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Abstract
Popa introduced the tensor category χ̃ (M) of approximately inner, centrally trivial
bimodules of a II1 factor M , generalizing Connes’ χ(M). We extend Popa’s notions
to define theW∗-tensor category Endloc(C) of local endofunctors on aW∗-category C.
We construct a unitary braiding on Endloc(C), giving a new construction of a braided
tensor category associated to an arbitrary W∗-category. For the W∗-category of finite
modules over a II1 factor, this yields a unitary braiding on Popa’s χ̃(M), which extends
Jones’ κ invariant for χ(M). Given a finite depth inclusion M0 ⊆ M1 of non-Gamma
II1 factors, we show that the braided unitary tensor category χ̃(M∞) is equivalent
to the Drinfeld center of the standard invariant, where M∞ is the inductive limit of
the associated Jones tower. This implies that for any pair of finite depth non-Gamma
subfactors N0 ⊆ N1 andM0 ⊆ M1, if the standard invariants are notMorita equivalent,
then the inductive limit factors N∞ and M∞ are not isomorphic.
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1 Introduction

Tensor categories have come to play an important role in noncommutative analysis,
arising as categories of bimodules of C∗ and von Neumann algebras and as representa-
tion categories of compact quantum groups. In subfactor theory, the standard invariant
of a finite index II1 subfactor [40, 71] can be described by a unitary tensor category
(a.k.a. a semisimple rigid C∗-tensor category), together with a chosen unitary Frobe-
nius algebra object internal to this category [29, 44, 51, 57]. In operator algebraic
approaches to quantum field theories (AQFT) and topologically ordered spin systems,
braided tensor categories arise in the DHR theory of superselection sectors of nets of
von Neumann algebras [17, 22, 30, 50, 63]. Here, the presence of a braiding yields an
incredibly rich structure theory which does not have an obvious analog in the purely
‘noncommutative’ world of ordinary subfactors.

There are, however, less widely recognized instances of braided tensor categories
arising in the theory of II1 factors. In [16], Connes introduced an invariant χ(M) of
a II1 factor M , which is the abelian subgroup of Out(M) consisting of the image
of approximately inner and centrally trivial automorphisms. In [38], Jones defines
a quadratic form κ on the group χ(M). These invariants can be used to distinguish
various II1 factors from group von Neumann algebras. An abelian group together
with a quadratic form defines (uniquely up to braided equivalence) a braided 2-group
[21], which linearizes to a braided unitary tensor category. Generalizations of these
constructions in the relative context were studied by Kawahigashi [48, 49] and utilized
in the study of orbit equivalence of group actions by Ioana [35].

In his groundbreaking work [68, 72], Popa introduced notions of approximately
inner and centrally free for finite index subfactors, which played a key role in his
classification result for subfactors in terms of their standard invariants. In [68,Def. 2.5],
Popa also considers a definition of a centrally trivial subfactor (as an ‘opposite’ to his
notion of centrally free), and in [68, Rem. 2.7], he discusses how this definition and his
definition of approximately inner subfactor have a natural generalization to bimodules.
He introduces the unitary tensor category χ̃ (M) of dualizable approximately inner
and centrally trivial bimodules of a II1 factor, generalizing Connes’ χ(M). Popa asks
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whether this χ̃(M) is a ‘commutative’ tensor category, i.e., does it admit a braiding?
In this article, we answer Popa’s question positively.

Theorem A Let M be a II1 factor. Then χ̃ (M) admits a unitary braiding (see Eq. (5)).
Furthermore, if N is another II1 factor stably isomorphic to M, then χ̃(M) ∼= χ̃(N )

as braided unitary tensor categories.

Notably, χ̃ (M) recovers Connes’ χ(M) as the equivalence classes of invertible
bimodules in χ̃ (M) whose left and right von Neumann dimension are equal (to one),
and our braiding on χ̃ (M) recovers Jones’ κ (see Example 4.11 for more details).
We may thus think of χ̃ (M) as a unitary braided categorical extension of the braided
2-group (χ(M), κ).

The existence of a braiding on χ̃(M) is surprising from a categorical viewpoint.
Indeed, von Neumann algebras form a 2-category whose 1-morphisms are bimodules
and whose 2-morphisms are intertwiners. The unitary tensor category χ̃ (M) is a full
subcategory of End(M) ∼= Bim(M) in this 2-category. Braidings arise formally in the
context of 3-categories by looking at endomorphisms of some identity 1-morphism.
This is the algebraic structure underlying conformal nets, which produces unitary
modular tensor categories in the rational setting [4, 5, 50]. The presence of a braiding,
together with its behavior under local extensions in Theorem B below, suggests that
von Neumann algebras may be objects in a yet to be discovered 3-category.

As expected from experience with Connes’ χ , using [16, 68, 74], it is straight-
forward to show that χ̃ (R), χ̃ (N ) and χ̃ (R ⊗ N ) are trivial where R denotes the
hyperfinite II1 factor and N is any non-Gamma II1 factor. In order to leverage these
facts to compute some non-trivial examples, we prove the following theorem, which is
similar in spirit to Connes’ short exact sequence [16] (c.f. [7, Prop. 6.4] for a parallel
result in the conformal net context).

Theorem B Let N ⊆ M be a finite index II1 subfactor such that Q := N L2MN ∈
χ̃(N ) is a commutative Q-system. Then χ̃ (M) ∼= χ̃ (N )locQ as braided unitary tensor
categories.

In [74], Popa studied Connes’ χ in the context of inductive limits of Jones towers
of finite depth finite index non-Gamma II1 subfactors N ⊆ M . He shows χ(M∞) = 1
for a large class of non-Gamma inclusions N ⊆ M for which M∞ is McDuff but not
isomorphic to R⊗N for N non-Gamma, resolving a question of Connes. Building off
Popa’s techniques, in this paper we will directly compute χ̃(M∞) as a unitary braided
tensor category.

To state our results, recall the standard invariant of a finite depth finite index II1 sub-
factor N ⊆ M consists of the indecomposable 2× 2 multifusion category C(N ⊆ M)

of N–N , N–M , M–M , and M–N bimodules generated by L2M , together with the
choice of generating object N L2MM . We define Morita equivalence of two standard
invariants C(N1 ⊆ N2) and C(M1 ⊆ M2) as Morita equivalence of the underlying
multifusion categories [19, Sect. 7.12]. TheDrinfeld centerZ(C(N ⊆ M)) is a braided
unitary fusion category, and indecomposable multifusion categories are Morita equiv-
alent if and only if their Drinfeld centers are equivalent as braided fusion categories
[19, Sect. 8.5]. We have the following theorem.
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Theorem C Let N ⊆ M be a finite depth finite index inclusion of non-Gamma
II1 factors, and let M∞ denote the inductive limit factor of the Jones tower. Then
χ̃(M∞) ∼= Z(C(N ⊆ M)) as braided unitary tensor categories.

We get the following immediate corollary.

Corollary D If N1 ⊆ N2 and M1 ⊆ M2 are finite depth inclusions of non-Gamma II1
factors with C(N1 ⊆ N2) not Morita equivalent to C(M1 ⊆ M2), then the II1 factors
N∞ and M∞ are not stably isomorphic.

This corollary shows that remarkably, the (stable) isomorphism class of the induc-
tive limit II1 factor M∞ remembers the standard invariant of the initial finite depth
subfactor N ⊆ M up to Morita equivalence. In fact, our result complements the rigid-
ity result of Popa, which states that the II1 factorM∞ remembers the inclusion N ⊆ M
up to weak equivalence [75, Def. 3.1.4 and Cor. 3.6]. As another consequence, our
computation for χ̃ (M∞) also computes the ordinary χ(M∞) and κ invariants as the
braided subcategory of invertible objects in Z(C(N ⊆ M)). By Popa’s result [74,
Thm. 4.2], this is isomorphic to the relative χ(M ′ ∩ M∞ ⊆ N ′ ∩ M∞) studied by
Kawahigashi [48]. The latter inclusion is a finite index hyperfinite II1 subfactor with
standard invariant equivalent to C(N ⊆ M).

There are many examples of finite depth non-Gamma inclusions. Popa and
Shlyakhtenko showed that every subfactor standard invariant can be realized as
an inclusion of II1 factors isomorphic to LF∞ [78]. In [24], Guionnet–Jones–
Shlyakhtenko provide an alternative realization of finite depth standard invariants
as inclusions of interpolated free group factors [25] in their diagrammatic reproof of
Popa’s celebrated subfactor reconstruction theorem [69]. As every indecomposable
unitary multifusion category is Morita equivalent to any of its unitary fusion category
diagonal summands, we obtain the following corollary.

Corollary E For C a unitary fusion category, its Drinfeld center Z(C) is realized as
χ̃(M) for some McDuff II1 factor M.

We remark that χ̃(M) is a distinct construction from the Drinfeld center
Z(Bim(M)). Indeed, whenever M has full fundamental group R>0, there is an R>0
grading on Bim(M) from the modular distortion, i.e., the square root of the ratio of
the left and right von Neumann dimensions [2, 67]. This grading gives a canonical
copy of Hilbfd(R) in Z(Bim(M)) which forgets to the trivial bimodule [28, Sect. 3B].
Hence for R or for the examples M∞ from Theorem C, χ̃ (M) is not Z(Bim(M)).

While we have stated our results above for χ̃ (M), our analysis actually occurs
in a much more general categorical setting. We define the notions of approximately
inner and centrally trivial for endofunctors on an arbitraryW∗-category with separable
preduals (see Sect. 3.2). Functors which are both approximately inner and centrally
trivial are said to be local. We construct a unitary braiding on this category (without
any dualizability assumptions), and prove all the axioms are satisfied here. Thus we
get a new construction of a canonical braided W∗-tensor category Endloc(C) from an
arbitrary W∗-category C.

When C = Modfgp(M), the finitely generated projective modules of a sep-
arable finite von Neumann algebra, under the well known equivalence between
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End(Modfgp(M)) and Bimfgp(M), our definitions of approximately inner and cen-
trally trivial agree with Popa’s from [68]. We use this equivalence to express the
braiding as a bimodule intertwiner in Eq. (5). Aside from the greater generality, one
of the reasons we use the functor language for our constructions and proofs is that
the category of endofunctors is strict, making some commuting diagrams significantly
simpler. In addition, in the categorically oriented functor approach, the concept of
approximately commuting diagram significantly reduces the complexity of proofs
and their verification.

Outline

In Sect. 2, we recall the notion ofW∗-category, and we pay special attention to theW∗
2-category of von Neumann algebras, bimodules, and intertwiners. In Sect. 2.3, we
discuss the canonical σ -strong* topology on the hom spaces of a W∗-category, which
is essential to our construction.

In Sect. 3, we introduce the notion of an approximate natural transformation
between endofunctors of aW∗-category, whichwe use to define the notions of approxi-
mately inner and centrally trivial for endofunctors.We show that the local endofunctors
which are both approximately inner and centrally trivial admit a canonical unitary
braiding in Sect. 3.3.

In Sect. 4, we translate our construction into the language of dualizable bimodules
over a II1 factor M , and we calculate many examples of χ̃ (M) in Sect. 4.3. In Sect. 5,
we prove Theorem B, and in Sect. 6, we prove Theorem C. To prove these theorems,
we make heavy use of the Q-system realization machinery developed in [13, 44] and
the graphical calculus for unitary tensor categories.

2 Preliminaries

We assume the reader is relatively familiar with the basics of von Neumann algebras,
in particular II1 factors, where our main references include [1, 8, 41, 85]. Most von
Neumann algebras that appear in this article are assumed to be separable (their preduals
are separable), with the exception of ultraproducts in Sect. 4.3 below.

We also assume the reader is relatively familiar with the basics of tensor cate-
gories and 2-categories, where our main references include [19, 34, 47]. Of particular
importance is the graphical string diagrammatic calculus for 2-categories and tensor
categories [34, Sect. 1.1.1 and 8.1.2]. For a 2-category C, objects are represented by
2D shaded regions, 1-morphisms are represented by labelled 1D strands read from
left-to-right, and 2-morphisms are represented by labelled 0D coupons which are read
bottom-to-top. 1-composition is read left-to-right similar to the relative tensor product
of bimodules, and 2-composition is read bottom-to-top.

These string diagrams are formally dual to pasting diagrams, and typically associ-
ators and unitors are suppressed whenever possible. As a tensor category is equivalent
to a 2-category with one object, the graphical calculus for tensor categories has no
shadings for regions; objects are represented by labelled 1D strings, and morphisms
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are represented by labelled 0D coupons read bottom-to-top. Tensor product is read
left-to-right, and composition of morphisms is read bottom-to-top. Our 2-categories
and tensor categories are C∗/W∗ (see Sects. 2.1 and 2.2 below), and we represent the
†-operation by vertical reflection of diagrams.

