - h, > 0

For a normal f-endofunctor F € End(C), for any f = (f,) eNCoo(a — b),
(F(fy)) € C®°(F(a) — F (b)), so F descends to a -endofunctor on C.
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Definition 3.3 Given two functors F, G € End(C) an approximate natural transfor-
mation is a family {n“ € C*°(F(a) — G(a)}4ec such that for every f € C(a — b),
n?- f = f-n%inC. In other words, the following diagram approximately commutes:

Fla) - G(a)

rpl o lew

Fb) -5 G(b).

Clearly every natural transformation n : F = G gives an approximate natural
transformation.

Warning 3.4 The collection of normal f-endofunctors of C and approximate natural
transformations between them (up to Z) clearly forms a f-category containing End(C)
as a (non-full) subcategory. It is tempting to think that this should also form a tensor
category, with tensor product being composition of endofunctors as usual. However,
the horizontal composition of two approximate natural transformations is not well-
defined in general. This is a fundamental point: the category of endofunctors and
approximately natural transformations is not a tensor category in general, as endo-
morphisms of the ‘unit’ in this category (see Definition 3.7) is not a commutative
algebra.

Definition 3.5 We call v € C*(a — b) an approximate isometry if its image
v € C(a — b) is an isometry. For f-endofunctors F, G € End(C), an approxi-
mate natural transformation v : F = G is called an approximately isometric natural
transformationif v® € C*°(F(a) — G(a)) is an approximate isometry foreacha € C.

Remark 3.6 (Arrow flipping) Suppose f € C*(a — ¢), v € C®(a — b), and
w € C®(b — c¢) such that the diagram

approximately commutes.

e If w is an approximate isometry, then \ / approximately com-
Un +
Wp

mutes.
o
a——c¢
e If v is an approximate coisometry, then '\ /' approximately
v wn
b
commutes.
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Indeed, these remarks follow since v, respectively w, is an actual isometry, respectively
coisometry, in C.

Definition 3.7 An approximately natural transformation from the identity functor to
itself is called a central sequence.

Lemma 3.8 Suppose C is a separable W*-category which is not necessarily unitarily
Cauchy complete. Every central sequence of C has a canonical extension to the unitary
Cauchy completion of C. Moreover, this extension gives a bijective correspondence
between the equivalence classes of central sequences of C and the equivalence classes
of central sequences of the unitary Cauchy completion of C.

Proof We proceed in 2 steps; first, we show the result for the orthogonal direct sum
completion Add(C), and second, we show the result for the orthogonal projection
completion Proj(C).

Step 1: We claim a central sequence n of C gives a central sequence of Add(C) by
Add(n);; = njncfm for@p, ¢; € Add(C), wheren; : @ ¢; — c; denotes the
canonical projections satisfying  ; JTI-TJT,' = idg,, and 7; o 71;' = §;—; id,;.
Let f* = (fj’.’l.) € Add(O)®(P; ¢i — @j d;), with each (fj’.li) € C*®(; —
d;) a bounded sequence of morphisms. Then clearly (f") e I(@i ¢ —
EBj d;) if and only if each (fj’.’l.) € Z(¢; — dj). Therefore since n € C*, we
have Add(n) € Add(C)*°.

To see that Add(#n) defines a natural transformation of the idNentity functor,
let f = (fji) € Add(C)(@c;i — € d;) as above. Then in C, Add(n) f =

(r;zj fii) = (fjin,ﬁi) = fAdd(n). Moreover, the assignment n +— Add(n)
clearly preserves equivalence of central sequences.

Conversely, given a central sequence 1 of Add(C), we automatically get a
central sequence of C by considering the canonical embedding C — Add(C).
Moreover, for @@, ¢; € Add(C), the off-diagonal terms of neBi ‘i go to zero
o-strong* as nDici approximately commutes with the 7;, and the diagonal
term corresponding to ¢; must be approximately equivalent to .

Step 2: A central sequence 1 of C gives a central sequence of Proj(C) by defining
Proj(n)©P) := pnp for (c, p) € Proj(C). Given (a, p), (b,q) € Proj(C),
Z((a, p) = (b,q)) = qZ(a — b)p, so Proj(n) € Proj(C)>°. Moreover, this
construction preserves equivalence of central sequences.

Conversely, given a central sequence 5 of Proj(C), we automatically get a
central sequence of C by considering the canonical embedding C < Proj(C).
Clearly starting with a central sequence in C, extending to Proj(C) as above,
and restricting back to C yields the same central sequence. In the other
direction, let n be a central sequence in Proj(C). We need to show that in

P/I’(_I)T(E), pn©1da) p = »(©P) But note we can view an orthogonal projection
p € End¢(c) as a morphism in Proj(C)_((c, p) — (c,id.)). Then in Proj(C),
,7(6,17) — n(C’P)p — (n(c’p)p)p — pn(c,ldc)p as desired.
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Example 3.9 For a separable von Neumann algebra M, central sequences in the sense
of Definition 3.7 for the W*-category Modsg, (M) exactly agree with the usual notion
of central sequences of M. Indeed, consider the category with one object Mj; whose
endomorphisms is M acting by left multiplication. An approximate natural transfor-
mation of the identiy functor is exactly a sequence (x,) such that x,m — mx, — 01in
the o-strong* topology for all m € M. Now since Modsgp (M) is the unitary Cauchcy
completion of this one object category, the claim follows by Lemma 3.8.

The next lemma will be important in the next subsection.

Lemma 3.10 Suppose H, K are finite dimensional Hilbert spaces with orthonormal
bases {e;}, { fi} respectively Fora collection of maps (n® € C*°(H>a — Kr>a)),ec,
wedeﬁnenlj : (f > 1,)n%e; > 1,) € C®(a — a). Thenn: H> — = K > —
defines an approxzmate natural transformation if and only if n; ; is a central sequence
foreachi, j.

Proof Note that n® = Zi,j(fj > 1,1)77;{].((?;r > 1,). Then for g € C(a — b),

gnt; =g =g(f] & lan®(ei > 1) — (f] > 1o’ (ei > 1)g
= (f] > 1)k > On(ei > 1) = (f] & 10’ (1x & g)(ei & 1)

= (ff & 1n) (Ux & 91" = 0" = 9)) (e > 1),
and

(g > =0’y >g) =Y (fj > 1p) (gnf‘,,- - nf’,jg) (€] > 1)
ij

Thus (1x > g)n® —nP(lg > g) = 0inC if and only ifgn?j — nf’jg = 0inC for all
i,J. O
3.2 Centrally trivial and approximately inner endofunctors

For the rest of this section, C is a fixed separable W*-category.

Definition 3.11 A functor F' € End(C) is called centrally trivial if for all finite dimen-
sional Hilbert spaces and all approximate natural transformations n : H>— = K> —,
the following diagram approximately commutes.

FH>a) "™ FK > a)

o od
FHl Fa l F.K

Hr>Fa) 25 K> F(a)
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Proposition 3.12 A functor F is centrally trivial if and only if for all central sequences
n. F(n*) =nf@inC.

Proof 1t is clear that F(n®) = n¥@ in C for all central sequences 1 if F is centrally
trivial. Conversely, for each approximate natural transformationn : H>— = K> —,
n;,j defined in Lemma 3.10 is a central sequence for each i, j. Then by Definition 2.7,

otk Fa @i i)' = (f; > FUDF(f] 5 1) F ) Y Fler > 1a)(e] > F(14)
j i

=Y (fj > FU)F (il )(ef > F(14))
i,j
=Y (fj > FA)n P (e] & F(1a) = n"@,
i,j
which implies that F is centrally trivial. O

Definition 3.13 We denote the full subcategory of End(C) of centrally trivial endo-
functors by End (C).

Proposition 3.14 End.((C) is a replete unitarily Cauchy complete W*-tensor subcat-
egory of End(C).

Proof Suppose G, G’ are centrally trivial. For each central sequence 7, by Proposition
3.12, we have

G(G' (") = G @) = g @@,

which implies G o G’ is centrally trivial.

Now suppose G is centrally trivial and v : F = G is an isometric natural transfor-
mation for some other endofunctor F € End(C). That F(n%) = n¥@ for all central
sequences 1 follows from the following approximately commuting diagram

F(n3)

/G;i\
—l +

F@) % 6@ o0 G@ 5 F@ M

~

where we have used Remark 3.6 to flip the arrow on the right. Considering the case
when v is unitary shows that End.(C) is replete.
As C admits orthogonal direct sums, so does End(C). Suppose G, G’ are centrally
trivial, and let  be a central sequence. Then

GG =G @G (") = n°@ @ n?'@,
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By the proof of Step 1 of Lemma 3.8, n9@ @ nG'@ = pGeGH@ jy C, and thus
G @ G’ is centrally trivial.

As C is orthogonal projection complete, so is End(C). Suppose G is centrally
trivial and w : G = G is an orthogonal projection natural transformation. Then
7 orthogonally splits in End(C), so there is an /' € End(C) and an isometry natural
transformation v : F = G. But then F € End¢(C) by (1) above. O

Example 3.15 For a finite dimensional Hilbert space H, the functor H > — is centrally
trivial. Note that the identity functor id¢ is centrally trivial, and thus so is P, idc.
Since the functor H 1> — is equivalent to €p; idc, by Proposition 3.14, H > — is
centrally trivial.

Definition 3.16 A functor F' € End(C) is called approximately inner if there exists a
finite dimensional Hilbert space H and an approximate isometry natural transformation
v:F= Hp>—inEnd(C),i.e.,

F(a) Y Hea

ol Jiner

F(b) -2 Hb

approximately commutes. The pair (v, H) is called an approximating sequence for
F.

Definition 3.17 We denote the full subcategory of End(C) of approximately inner
endofunctors by End,; (C).

Proposition 3.18 End,;(C) is a replete unitarily Cauchy complete W*-tensor subcat-
egory of End(C).

Proof Suppose F and F’ are approximately inner, with approximating sequences
(v, H) and (w, K) respectively. We claim (“;1}1(,— K>~ L F(w), H® K) is an
approximating sequence for F o F’, where the unitary natural transformation gy g — :
(H® K)> — = H > (K > —) is the left module associator. For f € C(a — b),
consider the diagram

F(F'(a ))—>F(Kl>a)£>Hl>(Kl>a)H—KH>(H®K)>a

LFE |Faxen [t akep tuexer-
F(F' (b)) ﬁ F(K > b) K—Db> Hr(K>b) — (H®K)>Db

O‘Hkb

The left square commutes because F’ is approximately inner and F is t-continuous
on bounded subsets. The middle square commutes because F' is approximately inner.
The right square commutes because a;[’ . is natural.

Now suppose F is approximately inner with approximating sequence (v, H) and
u : G = F is a isometric natural transformation for some other endofunctor G €
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End(C). It is easy to see (v - u, H) is an approximating sequence for G from the fact
that v - u is again approximately isometric. The case when u is unitary shows that
End,;i(C) is replete. The case when u is an isometry shows that since C is orthogonal
projection complete, then so is End,; (C).

Finally, as C is orthogonal direct sum complete, the orthogonal direct sum of func-
tors is defined. If F and F’ are approximately inner with approximating sequence
(v, H) and (w, K) respectively, then (v & w, H & K) is an approximating sequence
for F® F',so F ® F’ € End, (C). O

3.3 Relative braiding between centrally trivial and approximately inner
endofunctors

The goal of this section is to show that the subcategories End¢(C) and End,;(C) of
End(C) ‘commute’ with each other in the sense of Definition 3.24 below.

Proposition 3.19 Suppose F € Endal(C) with approximating sequence (v, H) and
G € Ende(C). Then (v%@)T . 6& & -G e C(G(F(a)) — F(G(a))) is indepen-
dent of the choice of approximating sequence (v, H) for F.

Proof Suppose (v, H) and (w, K) are approximating sequences for the endofunctor
F € End,(C). Observe that vw' : K > — = H > — is approximately natural. Now
since G is centrally trivial, by Definition 3.11,

G(( ")*)/G(F(a)) Gw)
G(H > a) G(K 1> a)

o] Gla); WO@ lotx
He 6" F(G@) ™ K > Ga)

approximately commutes for each object a € C. Then by Remark 3.6,

G(F(a))

G(UZ/ %ﬂﬁ)

G(H > a) G(K>a)

UG,Hl ® G(a))T ( (;(n)) lGGK

HDG()" F(G())("—KDG(a)
approximately commutes. Therefore, (vC@)T . US’H -G € 5(G(F(a)) —
F(G(a))) is independent of the choice of approximating sequences (v, H) for F. O

The proof of the following lemma is standard and left to the reader.

Lemma 3.20 Suppose (x,) is a sequence in a metric space (X, d) which satisfies the
following property:
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e For all functions k : N — N such that n < k, < kyy1, d(xp, xr,) — 0. (Note
here that (x,) is not quite a subsequence as terms can repeat.)

Then (x,,) is Cauchy.

Theorem 3.21 Suppose F € End,i(C) and G € End(C). For each a € C, there
exists a unique morphism in C, u“Gf € C(G(F(a)) — F(G(a))), such that for all
approximate sequences (v, H), the following diagram approximately commutes.

a
UG, r

G(F(a)) ---=-> F(G(a))

G Tag@yr
G(H>a) — H > G(a)
G.H

Proof Suppose (v, H) is an approximating sequence for F. Then for any function
k : N — Nsuchthatn < k, < kyy1, (V' := (vk,)n, H) is also an approximating
sequence for F. By Proposition 3.19,

(UG(ZI))T . O‘(a;’H . G(va) — (U/G(a))T . O_g’H . G(v/a)

in 5(G(F(a)) — F(G(a))). By [(t3)], the T topology on any bounded subspace of
C(G(F(a)) - F (G(a))) is completely metrizable. Then by Lemma 3.20 and the
definition of C, the bounded sequence

WO 0 GO = (W) 0y GO)

isa Cauchy sequence, and we denote u; - to be its unique limit. Again, by Proposition
3.19, uG r does not depend on the choice of the approximating sequence for F. O

Proposition 3.22 For F € End,i(C) and G € End((C), ug,  is unitary.

Proof By Proposition 3.19, for an approximating sequence (v, H) for F, the following
diagram approximately commutes.

G(H > a) S 6o s
O'G Hl G(a) ( G(a))T l/UG H
He G —" ) H > Ga)
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Since oé y 18 unitary, then in C, we have

whp - wh )" = (000G - G") - (G- (0f )T -1
= ) (06 4 GO - GO (0§ ") - vO@
= O@)T. (vG(a) _ (vG(a))T> 0@
= idF(G(a))»

W) ul = (GO @ ' 00 @) (T 0y - G
— G- ((ag,H)T 0@ C@)i ang) - GY)
= G- (G(v“) : G(v“)T) L GOY
= 1dG(F(a)) -

Since the inclusion C < C is faithful, we are finished. O

Proposition 3.23 For F' € End,i(C) and G € Endc((C), the family uc. r : {u; plaec
is a natural transformation G o F = F o G.

Proof For f € C(a — b), it suffices to prove the following diagram approximately
commutes.

a
Ug,F

G(F(a)) G o) ’ WG @yt > F(G(a))
Uy Up
\ Gy /
G(H>a) — H1> G(a)
G(F(f) GUue1) Jrasan FG()

G(H >b) — H>G(b)

/ ron \
v G@h) Gb)y Ag

G(F (b)) R GWb))

b
Ug,r

The top and bottom squares commute by definition of u‘é r by Theorem 3.21.
The left square commute because F is approximately inner and G is r-continuous
on bounded sets. The right square commutes by approximate naturality. The middle
square commutes by naturality of . O

In the next definition, we use strict monoidal categories simply because the case
we care about is strict, but one obtains the general definition by inserting coheretors
where appropriate.

Definition 3.24 Let C be a (strict) C*-tensor category, and A, B full, replete ftensor
subcategories of C. A centralizing structure on the pair (A, B) is a family of unitary
isomorphisms u, 5 : a ® b — b ® a fora € A and b € B satistying the following
conditions:
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(1) (Natural) Fora,a’ € Aand f € Cla — da’) and b,b € B, g € C(b — D),
E&® flouap =ugypo(f®g).

(2) (Braid relation 1) Fora € A, b,b' € B, (1, @ ug ) o (tap @ lpy) = ttg pp-

(3) (Braid relation 2) Fora,a’ € Aandb € B, (ugp @ 1) 0o (1 @ Ug' p) = Uaga’ b-

The goal of this section is to construct a centralizing structure for the pair of full,
replete subcategories (End¢(C), End,;i(C)) inside End(C).

Proposition 3.25 For F' € End,i(C) and G € End(C), ug,r satisfies condition (1)
in Definition 3.24.

Proof Suppose G,G’ € End,(C) and F, F’ € Endy(C) with approximating
sequences (v, H) and (w, K) respectively. Let n € End(C)(F = F’) be a natu-
ral transformation. We shall show u‘(l;’ G = nC@ . u”G - 1t suffices to prove
the following diagram approximately commutes.

a

UG, F
G(F(a)) - > F(G(a))
Gy) @)t
Gy
G(H > a) —= H > G(a)
G(n G(wn-u))®) | lawnaho@ n¢@

N

-

G(K >a) — K> G(a)
9G.k

G(wy)

(wy

G (a))f\‘ J

-

G(F'(a))

> F'(G(a))

G.F/

The left/right squares commute since v, w are approximately isometric. The
top/bottom squares commute by the definition of u g, r. The middle square commutes
because G is centrally trivial.

Let ¢ € End(C)(G = G'). We shall show ug;, . - YF@ = Fy9). uf g It
suffices to prove the following diagram approximately commutes.

UG F
G(F(a)) e » F(G(a)
wfb )
9G.H,
G(H >a) -2 H > G(a)
yF@ yhva| =% y6@
G'(H>a) — H>G'(a)
%1
4 G/(UZ) (UG/(“))T\ <+
G'(F(a)) a - > F(G'(a)

G'.F

The left square commutes by the naturality of v. The right square commutes because
F is approximately inner. The top/bottom squares commute by the definition of ug, r.
The middle square commutes by the naturality of o. O
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Proposition 3.26 For F € End,i(C) and G, G' € End(C), ug, r satisfies condition
(2) of Definition 3.24.

Proof 1t suffices to show that for an approximating sequence (v, H) for F, the fol-
lowing diagram approximately commutes.

a
UGoG! F

GG'F(a)

) G(G' (W)
G(G' )

GG'(H>a) ——— GG'(H1>a)
G(G' Wi ()

G(G’(a))

C Gl ) HeG6'@) ) FGG (a)
'@, G () /G’m:
Gt & 6 @S Ve = 6 ay) 6.1

G @)

Gy )
GFG'(a)

For any choice of approximating sequence, the outer three cells approximately com-
mute by the definition of u from Theorem 3.21. The upper triangle approximately
commutes as v is approximately isometric. The middle triangle approximately com-
mutes by Proposition 2.8(2). The lower triangle is trivial. Finally, the remaining square
approximately commutes because vv' : H > — = H > — is approximately natural
and G’ is centrally trivial (see also Proposition 3.22). O

Proposition 3.27 For F, F' € End,i(C) and G € End(C), ug,r satisfies condition
(3) of Definition 3.24.

Proof We must prove for each fixed a € C, F(uG F,)ug Iff) = uG pop- TO do s0, we

carefully choose approximating sequences (v, H) and (w, K) for F and F’ respec-
tively such that the following diagram approximately commutes.
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GFF'(a)
F'(a)
G(H > F'(a)) G(H 1> F'(a))
G(l a
(Ig>wd) Gl us) m
G,H
G(H > (K > a)) Hr>GF'(a)
”5zn 1H>Gwd)
Wy
UG Fop/ 9G. Hek H>G(K>a) FGF'(a)
FG(w})
H>og g FEPD)
Hp> K> G(a) FG(K > a)
G(a a
IHD(W,?(‘”)% (UV{(D ¢ ))T FV
H 1> F'G(a) F(K > G(a))
F'G(a)\+
(on Wﬁ F(”Z;_F’)
FF' G(a)

For any choices of approximating sequences, the outer three cells approximately
commute by the definition of u from Theorem 3.21. The upper left square is trivial.
The adjacent square to its lower right approximately commutes by the naturality of
oG, H- The left middle triangle approximately commutes by Proposition 2.8(1), and
the square to the lower right of this triangle approximately commutes by approximate
naturality of v. This leaves us to consider the two remaining squares

(vaG(”))* (UGF’(u))+
Hp K> Ga) — F(K > G(a)) Hr> GF'(a) —~—> FGF'(a)
1o )] Lrag@y and e | Jrowi) -
! !
Hp> F'G(a) W FF'G(a) Hp>G(K Da)(vW>TFG(K >a)

These squares may not approximately commute for an arbitrary choice of approxi-
mating sequences, but we can get around this by replacing v with a subsequence, as
any approximating sequence for F' can be used. Indeed, for b, ¢ € C, let d,_, . denote
a metric inducing the t-topology on bounded subsets of C(b — ¢). Since (wnG (a))f
and G(w$) are morphisms in C for each fixed n, using approximate naturality of v,

we may inductively choose 1 < k,,_1 < k, so that both
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K>G(a)t F'G(a)t
A K> G@)— FF'G@) (F(w’?(a))f ) (vk”l> @ wf @Yy (wf(a))w‘)> - and

1
n
d ) ) (FG( ay o GF(@t G(K>a)ty a 1
G- roea (FEWH - @f ), 0™ - (15 > Gu) <
simultaneously. Thus replacing (v$) with (v,in) for all ¢ € C, the previous arguments
still hold, as ((v,f'1 )¢, H) is still an approximating sequence for F', and these two squares

approximately commute for our fixed a € C. Since we only need to verify condition
(2) of Definition 3.24 for one a € C at a time, the result follows. O

Definition 3.28 We define the category Endjoc(C) of local endofunctors, to be the full
W*-monoidal subcategory of End(C) whose objects are normal f-endofunctors which
are both approximately inner and centrally trivial. By Propositions 3.14 and 3.18,
Endjoc(C) is replete and unitarily Cauchy complete. The family of unitary natural
transformations ug r : G o F = F o G equips Endjo.(C) with the structure of a
braided W*-tensor category.

4 ,i'(M) for finite von Neumann algebras via bimodules

In this section, we give the main application of the construction of the last section to
give a definition of y (M) for a II;-factor M in terms of bimodules.

Given a W*-tensor category C, the dualizable part, denoted Cyyalizable, 1S the full
tensor subcategory whose objects have two sided duals. Observe that if End¢(1¢)
is finite dimensional, then Cgyalizable 1S a rigid C*/W* tensor category. If moreover
Cdualizable 18 semisimple (equivalently orthogonal projection complete), it is called a
unitary multitensor category [67]; it is called a unitary tensor category if End¢(1¢) is
one dimensional.

Definition 4.1 Given a von Neumann algebra M, we denote the braided unitary tensor
category X (M) := Endjoc (Modgp (M))dualizable-

Identifying End(Modsgp (M)) = Bim¢g, (M)™P as in Remark 2.11, we call a bimod-
ule X € Bimg¢g, (M) approximately inner (respectively centrally trivial) if the functor
— Xy X is approximately inner (respectively centrally trivial). We see the underly-
ing unitary tensor category of x (M) agrees with the definition of x (M) from [68,
Rem. 2.7]. We may thus think of x (M) as the dualizable approximately inner and
centrally trivial bimodules of M whose conjugate bimodule is also approximately
inner and centrally trivial.