2.1 C∗/W∗-categories

We begin with the basics of C∗ and W∗-categories. The latter were first introduced in
[26].

Definition 2.1 A C∗-category is a C-linear category C such that:

• for each pair of objects a, b ∈ C, there is a conjugate linear involution † : C(a →
b) → C(b → a), satisfying ( f · g)† = g† · f †,

• for each pair of objects a, b ∈ C, there is a Banach norm on C(a → b) satisfying
‖ f ‖2 = ‖ f † · f ‖ = ‖ f · f †‖ for all f ∈ C(a → b), and

• for all f ∈ C(a → b), f † · f is a positive element in the C∗-algebra C(a → a).
That is, there is a g ∈ C(a → a) such that f † · f = g† · g.

AW∗-category is a C∗-category such that every hom space C(a → b) admits a predual
Banach space. We call a W∗-category separable if all such preduals are separable
Banach spaces.

Assumption 2.2 In this article, we assume all C∗/W∗-categories are unitarily Cauchy
complete, meaning they admit all finite orthogonal direct sums and are orthogonal
projection complete. There is a formal construction to complete any C∗/W∗-category
which satisfies a universal property; we refer the reader to [27, Sect. 3.1.1] for more
details.

Remark 2.3 Every unitarily Cauchy complete C∗/W∗-category admits a canonical left
Hilbfd-module category structure. That is, for each c ∈ C and finite dimensionalHilbert
space H , there is an object H � c ∈ C, unique up to canonical unitary isomorphism.
Moreover, there is a canonical unitary associator H � (K � a) ∼= (H ⊗ K ) � a. In
the sequel, we will assume our Hilbfd-module category structure is strictly unital, i.e.,
C � c = c for all c ∈ C.
Definition 2.4 A †-functor between between C∗-categories is a functor F : C → D
such that F( f †) = F( f )† for all morphisms f in C. Two C∗-categories are (unitarily)
equivalent if there are †-functors each waywhose appropriate composites are unitarily
naturally isomorphic to the appropriate identity †-functors.

For W∗-categories, one restricts to the normal †-functors which are weak*-
continuous on hom spaces. Equivalence is defined similarly as before, but restricting
to normal †-functors.

Example 2.5 Themost important example of aW∗-category for our article is thefinitely
generated projective right modules for a II1 factor M . There are two dagger equivalent
such categories that one can work with:

• Hilbert spaces H equipped with a normal right M-action such that the von Neu-
mann dimension dim(HM ) is finite, or
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• finitely generated projective right Hilbert W∗-modules (see Sect. 2.2 below for
more details).

To see the equivalence, the map from the first to the second is taking bounded vectors
(the ξ ∈ H such that m̂ �→ ξm extends to a bounded map L2M → H ), and the map
from the second to thefirst is−⊗M L2M (the inner product is given by 〈η⊗m̂, ξ⊗n̂〉 :=
〈〈ξ |η〉Mm̂, n̂〉L2M ).

Wewill use the second definition above for the convenience that wemay state many
results for all ξ ∈ XM rather than for all bounded vectors. However, one can work with
the first definition provided that one restricts to bounded vectors when appropriate.

Example 2.6 For a separable C∗-algebra A, Rep(A) is the W∗-category of (non-
degenerate) ∗-representations of A on separable Hilbert spaces. This category is
relevant in the operator algebraic study of quantum statistical mechanics.

Definition 2.7 Given aHilbfd-moduleC∗ categoryC, a finite dimensionalHilbert space
H , and any †-functor F ∈ End(C), we have a canonical braid-like unitary natural
isomorphism

σF,H : F(H � −) → H � F(−)

defined as follows. For an orthonormal basis {ei }, we may identify its elements as
bounded operators ei ∈ B(C, H) defined by 1 �→ ei . Then e

†
i ∈ B(H , C) is given by

e†j ei = δi, j . We then define σF,H in components by

σ a
F,H :=

∑

i

(ei � F(1a)) · F(e†i � 1a),

which does not depend on the choice of orthonormal basis of H .
Unitarity is straightforward to verify. To show naturality, let f ∈ C(a → b). Then

(1H � F( f )) · σ a
F,H =
∑

i

(ei � F( f )) · F(e†i � 1a)

=
∑

i

(ei � 1b) · F( f ) · F(e†i � 1a)

=
∑

i

(ei � 1b) · F(e†i � f ) = σ b
F,H · F(1H � f ).

The family σ also satisfies the following monoidality conditions (where we have
suppressed the module category associator).

Proposition 2.8 (1) For any F ∈ End(C), σ a
F,H⊗K = (1H � σ a

F,K ) · σ K�a
F,H .

(2) For any G ∈ End(C) we have σ a
F◦G,H = σ

G(a)
F,H · F(σ a

G,H ).
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Proof. Let { f j } be an orthonormal basis for K , which we identify with bounded
operators f j ∈ B(C, K ). Then

(1H � σ a
F,K ) · σ K�a

F,H =
∑

i, j

(1H � f j � F(1a)) · (1H � F( f †j � 1a))

· (ei � F(1K�a) · F(e†i � 1K�a)

=
∑

i, j

(1H � f j � F(1a)) · (ei � F(1a)) · F( f †j � 1a)

· F(e†i � 1K�a) = σ a
F,H⊗K

and

σ
G(a)
F,H · F(σ a

G,H ) =
∑

i

(ei � FG(1a)) · F(e†i � G(1a)) · F(ei � G(1a)) · FG(e†i � 1a)

=
∑

i

(ei � FG(1a)) · FG(e†i � 1a) = σ a
F◦G,H .

2.2 Modules and correspondences of W∗-algebras

We now recall the definition of the W∗ 2-category W∗Algfgp of finitely generated
projective right W∗-correspondences, after which we formally define the finitely gen-
erated projective right modules Modfgp(M). Our exposition follows [13, Sect. 2.2],
which was adapted from [9, Sect. 8]. Other references include [65, 81].

Definition 2.9 The W∗ 2-category W∗Algfgp is given as follows.

• objects are von Neumann algebras
• 1-morphisms are finitely generated projective right W∗-corresponendences. In
more detail, given von Neumann algebras A, B, a 1-morphism AXB is a Banach
space equipped with a right B-action and a right B-valued inner product satisfying

– 〈η|ξ1 + ξ2b〉B = 〈η|ξ1〉B + 〈η|ξ2〉Bb,
– 〈η1 + η2b|ξ 〉B = 〈η1|ξ 〉B + b∗〈η2|ξ 〉B ,
– 〈η|ξ 〉∗B = 〈ξ |η〉B , and
– 〈ξ |ξ 〉B ≥ 0 with equality if and only if ξ = 0.

By the Cauchy–Schwarz inequality, ‖〈ξ |ξ 〉B‖B defines a norm on X , which is
required to be complete.Moreover, we require the left A-action to be by adjointable
operators.
The finitely generated projective condition says that as a right B-module, XB is
unitarily isomorphic to pBn for some (adjointable) orthogonal projection p ∈
End−B(Bn).
The W∗ condition amounts to requiring that:

– AXB has a predual,
– the B-valued inner product 〈 · | · 〉B is separately weak*-continuous, and
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– the left A-action A → End(XB) is normal.

Composition of 1-morphisms is the relative tensor product.
• 2-morphisms AXB ⇒ AYB are the adjointable right B-linear operators that com-
mute with the left A-action.

Definition 2.10 For avonNeumannalgebraM ,wedefineModfgp(M) := W∗Algfgp(C
→ M).

Given XM ∈ Modfgp(M), a finite XM -basis is a finite subset {β} ⊆ X such that
∑

β β〈β|ξ 〉M = ξ for all ξ ∈ X [69, Sect. 1.1.3], [10, Sect. 3.1.1]. As we only work
with finitely generated projectivemodules in this article, all XM -bases will be finite, so
we omit theword ‘finite’without confusion.We call such a basis orthogonal if 〈β|β ′〉M
is equal to δβ=β ′ times an orthogonal projection in M . Given an XM -basis, one can
always obtain an orthogonal XM -basis using the Gram-Schmidt orthogonalization
procedure [1, Lem. 8.5.2].

Remark 2.11 It is well known that the W∗-tensor category End(Modfgp(M)) of nor-
mal †-endofunctors is dagger equivalent to Bimfgp(M)mp, the monoidal opposite of
Bimfgp(M). That is, every normal †-endofunctor ofModfgp(M) is of the form−�M X
for some X ∈ Modfgp(M). For example, this equivalence is explained in [33, Sect.
3.2] for infinite von Neumann algebras using the fact that End(Modfgp(M)) is uni-
tarily equivalent to the orthogonal projection completion of the W∗-tensor category
End(M).

Remark 2.12 There is another way that the category of End(Modfgp(N )) is used in
practice, particularly among the II1 factor community. This stems from the fact that
Modfgp(N ) is equivalent to the unitary Cauchy completion of N thought of as a
W∗-category with one object. Objects in the completion are pairs (n, p), where n ∈
N and p ∈ Mn(N ) is a projection. Morphisms (n, p) → (m, q) are elements of
qMm×n(N )p. By the universal property of Cauchy completion, an endofunctor is
determined by where it sends (1, 1N ) together with its action on End((1, 1N )) ∼= N .
In other words, an endofunctor in End(Modfgp(N )) is completely determined up to
unitary natural isomorphism by a (unital) homomorphism N → pMn(N )p for some
projection p ∈ Mn(N ), called a cofinite morphism of N in [84]. Furthermore, a natural
transformation is uniquely determined by its (1, 1N )-component.

2.3 The�-strong* topology on aW∗-category

Let C be a separable W∗-category, which has a canonical weak* topology on each
hom space.

Definition 2.13 For each a, b ∈ C, the σ -strong* topology τ on C(a → b) is defined as
follows: fi → 0 σ -strong* if and only if f †i fi → 0 and fi f

†
i → 0 weak* (σ -weakly).

Facts 2.14 The σ -strong* topology τ on the hom spaces of C satisfies the following
properties:

(τ1) composition is jointly τ -continuous on norm bounded subsets (if {an}, {bn} are
uniformly norm bounded, and an → a and bn → b then anbn → ab).
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(τ2) †is τ -continuous on norm bounded subsets of morphism spaces.
(τ3) τ restricted to the unit ball of any morphism space is completely metrizable.

The following proposition basically follows from [8, III.2.2.2].

Proposition 2.15 Suppose M, N are von Neumann algebras and 
 : M → N is a
unital ∗-homomorphism. Then 
 is normal if and only if it is σ -strong* continuous
on the unit ball of M.

Proof If 
 is σ -strong* continuous on bounded sets, then for any increasing bounded
net (xi ) in M with xi ↗ x , xi → x in the σ -strong* topology. Hence 
(xi ) ↗ 
(x),
and 
 is normal.

The converse argument is similar to [8, III.2.2.2]. If xi → 0 σ -strong*, then xi x∗
i →

0 and x∗
i xi → 0 σ -weakly. Hence 
(xi )∗
(xi ) → 0 and 
(xi )
(xi )∗ → 0 σ -

weakly, which implies 
(xi ) → 0 σ -strong*.

As all W∗-categories were assumed to admit finite orthogonal direct sums, we have
the following immediate corollary.

Corollary 2.16 Suppose C,D areW∗-categories and F : C → D is a †-functor. Then
F is normal if and only if F is σ -strong* continuous on norm bounded subsets of hom
spaces in C.
Example 2.17 Let (M, trM ) be a finite von Neumann algebra equipped with a faithful
tracial state τ . In this case, the σ -strong* topology on the unit ball of M is exactly
the ‖ · ‖2-topology, where ‖x‖22 := trM (x∗x) [41, Prop. 9.1.1]. In fact, we may also
describe the entire σ -strong* topology τ on Modfgp(M) on norm bounded sets as
coming from a ‖ · ‖2-norm induced by canonical commutant traces.

In more detail, for XM ∈ Modfgp(M), the canonical commutant trace [69, Sect.
1.1.3(c)], [10, Def. 3.1.4] on the finite von Neumann algebra End(XM ) is given by

TrX ( f ) :=
∑

b

trM (〈b|xb〉XM )

where {b} is any finite XM -basis. Observe that TrX is independent of the choice of
basis. When M is a II1 factor, Tr(idX ) equals the right von Neumann dimension of
X ⊗M L2M .

Observe that the maps (TrX )X∈Modfgp(M) endow Modfgp(M) with a unitary cat-
egorical trace in the spirit of [83, Def. 3.7] (see also [27, Def. 3.59]). Indeed, for
f ∈ Hom(XM → YM ), we choose a finite XM -basis {b} and a finite YM -basis {c},
and we calculate
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TrX ( f † f ) =
∑

b

trM (〈b| f † f b〉XM ) =
∑

b

trM (〈 f b| f b〉YM )

=
∑

b,c

trM (〈 f b|c〈c| f b〉YM 〉YM )

=
∑

b,c

trM (〈 f b|c〉YM 〈c| f b〉YM ) =
∑

b,c

trM (〈 f †c|b〉XM 〈b| f †c〉XM )

=
∑

b,c

trM (〈b〈b| f †c〉XM | f †c〉XM )

=
∑

c

trM ( f †c| f †c〉XM ) =
∑

c

trM (c| f f †c〉XM ) = TrY ( f f †).

Using this categorical trace, for f ∈ Hom(XM → YM ), we define ‖ f ‖2 :=
TrX ( f † ◦ f )1/2. Observe that ‖ · ‖2 on Hom(XM → YM ) is exactly the restriction
of ‖ · ‖2 on End(XM ⊕ YM ), which is again defined using the canonical commutant
trace TrX⊕Y . Thus the σ -strong* topology τ on Modfgp(M) exactly corresponds to
the ‖ · ‖2-topology on norm-bounded sets.

The following remark will be used later in Sect. 5.2.

Remark 2.18 Suppose (M, trM ) is a finite von Neumann algebra equipped with a
normal faithful trace trM . Suppose XM ∈ Modfgp(M) and N ⊆ (M, trM ) is strongly
Markov inclusion [42, Def. 2.8], i.e., there is a finite MN -basis {c}which satisfies [M :
N ] := ∑c cc

∗ ∈ [1,∞). (This definition was based on [3] and [69, Sect. 1.1.3 and
1.1.4].) Here, the right N -valued inner product on MN is given by 〈a|b〉N = EN (a∗b)
where EN : M → N is the unique trace-preserving conditional expectation.

We now compare TrXM and TrX�MMN . If {b} is a basis for XM and {c} is a basis
for MN , then {b � c} is a basis for X �M MN . Thus for f ∈ End(XM ),

TrX�MMN ( f � idMN ) =
∑

b,c

trN (〈b � c| f b � c〉X�MMN
N )

=
∑

b,c

trN
(

EN (c∗〈b| f b〉XMc)
)

=
∑

b,c

trM (c∗〈b| f b〉XMc) =
∑

b,c

trM (〈b| f b〉XMcc∗)

= [M : N ]
∑

b

trM (〈b| f b〉XM ) = [M : N ]TrX ( f ).

This says the (faithful) restriction functor − � MN : Modfgp(M) → Modfgp(N ) is a
continuous embedding (a homeomorphism onto its image) of hom spaces with respect
to the τM −τN topologies. This means that fn → 0 in τM if and only if fn�idMN → 0
in τN .
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3 Approximate natural transformations and local endofunctors

In this section, given a W∗-category, we define its canonical braided W∗-tensor cat-
egory of local endofunctors which are both approximately inner and centrally trivial.
To define these notions, we first introduce the concept of an approximate natural
transformation.

3.1 Approximate natural transformations

Suppose C is a separable W∗-category, and recall End(C) denotes the normal †-
endofunctors of C. We define �∞(N, C) as the W∗-category with the same objects
as C and whose morphisms are uniformly norm-bounded sequences of morphisms in
C. The composition and †in �∞(N, C) are defined pointwise.

Definition 3.1 For each a, b ∈ C, we define

I(a → b) :=
{

f = ( fn) ∈ �∞(N,C(a → b))

∣

∣

∣

∣

fn →τ 0

}

C∞(a → b) :=
{

f ∈ �∞(N,C(a → b))

∣

∣

∣

∣

∀ g ∈ I(b → c), g · f ∈ I(a → c) and ∀ h ∈
I(d → a), f · h ∈ I(d → b)

}

.

We view C∞ as the idealizer of I in �∞(N, C). We call f ∈ C∞(a → b) an
approximatemorphism, andwe say twomorphisms f , g ∈ C∞(a → b) are equivalent
or approximately equal if f − g ∈ I(a → b). Observe that C∞ is a category under
pointwise composition of approximate morphisms. By (τ1) and (τ2), I(a → b) ⊆
C∞(a → b) for all a, b, and I defines a †-closed ideal in C∞.

We define a †-category ˜C with the same objects as C, and hom spaces ˜C(a →
b) := C∞(a → b)/I(a → b). For f ∈ C∞(a → b), we write ˜f for its image in
˜C(a → b). Observe we can view C as a †-subcategory of ˜C bymapping f ∈ C(a → b)
to the image of the constant sequence˜( f ) ∈ ˜C(a → b). In what follows, we identify
f ∈ C(a → b) with ( f )n∈N ∈ C∞(a → b) and˜( f )n∈N ∈ ˜C(a → b).

Definition 3.2 Adiagram in C∞ is said to approximately commute if the corresponding
diagram in the quotient ˜C = C∞/I actually commutes. That is, given a, b, c, d ∈ C
and morphisms f ∈ C∞(a → b), g ∈ C∞(b → d), h ∈ C∞(a → c), and k ∈
C∞(c → d), the diagram

a b

c d

fn

hn gn
kn

approximately commutes if gn · fn − kn · hn →τ 0.

For a normal †-endofunctor F ∈ End(C), for any f = ( fn) ∈ C∞(a → b),
(F( fn)) ∈ C∞(F(a) → F(b)), so F descends to a †-endofunctor on ˜C.
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Definition 3.3 Given two functors F,G ∈ End(C) an approximate natural transfor-
mation is a family {ηa ∈ C∞(F(a) → G(a)}a∈C such that for every f ∈ C(a → b),
ηb · f = f · ηa in ˜C. In other words, the following diagram approximately commutes:

F(a) G(a)

F(b) G(b).

F( f )

ηan

G( f )
ηbn

Clearly every natural transformation η : F ⇒ G gives an approximate natural
transformation.

Warning 3.4 The collection of normal †-endofunctors of C and approximate natural
transformations between them (up to I) clearly forms a †-category containing End(C)

as a (non-full) subcategory. It is tempting to think that this should also form a tensor
category, with tensor product being composition of endofunctors as usual. However,
the horizontal composition of two approximate natural transformations is not well-
defined in general. This is a fundamental point: the category of endofunctors and
approximately natural transformations is not a tensor category in general, as endo-
morphisms of the ‘unit’ in this category (see Definition 3.7) is not a commutative
algebra.

Definition 3.5 We call v ∈ C∞(a → b) an approximate isometry if its image
ṽ ∈ ˜C(a → b) is an isometry. For †-endofunctors F,G ∈ End(C), an approxi-
mate natural transformation v : F ⇒ G is called an approximately isometric natural
transformation if va ∈ C∞(F(a) → G(a)) is an approximate isometry for each a ∈ C.
Remark 3.6 (Arrow flipping) Suppose f ∈ C∞(a → c), v ∈ C∞(a → b), and
w ∈ C∞(b → c) such that the diagram

a c

b

fn

vn wn

approximately commutes.

• If w is an approximate isometry, then
a c

b

fn

vn w
†
n

approximately com-

mutes.

• If v is an approximate coisometry, then
a c

b

fn

v
†
n

wn
approximately

commutes.
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Indeed, these remarks follow since ṽ, respectively w̃, is an actual isometry, respectively
coisometry, in ˜C.
Definition 3.7 An approximately natural transformation from the identity functor to
itself is called a central sequence.

Lemma 3.8 Suppose C is a separableW∗-category which is not necessarily unitarily
Cauchy complete. Every central sequence of C has a canonical extension to the unitary
Cauchy completion of C. Moreover, this extension gives a bijective correspondence
between the equivalence classes of central sequences of C and the equivalence classes
of central sequences of the unitary Cauchy completion of C.
Proof We proceed in 2 steps; first, we show the result for the orthogonal direct sum
completion Add(C), and second, we show the result for the orthogonal projection
completion Proj(C).

Step 1: We claim a central sequence η of C gives a central sequence of Add(C) by

Add(η)i i := π
†
i ηciπi for

⊕

i ci ∈ Add(C), whereπ j :⊕ ci → c j denotes the

canonical projections satisfying
∑

i π
†
i πi = id⊕

i ci
and πi ◦ π

†
j = δi= j idci .

Let f n = ( f nji ) ∈ Add(C)∞(
⊕

i ci →⊕ j d j ), with each ( f nji ) ∈ C∞(ci →
d j ) a bounded sequence of morphisms. Then clearly ( f n) ∈ I(

⊕

i ci →
⊕

j d j ) if and only if each ( f nji ) ∈ I(ci → d j ). Therefore since η ∈ C∞, we
have Add(η) ∈ Add(C)∞.
To see that Add(η) defines a natural transformation of the identity functor,
let f = ( f j i ) ∈ Add(C)(

⊕

ci → ⊕ d j ) as above. Then in ˜C, Add(η) f =
(η

d j
n f ji ) = ( f j iη

ci
n ) = f Add(η). Moreover, the assignment η �→ Add(η)

clearly preserves equivalence of central sequences.
Conversely, given a central sequence η of Add(C), we automatically get a
central sequence of C by considering the canonical embedding C ↪→ Add(C).
Moreover, for

⊕

i ci ∈ Add(C), the off-diagonal terms of η
⊕

i ci go to zero
σ -strong* as η

⊕

i ci approximately commutes with the π j , and the diagonal
term corresponding to ci must be approximately equivalent to ηci .

Step 2: A central sequence η of C gives a central sequence of Proj(C) by defining

Proj(η)(c,p) := pηc p for (c, p) ∈ Proj(C). Given (a, p), (b, q) ∈ Proj(C),
I((a, p) → (b, q)) = qI(a → b)p, so Proj(η) ∈ Proj(C)∞. Moreover, this
construction preserves equivalence of central sequences.
Conversely, given a central sequence η of Proj(C), we automatically get a
central sequence of C by considering the canonical embedding C ↪→ Proj(C).
Clearly starting with a central sequence in C, extending to Proj(C) as above,
and restricting back to C yields the same central sequence. In the other
direction, let η be a central sequence in Proj(C). We need to show that in

P̃roj(C), pη(c,idc) p = η(c,p). But note we can view an orthogonal projection

p ∈ EndC(c) as a morphism in Proj(C)((c, p) → (c, idc)). Then in P̃roj(C),
η(c,p) = η(c,p) p = (η(c,p) p)p = pη(c,idc) p as desired.
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Example 3.9 For a separable von Neumann algebra M , central sequences in the sense
of Definition 3.7 for the W∗-categoryModfgp(M) exactly agree with the usual notion
of central sequences of M . Indeed, consider the category with one object MM whose
endomorphisms is M acting by left multiplication. An approximate natural transfor-
mation of the identiy functor is exactly a sequence (xn) such that xnm −mxn → 0 in
the σ -strong* topology for all m ∈ M . Now sinceModfgp(M) is the unitary Cauchcy
completion of this one object category, the claim follows by Lemma 3.8.

The next lemma will be important in the next subsection.

Lemma 3.10 Suppose H , K are finite dimensional Hilbert spaces with orthonormal
bases {ei }, { f j } respectively. For a collection ofmaps (ηa ∈ C∞(H�a → K�a))a∈C ,
we define ηai, j := ( f †j � 1a)ηa(ei � 1a) ∈ C∞(a → a). Then η : H � − ⇒ K � −
defines an approximate natural transformation if and only if ηi, j is a central sequence
for each i, j .

Proof Note that ηa =∑i, j ( f j � 1a)ηai, j (e
†
i � 1a). Then for g ∈ C(a → b),

gηai, j − ηbi, j g = g( f †j � 1a)η
a(ei � 1a) − ( f †j � 1b)η

b(ei � 1b)g

= ( f †j � 1a)(1K � g)ηa(ei � 1a) − ( f †j � 1b)η
b(1H � g)(ei � 1b)

= ( f †j � 1b)
(

(1K � g)ηa − ηb(1H � g)
)

(ei � 1a),

and

(1K � g)ηa − ηb(1H � g) =
∑

i, j

( f j � 1b)
(

gηai, j − ηbi, j g
)

(e†i � 1a).

Thus (1K � g)ηa − ηb(1H � g) = 0 in ˜C if and only if gηai, j − ηbi, j g = 0 in ˜C for all
i, j .

3.2 Centrally trivial and approximately inner endofunctors

For the rest of this section, C is a fixed separable W∗-category.

Definition 3.11 A functor F ∈ End(C) is called centrally trivial if for all finite dimen-
sionalHilbert spaces and all approximate natural transformations η : H�− ⇒ K�−,
the following diagram approximately commutes.