Since Endjoc (Modsgp(M)) is braided, we get a monoidal equivalence from x (M)
to its monoidal opposite x (M)™P, which allows us to bypass this opposite issue. We
address this in detail in Remark 4.9 below and the discussion thereafter.

Note the dualizable objects in Bim¢g, (M) are precisely the bifinite Hilbert bimod-
ules of M, and the dual object is the conjugate bimodule. It is easy to see that H
is centrally trivial if and only if H is centrally trivial, but for approximately inner,
any such relationship is not obvious. Thus it may be possible for a centrally trivial
bifinite bimodule to be approximately inner, but its conjugate bimodule may not be
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approximately inner. We do not have an example, but we cannot rule this out at this
time.

4.1 Module and bimodule realization

In order to translate the results of Sect. 3, we use the graphical calculus for Modyg, (M)
as aright Bimgg, (M)-module W*-category. One way to do this is to use the realization
graphical calculus from [13] based on [31, Sect. 4.1]. We only introduce the part of
the graphical calculus that we need in this section, and we introduce the rest of the
graphical calculus for Q-system realization in Sect. 5.1 below.

In the 2D graphical calculus for W*Alg, von Neumann algebras are denoted by
shaded regions, bimodules are denoted by 1D strands, and intertwiners are denoted by
0D coupons. For the rest of this section, let M be a II; factor. Of particular importance
is the right M-module M ;. The missing label on the left hand side is inferred to be C,
which is always represented by the empty shading. That is, we identify Mod¢g, (M) =
W*AIg(C — M) in the 2D graphical calculus. We denote ¢ My, by a dashed line
which is shaded by M on the right hand side.

=M - =cC | =cMy.

R

A bounded, adjointable intertwiner f : Y3y — Zys is denoted graphically by

= YM and = ZM.

Construction 4.2 [13, Const. 4.1] Given Yy € Modsgp(M), the map x +— L, where
Ly(m) := ym gives a canonical isomorphism Yy, = |Y|y := Hom(My — Yu)
such that (x|y)y = LlL y. In Sects. 4.2 and 5.2 below, we make heavy use of this
identification.

€ |Y|:=Hom(My — Yy).

The right M-action is given by identifying M = End(M)s) and stacking coupons:
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The condition that {c;} is a Yjs-basis can be written graphically as

If X € Bim¢g, (M), then we define the realization | X| slightly differently:

€ |X| := Hom(My — M Ky Xu).

While this definition is canonically isomorphic to the previous definition via the
canonical unitor M X, X = X, this definition offers the advantage of depicting both
the left and the right M-actions graphically by

and ‘ =x<b.

4.2 Centrally trivial and approximately inner bimodules

In this section we clarify the equivalence between our definitions of approximately
inner and centrally trivial given in terms of endofunctors, and Popa’s original defini-
tions as translated to bimodules, which are much more natural from the point of view
of a single von Neumann algebra [68, Rem. 2.7]. For this section, let M be a finite
separable von Neumann algebra with faithful normal trace try.

Notation 4.3 For norm bounded sequences (f,)n, (gn)n € Hom(Xpy — Yy), we
write f, ~ g, if lim, || f, — gnll2 = 0. For f € Hom(X — Yy ), we write f = f,
if lim, || f — full2 = 0. As a consequence, f ~ g if and only if f = g.

We remark that since composition is jointly t-continuous on norm-bounded subsets
of hom spaces, we may use f, & g, as a local relation amongst morphisms in
Modgg, (M). If we precompose with an appropriate /, we still have f, o h ~ g, o h,
and similarly for composing on the other side, or both sides simultaneously. Similarly,
since X is separately normal in each variable, tensoring with a fixed k is separately
T-continuous on norm-bounded subsets. Thus we still have f, Xk ~ g, X k, and

similarly for tensoring on the other side, or both sides simultaneously.

@ Springer



A categorical Connes’ x (M)

Proposition 4.4 X is centrally trivial over M if and only if for all central sequences
(an)n € M and for all x € X, |layx — xayll2 — 0, i.e.,

~ Vx e X, Vcentral sequences (a,) € M.

Proof Recall a central sequence of Modygp(M) is a natural transformation of the
identity functor. By Example 3.9, equivalence classes of these central sequences agree
with the usual equivalence classes of central sequences of M. The result now follows
directly from Proposition 3.12, which translates into the displayed condition in the
statement of the proposition. O

Now by definition, the functor — X, X is approximately inner if there exists an
approximately natural isometry v,{ YRy X - Y ® H,ie., we have

H

vy = such that

Yy X

for all intertwiners f € Hom(Zy — Yu).

Definition4.5 For ¥ € Modsyp(M), an approximate Y)-basis is a sequence
{bf")};":(';) C Y such that sup, m(n) < oo, sup; , ||(b§n)|b§”))/):,l|| < 00, and

m
x= > b b)Y,

i=1

=0 VxeYt.
2

lim
n—oo

For X € Bim¢gp(X), an approximately inner X p-basis is an approximate X s-basis
such that
|ab{® = b{"a] 0 YaeM. @)

Proposition 4.6 A bimodule X is approximately inner over M if and only if there exists
an approximately inner X pr-basis.

Proof Suppose X is approximately inner. By Definition 3.16, there exists a finite
dimensional Hilbert space H and an approximate natural isometry v = (v,) : — Xy
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X — H > —. Let {¢;} be an orthonormal basis of H, and define bf") as follows.

1 1
l , e

Observe that for all x € X, we have

= WM"Y ).

PILRURDYEDS
i

The condition (2) follows immediately by approximate naturality of v on the M-
component.
Conversely, starting with an approximately inner X js-basis, we define

H e; ‘
! e¥ | i
| 1
= = (n)yt+
2 2 (e
1 ] |
| | |
I I

and we define each v,f for Y € Modgg, (M) in terms of vf,"[ and a Y-basis {c;}:
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Y

We have v, is norm-bounded as ) f llc; ||% < 00. To see the approximate naturality

Of{v,f}YeModfgp(M), for f € Hom(Zy — Yu),

We see v} is independent of the choice of Yj;-basis by taking f = idy above. O

In [68, Def. 1.1], Popa gave a definition of approximate innerness for a finite index
II; subfactor N € M. We canalso view y My € Bimgg, (N) with (x|y)n := En (x*y).
We will show in Proposition 4.8 below that N C M is approximately inner in the sense
of [68, Def. 1.1] if and only if y My is approximately inner.

We quickly recall the notion of ultraproduct for II; (sub)factors following [1, Sect.
5.4]. Let w be a non-principal unltrafilter on N. For a II; factor N, define N¥ =
£ (N, M)/Z, where I is the ideal of sequences which converge to O in || - || along
w. Then N® is a II; factor, with trace given by taking the limit along w.

Now consider a finite index II; subfactor N € M. Then N® C M® is another
II; subfactor with the same Jones index and trace preserving condition expectation
extending £ : M — N. Using this expectation, we can view M® as an N bimodule.
We can also consider the inclusion N’ N N® € N’ N M, and E restricts to the trace
preserving conditional expectation E : N'NM* — N'NN®. We recall the following
definition due to Popa.

Definition 4.7 [68, Def. 1.1 and Prop. 1.2] A finite index II; subfactor N C M is
called approximately inner if the inclusion N’ N N© Cg N' N M® is [M : N]~!-
Markov, i.e., there is a (finite) Pimsner—Popa basis {b} for N’ N M® over N' N N®
which satisfies >, bb* = [M : N].

Proposition 4.8 A finite index 11| subfactor N C M is approximately inner if and only
if NMy € Bimggp(N) is approximately inner.

Proof 1t is easy to see that for a finite index subfactor N C M, if yMy € Bimggp (N)
is approximately inner, then an approximate M y-basis gives an honest Pimsner—Popa
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basis for M over N, and the extra commutativity condition (2) means this Pimsner—
Popa basis lies in N’ N M. Thus we have a Pimsner—Popa basis forN’ N M® over
N’ N N® which lifts to a Pimsner—Popa basis for M® over N®, which implies N’ N
N® Cg N'NM®is [M : N]~'-Markov.

Conversely, suppose N € M is approximately inner. Let {bg") }{'(=1 be a representa-
tive of the Pimsner—Popa basis for N'NN® Cg N'NM® which lifts to a Pimsner—Popa
basis for N Cg M“, which exists by [72, Proposition 2.2 (3)]. Note that for every
x€Mandy €N,

x =Y b E(b")"x)

—,0 and Hybﬁ.’” <">yH —,0 V]
2

Let F C (N); and G C (M) be countable o-strong* dense subsets. (Since M, N
are II; factors, we are really working with the || - [|2-topology.) Write F = | J; F; and
G = U, G, where the F; and G; increasing sequences of finite subsets. For each [,
we have

2

xeGy

SEE ], =

J YER

x — Zb(")E((b(")) x)

Therefore there exists a subsequence of the bg"" ) such that

2 |

x€G1

Zb(nk)E((b(nk)) X)

i

Y3 | —py| —o.

2 J YEFR
In particular, we can choose cl.(l) = b;nk)
above sum is less than 2.

We claim is the sequence {ci(l)} is an approximately inner L?M y-basis. Clearly the

where ny is sufficiently large so that the

collection {cl.(l)} satisfies the conditions from Definition 4.5 for x € G while it satisfies
(2) for y € F. The result follows since G and F are o-strong* dense in (M); and
(N)1 respectively. O

Remark 4.9 (cf.[19, Ex. 8.1.9]) For a monoidal category C, the monoidal opposite C™P
is the same category with the opposite monoidal product given by a ®mp b := b Q¢ a.
It is equipped with the inverse associator:

—1

2 (a ®mp b) Omp ¢ _c®(b®a)—>(c®b)®a_ a Qmp (b Qmp ©).

abc

Now suppose C is a braided monoidal category. Observe that the braiding endows the
linear equivalence C — C™P with a monoidal structure

fap id@®b) =a®b 2 b @ a = id(a) @mp id(b)
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giving an equivalence of monoidal categories C ~ C™P. Now transporting 8 to C™
along this monoidal equivalence endows C™P with the braiding

mp . 1 /Sb,aoﬂa,hoﬂ,;é=ﬁh_u
'Ba,b = Wb.a Old(ﬂa,b)oﬂa!b A®@mpb=b®a —————>aQ@b=bQmpa

such that (id, ) : (C, a0, B) — (C™P, «™P, B™P) is a braided monoidal equivalence.
(Observe that if we chose our monoidal structure for id to be pq,p := B, 611, we would

still obtain ﬂzg = PBp.q as the transported braiding on C™P.)

Using the above remark, we now translate the definition of the unitary braiding into
M

Xy Y, -y X
Choosing approximately inner Xy, Yps-bases {b™};, {c;.”)} ; and ordinary X, Y-
bases {b;};, {c;}; respectively, unpacking Theorem 3.21 and Definition 2.7 gives the
following formulas.

the language of bimodules. For X, Y € Bim¢g, (M), we write uy y = ul

\
uxy = : ~
|

“

That is, the braidings ux y, u;f, x can be expressed as the following || - [|2-limits of
M -finite rank operators:
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: (n)y 14, (n) i : (n) (n)
MX,Y=11{nZ‘CjX|bin><bin Xy and ul'ﬂX:hgnZ‘cjn @bi)(biﬁcj" .
i

ij
Q)]

The content of Sect. 3 then translates into the facts that:

e The limit ux y exists and is independent of the choice of (approximately inner)
X, Yy-bases (Theorem 3.21 and Proposition 3.23),

e uy y is unitary (Proposition 3.22),

e uy y isnatural in X and Y (Proposition 3.25), and

e uy y satisfies the braid relations (Propositions 3.27, 3.26).