F(H � a) F(K � a)

H � F(a) K � F(a)

F(ηan )

σ a
F,H σ a

F,K
η
F(a)
n
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Proposition 3.12 A functor F is centrally trivial if and only if for all central sequences
η, F(ηa) = ηF(a) in ˜C.
Proof It is clear that F(ηa) = ηF(a) in ˜C for all central sequences η if F is centrally
trivial. Conversely, for each approximate natural transformation η : H �− ⇒ K �−,
ηi, j defined in Lemma 3.10 is a central sequence for each i, j . Then by Definition 2.7,

σ a
F,K F(ηa)(σ a

F,H )† =
∑

j

( f j � F(1a))F( f †j � 1a)F(ηa)
∑

i

F(ei � 1a)(e
†
i � F(1a))

=
∑

i, j

( f j � F(1a))F(ηai, j )(e
†
i � F(1a))

=
∑

i, j

( f j � F(1a))η
F(a)
i, j (e†i � F(1a)) = ηF(a),

which implies that F is centrally trivial.

Definition 3.13 We denote the full subcategory of End(C) of centrally trivial endo-
functors by Endct(C).

Proposition 3.14 Endct(C) is a replete unitarily Cauchy complete W∗-tensor subcat-
egory of End(C).

Proof Suppose G,G ′ are centrally trivial. For each central sequence η, by Proposition
3.12, we have

G(G ′(ηa)) = G(ηG
′(a)) = ηG(G ′(a)),

which implies G ◦ G ′ is centrally trivial.
Now suppose G is centrally trivial and v : F ⇒ G is an isometric natural transfor-

mation for some other endofunctor F ∈ End(C). That F(ηa) = ηF(a) for all central
sequences η follows from the following approximately commuting diagram

F(a) G(a) G(a) F(a)

F(ηan )

va

η
F(a)
n

G(ηan )

η
G(a)
n

(va)†

, (1)

where we have used Remark 3.6 to flip the arrow on the right. Considering the case
when v is unitary shows that Endct(C) is replete.

As C admits orthogonal direct sums, so does End(C). Suppose G,G ′ are centrally
trivial, and let η be a central sequence. Then

(G ⊕ G ′)(ηa) = G(ηa) ⊕ G ′(ηa) = ηG(a) ⊕ ηG
′(a).
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By the proof of Step 1 of Lemma 3.8, ηG(a) ⊕ ηG
′(a) = η(G⊕G ′)(a) in ˜C, and thus

G ⊕ G ′ is centrally trivial.
As C is orthogonal projection complete, so is End(C). Suppose G is centrally

trivial and π : G ⇒ G is an orthogonal projection natural transformation. Then
π orthogonally splits in End(C), so there is an F ∈ End(C) and an isometry natural
transformation v : F ⇒ G. But then F ∈ Endct(C) by (1) above.

Example 3.15 For a finite dimensional Hilbert space H , the functor H �− is centrally
trivial. Note that the identity functor idC is centrally trivial, and thus so is

⊕

i idC .
Since the functor H � − is equivalent to

⊕

i idC , by Proposition 3.14, H � − is
centrally trivial.

Definition 3.16 A functor F ∈ End(C) is called approximately inner if there exists a
finite dimensionalHilbert spaceH and an approximate isometrynatural transformation
v : F ⇒ H � − in End(˜C), i.e.,

F(a) H � a

F(b) H � b

van

F( f ) 1H� f
vbn

approximately commutes. The pair (v, H) is called an approximating sequence for
F .

Definition 3.17 We denote the full subcategory of End(C) of approximately inner
endofunctors by Endai(C).

Proposition 3.18 Endai(C) is a replete unitarily Cauchy complete W∗-tensor subcat-
egory of End(C).

Proof Suppose F and F ′ are approximately inner, with approximating sequences
(v, H) and (w, K ) respectively. We claim (α−1

H ,K ,− · vK�− · F(w), H ⊗ K ) is an
approximating sequence for F ◦F ′, where the unitary natural transformation αH ,K ,− :
(H ⊗ K ) � − ⇒ H � (K � −) is the left module associator. For f ∈ C(a → b),
consider the diagram

F(F ′(a)) F(K � a) H � (K � a) (H ⊗ K ) � a

F(F ′(b)) F(K � b) H � (K � b) (H ⊗ K ) � b

F(wa
n )

F(F ′( f ))

vK�a
n

F(1K� f )

α
†
H ,K ,a

1H�(1K� f ) 1H⊗K� f

F(wb
n) vK�b

n α
†
H ,K ,b

.

The left square commutes because F ′ is approximately inner and F is τ -continuous
on bounded subsets. The middle square commutes because F is approximately inner.
The right square commutes because α

†
H ,K ,− is natural.

Now suppose F is approximately inner with approximating sequence (v, H) and
u : G ⇒ F is a isometric natural transformation for some other endofunctor G ∈
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End(C). It is easy to see (v · u, H) is an approximating sequence for G from the fact
that v · u is again approximately isometric. The case when u is unitary shows that
Endai(C) is replete. The case when u is an isometry shows that since C is orthogonal
projection complete, then so is Endai(C).

Finally, as C is orthogonal direct sum complete, the orthogonal direct sum of func-
tors is defined. If F and F ′ are approximately inner with approximating sequence
(v, H) and (w, K ) respectively, then (v ⊕ w, H ⊕ K ) is an approximating sequence
for F ⊕ F ′, so F ⊕ F ′ ∈ Endai(C).

3.3 Relative braiding between centrally trivial and approximately inner
endofunctors

The goal of this section is to show that the subcategories Endct(C) and Endai(C) of
End(C) ‘commute’ with each other in the sense of Definition 3.24 below.

Proposition 3.19 Suppose F ∈ Endai(C) with approximating sequence (v, H) and
G ∈ Endct(C). Then (vG(a))† · σ a

G,H · G(va) ∈ ˜C(G(F(a)) → F(G(a))) is indepen-
dent of the choice of approximating sequence (v, H) for F.

Proof Suppose (v, H) and (w, K ) are approximating sequences for the endofunctor
F ∈ Endai(C). Observe that vw† : K � − ⇒ H � − is approximately natural. Now
since G is centrally trivial, by Definition 3.11,

G(F(a))

G(H � a) G(K � a)

H � G(a) F(G(a)) K � G(a)

G(wa
n )

σ a
G,H

G((van )†)

σ a
G,K

(v
G(a)
n )† w

G(a)
n

approximately commutes for each object a ∈ C. Then by Remark 3.6,

G(F(a))

G(H � a) G(K � a)

H � G(a) F(G(a)) K � G(a)

G(van ) G(wa
n )

σ a
G,H σ a

G,K
(v

G(a)
n )† (w

G(a)
n )†

approximately commutes. Therefore, (vG(a))† · σ a
G,H · G(va) ∈ ˜C(G(F(a)) →

F(G(a))) is independent of the choice of approximating sequences (v, H) for F .

The proof of the following lemma is standard and left to the reader.

Lemma 3.20 Suppose (xn) is a sequence in a metric space (X , d) which satisfies the
following property:

123



A categorical Connes’ χ(M)

• For all functions k : N → N such that n < kn ≤ kn+1, d(xn, xkn ) → 0. (Note
here that (xkn ) is not quite a subsequence as terms can repeat.)

Then (xn) is Cauchy.

Theorem 3.21 Suppose F ∈ Endai(C) and G ∈ Endct(C). For each a ∈ C, there
exists a unique morphism in C, uaG,F ∈ C(G(F(a)) → F(G(a))), such that for all
approximate sequences (v, H), the following diagram approximately commutes.

G(F(a)) F(G(a))

G(H � a) H � G(a)

uaG,F

G(van )

σ a
G,H

(v
G(a)
n )†

Proof Suppose (v, H) is an approximating sequence for F . Then for any function
k : N → N such that n < kn ≤ kn+1, (v′ := (vkn )n, H) is also an approximating
sequence for F . By Proposition 3.19,

(vG(a))† · σ a
G,H · G(va) = (v′G(a)

)† · σ a
G,H · G(v′a)

in ˜C(G(F(a)) → F(G(a))). By [(τ3)], the τ topology on any bounded subspace of
C(G(F(a)) → F(G(a))) is completely metrizable. Then by Lemma 3.20 and the
definition of ˜C, the bounded sequence

(vG(a))† · σ a
G,H · G(va) =

(

(vG(a)
n )† · σ a

G,H · G(van )
)

n

is a Cauchy sequence, andwe denote uaG,F to be its unique limit. Again, by Proposition
3.19, uaG,F does not depend on the choice of the approximating sequence for F .

Proposition 3.22 For F ∈ Endai(C) and G ∈ Endct(C), uaG,F is unitary.

Proof By Proposition 3.19, for an approximating sequence (v, H) for F , the following
diagram approximately commutes.

G(H � a) G(H � a)

H � G(a) H � G(a)

G(van ·(van )†)

σ a
G,H σ a

G,H
v
G(a)
n ·(vG(a)

n )†
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Since σ a
G,H is unitary, then in ˜C, we have

uaG,F · (uaG,F )† =
(

(vG(a))† · σ a
G,H · G(va)

)

·
(

G(va)† · (σ a
G,H )† · vG(a)

)

= (vG(a))† ·
(

σ a
G,H · G(va) · G(va)† · (σ a

G,H )†
)

· vG(a)

= (vG(a))† ·
(

vG(a) · (vG(a))†
)

· vG(a)

= idF(G(a)),

(uaG,F )† · uaG,F =
(

G(va)† · (σ a
G,H )† · vG(a)

)

·
(

(vG(a))† · σ a
G,H · G(va)

)

= G(va)† ·
(

(σ a
G,H )† · vG(a) · (vG(a))† · σ a

G,H

)

· G(va)

= G(va)† ·
(

G(va) · G(va)†
)

· G(va)

= idG(F(a)) .

Since the inclusion C ↪→ ˜C is faithful, we are finished.

Proposition 3.23 For F ∈ Endai(C) and G ∈ Endct(C), the family uG,F : {uaG,F }a∈C
is a natural transformation G ◦ F ⇒ F ◦ G.

Proof For f ∈ C(a → b), it suffices to prove the following diagram approximately
commutes.

G(F(a)) F(G(a))

G(H � a) H � G(a)

G(H � b) H � G(b)

G(F(b)) F(G(b))

uaG,F

G(F( f ))

G(van )

F(G( f ))

σ a
G,H

G(1H� f ) 1H�G( f )

(v
G(a)
n )†

σ b
G,H

(v
G(b)
n )†

ubG,F

G(vbn )

The top and bottom squares commute by definition of uaG,F by Theorem 3.21.
The left square commute because F is approximately inner and G is τ -continuous
on bounded sets. The right square commutes by approximate naturality. The middle
square commutes by naturality of σ .

In the next definition, we use strict monoidal categories simply because the case
we care about is strict, but one obtains the general definition by inserting coheretors
where appropriate.

Definition 3.24 Let C be a (strict) C∗-tensor category, and A,B full, replete †tensor
subcategories of C. A centralizing structure on the pair (A,B) is a family of unitary
isomorphisms ua,b : a ⊗ b → b ⊗ a for a ∈ A and b ∈ B satisfying the following
conditions:
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(1) (Natural) For a, a′ ∈ A and f ∈ C(a → a′) and b, b ∈ B, g ∈ C(b → b′),
(g ⊗ f ) ◦ ua,b = ua′,b′ ◦ ( f ⊗ g).

(2) (Braid relation 1) For a ∈ A, b, b′ ∈ B, (1a ⊗ ua,b′) ◦ (ua,b ⊗ 1b′) = ua,b⊗b′ .
(3) (Braid relation 2) For a, a′ ∈ A and b ∈ B, (ua,b ⊗ 1a′) ◦ (1a ⊗ ua′,b) = ua⊗a′,b.

The goal of this section is to construct a centralizing structure for the pair of full,
replete subcategories (Endct(C),Endai(C)) inside End(C).

Proposition 3.25 For F ∈ Endai(C) and G ∈ Endct(C), uG,F satisfies condition (1)
in Definition 3.24.

Proof Suppose G,G ′ ∈ Endct(C) and F, F ′ ∈ Endai(C) with approximating
sequences (v, H) and (w, K ) respectively. Let η ∈ End(C)(F ⇒ F ′) be a natu-
ral transformation. We shall show uaG,F ′ · G(ηa) = ηG(a) · uaG,F . It suffices to prove
the following diagram approximately commutes.

G(F(a)) F(G(a))

G(H � a) H � G(a)

G(K � a) K � G(a)

G(F ′(a)) F ′(G(a))

uaG,F

G(ηa)

G(van )

ηG(a)

σ a
G,H

G((wn ·η·v†n)a) (wn ·η·v†n)G(a)

(v
G(a)
n )†

σ a
G,K

(w
G(a)
n )†

ua
G,F ′

G(wa
n )

The left/right squares commute since v,w are approximately isometric. The
top/bottom squares commute by the definition of uG,F . The middle square commutes
because G is centrally trivial.

Let ψ ∈ End(C)(G ⇒ G ′). We shall show uaG ′,F · ψ F(a) = F(ψa) · uaG,F . It
suffices to prove the following diagram approximately commutes.

G(F(a)) F(G(a))

G(H � a) H � G(a)

G ′(H � a) H � G ′(a)

G ′(F(a)) F(G ′(a))

uaG,F

ψF(a)

G(van )

ψG(a)

σ a
G,H

ψH�a 1H�ψa

(v
G(a)
n )†

σ a
G′,H

(v
G′(a)
n )†

ua
G′,F

G ′(van )

The left square commutes by the naturality ofψ . The right square commutes because
F is approximately inner. The top/bottom squares commute by the definition of uG,F .
The middle square commutes by the naturality of σ .
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Proposition 3.26 For F ∈ Endai(C) and G,G ′ ∈ Endct(C), uG,F satisfies condition
(2) of Definition 3.24.

Proof It suffices to show that for an approximating sequence (v, H) for F , the fol-
lowing diagram approximately commutes.

GG ′F(a)

GG ′(H � a) GG ′(H � a)

H � GG ′(a) FGG ′(a)

G(H � G ′(a)) G(H � G ′(a))

GFG ′(a)

G(ua
G′ ,F )

ua
G◦G′ ,F

G(G′(van ))
G(G′(van ))

G(G′(van (van )†))

G(σ a
G′,H )

σ a
G◦G′,H

G(σ a
G′,H )

(v
G(G′(a))
n )†

G(v
G′(a)
n )†

G(v
G′(a)
n (v

G′(a)
n )†) σ

G′(a)
G,H

G(v
G′(a)
n )

uG
′(a)

G,F

For any choice of approximating sequence, the outer three cells approximately com-
mute by the definition of u from Theorem 3.21. The upper triangle approximately
commutes as v is approximately isometric. The middle triangle approximately com-
mutes by Proposition 2.8(2). The lower triangle is trivial. Finally, the remaining square
approximately commutes because vv† : H � − ⇒ H � − is approximately natural
and G ′ is centrally trivial (see also Proposition 3.22).

Proposition 3.27 For F, F ′ ∈ Endai(C) and G ∈ Endct(C), uG,F satisfies condition
(3) of Definition 3.24.

Proof We must prove for each fixed a ∈ C, F(uaG,F ′)u
F ′(a)
G,F = uaG,F◦F ′ . To do so, we

carefully choose approximating sequences (v, H) and (w, K ) for F and F ′ respec-
tively such that the following diagram approximately commutes.
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GFF ′(a)

G(H � F ′(a)) G(H � F ′(a))

G(H � (K � a)) H � GF ′(a)

H � G(K � a) FGF ′(a)

H � K � G(a) FG(K � a)

H � F ′G(a) F(K � G(a))

FF ′G(a)

G(v
F ′(a)
n )

G(v
F ′(a)
n )

ua
G,F◦F ′

uF
′(a)

G,F

G(1H�wa
n )

G(1H�wa
n ) σ

F ′(a)
G,H

σ a
G,H⊗K

σ
K�a
G,H 1H�G(wa

n )

(v
GF ′(a)
n )†

1H�σ a
G,K (v

G(K�a)
n )†

FG(wa
n )

F(ua
G,F ′ )

1H�(w
G(a)
n )†

(v
K�G(a)
n )† F(σ a

G,K )

(v
F ′G(a)
n )†

F(w
G(a)
n )†

For any choices of approximating sequences, the outer three cells approximately
commute by the definition of u from Theorem 3.21. The upper left square is trivial.
The adjacent square to its lower right approximately commutes by the naturality of
σG,H . The left middle triangle approximately commutes by Proposition 2.8(1), and
the square to the lower right of this triangle approximately commutes by approximate
naturality of v. This leaves us to consider the two remaining squares

H � K � G(a) F(K � G(a))

H � F ′G(a) FF ′G(a)

(v
K�G(a)
n )†

1�(w
G(a)
n )† F(w

G(a)
n )†

(v
F ′G(a)
n )†

and
H � GF ′(a) FGF ′(a)

H � G(K � a) FG(K � a)

(v
GF ′(a)
n )†

1H�G(wa
n ) FG(wa

n )

(v
G(K�a)
n )†

.

These squares may not approximately commute for an arbitrary choice of approxi-
mating sequences, but we can get around this by replacing v with a subsequence, as
any approximating sequence for F can be used. Indeed, for b, c ∈ C, let db→c denote
a metric inducing the τ -topology on bounded subsets of C(b → c). Since (w

G(a)
n )†

and G(wa
n ) are morphisms in C for each fixed n, using approximate naturality of v†,

we may inductively choose 1 ≤ kn−1 < kn so that both
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dH�K�G(a)→FF ′G(a)

(

F(wG(a)
n )† · (v

K�G(a)†

kn
), (v

F ′G(a)†

kn
) · (1H � (wG(a)

n )†)
)

<
1

n
and

dH�GF ′(a)→FG(K�a)

(

FG(wa
n ) · (v

GF ′(a)†

kn
), (v

G(K�a)†

kn
) · (1H � G(wa

n )
)

<
1

n

simultaneously. Thus replacing (vcn) with (vckn ) for all c ∈ C, the previous arguments
still hold, as ((vckn )c, H) is still an approximating sequence for F , and these two squares
approximately commute for our fixed a ∈ C. Since we only need to verify condition
(2) of Definition 3.24 for one a ∈ C at a time, the result follows.

Definition 3.28 We define the category Endloc(C) of local endofunctors, to be the full
W∗-monoidal subcategory of End(C)whose objects are normal †-endofunctors which
are both approximately inner and centrally trivial. By Propositions 3.14 and 3.18,
Endloc(C) is replete and unitarily Cauchy complete. The family of unitary natural
transformations uG,F : G ◦ F ⇒ F ◦ G equips Endloc(C) with the structure of a
braided W∗-tensor category.

4 �̃(M) for finite von Neumann algebras via bimodules

In this section, we give the main application of the construction of the last section to
give a definition of χ̃ (M) for a II1-factor M in terms of bimodules.

Given a W*-tensor category C, the dualizable part, denoted Cdualizable, is the full
tensor subcategory whose objects have two sided duals. Observe that if EndC(1C)

is finite dimensional, then Cdualizable is a rigid C∗/W∗ tensor category. If moreover
Cdualizable is semisimple (equivalently orthogonal projection complete), it is called a
unitary multitensor category [67]; it is called a unitary tensor category if EndC(1C) is
one dimensional.

Definition 4.1 Given a von Neumann algebra M , we denote the braided unitary tensor
category χ̃ (M) := Endloc(Modfgp(M))dualizable.

Identifying End(Modfgp(M)) � Bimfgp(M)mp as in Remark 2.11, we call a bimod-
ule X ∈ Bimfgp(M) approximately inner (respectively centrally trivial) if the functor
− �M X is approximately inner (respectively centrally trivial). We see the underly-
ing unitary tensor category of χ̃ (M) agrees with the definition of χ̃ (M) from [68,
Rem. 2.7]. We may thus think of χ̃ (M) as the dualizable approximately inner and
centrally trivial bimodules of M whose conjugate bimodule is also approximately
inner and centrally trivial.

Since Endloc(Modfgp(M)) is braided, we get a monoidal equivalence from χ̃ (M)

to its monoidal opposite χ̃(M)mp, which allows us to bypass this opposite issue. We
address this in detail in Remark 4.9 below and the discussion thereafter.

Note the dualizable objects in Bimfgp(M) are precisely the bifinite Hilbert bimod-
ules of M , and the dual object is the conjugate bimodule. It is easy to see that H
is centrally trivial if and only if H is centrally trivial, but for approximately inner,
any such relationship is not obvious. Thus it may be possible for a centrally trivial
bifinite bimodule to be approximately inner, but its conjugate bimodule may not be
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approximately inner. We do not have an example, but we cannot rule this out at this
time.

4.1 Module and bimodule realization

In order to translate the results of Sect. 3, we use the graphical calculus forModfgp(M)

as a right Bimfgp(M)-moduleW∗-category. One way to do this is to use the realization
graphical calculus from [13] based on [31, Sect. 4.1]. We only introduce the part of
the graphical calculus that we need in this section, and we introduce the rest of the
graphical calculus for Q-system realization in Sect. 5.1 below.

In the 2D graphical calculus for W∗Alg, von Neumann algebras are denoted by
shaded regions, bimodules are denoted by 1D strands, and intertwiners are denoted by
0D coupons. For the rest of this section, let M be a II1 factor. Of particular importance
is the right M-module MM . The missing label on the left hand side is inferred to be C,
which is always represented by the empty shading. That is, we identifyModfgp(M) =
W∗Alg(C → M) in the 2D graphical calculus. We denote CMM by a dashed line
which is shaded by M on the right hand side.

= M = C = CMM .

A bounded, adjointable intertwiner f : YM → ZM is denoted graphically by

f : YM → ZM ; = YM and = ZM .

Construction 4.2 [13, Const. 4.1] Given YM ∈ Modfgp(M), the map x �→ Ly where
Ly(m) := ym gives a canonical isomorphism YM ∼= |Y |M := Hom(MM → YM )

such that 〈x |y〉M = L†
x L y . In Sects. 4.2 and 5.2 below, we make heavy use of this

identification.

y ∈ |Y | := Hom(MM → YM ).

The right M-action is given by identifying M = End(MM ) and stacking coupons:

y

a

= y � a.
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The condition that {c j } is a YM -basis can be written graphically as

∑

j

c j

c†j

= .

If X ∈ Bimfgp(M), then we define the realization |X | slightly differently:

x ∈ |X | := Hom(MM → M �M XM ).

While this definition is canonically isomorphic to the previous definition via the
canonical unitor M �M X ∼= X , this definition offers the advantage of depicting both
the left and the right M-actions graphically by

a

x

= a � x and

x

b

= x � b.

4.2 Centrally trivial and approximately inner bimodules

In this section we clarify the equivalence between our definitions of approximately
inner and centrally trivial given in terms of endofunctors, and Popa’s original defini-
tions as translated to bimodules, which are much more natural from the point of view
of a single von Neumann algebra [68, Rem. 2.7]. For this section, let M be a finite
separable von Neumann algebra with faithful normal trace trM .

Notation 4.3 For norm bounded sequences ( fn)n, (gn)n ⊆ Hom(XM → YM ), we
write fn ≈ gn if limn ‖ fn − gn‖2 = 0. For f ∈ Hom(XM → YM ), we write f ≈ fn
if limn ‖ f − fn‖2 = 0. As a consequence, f ≈ g if and only if f = g.

We remark that since composition is jointly τ -continuous on norm-bounded subsets
of hom spaces, we may use fn ≈ gn as a local relation amongst morphisms in
Modfgp(M). If we precompose with an appropriate h, we still have fn ◦ h ≈ gn ◦ h,
and similarly for composing on the other side, or both sides simultaneously. Similarly,
since � is separately normal in each variable, tensoring with a fixed k is separately
τ -continuous on norm-bounded subsets. Thus we still have fn � k ≈ gn � k, and
similarly for tensoring on the other side, or both sides simultaneously.
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Proposition 4.4 X is centrally trivial over M if and only if for all central sequences
(an)n ⊆ M and for all x ∈ X, ‖anx − xan‖2 → 0, i.e.,

an

x

≈
x

an

∀ x ∈ X , ∀ central sequences (an) ⊆ M .

Proof Recall a central sequence of Modfgp(M) is a natural transformation of the
identity functor. By Example 3.9, equivalence classes of these central sequences agree
with the usual equivalence classes of central sequences of M . The result now follows
directly from Proposition 3.12, which translates into the displayed condition in the
statement of the proposition.

Now by definition, the functor − �M X is approximately inner if there exists an
approximately natural isometry vYn : Y �M X → Y ⊗ H , i.e., we have

vYn =

Y

H

X

vYn such that

vYn

f

≈
vZn

f

and

(vYn )†

vYn

≈

for all intertwiners f ∈ Hom(ZM → YM ).

Definition 4.5 For Y ∈ Modfgp(M), an approximate YM-basis is a sequence

{b(n)
i }m(n)

i=1 ⊆ Y such that supn m(n) < ∞, supi,n ‖〈b(n)
i |b(n)

i 〉YM‖ < ∞, and

lim
n→∞

∥

∥

∥

∥

∥

x −
m
∑

i=1

b(n)
i 〈b(n)

i |x〉YM
∥

∥

∥

∥

∥

2

= 0 ∀ x ∈ Y .

For X ∈ Bimfgp(X), an approximately inner XM -basis is an approximate XM -basis
such that ∥

∥

∥ab
(n)
i − b(n)

i a
∥

∥

∥

2
→ 0 ∀ a ∈ M . (2)

Proposition 4.6 A bimodule X is approximately inner over M if and only if there exists
an approximately inner XM-basis.