4.3 Examples

We now compute many examples of x (M) for various von Neumann algebras M. In
this section, in order to easily make contact with other results in the literature, we
work with the Hilbert space version of Modsg, (M), i.e., Hilbert spaces with a normal
right M-action such that dim(Hjs) < oo (see Example 2.5 for the equivalence with
W*Algsgo (C — M)).

Now we recall two different notions of central sequence in the von Neumann algebra
literature which agree for finite von Neumann algebras but are subtly distinct in general.
The standard notion to use outside the finite setting is centralizing sequence, introduced
by Connes in [14, 15] in terms of the predual. Equivalently (e.g., see [32, Lem. 1.8]),
we say a norm bounded sequence {x;} € M is centralizing if for all n € L*M, ||xin—
nx;|l2 — 0. This is in contrast to central sequences, which satisfy x;m —mx; — 0, in
the strong*-topology (the latter notion is compatible with our use of the term central
sequence). Note every centralizing sequence is central, but in general the converse is
not true. For finite von Neumann algebras, however, these two notions agree. In both
settings, we say a sequence is frivial if there exists a scalar A such that x; — Al — 0
in the strong*-topology.

For our formalism, the notion of central sequence is the correct one; however, we
will occasionally need to make use of results that are stated in terms of centralizing
sequences.

Example 4.10 (L°°(X, wn)) For the abelian von Neumann algebra L*°(X, ) over a
finite measure space (X, u), constant sequences are centrally trivial. Thus any centrally
trivial right-finite correspondence is simply a finitely generated projective module,
made into a bimodule by defining the right action to be the left action. All of these cor-
respondences are inner, hence approximately inner. This braided category is equivalent
to the symmetric monoidal category of finitely generated projective modules, which
is equivalent to the category of finite dimensional measurable Hilbert bundles over
(X, ) [18].

Example 4.11 (Connes’ x (M) [16] and Jones’ « [38]) Let M be a separable finite von
Neumann algebra with faithful normal trace try;. We show that Connes’ x (M) embeds
as a multiplicative subgroup of the monoid of equivalence classes of invertible objects
in x(M).
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For o € Aut(M), we define the corresponding M—M bimodule as o L> M. Denoting
the image of 1, in o L>M by €, the left action is given by a > x2 := a(a)x$2, the
right action is given by xQ <1 b = xb<2, and the M-valued inner product is given
by (lex’Q)ﬁ;M := x*x’. Moreover, the map a + oL>M descends to a group
isomorphism from Out(M) onto the group of unitary equivalence classes of invertible
M—M bimodules H such that dim(y H) = dim(Hyy) = 1.

Recall that an automorphism « is approximately inner if there exists a sequence
of unitaries u, € U (M) such that |la(x)u, — u,x|l» — O for all x € M. Accord-
ing to Proposition 4.6, to show o L>M is approximately inner, it suffices to show
{u,2} is an approximate Pimsner—Popa basis centralized by M. It is clear that

2
U > (unQ|xQ)"/‘WL M _ xforallx e M, and foralla € M,
la>u,Q—u,Q <alz = |lal@u, 2 — ualll, — 0.

Therefore, o L>M is approximately inner. By Proposition 4.4, the bimodule o L>M is
centrally trivial if « is centrally trivial.

Now assume M is a II; factor. The subcategory of x (M) spanned by the image of
x (M) is a pointed braided unitary tensor category. The entire braided tensor structure
here is uniquely determined by the quadratic form « on y (M) determined by u :=

quzM,aLzM = K(a) 1O,L2M|ZM(1L2M' Since

w=|-ll2 — lim |€2 B9 1, 2) (u, 2 K QI
n

for an arbitrary bounded vector Q2 X m2, we see

k(@) QXmQ) =u(@Q@XmQ) =QX | | — limu)a(u,)m.
n

Thus this « is precisely Jones” quadratic form « on y (M) [38, Def. 2.4].
Further references for Connes’ x (M) and Jones’ « include [12, 20, 37].

Example 4.12 (x (R) is trivial) The following proposition specialized to the case S = C
shows that the only centrally trivial bimodules of R are inner, and thus x (R) is trivial.
This extends Connes’ result that x (R) is trivial [16].

Proposition 4.13 Let M = R ® S where R is the hyperfinite 11| factor and S is any
factor. Let H be a separable M—M Hilbert bimodule such that for all &€ € H and
all central sequences x = (Xp)neN C R, ||(xy ® 15)E — E(x;, ® 15)|l2 — 0. Then
H = L’R ® K for some S — S bimodule K.

Proof Let & € H with ||| = 1. Represent R = ®72, M>(C), and denote R, =

®?=1 M>(C) C R. We claim there is some n so that for all unitaries u € R;,O N R,
(v ®15)E —EW ® 1g)| < % Otherwise, we could find a sequence of unitaries
u, € R, N R with ||(u, @ 15)&§ — &(u, @ 1s)|| > % However by construction the

sequence (4,)neN C R is central, contradicting the hypothesis.
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Choose such an ng, and consider the weakly compact convex subset

co” {(u ® l)EW* ® Ls)

ue R;m N R} CH.
This has a unique element of minimal norm, &y. By hypothesis

1
201> — 2Re{(u ® 15)E* ® 15), &) = (4 @ 1s)E(u* ® 1s) — £|* < 2

and thus
7
3 < Re((u ® 15)E(u* @ 1), &).

Therefore &y # 0. Since ||(u ® 15)&(™ ® 1s)|| = ||&ol|, uniqueness of &y implies
(u ® 15)& = &(u ® 1) for all unitaries (hence all elements) # € R, N R. Note
that R,&0 R, is a cyclic bimodule over the finite dimensional full matrix algebra R,,
and thus contains a non-zero R, central vector & (which is evidently R, N R-central).
Thus since R = (Ry, R, N R), we see that & is R-central and thus R-bounded by
[66, Lem. 3.20]. This means the R — R bimodule H; := (R ® 15)E (R ® 15)" is
canonically isomorphic to L2 R as an R—R bimodule via the map defined by 1z — &.
Choosing a vector &’ € H f‘, we can repeat this procedure, obtaining a decomposition
as R-bimodules H = L?R ® K where K is a separable multiplicity space. But note
K = Qg ® K is the space of R ® 15 central vectors hence is closed under the left and
right actions of 1z ® S. O

The following proposition is well known to experts. We record it here for complete-
ness and convenience of the reader. The concise proof included below was suggested
by a helpful referee.

Proposition 4.14 Let N C M be a finite index 11| subfactor. Then M = N v (N' N\ M)
if and only if LM = @, L*>N as N-N bimodules.

Proof Suppose M = N v (N’ N M). By [39], N’ N M is finite dimensional, and thus
isomorphic to a multimatrix algebra. The only way that N v (N’ N M) can be a factor
is if N’ N M is a full matrix algebra, i.e., isomorphic to My (C) for some k € N. Since
N’ N M is finite dimensional, the algebraic tensor product N ® (N’ N M) is also the
spatial tensor product, and the canonical map N @ (NN M) - NV (N'NM) =M
is surjective. But since N @ (N' N M) = N ® M;(C) is a II; factor, the canonical
map is also injective, and thus M = N ® M (C), implying the result.

The converse is obvious. O

Example 4.15 (} (N) is trivial for N non-Gamma) Let N be a non-Gamma II; factor,
and H € x(N) irreducible. Setting X = L°N @ H and M := |X Ky X|, we
get a finite index II; subfactor N € M by Example 5.3 which is approximately
inner by Proposition 4.8. By [72, Proposition 2.6 (iv)], M = N v (N’ N M), so by
Proposition 4.14, yL>My = @, yL*>Ny. On the other hand, L*M = X Ky X =
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L’N @ H® H & (H Xy H) contains H as an irreducible summand, and thus we
have H = L2N as an N—N bimodule.

Example 4.16 (x (R ® N) is trivial for N non-Gamma) Let H € x(R ® N) be irre-
ducible, and consider X = L2(R ® N) & H. Then since H is centrally trivial, so
is X. By Lemma 4.13, X = L*(R) ® K where K is an N—N bifinite bimodule. In
particular, setting M := |K Xy K|, N € M is a finite index II; subfactor by Example
5.3. Furthermore, since N is non-Gamma, M is non-Gamma by [76, Prop. 1.11].

Now since H is approximately inner, the R ® N — R ® N bimodule X Xrgn
X = L%*(R ® M) is approximately inner, hence R ® N € R ® M is a finite index
approximately inner subfactor. But note this subfactor is simply R ® (N < M).
By Proposition 4.8 (using Definition 4.7), the inclusion (R ® N)' N (R ® N)® C
(R®N) N(R® M)® is [M : N]~'-Markov, and has a finite Pimsner—Popa basis
lifting to a Pimsner—Popa basis of (R® N)“ C (R ® M)® (where w is a non-principal
ultrafilter).

Furthermore, since RQ N = (R® 1) Vv (1 ® N), we have the equality

(RON)N(ROM)”=(1®N)NROM)®)N((R®1)'N(RSM)®). (6)
By [74, Prop. 3.2(1)], the inclusion 1 ® N € R ® M has spectral gap, and thus
(1®N)NRM®”=(18N)N(RSM)" =R N NM)". (7)
Since (R ® 1)” € (R ® M)®, combining (6) and (7), we have

(R®N)N(R®M)” = (R®(N'NM)° N (R 1) N(RSM))
=R®D'NR® N NM)°.

Thus there is a finite Pimsner—Popa basis {m;} for (R ® N)® € (R ® M)® with
ii = (b }een where each b € R ®@ (N' N M).

In particular, for any m € M and any ¢ > 0, there exists finitely many elements
ri € R,k € NNM,andn; € N suchthat [[(1g ® m) — ), r; ®k;nill» < . But then
applying the trace preserving conditional expectation £ = trg ®idy : RQM — M,
we have

E((lg@m) =Y ri ®kin;)

i

- ZtrR (ri)kini|| =
i 2

2

< €.
2

(Ig ®@m) — Zri ® kin;

i

Therefore N vV (N' N M) = M. By Proposition 4.14, this implies that NL2My =
b, ~L2Ny. But since | X KreonN X| is isomorphic to LZR ® |K Rrgn K| as N-N
bimodules, we have that X Kggy X = b, L2(R ®N)as R® N — R® N bimodules.
But recall X Mggn X L2(R QN)®HSH®®H XroN H), which contains H
as an irreducible summand. Thus H is trivial.
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5 Local extension

In this section, we prove Theorem B, i.e., x(|Q]) = x(M )IQOC for a commutative Q-
system Q € x (M), where | Q] is the realization of Q defined in Sect. 5.1 below. This
result appears as Theorem 5.16.

5.1 Q-system realization

Q-systems are unitary versions of Frobenius algebra objects which were originally
introduced by Longo in [52] to describe the canonical endomorphism for type III
subfactors [51]. In this section, we define the realization procedure [13, 44] (based on
[55]and [31, Sect. 4.1]) which given a Q-system Q over a II; factor M, recovers a von
Neumann algebra | Q| containing M and a conditional expectation Ey; : |Q| —> M
with finite Pimsner—Popa index. This story works in much broader generality, but we
restrict to I factors here for ease of exposition. As in Sect. 4.1, for this section, M is
a II; factor, and we denote C, M, c M as before:

—M - =C =My,

o)

Definition 5.1 Given a II; factor M, a Q-system in Bim¢g, (M) is a triple (Q,m, i)
where Q € Bim(M) is bimodule, and m : Q Xy Q — Qandi : M — Q are
bounded maps that satisfy certain relations best described graphically. Representing
M by a shaded region and M by a strand, m is a trivalent vertex, and i is a univalent
vertex; adjoints are represented by vertical reflection.

=M =u0wm. /l\ =m \TJ =m' l =i ! =i'.

The axioms that m, i must satisfy are associativity, unitality, the Frobenius relations,
and unitary separability (mm' = idg). We refer the reader to [13, Sect. 3.1] for a
full discussion with many helpful diagrams. We call a Q-system Q € Bim¢g,(M)
connected if Homy_py (M — Q) = Ci.

Definition 5.2 [13, Sect. 4.1] For a Q-system (Q, m, i) € Bim(M), its realization | Q|
is the unital x-algebra with underlying vector space is Homc—_y (cMy — cM Xy
0O wm), whose elements are denoted by

dj € 10| == Home_y (cMy — cM Ry Q).
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The multiplication, unit, and adjoint, respectively, of | Q| are given by

Identifying M = End(Myy), the inclusion M — | Q] is given by

¥
End(cMy) > €0l

By [13, Rem. 4.4 and Prop. 4.6], | Q] is a finite (Pimsner—Popa) index von Neumann
algebra over M. Moreover, | Q] is a II; factor if and only if Endg_o(Q) = Cidg. In
this case, the unique trace-preserving conditional expectation is given by

1 ‘
Ey(g .
@ = [|Q| M] {T

Example 5.3 (Canonical Q-systems) Suppose yHp € W*Algfgp(N — P). Then
HXp H is a Q-system in Bim¢g, (N). By [82, Prop. 3.1], there is a canonical isomor-
phism H Xp H = L*(P°P) N B(H), and thus |H Kp H| = (P°P) =: M. Observe
that the relative commutant of N € M is exactly given by NN M = N’ N (PP) =
EndN_p (H)

Remark 5.4 Let N be all; factor. If Q is a connected Q-system in Bimgg, (N), then N C
| Q| is a finite index irreducible II; subfactor. By the W* version of [13, Prop. 4.16],
| Q| is also a connected Q-system in Bim¢g,(N), and Q = |Q| as Q-systems. Hence
the connected Q-systems in Bimgg, (V) are exactly II; factors M containing N such
that N C M is finite index and irreducible.

Definition 5.5 [13, Sect. 4.2] Suppose P, Q € Bim¢g, (M) are two Q-systems and X
isa P — Q bimodule. The realization | X| := Homc_p (cMpy — cM Ky Xpy) of X
is a | P| — | Q| bimodule whose elements are denoted by

i
€ |X| := Home_py(cMy — M Ky Xap).
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with left | P| and right | Q|-actions given respectively by

Clearly | X| has a predual as it is a hom space in a W*-category. By [13, Lem. 2.3
and Prop. 2.4], the right |Q|-valued inner product is separately weak*-continuous,
and the left action of |P| on X is normal. Hence |X| € W*Alge,(|1P| — [Q]) is a
W*-correspondence.

Notation 5.6 Given another Q-system R € Bimg¢g, (M) and a Q — R bimodule Y, there
is a notion of the relative tensor product of X with Y over Q, denoted X ®¢ Y. We

refer the reader to [13, Sect. 3.2] for the detailed definition. We have two canonical
projectors which we denote graphically as follows:

H XMy Y > X®pY and H XRy Y] = X R Y] =10|. (8)

For the second diagram, we omit the external shadings, which may denote either a
left/right M-action, or a left | P| and right | R|-action depending on context.

Remark 5.7 By the W* version of [13, Thm. A], realization | - | gives a dagger 2-
equivalence from the Q-system completion of W*Alg to W*Alg. Thus | - | gives an
equivalence from the unitary tensor category of O—Q bimodules in Bim¢g, (M) with
the tensor product ® g to Bim¢g, (| Q) with the Connes fusion relative tensor product
X . Moreover, the canonical tensorator wy y : | X|Xg| |Y| — |X ® Y| fits into a
commuting diagram with the canonical projectors (8):

__/H”/IXI@@ Y|

| X Xy Y| X,y O]

H.\|X®QY|

5.2 Local extension

We now turn to the proof that x (|Q]) = x (M)BC.
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Definition 5.8 A Q-system Q in a unitary braided tensor category C is called commu-

tative if
a-h
g

Suppose Q € C is a commutative connected Q-system and let X € C be a right
Q-module. We say X is local if

[ \

We can turn a local Q-module X into a Q—Q bimodule by defining the left action

o

It is well known that under the bimodule relative tensor product ® g, the collection
of local Q-modules C]é’c is a unitary braided tensor category, where the braiding is
inherited from C.

Our goal now is to prove x (|Q|) = x (M )lro as braided unitary tensor categories.

Lemma5.9 If (a,), € M is a central sequence, then (a,), is also a central sequence

in|Q|.

Proof Since Q is centrally trivial, for all ¢ € |Q|, |la,q — qay||2 — 0 by Proposition
4.4. O

Proposition5.10 A Q-system Q € x(M) is commutative if and only if for every

approximate inner Q yr-basis {qi(")}, (qi(n))n is a central sequence in |Q| for each
fixedi.
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Proof Suppose {g;}; is a Q -basis and {ql.(")}i is an approximate Q p-basis. By (3)
and (4),

(10)

First, if each qi(”) is a central sequence, it is straightforward to see that Q is com-
mutative using (10).

Conversely, if Q is commutative, to show each ql.(") is a central sequence, since
||qi(”)a - aql.(")”z — 0 for each a € M, it suffices to prove ||qi(n)qj' - q]'qi(n) lo— 0
for each j. For each i, j and n, define

i,j (n)

Xy =g € Hom(My; — Owm).

|
l ‘I,-(”) l

Observe that in End(Q ), then again by (10) we have

S =Y
i.j

i,]
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Butsince ), ; xp” (x )T is positive, we must have || ll2 — lim,, x;;”/ ()c,’;’)T = 0 for
each i, j. Smce W*Alg is W*, we must have lim,, x,, = 0, so each q ) is a central
sequence. O

Lemma 5.11 Suppose X € Bimeg, (M) is a right Q-module. If{bf")} is an approximate
X pm-basis, then it is also an approximate | X || g|-basis. Similarly, if {b;} is an X y-basis,
then it is also an | X||g|-basis.

Proof. We prove the approximate version, and the ordinary version is similar, but
easier. Identifying X3 = | X|p as right M-modules, observe

(n)

Zb(m b(n)l 1)51 —

O

Remark 5.12 Readers more accustomed with Hilbert space modules for II;-factors
may find the above lemma counterintuitive. It may appear that since {b;} is a basis
for both Xy and X ¢, these modules might have the same von Neumann dimension,
which really should be off by a factor of [|Q] : M]. As X and X, are not Hilbert
spaces but rather W*-Hilbert modules, their von Neumann dimension is only defined
after completing to a Hilbert space:

Xy ®u LM with  (x®Qu.y ® Q) = (X)) Q. Qua) 2y = trar ((y1x) )
X0 ®j0) L@ with  (x ® Qio}, ¥ ® Qo)) := ((y1x) {5 Q01> o)) 1210) = trjo1((¥1X) )

trar (1) 5.

I
— o o) =
=t 0By (KI)ig) = 5537

Here, Qu € L2M is the image of 1y, and similarly for €2,¢,. If {;} is a basis for
Xum, it is also a basis for X|g| by the above lemma. A straightforward calculation

shows that {b; ® 2/} is a basis for Xy Qu L*M,;, and {b; ® 20|} is a basis for
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X|0| ®|0| L*|Ql|0|- One calculates that

dim(X ®u L*Mu) = Y (b ® Qu. bi @ Q) = Y _ trar ((bi i) ),
i

i

1
dim(X ®g| L*Qlj0) = ) _(bi ® Qo). bi ® Qo)) = Tor > ey (bilbi )

1
= dim(X L*Myy),
o1 ay X ©w LM

as expected.

It is important to remember that the subfactor is not M C |Q], but rather ((M) C
|Q|. As we have normalized our Q-system (Q, m, i) so that iti = dg, the M-valued
inner product on Qy = |Q|y will not agree with the ¢(M)-valued inner product on
| Q| defined in the usual subfactor way [6, p18] under the isomorphism M = ((M).
Indeed,

xlyhmny = Em((x1y)10) = Eu(x*y) = dg' (x|y)m.

This is perfectly fine, since rescaling an M-valued inner product cannot change the
von Neumann dimension after applying — ® L>M, as the rescaled M-valued inner
product will also rescale a right M-basis.

Proposition 5.13 Realization | - | takes every bimodule in )Z(M)IQ(’C into x(|Q)).

Proof Suppose X € x(M )Iro. We show ||| X ||| is approximately inner and centrally

trivial.
Since X is approximately inner over M, by Proposition 4.6, there is an approx-

imately inner X -basis {p} < X. By Lemma 5.11, {b{")} is an approximate
|X||-basis. Now we show (2), i.e., b — b qll, — 0 forall g € Q).
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The second equality uses the hypothesis that X is a local bimodule. The third ~ uses
(4). The fourth ~ holds because (gx|¢)$ € M and ||[x, b ]|l — 0 for x € M. The

fifth &~ holds because (b;") |bf")> 1)1(/1 is a central sequence in M for each i, j and Q is
centrally trivial over M. The sixth & holds from the definition of (approximate) basis
for X and Q. We conclude that | X| is approximately inner over |Q].

Since X is centrally trivial over M, by Proposition 4.4, for all central sequences
(lclzn)n C Mandall x € X, |la,x — xay|l2 — 0.1If (g,), S |Q] is a central sequence,
then

=Xqn

The second equality uses the hypothesis that X is local. The third ~ uses (3). The
fourth ~ holds because (q,ﬁ”)|qn)1% is a central sequence in M, and X is centrally

trivial. The fifth & holds because (bj|x)5f,1 € M and ||[a, q,ﬁ”)]Hz — O fora € M.
The sixth & holds from the definition of (approximate) basis for X, and Q. We
conclude that | X| is centrally trivial over |Q]. O

The following proposition is straightforward; we omit its proof.

Proposition 5.14 (1) If {b;}; is an | X||g|-basis and {q;}; is a Q p-basis, then

is an | X|p-basis.
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2) If {bl.(") } is an approximate X|g|-basis and {qﬁ.") } is an approximately inner Q -

basis, then
i
) .
-
|
|

| inJ

is an approximate | X|y-basis. Moreover, if {b,-(n)}i is approximately inner, so is
("))
Since Xy is canonically isomorphic to | X |y, we may view (1) as an X yr-basis and
(2) as an approximate(ly inner) X pr-basis.

Proposition 5.15 Every bimodule in x (| Q|) is unitarily isomorphic to a realization of
a bimodule in x (M)Bc.

Proof By Remark 5.7, it suffices to consider a Q—Q bimodule ¢ X ¢ in Bim¢g, (M)
such that | X| € x(]Q]). In order to show X € )Z(M)léc, must prove X is centrally
trivial and approximately inner over M, and X is a local Q—Q bimodule.

By Lemma 5.9, any central sequence (a,) € M is also a central sequence in | Q.
By Proposition 4.4, X is centrally trivial over | Q|, so X is centrally trivial over M. By
Propositions 5.14 and 4.6, we have X is approximately inner over M. Therefore,as an
M-M bimodule, X € y(M).