Proof Suppose X is approximately inner. By Definition 3.16, there exists a finite
dimensional Hilbert space H and an approximate natural isometry v = (vn) : − �M
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X → H � −. Let {ei } be an orthonormal basis of H , and define b(n)
i as follows.

b(n)
i := (vMn )†

ei

.

Observe that for all x ∈ X , we have

∑

i

b(n)
i 〈b(n)

i |x〉XM =
∑

i

b(n)
i

(b(n)
i )†

x

=
∑

i

(vMn )†

vMn

x

ei
e∗i =

(vMn )†

vMn

x

= (vM
n )†(vM

n (x)).

The condition (2) follows immediately by approximate naturality of v on the M-
component.

Conversely, starting with an approximately inner XM -basis, we define

vMn

H

:=
∑

i
vMn

e∗i
ei

=
∑

i

(b(n)
i )†

ei

,

and we define each vYn for Y ∈ Modfgp(M) in terms of vM
n and a YM -basis {c j }:

Y X

vYn :=
∑

j

vMn

c j

c†j

.
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We have vYn is norm-bounded as
∑

j ‖c j‖22 < ∞. To see the approximate naturality

of {vYn }Y∈Modfgp(M), for f ∈ Hom(ZM → YM ),

Y

XZ

vYn

f

=
∑

j

vMn

c j

c†j

f

=
∑

j,k

vMn

c j

c†j

f

dk

d†k

≈
∑

j,k

vMn

dk

d†k

f

c†j

c j

=
∑

k
vMn

dk

d†k

f

=

vZn

f

.

We see vYn is independent of the choice of YM -basis by taking f = idY above.

In [68, Def. 1.1], Popa gave a definition of approximate innerness for a finite index
II1 subfactor N ⊆ M .We can also view N MN ∈ Bimfgp(N )with 〈x |y〉N := EN (x∗y).
Wewill show in Proposition 4.8 below that N ⊆ M is approximately inner in the sense
of [68, Def. 1.1] if and only if N MN is approximately inner.

We quickly recall the notion of ultraproduct for II1 (sub)factors following [1, Sect.
5.4]. Let ω be a non-principal unltrafilter on N. For a II1 factor N , define Nω =
�∞(N, M)/I, where I is the ideal of sequences which converge to 0 in ‖ · ‖2 along
ω. Then Nω is a II1 factor, with trace given by taking the limit along ω.

Now consider a finite index II1 subfactor N ⊆ M . Then Nω ⊆ Mω is another
II1 subfactor with the same Jones index and trace preserving condition expectation
extending E : M → N . Using this expectation, we can view Mω as an Nω bimodule.
We can also consider the inclusion N ′ ∩ Nω ⊆ N ′ ∩ Mω, and E restricts to the trace
preserving conditional expectation E : N ′ ∩Mω → N ′ ∩Nω. We recall the following
definition due to Popa.

Definition 4.7 [68, Def. 1.1 and Prop. 1.2] A finite index II1 subfactor N ⊆ M is
called approximately inner if the inclusion N ′ ∩ Nω ⊆E N ′ ∩ Mω is [M : N ]−1-
Markov, i.e., there is a (finite) Pimsner–Popa basis {b} for N ′ ∩ Mω over N ′ ∩ Nω

which satisfies
∑

b bb
∗ = [M : N ].

Proposition 4.8 A finite index II1 subfactor N ⊆ M is approximately inner if and only
if N MN ∈ Bimfgp(N ) is approximately inner.

Proof It is easy to see that for a finite index subfactor N ⊆ M , if N MN ∈ Bimfgp(N )

is approximately inner, then an approximate MN -basis gives an honest Pimsner–Popa
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basis for Mω over Nω, and the extra commutativity condition (2) means this Pimsner–
Popa basis lies in N ′ ∩ Mω. Thus we have a Pimsner–Popa basis forN ′ ∩ Mω over
N ′ ∩ Nω which lifts to a Pimsner–Popa basis for Mω over Nω, which implies N ′ ∩
Nω ⊆E N ′ ∩ Mω is [M : N ]−1-Markov.

Conversely, suppose N ⊆ M is approximately inner. Let {b(n)
i }ki=1 be a representa-

tive of the Pimsner–Popa basis for N ′∩Nω ⊆E N ′∩Mω which lifts to a Pimsner–Popa
basis for Nω ⊆E Mω, which exists by [72, Proposition 2.2 (3)]. Note that for every
x ∈ M and y ∈ N ,

∥

∥

∥

∥

∥

x −
∑

i

b(n)
i E((b(n)

i )∗x)
∥

∥

∥

∥

∥

2

−→ω 0 and
∥

∥

∥yb
(n)
j − b(n)

j y
∥

∥

∥

2
−→ω 0 ∀ j .

Let F ⊂ (N )1 and G ⊂ (M)1 be countable σ -strong* dense subsets. (Since M, N
are II1 factors, we are really working with the ‖ · ‖2-topology.) Write F =⋃l Fl and
G = ⋃l Gl where the Fl and Gl increasing sequences of finite subsets. For each l,
we have

∑

x∈Gl

∥

∥

∥

∥

∥

x −
∑

i

b(n)
i E((b(n)

i )∗x)
∥

∥

∥

∥

∥

2

+
∑

j

∑

y∈Fl

∥

∥

∥yb
(n)
j − b(n)

j y
∥

∥

∥

2
−→ω 0.

Therefore there exists a subsequence of the b(nk )
i such that

∑

x∈Gl

∥

∥

∥

∥

∥

x −
∑

i

b(nk )
i E((b(nk )

i )∗x)
∥

∥

∥

∥

∥

2

+
∑

j

∑

y∈Fl

∥

∥

∥yb
(nk )
j − b(nk )

j y
∥

∥

∥

2
−→ 0.

In particular, we can choose c(l)
i := b(nk )

i where nk is sufficiently large so that the
above sum is less than 2−l .

We claim is the sequence {c(l)
i } is an approximately inner L2MN -basis. Clearly the

collection {c(l)
i } satisfies the conditions fromDefinition 4.5 for x ∈ G while it satisfies

(2) for y ∈ F . The result follows since G and F are σ -strong* dense in (M)1 and
(N )1 respectively.

Remark 4.9 (cf. [19, Ex. 8.1.9]) For amonoidal category C, themonoidal opposite Cmp

is the same category with the opposite monoidal product given by a⊗mp b := b⊗C a.
It is equipped with the inverse associator:

α
mp
a,b,c : (a ⊗mp b) ⊗mp c := c ⊗ (b ⊗ a)

α−1
c,b,a−−−→ (c ⊗ b) ⊗ a =: a ⊗mp (b ⊗mp c).

Now suppose C is a braided monoidal category. Observe that the braiding endows the
linear equivalence C → Cmp with a monoidal structure

μa,b : id(a ⊗ b) = a ⊗ b
βa,b−−→ b ⊗ a = id(a) ⊗mp id(b)
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giving an equivalence of monoidal categories C � Cmp. Now transporting β to Cmp

along this monoidal equivalence endows Cmp with the braiding

β
mp
a,b := μb,a ◦ id(βa,b) ◦ μ−1

a,b : a ⊗mp b = b ⊗ a
βb,a◦βa,b◦β−1

a,b=βb,a−−−−−−−−−−−→ a ⊗ b = b ⊗mp a

such that (id, μ) : (C, α, β) → (Cmp, αmp, βmp) is a braided monoidal equivalence.
(Observe that if we chose our monoidal structure for id to be μa,b := β−1

b,a , we would

still obtain β
mp
a,b = βb,a as the transported braiding on Cmp.)

Using the above remark, we now translate the definition of the unitary braiding into
the language of bimodules. For X ,Y ∈ Bimfgp(M), we write uX ,Y = uL

2M
−�MY ,−�M X .

Choosing approximately inner XM ,YM -bases {b(n)
i }i , {c(n)

j } j and ordinary XM ,YM -
bases {bi }i , {c j } j respectively, unpacking Theorem 3.21 and Definition 2.7 gives the
following formulas.

uX ,Y =
YX

≈
(vYn )†

vMn

=
∑

i

(vYn )†

vMn

ei =
∑

i, j
c†j

c j

(vMn )†

vMn

ei =
∑

i, j

c j

b(n)
i

c†j

(b(n)
i )†

(3)

u†Y ,X = ≈
(wM

n )†

wX
n

=
∑

j

(wM
n )†

wX
n

f j =
∑

i . j

(wM
n )†

wM
n

bi

b†i

f j

=
∑

i, j

c(n)
j

bi

(c(n)j )†

b†i

(4)

That is, the braidings uX ,Y , u†Y ,X can be expressed as the following ‖ · ‖2-limits of
M-finite rank operators:
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uX ,Y = lim
τ

∑

i, j

∣

∣

∣c j � b(n)
i 〉〈b(n)

i � c j
∣

∣

∣ and u†Y ,X = lim
τ

∑

i, j

∣

∣

∣c(n)
j � bi 〉〈bi � c(n)

j

∣

∣

∣ .

(5)
The content of Sect. 3 then translates into the facts that:

• The limit uX ,Y exists and is independent of the choice of (approximately inner)
XM ,YM -bases (Theorem 3.21 and Proposition 3.23),

• uX ,Y is unitary (Proposition 3.22),
• uX ,Y is natural in X and Y (Proposition 3.25), and
• uX ,Y satisfies the braid relations (Propositions 3.27, 3.26).

4.3 Examples

We now compute many examples of χ̃ (M) for various von Neumann algebras M . In
this section, in order to easily make contact with other results in the literature, we
work with the Hilbert space version ofModfgp(M), i.e., Hilbert spaces with a normal
right M-action such that dim(HM ) < ∞ (see Example 2.5 for the equivalence with
W∗Algfgp(C → M)).

Nowwe recall two different notions of central sequence in the vonNeumann algebra
literaturewhich agree for finite vonNeumann algebras but are subtly distinct in general.
The standard notion to use outside thefinite setting is centralizing sequence, introduced
by Connes in [14, 15] in terms of the predual. Equivalently (e.g., see [32, Lem. 1.8]),
we say a norm bounded sequence {xi } ⊆ M is centralizing if for all η ∈ L2M , ‖xiη −
ηxi‖2 → 0. This is in contrast to central sequences, which satisfy xim−mxi → 0, in
the strong*-topology (the latter notion is compatible with our use of the term central
sequence). Note every centralizing sequence is central, but in general the converse is
not true. For finite von Neumann algebras, however, these two notions agree. In both
settings, we say a sequence is trivial if there exists a scalar λ such that xi − λ1M → 0
in the strong*-topology.

For our formalism, the notion of central sequence is the correct one; however, we
will occasionally need to make use of results that are stated in terms of centralizing
sequences.

Example 4.10 (L∞(X , μ)) For the abelian von Neumann algebra L∞(X , μ) over a
finitemeasure space (X , μ), constant sequences are centrally trivial. Thus any centrally
trivial right-finite correspondence is simply a finitely generated projective module,
made into a bimodule by defining the right action to be the left action. All of these cor-
respondences are inner, hence approximately inner. This braided category is equivalent
to the symmetric monoidal category of finitely generated projective modules, which
is equivalent to the category of finite dimensional measurable Hilbert bundles over
(X , μ) [18].

Example 4.11 (Connes’ χ(M) [16] and Jones’ κ [38]) Let M be a separable finite von
Neumann algebra with faithful normal trace trM .We show that Connes’ χ(M) embeds
as a multiplicative subgroup of the monoid of equivalence classes of invertible objects
in χ̃(M).
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For α ∈ Aut(M), we define the correspondingM–M bimodule as αL2M . Denoting
the image of 1M in αL2M by �, the left action is given by a � x� := α(a)x�, the
right action is given by x� � b = xb�, and the M-valued inner product is given
by 〈x�|x ′�〉L2M

M := x∗x ′. Moreover, the map α �→ αL2M descends to a group
isomorphism from Out(M) onto the group of unitary equivalence classes of invertible
M–M bimodules H such that dim(MH) = dim(HM ) = 1.

Recall that an automorphism α is approximately inner if there exists a sequence
of unitaries un ∈ U (M) such that ‖α(x)un − unx‖2 → 0 for all x ∈ M . Accord-
ing to Proposition 4.6, to show αL2M is approximately inner, it suffices to show
{un�} is an approximate Pimsner–Popa basis centralized by M . It is clear that

un � 〈un�|x�〉αL2M
M = x for all x ∈ M , and for all a ∈ M ,

‖a � un� − un� � a‖2 = ‖α(a)un� − una�‖2 −→ 0.

Therefore, αL2M is approximately inner. By Proposition 4.4, the bimodule αL2M is
centrally trivial if α is centrally trivial.

Now assume M is a II1 factor. The subcategory of χ̃(M) spanned by the image of
χ(M) is a pointed braided unitary tensor category. The entire braided tensor structure
here is uniquely determined by the quadratic form κ on χ(M) determined by u :=
u

αL2M,αL2M = κ(α)1
αL2M�M αL2M . Since

u = ‖ · ‖2 − lim
n

|� � un�〉〈un� � �|,

for an arbitrary bounded vector � � m�, we see

κ(α)(� � m�) = u(� � m�) = � � ‖ · ‖2 − lim
n

u∗
nα(un)m�.

Thus this κ is precisely Jones’ quadratic form κ on χ(M) [38, Def. 2.4].
Further references for Connes’ χ(M) and Jones’ κ include [12, 20, 37].

Example 4.12 (χ̃(R) is trivial) The following proposition specialized to the case S = C

shows that the only centrally trivial bimodules of R are inner, and thus χ̃ (R) is trivial.
This extends Connes’ result that χ(R) is trivial [16].

Proposition 4.13 Let M = R ⊗ S where R is the hyperfinite II1 factor and S is any
factor. Let H be a separable M–M Hilbert bimodule such that for all ξ ∈ H and
all central sequences x = (xn)n∈N ⊆ R, ‖(xn ⊗ 1S)ξ − ξ(xn ⊗ 1S)‖2 → 0. Then
H ∼= L2R ⊗ K for some S − S bimodule K .

Proof Let ξ ∈ H with ‖ξ‖ = 1. Represent R = ⊗∞
i=1M2(C), and denote Rn =

⊗n
i=1M2(C) ⊆ R. We claim there is some n0 so that for all unitaries u ∈ R′

n0 ∩ R,
‖(u ⊗ 1S)ξ − ξ(u ⊗ 1S)‖ < 1

2 . Otherwise, we could find a sequence of unitaries
un ∈ R′

n ∩ R with ‖(un ⊗ 1S)ξ − ξ(un ⊗ 1S)‖ ≥ 1
2 . However by construction the

sequence (un)n∈N ⊆ R is central, contradicting the hypothesis.
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Choose such an n0, and consider the weakly compact convex subset

cow

{

(u ⊗ 1S)ξ(u∗ ⊗ 1S)

∣

∣

∣

∣

u ∈ R′
n0 ∩ R

}

⊆ H .

This has a unique element of minimal norm, ξ0. By hypothesis

2‖ξ‖2 − 2Re〈(u ⊗ 1S)ξ(u∗ ⊗ 1S), ξ 〉 = ‖(u ⊗ 1S)ξ(u∗ ⊗ 1S) − ξ‖2 <
1

4

and thus

7

8
< Re〈(u ⊗ 1S)ξ(u∗ ⊗ 1S), ξ 〉.

Therefore ξ0 �= 0. Since ‖(u ⊗ 1S)ξ0(u∗ ⊗ 1S)‖ = ‖ξ0‖, uniqueness of ξ0 implies
(u ⊗ 1S)ξ0 = ξ0(u ⊗ 1S) for all unitaries (hence all elements) u ∈ R′

n ∩ R. Note
that Rnξ0Rn is a cyclic bimodule over the finite dimensional full matrix algebra Rn ,
and thus contains a non-zero Rn central vector ξ1 (which is evidently R′

n ∩ R-central).
Thus since R = 〈Rn, R′

n ∩ R〉, we see that ξ1 is R-central and thus R-bounded by

[66, Lem. 3.20]. This means the R − R bimodule H1 := (R ⊗ 1S)ξ1(R ⊗ 1S)
‖·‖

is
canonically isomorphic to L2R as an R–R bimodule via the map defined by 1R → ξ1.
Choosing a vector ξ ′ ∈ H⊥

1 , we can repeat this procedure, obtaining a decomposition
as R-bimodules H ∼= L2R ⊗ K where K is a separable multiplicity space. But note
K ∼= �R ⊗ K is the space of R⊗ 1S central vectors hence is closed under the left and
right actions of 1R ⊗ S.

The following proposition is well known to experts. We record it here for complete-
ness and convenience of the reader. The concise proof included below was suggested
by a helpful referee.

Proposition 4.14 Let N ⊆ M be a finite index II1 subfactor. Then M = N ∨ (N ′ ∩M)

if and only if L2M ∼=⊕i L
2N as N–N bimodules.

Proof Suppose M = N ∨ (N ′ ∩ M). By [39], N ′ ∩ M is finite dimensional, and thus
isomorphic to a multimatrix algebra. The only way that N ∨ (N ′ ∩ M) can be a factor
is if N ′ ∩ M is a full matrix algebra, i.e., isomorphic to Mk(C) for some k ∈ N. Since
N ′ ∩ M is finite dimensional, the algebraic tensor product N ⊗ (N ′ ∩ M) is also the
spatial tensor product, and the canonical map N ⊗ (N ′ ∩ M) → N ∨ (N ′ ∩ M) = M
is surjective. But since N ⊗ (N ′ ∩ M) ∼= N ⊗ Mk(C) is a II1 factor, the canonical
map is also injective, and thus M ∼= N ⊗ Mk(C), implying the result.

The converse is obvious.

Example 4.15 (χ̃(N ) is trivial for N non-Gamma) Let N be a non-Gamma II1 factor,
and H ∈ χ̃(N ) irreducible. Setting X = L2N ⊕ H and M := |X �N X |, we
get a finite index II1 subfactor N ⊆ M by Example 5.3 which is approximately
inner by Proposition 4.8. By [72, Proposition 2.6 (iv)], M = N ∨ (N ′ ∩ M), so by
Proposition 4.14, N L2MN ∼= ⊕i N L

2NN . On the other hand, L2M ∼= X �N X ∼=
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L2N ⊕ H ⊕ H ⊕ (H �N H) contains H as an irreducible summand, and thus we
have H ∼= L2N as an N–N bimodule.

Example 4.16 (χ̃(R ⊗ N ) is trivial for N non-Gamma) Let H ∈ χ̃(R ⊗ N ) be irre-
ducible, and consider X = L2(R ⊗ N ) ⊕ H . Then since H is centrally trivial, so
is X . By Lemma 4.13, X ∼= L2(R) ⊗ K where K is an N–N bifinite bimodule. In
particular, setting M := |K �N K |, N ⊆ M is a finite index II1 subfactor by Example
5.3. Furthermore, since N is non-Gamma, M is non-Gamma by [76, Prop. 1.11].

Now since H is approximately inner, the R ⊗ N − R ⊗ N bimodule X �R⊗N

X ∼= L2(R ⊗ M) is approximately inner, hence R ⊗ N ⊆ R ⊗ M is a finite index
approximately inner subfactor. But note this subfactor is simply R ⊗ (N ⊆ M).
By Proposition 4.8 (using Definition 4.7), the inclusion (R ⊗ N )′ ∩ (R ⊗ N )ω ⊆
(R ⊗ N )′ ∩ (R ⊗ M)ω is [M : N ]−1-Markov, and has a finite Pimsner–Popa basis
lifting to a Pimsner–Popa basis of (R⊗N )ω ⊆ (R⊗M)ω (where ω is a non-principal
ultrafilter).

Furthermore, since R ⊗ N = (R ⊗ 1) ∨ (1 ⊗ N ), we have the equality

(R ⊗ N )′ ∩ (R ⊗ M)ω = ((1 ⊗ N )′ ∩ (R ⊗ M)ω
) ∩ ((R ⊗ 1)′ ∩ (R ⊗ M)ω

)

. (6)

By [74, Prop. 3.2(1)], the inclusion 1 ⊗ N ⊆ R ⊗ M has spectral gap, and thus

(1 ⊗ N )′ ∩ (R ⊗ M)ω = ((1 ⊗ N )′ ∩ (R ⊗ M)
)ω = (R ⊗ (N ′ ∩ M))ω. (7)

Since (R ⊗ 1)ω ⊆ (R ⊗ M)ω, combining (6) and (7), we have

(R ⊗ N )′ ∩ (R ⊗ M)ω = (R ⊗ (N ′ ∩ M))ω ∩ ((R ⊗ 1)′ ∩ (R ⊗ M)ω
)

= (R ⊗ 1)′ ∩ (R ⊗ (N ′ ∩ M))ω.

Thus there is a finite Pimsner–Popa basis {m̃i } for (R ⊗ N )ω ⊆ (R ⊗ M)ω with
m̃i = {b(k)

i }k∈N where each b(k)
i ∈ R ⊗ (N ′ ∩ M).

In particular, for any m ∈ M and any ε > 0, there exists finitely many elements
ri ∈ R, ki ∈ N ′ ∩M , and ni ∈ N such that ‖(1R ⊗m)−∑i ri ⊗kini‖2 < ε. But then
applying the trace preserving conditional expectation E = trR ⊗ idM : R⊗M → M ,
we have

∥

∥

∥

∥

∥

m −
∑

i

trR(ri )kini

∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

E((1R ⊗ m) −
∑

i

ri ⊗ kini )

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

(1R ⊗ m) −
∑

i

ri ⊗ kini

∥

∥

∥

∥

∥

2

< ε.

Therefore N ∨ (N ′ ∩ M) = M . By Proposition 4.14, this implies that N L2MN ∼=
⊕

i N L
2NN . But since |X �R⊗N X | is isomorphic to L2R ⊗ |K �R⊗N K | as N–N

bimodules, we have that X �R⊗N X ∼=⊕i L
2(R⊗N ) as R⊗N − R⊗N bimodules.

But recall X �R⊗N X ∼= L2(R ⊗ N ) ⊕ H ⊕ H ⊕ (H �R⊗N H), which contains H
as an irreducible summand. Thus H is trivial.
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5 Local extension

In this section, we prove Theorem B, i.e., χ̃(|Q|) = χ̃ (M)locQ for a commutative Q-
system Q ∈ χ̃(M), where |Q| is the realization of Q defined in Sect. 5.1 below. This
result appears as Theorem 5.16.

5.1 Q-system realization

Q-systems are unitary versions of Frobenius algebra objects which were originally
introduced by Longo in [52] to describe the canonical endomorphism for type III
subfactors [51]. In this section, we define the realization procedure [13, 44] (based on
[55] and [31, Sect. 4.1]) which given a Q-system Q over a II1 factor M , recovers a von
Neumann algebra |Q| containing M and a conditional expectation EM : |Q| → M
with finite Pimsner–Popa index. This story works in much broader generality, but we
restrict to II1 factors here for ease of exposition. As in Sect. 4.1, for this section, M is
a II1 factor, and we denote C, M, CMM as before:

= M = C = CMM .

Definition 5.1 Given a II1 factor M , a Q-system in Bimfgp(M) is a triple (Q,m, i)
where Q ∈ Bim(M) is bimodule, and m : Q �M Q → Q and i : M → Q are
bounded maps that satisfy certain relations best described graphically. Representing
M by a shaded region and M by a strand, m is a trivalent vertex, and i is a univalent
vertex; adjoints are represented by vertical reflection.

= M = MQM . = m = m† = i = i†.

The axioms that m, i must satisfy are associativity, unitality, the Frobenius relations,
and unitary separability (mm† = idQ). We refer the reader to [13, Sect. 3.1] for a
full discussion with many helpful diagrams. We call a Q-system Q ∈ Bimfgp(M)

connected if HomM−M (M → Q) = Ci .

Definition 5.2 [13, Sect. 4.1] For a Q-system (Q,m, i) ∈ Bim(M), its realization |Q|
is the unital ∗-algebra with underlying vector space is HomC−M (CMM → CM �M

QM ), whose elements are denoted by

q ∈ |Q| := HomC−M (CMM → CM �M QM ).
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The multiplication, unit, and adjoint, respectively, of |Q| are given by

q1 · q2 :=
q1

q2

1|Q| := q∗ := q†

Identifying M = End(MM ), the inclusion M ↪→ |Q| is given by

End(CMM ) � m �→ m ∈ |Q|

By [13, Rem. 4.4 and Prop. 4.6], |Q| is a finite (Pimsner–Popa) index von Neumann
algebra over M . Moreover, |Q| is a II1 factor if and only if EndQ−Q(Q) = C idQ . In
this case, the unique trace-preserving conditional expectation is given by

EM (q) = 1

[|Q| : M] · q

Example 5.3 (Canonical Q-systems) Suppose N HP ∈ W∗Algfgp(N → P). Then

H �P H is a Q-system in Bimfgp(N ). By [82, Prop. 3.1], there is a canonical isomor-
phism H �P H ∼= L2(Pop)′ ∩ B(H), and thus |H �P H | ∼= (Pop)′ =: M . Observe
that the relative commutant of N ⊆ M is exactly given by N ′ ∩ M = N ′ ∩ (Pop)′ =
EndN−P (H).