Since X is already a Q—Q bimodule, it remains to show X is local. Let {b;}, {¢;} be
X0, Qm-bases and let {bl(")}, {q](-”)} be approximately inner X|¢|, O p-bases respec-

tively. Defining {c; ;} and {cl(fl}} as in Proposition 5.14 gives an Xj/-basis and an

approximately inner X js-basis respectively.
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For the over braiding,

The first ~ uses (3), the second equality is the defintion of ¢; ;, the third equality
uses associativty of the Q—Q bimodule actions, the fourth & uses that X is centrally
trivial over | Q|, the fifth & uses (10), and the sixth equation follows from

- pe-pp -
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For the under braiding,

The first & uses (4), the second equality is the definition of cl("J) , the third equality
uses associativity of the O—Q bimodule actions, the fourth ~ uses X is centrally trivial
over |Q] so ||[bl.(”), qrlll2 — 0, the fifth ~ uses (10), and the sixth equality uses (11)
again. O

Theorem 5.16 Realization gives a braided unitary equivalence X (M)léC — x(a.

Proof. By Remark 5.7, realization | - | gives a unitary tensor equivalence from Q-
Q bimodules in Bim¢g, (M) to Bimeg, (| Q). By Proposition 5.13, for X € (M),
|X| € x(]Q)), and by Proposition 5.15, every bimodule in x (| Q|) arises in this way.
Since ¥ (M)léC is a full subcategory of the Q-Q bimodules in Bimgg, (M), X (1Q]) is
a full subcategory of Bim¢g, (| Q1), and realization | - | is fully faithful, it restricts to a
unitary tensor equivalence x (M )BC — x(aD.
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It remains to verify that | - | : )Z(M)BC — x(]Q]) is braided, i.e., the following
diagram commutes.

Y
I X| X Y] > 1Y X)) 1X]

~ 1
luxy S~ Pt lMYX
luf x.v! .

X ®p Y| —> |X®MY| 5 Y Ry X| — Y ®p X|

The two triangles on either side commute by (9), so it remains to prove the inner
square commutes. Graphically denoting the II; factor | Q| and the canonical projector
XXy Y| — |X]|® 0 Y| asin (8), as realization is fully faithful, this is the condition

that
G

Let {ci} be a Y|g|-basis, and let {bf")} be an approximately inner X, g|-basis. Let {g;} be
a Qys-basis and {q;")} be an approximately inner Q s-basis. According to Proposition

5.14, {crq;} is a Y basis and {bg")q;") } is an approximately inner X s basis. Then
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The first ~ uses (3) for X X, Y, and the second equality uses associativity of the
bimodule actions. The third & uses X is approximately inner over |Q|, Y is centrally
trivial over | Q| and (ql(")) is a central sequence in | Q|, and the fourth ~ uses (10). The
fifth equality uses an argument similar to (11). The sixth equality is just isotopy, and
the final ~ uses (3) for X KXo, Y.
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Finally, since

we have

6 Calculation of ,i'(Moo) for a non-Gamma finite depth Il; subfactor

In this section, we calculate y (M) for the inductive limit II; factor obtained from
iterating Jones’ basic construction for a finite depth finite index non-Gamma II; sub-
factor N C M. These examples are motivated by [74].

Suppose N € M a finite depth, finite index II; subfactor, and let C = yCpx denote
the unitary fusion category of N—N bimodules generated by yMy. The results of
[79, Sects. 3 and 4] give a bijective correspondence between equivalence classes of
(bifinite) bimodules of My, which restrict to R ® N-bimodules of the form C°P X C
and objects of the Drinfeld center Z(C). The main goal of this section is to extend this
bijection to a fully faithful unitary tensor functor ® : Z(C) — Bim¢gp(Moo) such that
when N is non-Gamma, P takes values in ¥ (M) and is a braided unitary equivalence.
To do so, we rely on the Q-system realization language from [13] together with the
coend realization viewpoint of [44].

We begin this section with some basics on unitary fusion categories and subfactor
standard invariants.
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6.1 Basics on unitary fusion categories and subfactor standard invariants

A unitary fusion category is a unitary tensor category with only finitely many isomor-
phism classes of simple objects. A unitary fusion category C has three commuting
involutions f, Vv, -, and the composite of any two is the third. Here, V is the unique
unitary dual functor [67, 86] giving the canonical unitary spherical structure of C [54],
and we may define = := Vi = V.

Definition 6.1 The Drinfeld center of a unitary fusion category C is Z(C) =
End¢_¢(C), the Morita dual of C™ X C actingon C by (¢ Xb)>c:=bQcQa,
where C™P is the monoidal opposite of C from Remark 4.9. Note that the unitary dual
functor V gives a unitary tensor equivalence C™ — C°P, the opposite fusion category
with the opposite arrows, but the same tensor product. It is useful in the subsections
below to identify Z(C) with Endgopge (C) with the action (a®° X b)>c :=bQc®a.

Now Z(C) has another description in terms of pairs (z, o;) of an object z € C
equipped with a half-braiding o, where Z(C) acts on C via the forgetful functor
(z,07) = z [19, Sects. 7.13 and 8.5]. Our convention for the half-braiding o, is that
the strands for objects in C pass over the z-strand:

c Z
Thus the braiding (z, ;) ® (w, pw) = (W, py) ® (2, 07) in Z(C) is given by p; .

Definition 6.2 There are many equivalent notions of the standard invariant for a finite
index II; subfactor N € M. For this article, the standard invariant will mean the 2 x 2
unitary multitensor category C(N € M) of N-N, N-M, M—N, and M—M bimodules
generated by L>M under X, @, and C, with generating object y LM ;.

C C
covesn= (e Ve

Observe that C(N € M) is multifusion if and only if N € M is finite depth. In this
case, the corners yCy and pCy of N-N and M—M bimodules generated by L*M
respectively are unitary fusion categories which are Morita equivalent, and thus share
the same Drinfeld center Z(C).

Remark 6.3 Suppose C and D are two unitary fusion categories and ¢ Mp is an inde-
composable unitary C — D bimodule category witnessing a Morita equivalence. Using
the internal hom [64] (see also [61, Appendix A]), we can form a 2 x 2 unitary

multifusion category by
C M
< MP D ) . (12)

For a simple X € M, we get two Q-systems X ® X = Endp(X) € Cand X ® X =
Endp(X) € D. The map Ad(X) : d — X ®d ® X gives a unitary tensor equivalence
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between D and X ® X — X ® X bimodules in C. A similar result holds on the other
side.

Suppose now we have a fully faithful unitary tensor functor F : C — Bim¢gp(N)
for a II; factor N. Then the realization M := |X ® X| is a Il factor containing N, and
the standard invariant of N C M is unitarily equivalent to the 2 x 2 unitary multifusion
category (12) with generator | X | as an N—M bimodule. By Remark 5.7, we get a fully
faithful unitary tensor functor G : D — Bimgg, (M) from realization as

D 2%, Bime(x ® X) L5 Bimggp(M).

We now give an important example of Remark 6.3 which will be used in this section
below.

Example 6.4 LetC be a unitary fusion category, and consider the CXIC™P — Z(C) Morita
equivalence bimodule C. One calculates that Endempc(1¢) = @D eprey €0 X ¢,
which we call the symmetric enveloping Q-system after [70, 73]. This algebra object
first appeared in [53], and its realization was later shown to be equivalent to the
symmetric enveloping algebra/asymptotic inclusion by [56]. The infinite version of this
algebra object plays a very important role for the study of analytic properties of infinite
unitary tensor categories [80]. Identifying C™P = C°P via Vv, which will be useful in
the sequel, the symmetric enveloping Q-system is given by S := @Cem(c) cP X
c. By Remark 6.3, Z(C) = Bimgopx(S). On the other hand, one calculates that
Endz ) (1¢) = I(1¢), where [ : C — Z(C) is the adjoint of the forgetful functor.

6.2 Q-system realization as a coend

Suppose C is a unitary fusion category and G : C — Bimg¢gp(N) is a unitary tensor
functor, where N is a II; factor. Given a Q-system Q € C, the realization |G (Q)| is
a II; multifactor (finite direct sum of II; factors) which is a factor if and only if Q is

simple as a Q—Q bimodule in C.
By the Yoneda lemma, we have a canonical isomorphism of vector spaces

|G(Q)| :=Hom(Ny — N Ky G(Q)x) = ) Clc — Q) ®c G (o).
ceC

We graphically represent elements of this tensor product by

fc ®c ‘ = Z Je ®c ée.
ceIrr(C) ¢ celrr(C)
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Here, the orange line represents the functor G° := Forget o G viewed as a W*-algebra
object in Fun(C — Vect) [44, Prop. 2.18], where Forget : Bimfgp(N) — Vect is
the forgetful functor. The shaded half of the diagram is read top to bottom, and the
tensorator Gﬁﬁ » 1s denoted by appending an orange trivalent vertex below.

Under this isomorphism of vector spaces, the multiplication and *-structure are
given by

(fa®E)@®M) = Y

celrr(C)
a€ONB(a®b—c¢)

and the unit is given by

1= ; QNZIGNNN.

Example 6.5 Suppose now N C M is a finite depth, finite index II; subfactor. The
algebra M considered as an N—N bimodule y My € nCp is the canonical Q-system
XXy X corresponding to the generator X := y M € yCys as discussed in Example
5.3. The realization |y M| is canonically %-isomorphic to M:

|NMN| = HOIII(NN — N@N MN) =H0m(NN — N@N M‘ZM MN)
Z Hom(My — My) =M.

Now consider the Jones tower obtained by iterating Jones’ basic construction
defined inductively by M1 := End((M,)m,_,) [23, 39]

My=NCM=M CM, SM3C---.

The II; factor M, is s-isomorphic to the realization of the Q-system (X X, X) Mn o~
Xaltln g xalt®n which has multiplication and unit given by

92

n = id g XU = X Ry X Ry - KX
MIN e

[~ U

n tensorands

@ Springer



A categorical Connes’ x (M)

Indeed,
Hom(Ny — N Ky x3¥ & xalt®n) > gnd(N Ky X345 ) = p,

by the multistep Jones basic construction [6, 77]. Another way to see this is to use
Remark 6.3; for example, the map Ad(X) takes the basic construction (M, N) =
XKy X to (X Xy Y)®2 with the multiplicaiton as claimed.

As a coend realization, we have a canonical Frobenius reciprocity isomorphism

My= P Clc— x"HRxa¥necGe)= @ CeRx™E — XM @cG(o).
celrr(C) celrr(C)
13)
Under this isomorphism, in the coend realization diagrammatic calculus, we can draw
the X2lt&n horizontally, where the horizontal line should be viewed as slightly tilted
going from the bottom right to the top left, as indicated by the cyan arrows below.

N
« / « € C(C X Xalt&n N Xaltlgn) (14)

s

&/ c

The multiplication, #, and unit in the realization | X! Mn g xalthn| = A1, are now
represented respectively by

Z and =
a,b,celr(C) Q
aeONB(a®b—c) N

n — Xall Xn o X
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6.3 The inductive limit factor as a realization

We now give a graphical representation of the inductive limit II; factor My, from the
realized Jones tower from Example 6.5. We begin with a short remark about inductive
limits in the category of tracial von Neumann algebras and trace-preserving unital
x-homomorphisms, followed by a brief review of construction of the hyperfinite II;
subfactor R € P with the opposite standard invariant as our finite depth, finite index
II; subfactor N € M.

Remark 6.6 Consider the category whose objects are pairs (M, tr) where M is a separa-
ble von Neumann algebra and tr is a faithful normal tracial state, and whose morphisms
are trace-preserving unital sk-homomorphisms (which are automatically normal by [8,
[I1.2.2.2] and [41, Prop. 9.1.1]). It is well known that this category admits inductive
limits. We briefly recall the construction for completeness and convenience of the
reader.

For an increasing sequence of tracial von Neumann algebras (M, tr,), we get a
tracial von Neumann algebra h_r)n M, by taking the bicommutant of |_J,, M,, on its GNS
Hilbert space with respect to the limit trace, which is equipped with the faithful tracial
state 1i_r>ntr = (- Q, Q)2 U, M- For any tracial von Neumann algebra (N, tr) and
trace-preserving maps ¢, : M,, — N compatible with the inclusions, we get a unique
trace-preserving map ¢ : | J,, M, — N, which extends uniquely to a trace-preserving
map h_r)n M, — N.

Indeed, for a fixed x € lir)l M,,leté € L2N be the image of x 2 under the induced

map of GNS spaces LZ(UH M,) — L*N given by the extension of mS2 — ¢(m)S2.
Since there is a bounded sequence (x;) € |, M, with xxp — x in || - [|2, we see

ILgnQll2 = [§nll2 = [IJn*J&]l2 = lim [ Tn* Jo(x) 2|2 = lim [lg (xp)n 22
< limsup [l (x|l - In€2]]2. = lim sup [[xgl| - [|2€2]]2.

Thus £ is N-bounded, and necessarily of the form ¢(x)£2 for some ¢(x) € N. Since
multiplication is jointly SOT-continuous on bounded subsets and * is SOT-continuous
on bounded subsets of lim M, it is easily verified that the above definition of ¢(x)
extends ¢ to a unital x-homomorphism 111)1 M, — N.

For the rest of this section, we fix a finite depth finite index II; subfactor N € M.
Recall that its standard invariant can also be described as the subfactor planar algebra
‘P. whose box spaces are given by

Pis = End(X™®)  and P, _ = End(X™).

These finite dimensional von Neumann algebras are equipped with the canonical traces
which agree with the categorical traces on C(N € M).

We now rapidly recall how to construct a hyperfinite IT; subfactor with the opposite
standard invariant [62, 69]. For a detailed diagrammatic exposition (in the multifactor
setting), see [2, Sect. 5.1]. Since N € M is finite depth, the inductive limit tracial
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von Neumann algebras h_n)l Pk, + are hyperfinite II; factor. We have a trace-preserving
injection P,y <> Pp41,— by adding an X strand to the left, giving a II; subfactor

R:=1lmP,  ClimP, - =:P.

It is well known that by the Ocneanu Compactness Theorem [46, Thm. 5.7.6], the
inclusion R°P C P°P has the same standard invariant as N € M [62, 69], and thus
R C P has the opposite standard invariant.

Letting C := nyCy be the unitary fusion category generated by y My, the above
construction gives a fully faithful unitary tensor functor F' : C°? — Bimgg,(R). By [6,
Prop. 3.2], simple objects ¢ € Irr(C) correspond to minimal projections p € MyNMa,
under the correspondence

MyN My, > p —> pM, € Bimggp(N).
Now consider the Jones tower
Ry=RSCP=RICRRCR3C--

of our hyperfinite II; subfactor R C P. Simple objects ¢°P € Irr(C°P) correspond to
the opposite projections p°® € Ry N Ry, = (M N M>,)°P, which corresponds to the
bimodule p°PR,,. As R, is also isomorphic to h_r)n Pk, + (here, == depends on the parity
of n), we can realize the bimodule p°P R, graphically as an inductive limit:

F(c™) = p® Ry = 1im C(c ¥ X" Ri _, xalt By (15)
under the isometric right R,-inner product preserving inclusions

b Kk ke,

¢ c

Indeed, p°’R,, = p°PR, f, € p°P Ry, fy, where f;, is the multistep Jones projection
(6, 77]. In diagrams, for £ € C(X¥t®k+n _ xaltkdk+ny ¢ p < Ry, we have

1 " " 1 ¢ 3
fn= o n/2> C = PPefp= ——ps e ! 1
[M: N N2 2] p
|

It is now visibly evident how to implement the isomorphism (15).

Now, since we have two subfactors N € M and R € P with opposite standard
invariants, we get two fully faithful unitary tensor functors F : C* — Bim¢gp(R)
and G : C — Bimgy(N). Consider the symmetric enveloping Q-system S :=
Deenrcy ¢® W e € C® X C, which is simple as an S — S bimodule, giving the
realized II; factor |(F X G)(S)].
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Proposition 6.7 The realization |(F X G)(S)| is *-isomorphic to the inductive limit
I factor Moo = 11_11)1 M,.

Proof. Observe that by the Yoneda Lemma, we have canonical isomorphisms

|(F R G)(S)| = @ (CPRC)a®XRb— §) ¢ (FXG)(a® XK b)
a,belrr(C)

EB (CPRC)cPRc— S) Q¢ (FXG)(c® K o)
celr(C)

P FRG)(PRc)

celrr(C)

P Fe™ ecGe

celrr(C)

12

Thus |(F X G)(S)| is *-isomorphic to the more general coend realization of F° and
G° from [44, Sect. 4] (see also [43, Ex. 5.33]), where as above, o denotes taking the
underlying vector space. Using this identification,

op ~ i alt Xk alt Xk ~ 1
P F ) ®c G(c) = lim P cemx -~ X )®<CG(C)(E)h_n)1M,,. 0
celrr(C) celrr(C)

6.4 Embedding Z(C) into ,i'(Moo) when N C Mis finite depth

As in Sect. 6.3 above, for this section, we fix a finite depth, finite index II; subfactor
N C M, and let C = yCpy denote the unitary fusion category of N—N bimodules
generated by y My . In this section, we extend this bijection to a unitary tensor functor
® : Z(C) — Bimggp(Mso) such that when N is non-Gamma, ¢ takes values in
X (M) as is braided. To do so, we use the description of the inductive limit IT; factor
My = |(F X G)(S)| obtained from iterating the Jones basic construction afforded
by Proposition 6.7 for the fully faithful unitary tensor functors F : C°? — Bim¢gp(R)
from (15) and G : C — Bimggp (N) associated to the subfactor N C M.

First, applying [13, Cor. C] in the W* setting to the fully faithful unitary tensor
functor F X G : C®P W C — Bim¢gp(R ® N), bimodule realization gives a fully
faithful tensor functor from Bimcorge(S) — Bimggp(Mo). (See also Remark 5.7
above.) Explicitly, on an § — S bimodule X = D, jc1r(c) Xab ® (a°P X b), we have

|X| =Hom [ (R® N)rgn = P Xap ® (F(@™®) & G(b)) g
a,belrr(C)

> @ Xap @ F(a®®) @ G(b).
a,belrr(C)

Using the well-known equivalence Bim¢geopge (S) = Z(C) from Example 6.4, we get
the following proposition.
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Proposition 6.8 Bimodule realization gives a fully faithful unitary tensor functor ® :
Z(C) — Bimggp(M).

We now want an explicit model for ®(z, o) for each object (z, 0;) € Z(C). To do
so, we give an explicit description of the S — S bimodule X, € Bimgopxc (S) under
the unitary tensor equivalence.

Definition 6.9 Given (z, 0;) € Z(C), we define X, := @a‘bem(c) Ch—-z0a)®
(a®® X b). The left S-module structure of X is given as follows. First, we observe

S@comc X:= P Cb—z0a)® (P ®a®) K (c®b))
a,b,celrr(C)

= @ Ch—z0a)@CPWUA® — P ®a”®)
a,b,c,d,eclr(C)
®Cle = c®b)® (dPNe)

= @ Cb—->z0a)®C(c®a—d)®C(e - c®b)
a,b,c,d,eclr(C)
® (dP? Ke)

The left action map is given component-wise by

The right S-module structure is defined similarly. Observe

X:®mcS= P Co—>:98a)®@@PcPHR(B@0)
a,b,celr(C)

= @ Ch—>z0a)®Ca®c—>d)®C(e > bR®c)
a,b,c,d,eclr(C)

® (d? K e),
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and the right action map is given component-wise by

We now describe the realization

|X.| = lim P ctb—z®a)@cClaRxME - x M) @ Gb). (16)
a,belrr(C)

First, note that by semisimplicity and Frobenius reciprocity, we can alternatively
describe the first two tensorands in the direct sum for | X | as

@ Cb— z®a) @c Cla R XUE _, xal¥n
a€lrr(C)

= P CERb— a)®cCla— X" R xabn)
aelr(C)

~C(ZRb — XAUHr g xaltBn)
~ C(b X Xalt‘Zb’l 7 X Xaltgn)

7)
We may thus graphically represent elements in a dense subspace of |X .| as

€ lim P cox xAtkn g xaAltlny oL G (b)

belrr(C) belrr(C)

where as in (14), the horizontal line in the top half of the diagram should be viewed
as slightly tilted going from the bottom right to the top left, as indicated by the cyan
arrows above. The right M.-action on | X, | is the obvious diagrammatic one, and the
left one is similar, but uses the half-braiding for z:
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(fa®E)> (@ @Mm) = D

celrr(C)
a€ONB(a®b—>c)

The Mso-valued inner product of | X | is given by

fe®&lgp@m = 3

celrr(C)
a€ONB(a®b—>c)

By the definition of the realization (16) for | X ;| and | X, | and the right and left S-action
on X, and X,, respectively, the tensorator CDi w is givenon | X | My | Xy by

e, felr(C)
acONB(a®c—e)
BcONB(b®d—> f)

under the semisimplicity isomorphism (17).
We now show that the image of the unitary tensor functor ® : Z(C) — Bimggp(Moo)
lies in ¥ (Moo) when N is non-Gamma.

Lemma6.10 Since N € M is finite depth, there is a k > 0 such that every c¢ € Irr(C)
is isomorphic to a summand of (X K X NRE = xaltM 2k There s g finite subset
{ei}lL, € CoP(XAR2k - xaltB2ky oo that

2k
H e ow
1
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Proof For each ¢ € Irr(C), we pick
e a finite family of isometries {t/. : ¢ — X2} such that (/)T - il = 1, and
Yoo Xt - ()T = Lyam, and
e an orthonormal basis {«.} € C(c - z X X alt m") under the isometry inner
product, i.e., ot - &, = 8y, —q; idec.

Then we have (reading diagrams right to left)

2k 2k 2%k me 2k

— -y w4 =X

celir(C) %z z celr(C) ®%c i=1 z

me

So we define our set {¢;} to be U, cpr(c) {ete - )Ty, O

Proposition 6.11 Let {e;} be as in (18) above. Forn > 0, define subsets {b;} and {bl-(n)}
of | X:| by

bi = e b = e (19)

Then {b;} is an | X ;|-basis and {bl-(n)} is an approximately inner |X |y, -basis. This
implies | X ;| is approximately inner.

Proof. The first claim is immediate from (18). Similarly, {bl.(")} is an | X;|p,,-basis
for every fixed n, and moreover, [b;”), al =0foralla € My, C M. Since My, =

1i_n>1Mn, fora € Meo, lla — Ep,(a)ll2 — 0 (e.g., see [2, Lem. B.7]). Then for all
a € My,
lab™ — ball> < (@ — En, @)\ l2 + | Ent, (@b — b Ep, (@) 2
+ 16" (Ep, (@) — a) 2
< 2016 |21l Eng, (@) — all2 —> 0. O
Assumption 6.12 For the remainder of this section, we now assume the II; factor N

in our finite index finite depth subfactor N € M is non-Gamma. This implies M is
also non-Gamma by [76, Prop. 1.11].

Lemma 6.13 Let {b;} be as in (19). For each central sequence (a,) C Noo, |lanbi —
biay|» — 0.
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Proof. Since N C M is finite depth and N is non-Gamma, by [74, Prop. 3.2(3)], every
Jones basic construction M,, has spectral gap in M, for every n. This implies that
lla, — EMék+1mMoo (an)|l2 = 0. Since [EMéka‘,,OC (an), bi] = 0, we have

lanbi — biayll2 < (an — EMéH
+ 1 Ewmy,, Mo @n)bi = biErg om (an)ll2
T 16i (Epgy,, Ao (@n) — an)ll2

< Ibilla  lan = Eagy, rag (@n) 2

Mo (@n))bi 2

+llan — Eagy,, et (@n)lla - I1bill —> 0. 0

Proposition 6.14 |X,| is centrally trivial.

Proof. By Proposition 4.4, we must show that for each central sequence (a,) € Mso,
llanx — xay|l2 — 0, for every x € |X,|. Suppose (a,) is such a central sequence. Let
{b;} be the | X |, -basis as in (19), and let K > 0 such that ||b;|2 < K for all i. By
Lemma 6.13,

lanx — xanll2

aan (bilx)y! Zb (il

Z(an i — biay)(b; |x)‘X |

2

+ > (it = il )

,

\Xl \Xl

an(bi|x)

< Klxll2 - Znanb —ban||z+KZ — (bilx)y

—> 0. O

Combining the statements of Propositions 6.11 and 6.14, our unitary tensor functor
® : Z(C) — Bimggp(Mo) lands in ¥ (Moo).

Proposition 6.15 The unitary tensor functor ® : Z(C) — x (M) is braided, i.e., for
z, w € Z(C), the following diagram commutes

|1 Xz1,|
X Ry 1 Xo] 2228 x| Ry (X
o2, o2 (20)

X oul Y — | Xwe:|

Proof Let {bf")} C |X;| and {c;} € |Xy| be approximately inner |X |, -basis and
| Xy, -basis respectively as in (19). By (5), ujx. 1 x,,| = limy ¥ ; lc;®b") (b R
cjl. Forx = (fa ® &) € |X;| and y = (g5 ® mp) € |Xy| with f, € C(X MK —
a ® X820y and g € C(XAM2 5 p R X220 for £ sufficiently large, we have
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|XZ‘®M00‘X")|
0

Zq’i,z(lcj- ®b™) (b K ejlx Ky)p

i,j

)

2k ﬁ/ f—T\

~J/ o
< \ ]
w

Ry

celrr(C)
ozeONB(a@bac)

Yy x

i.j celir(C)
«€ONB (a®b—sc)
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celrr(C)
a€ONB(a®b—>c)

celrr(C)
a€ONB(a®b—c)

= ®(02,0) - D7, (x K y).

Thus (20) commutes on a dense subspace of | X ;| X | Xy, and the result follows.
O

Corollary 6.16 Let C be a braided fusion category, then there exists a 11 factor M
with a braided fully faithful monoidal functor C — Z(C) — x(M).

6.5 Calculation of ,i’(Moo) when N € Mis non-Gamma and finite depth

As in Sect. 6.3 above, we suppose N C M is a fixed finite depth finite index II;
subfactor. We also continue Assumption 6.12 that N is non-Gamma. We now prove our
main result, which uses a technical result on centralizers in braided tensor categories
in Sect. 6.6 below.

Theorem 6.17 Let N C M be a finite depth finite index inclusion of non-Gamma
II; factors. Let M, denote the inductive limit 111 factor from the Jones tower, and let
C = NCp bethe even part of the standard invariant C(N € M). Then x (M) = Z(C).

Proof Consider our construction of ® : Z(C) — x(My). Let L := I(1¢) € Z(C)
be the canonical Lagrangian algebra, where I : C — Z(C) is adjoint to the forgetful
functor. By Example 6.4, the Q-systems L € Z(C) and S € C°P X C are related as in
Remark 6.3,ie,S=XQ®XandL = X ® X for X = 1¢ in the Morita equivalence
C? X C — Z(C) bimodule category C. This result first appeared in [36]; see also
[58]. Thus we can identify |®(L)| with the basic construction of R ® N € M
by the discussion in Example 6.5. But this implies that |®(L)| is Morita equivalent
to R ® N, and in particular, by Example 4.16, x (|®(L)|) = x(R ® N) is trivial.
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loc

By Proposition 5.16, )Z(Moo)q)(L) = x(J®(L)]). This implies no non-trivial simple
object in x (M) centralizes ® (Z(C)), since the free module functor x — x ® L for
x € ®(Z(C)) C ¥ (Myo) is fully faithful. Thus ®(Z(C)) C x (M) is trivial. Since
Z(C) is non-degenerately braided by [58], by Proposition 6.21 in the next subsection,
P(Z2(C)) = X (Moo). O

Remark 6.18 Kawahigashi studied a relative version of Connes’ x (M) and Jones «
invariant for finite index II; subfactors N € M [48, 49]. In particular, Kawahigashi
provides bounds and computations for relative y for finite depth finite index subfactors
of the hyperfinite II; factor. For a given finite depth hyperfinite subfactor N € M,
there exists a non-Gamma inclusion A C B with the same standard invariant [78].
By [74, Thm. 4.2], x(Ax) = x(N € M). By Theorem 6.17 and Example 4.11,
Xx(N € M) Z Inv(Z(C(N S M))), the group of isomorphism classes of invertible
objects of the Drinfeld center of C(N € M).

Remark 6.19 Suppose N C M is a finite index inclusion of non-Gamma II; factors
with Ay, Jones—Temperley—Lieb standard invariant. Then Z(C(N € M)) is a unitary
modular tensor category with no non-trivial invertible objects. This distinguishes the
corresponding M, factors pairwise, but they all have the same trivial Connes’ x
invariant. Popa considers these examples of II; factors with trivial x which are not
s-McDuff in [74], answering a question of Connes in the negative. (Recall a Iy factor
is s-McDuff if it is of the form R ® N for N non-Gamma). This leads us to ask the
natural extension of Connes question.

Question 6.20 If M is McDuff and x (M) is trivial, is M s-McDuff?

6.6 A technical result on centralizers in braided tensor categories

The goal of this section is to prove the following technical result for braided unitary
tensor categories. We expect this result holds in the greater generality of semisimple
ribbon tensor categories; see the paragraph before [59, Prop. 2.5] for more details in
this direction.

Proposition 6.21 Suppose C is an arbitrary braided unitary tensor category and
D C C is a non-degenerately braided proper fusion subcategory. There exists

a € Irr(C)\ Irr (D) which centralizes D.

Let C be a braided unitary tensor category. Let trc denote the (unnormalized) cat-
egorical trace corresponding to the unique unitary spherical structure from minimal
solutions to the conjugate equations [54]. (The normalization is tr¢ (id,) = dim(c) for
each ¢ € C.) For each a € Irr(C) define a function y, : Irr(C) — C by

1
Ya(b) = — trc(0p,a0a.b)-
dp
Then y, (b) extends linearly to a character on the fusion ring, i.e.

Ya()va(c) =Y Nppva(d).
d
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Furthermore, characters are related by the following equation:

Ya(©)yp(c) de ¢
A Z T Nape(©). @1)
Suppose D is a non-degenerately braided full fusion subcategory of C (which is
thus modular by unitarity). Then by non-degeneracy, {y}qcrr(p) forms a complete
set of characters of Ko(D). But any b € Irr(C) also defines a character y;, and thus
Yolr(D) = Yy ) for some uniquely defined f(b) € Irr(D). Thus we have a function
f :Irr(C) — Irr (D).
Now we define the fusion hypergroup of a semisimple unitary tensor category C as
the fusion algebra K((C) with the distinguished basis A, = %. We then have

d
hako =Y MGk where M, = —“hNg,,.
c

Lemma 6.22 The assignment f(As) := A f(q) extends to a homomorphism of fusion
algebras Ko(C) — Ko(D).

Proof For x € Irr(D) and a, b € Irr(C), we compute d;lya (x)yp(x) in two ways.
First, we can apply (21) and then swap y. with y(, or we can swap y,, y» with
Yf(@)» Yf) respectively and then apply (21). Equating these two computations gives
the equality

d; . d ,
Yo NG oM = D N s Yy ),
y (@ fb)’y
celrr(C) dadp yelm(D) dr@dyw)

which implies

> D Mo =M | 70 =0. (22)
yelrr(D) cef_](y)

Since (22) holds for all x € Irr(D), we have

Yy _
> D Mo =M |7y =0.
yelrr (D) \cef-1(y)

which is an equation in the space of functions on Irr(D). But since {yy}yeim D) is a
complete set of characters for the fusion algebra Ko (D), it forms a basis for the space
Fun(Irr (D) — C) (where we idenitfy Fun(Irr (D) — C) with the dual space Ko(D)"),
and is thus linearly independent. This immediately implies

— y
D Miy =M e vy € lr(D).
cef~1(y)
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We then see that

FODLO0) =dp@rstr =D Mgty =D | D My |2
y v \ees 1)

=Y Myhre) = fOuahp)
c

as claimed. O

Proof of Proposition 6.21 We prove the contrapositive. That is, we will show that if C
is a braided unitary tensor category and D C C is a non-degenerately braided fusion
subcategory, then the absence of a nontrivial centralizing simple object for D in Irr(C)
implies C = D.

First, by [59, Prop. 2.5], ¢ € Irr(C) centralizes Difand only if y;|p = ¥ () = Vip-
Suppose that the only ¢ € Irr(C) for which f(c) = 1p is ¢ = l¢. Let ¢ be
the functional on Ky(C) which picks off the coefficient of the identity object, and
similarly define 7p on Ko(D). Note that ¢, 7p are positive definite on the -
algebras Ko(C), Ko(D) respectively. For any n € Ko(C), our hypothesis implies
7(n) = ©(f(n)), where we have extended f linearly. But then f : Ko(C) — Ko(D)
is injective, since if f(n) = 0, then 0 = f(n™)f(n) = f(*n), and thus 0 =
o (f(n*™n)) = tc(n*n), which implies n = 0. In particular,

rank(C) = dim(Ky(C)) < dim(Ky(D)) = rank(D).

Butas D C C, we must have D = C. O

7 Open problems

We end our article by advertising the following list of open problems related to x (M).
In this section, we assume M is a separable II; factor. The first question below was
asked by Popa when he introduced x (M) and remains open.

Question 7.1 [68, Rem. 2.7] If y Xy € Bimegp(M) is a dualizable (bifinite) M—M
bimodule which is approximately inner and centrally trivial, is its conjugate p Xy
also approximately inner and centrally trivial?

Our local extension result Theorem B is similar in spirit to Connes’ exact sequence
to compute x (M), but not an exact analog. Popa discusses the possible existence of a
categorical analog of Connes’ short exact sequence.

Question 7.2 [68, Rem. 2.7] If N € M is a finite index 111 subfactor, is there a
categorical analog of Connes’ short exact sequence to compute x (M) in terms of N
and the categorical data of the standard invariant?

The next two problems were suggested by Yasuyuki Kawahigashi based on the
analogy with conformal nets afforded by the local extension result Theorem B.
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Question 7.3 (Kawahigashi) Do the SU(N); modular tensor categories from the
WZW models arise as x (M) for some finite von Neumann algebra M ?

Question 7.4 (Kawahigashi) Is there a quantity measuring the size of x (M), analo-
gous to the p-index )y d)z( for a conformal net?

Based on Kawahigashi’s questions above, we ask the following.
Question 7.5 Is the braiding on x (M) always non-degenerate?

The next question was alluded to in the introduction after Theorem A based on the
existence of the braiding on x (M) and the local extension result Theorem B.

Question 7.6 Is there a 3-category whose objects are 111 factors M such that
End(idy) = x(M)?

At this time, it may be more tractable to develop more robust evidence for the
existence of such a 3-category. In particular, for conformal nets with a group action,
the fixed point DHR braided tensor category can be related to the original braided
tensor category by the categorical process of gauging [11, 60]. This can be understood
as arising from the 3-categorical structure of conformal nets [5] by the techniques
developed in [45].

Question 7.7 Suppose G is a finite group acting outerly on a 11y factor M such that
the action is neither approximately inner nor centrally trivial. Is the braided tensor
category ¥ (M) the gauging of ¥ (M)?
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