Remark 5.4 Let N be a II1 factor. If Q is a connectedQ-system inBimfgp(N ), then N ⊆
|Q| is a finite index irreducible II1 subfactor. By the W∗ version of [13, Prop. 4.16],
|Q| is also a connected Q-system in Bimfgp(N ), and Q ∼= |Q| as Q-systems. Hence
the connected Q-systems in Bimfgp(N ) are exactly II1 factors M containing N such
that N ⊆ M is finite index and irreducible.

Definition 5.5 [13, Sect. 4.2] Suppose P, Q ∈ Bimfgp(M) are two Q-systems and X
is a P − Q bimodule. The realization |X | := HomC−M (CMM → CM �M XM ) of X
is a |P| − |Q| bimodule whose elements are denoted by

x ∈ |X | := HomC−M (CMM → CM �M XM ).
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with left |P| and right |Q|-actions given respectively by

p � x :=
p

x

x � q :=
x

q

= x � q 〈x1|x2〉|X |
|Q| :=

x†1

x2

Clearly |X | has a predual as it is a hom space in a W∗-category. By [13, Lem. 2.3
and Prop. 2.4], the right |Q|-valued inner product is separately weak*-continuous,
and the left action of |P| on X is normal. Hence |X | ∈ W∗Algfgp(|P| → |Q|) is a
W∗-correspondence.

Notation 5.6 Given another Q-system R ∈ Bimfgp(M) and a Q−R bimodule Y , there
is a notion of the relative tensor product of X with Y over Q, denoted X ⊗Q Y . We
refer the reader to [13, Sect. 3.2] for the detailed definition. We have two canonical
projectors which we denote graphically as follows:

: X �M Y → X ⊗Q Y and : |X �M Y | → |X |�|Q| |Y |; = |Q|. (8)

For the second diagram, we omit the external shadings, which may denote either a
left/right M-action, or a left |P| and right |R|-action depending on context.

Remark 5.7 By the W∗ version of [13, Thm. A], realization | · | gives a dagger 2-
equivalence from the Q-system completion of W∗Alg to W∗Alg. Thus | · | gives an
equivalence from the unitary tensor category of Q–Q bimodules in Bimfgp(M) with
the tensor product ⊗Q to Bimfgp(|Q|) with the Connes fusion relative tensor product
�Q . Moreover, the canonical tensorator μX ,Y : |X | �|Q| |Y | → |X ⊗Q Y | fits into a
commuting diagram with the canonical projectors (8):

|X �M Y |

|X | �|Q| |Y |

|X ⊗Q Y |

μX ,Y (9)

5.2 Local extension

We now turn to the proof that χ̃(|Q|) = χ̃ (M)locQ .
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Definition 5.8 A Q-system Q in a unitary braided tensor category C is called commu-
tative if

= = .

Suppose Q ∈ C is a commutative connected Q-system and let X ∈ C be a right
Q-module. We say X is local if

=

We can turn a local Q-module XQ into a Q–Q bimodule by defining the left action
map by

:= = .

It is well known that under the bimodule relative tensor product ⊗Q , the collection
of local Q-modules ClocQ is a unitary braided tensor category, where the braiding is
inherited from C.

Our goal now is to prove χ̃(|Q|) ∼= χ̃(M)locQ as braided unitary tensor categories.

Lemma 5.9 If (an)n ⊆ M is a central sequence, then (an)n is also a central sequence
in |Q|.

Proof Since Q is centrally trivial, for all q ∈ |Q|, ‖anq − qan‖2 → 0 by Proposition
4.4.

Proposition 5.10 A Q-system Q ∈ χ̃ (M) is commutative if and only if for every
approximate inner QM-basis {q(n)

i }, (q(n)
i )n is a central sequence in |Q| for each

fixed i .
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Proof Suppose {q j } j is a QM -basis and {q(n)
i }i is an approximate QM -basis. By (3)

and (4),

≈
∑

i, j

q j

q(n)
i

q†j

(q(n)
i )†

and ≈
∑

i, j

q(n)
j

qi

(q(n)
j )†

q†i

. (10)

First, if each q(n)
i is a central sequence, it is straightforward to see that Q is com-

mutative using (10).
Conversely, if Q is commutative, to show each q(n)

i is a central sequence, since

‖q(n)
i a − aq(n)

i ‖2 → 0 for each a ∈ M , it suffices to prove ‖q(n)
i q j − q jq

(n)
i ‖2 → 0

for each j . For each i, j and n, define

xi, jn := q(n)
i q j − q jq

(n)
i = q(n)

i

q j

−
q j

q(n)
i

∈ Hom(MM → QM ).

Observe that in End(QM ), then again by (10) we have

∑

i, j

x i, jn (xi, jn )† =
∑

i, j

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

q(n)
i

q j

q†j

(q(n)
i )†

−

q(n)
i

q j

(q(n)
i )†

q†j

−

q j

q(n)
i

q†j

(q(n)
i )†

+

q j

q(n)
i

(q(n)
i )†

q†j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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≈ − − + = 0.

But since
∑

i, j x
i, j
n (xi, jn )† is positive, we must have ‖ · ‖2 − limn x

i, j
n (xi, jn )† = 0 for

each i, j . Since W∗Alg is W∗, we must have limn x
i, j
n = 0, so each q(n)

i is a central
sequence.

Lemma 5.11 Suppose X ∈ Bimfgp(M) is a right Q-module. If {b(n)
i } is an approximate

XM-basis, then it is also an approximate |X ||Q|-basis. Similarly, if {bi } is an XM-basis,
then it is also an |X ||Q|-basis.

Proof. We prove the approximate version, and the ordinary version is similar, but
easier. Identifying XM ∼= |X |M as right M-modules, observe

∑

i

b(n)
i 〈b(n)

i |x〉XM =
∑

i

b(n)
i

(b(n)
i )†

x

≈ x �⇒
∑

i

b(n)
i � 〈b(n)

i |x〉|X |
|Q| =
∑

i

b(n)
i

(b(n)
i )†

x

≈ x .

Remark 5.12 Readers more accustomed with Hilbert space modules for II1-factors
may find the above lemma counterintuitive. It may appear that since {bi } is a basis
for both XM and X |Q|, these modules might have the same von Neumann dimension,
which really should be off by a factor of [|Q| : M]. As XM and X |Q| are not Hilbert
spaces but rather W∗-Hilbert modules, their von Neumann dimension is only defined
after completing to a Hilbert space:

XM ⊗M L2M with 〈x ⊗ �M , y ⊗ �M 〉 := 〈〈y|x〉XM�M , �M 〉L2M = trM (〈y|x〉XM )

X |Q| ⊗|Q| L2|Q| with 〈x ⊗ �|Q|, y ⊗ �|Q|〉 := 〈〈y|x〉X|Q|�|Q|, �|Q|〉L2 |Q| = tr|Q|(〈y|x〉X|Q|)

= trM ◦EM (〈x |y〉X|Q|) = 1

[|Q| : M] trM (〈y|x〉XM ).

Here, �M ∈ L2M is the image of 1M , and similarly for �|Q|. If {bi } is a basis for
XM , it is also a basis for X |Q| by the above lemma. A straightforward calculation
shows that {bi ⊗ �M } is a basis for XM ⊗M L2MM , and {bi ⊗ �|Q|} is a basis for
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X |Q| ⊗|Q| L2|Q||Q|. One calculates that

dim(X ⊗M L2MM ) =
∑

i

〈bi ⊗ �M , bi ⊗ �M 〉 =
∑

i

trM (〈bi |bi 〉M ),

dim(X ⊗|Q| L2|Q||Q|) =
∑

i

〈bi ⊗ �|Q|, bi ⊗ �|Q|〉 = 1

[|Q| : M]
∑

i

trM (〈bi |bi 〉M )

= 1

[|Q| : M] dim(X ⊗M L2MM ),

as expected.
It is important to remember that the subfactor is not M ⊂ |Q|, but rather ι(M) ⊂

|Q|. As we have normalized our Q-system (Q,m, i) so that i†i = dQ , the M-valued
inner product on QM ∼= |Q|M will not agree with the ι(M)-valued inner product on
|Q| defined in the usual subfactor way [6, p18] under the isomorphism M ∼= ι(M).
Indeed,

〈x |y〉ι(M) = EM (〈x |y〉|Q|) = EM (x∗y) = d−1
Q 〈x |y〉M .

This is perfectly fine, since rescaling an M-valued inner product cannot change the
von Neumann dimension after applying − ⊗M L2M , as the rescaled M-valued inner
product will also rescale a right M-basis.

Proposition 5.13 Realization | · | takes every bimodule in χ̃ (M)locQ into χ̃ (|Q|).
Proof Suppose X ∈ χ̃(M)locQ . We show |Q||X ||Q| is approximately inner and centrally
trivial.

Since X is approximately inner over M , by Proposition 4.6, there is an approx-
imately inner XM -basis {b(n)

i } ⊆ X . By Lemma 5.11, {b(n)
i } is an approximate

|X ||Q|-basis. Now we show (2), i.e., ‖qb(n)
i − b(n)

i q‖2 → 0 for all q ∈ |Q|.

qb(n)
i =

q

b(n)
i

=
q

b(n)
i

≈
∑

j,k

b(n)
j

qk

(b(n)
j )†

q†k

q

b(n)
i

≈
∑

j,k

b(m)
j

qk

(b(n)
j )†

b(n)
i

q†k

q

≈
∑

j,k

b(n)
j

(b(n)
j )†

b(n)
i

qk

q†k

q

≈
b(n)
i

q

= b(n)
i q
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The second equality uses the hypothesis that X is a local bimodule. The third ≈ uses
(4). The fourth ≈ holds because 〈qk |q〉QM ∈ M and ‖[x, b(n)

i ]‖2 → 0 for x ∈ M . The

fifth ≈ holds because 〈b(n)
j |b(n)

i 〉XM is a central sequence in M for each i, j and Q is
centrally trivial over M . The sixth ≈ holds from the definition of (approximate) basis
for XM and QM . We conclude that |X | is approximately inner over |Q|.

Since X is centrally trivial over M , by Proposition 4.4, for all central sequences
(an)n ⊆ M and all x ∈ X , ‖anx − xan‖2 → 0. If (qn)n ⊆ |Q| is a central sequence,
then

qn x =
qn

x

=
qn

x

≈
∑

j,k

b j

q(n)
k

b†j

(q(n)
k )†

qn

x

≈
∑

j,k

b j

q(n)
k

b†j

x

(q(n)
k )†

qn

≈
∑

j,k

b j

b†j

x

q(n)
k

(q(n)
k )†

qn

≈
x

qn

= xqn

The second equality uses the hypothesis that X is local. The third ≈ uses (3). The
fourth ≈ holds because 〈q(n)

k |qn〉QM is a central sequence in M , and X is centrally

trivial. The fifth ≈ holds because 〈b j |x〉XM ∈ M and ‖[a, q(n)
k ]‖2 → 0 for a ∈ M .

The sixth ≈ holds from the definition of (approximate) basis for XM and QM . We
conclude that |X | is centrally trivial over |Q|.

The following proposition is straightforward; we omit its proof.

Proposition 5.14 (1) If {bi }i is an |X ||Q|-basis and {q j } j is a QM-basis, then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ci, j :=
bi

q j

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

i, j

is an |X |M-basis.
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(2) If {b(n)
i } is an approximate X |Q|-basis and {q(n)

j } is an approximately inner QM-
basis, then

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

c(n)
i, j := b(n)

i

q(n)
j

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

i, j

is an approximate |X |M-basis. Moreover, if {b(n)
i }i is approximately inner, so is

{c(n)
i, j }.

Since XM is canonically isomorphic to |X |M, we may view (1) as an XM-basis and
(2) as an approximate(ly inner) XM-basis.

Proposition 5.15 Every bimodule in χ̃ (|Q|) is unitarily isomorphic to a realization of
a bimodule in χ̃(M)locQ .

Proof By Remark 5.7, it suffices to consider a Q–Q bimodule QXQ in Bimfgp(M)

such that |X | ∈ χ̃(|Q|). In order to show X ∈ χ̃(M)locQ , must prove X is centrally
trivial and approximately inner over M , and X is a local Q–Q bimodule.

By Lemma 5.9, any central sequence (an) ⊆ M is also a central sequence in |Q|.
By Proposition 4.4, X is centrally trivial over |Q|, so X is centrally trivial over M . By
Propositions 5.14 and 4.6, we have X is approximately inner over M . Therefore,as an
M–M bimodule, X ∈ χ̃ (M).

Since X is already a Q–Q bimodule, it remains to show X is local. Let {bi }, {q j } be
X |Q|, QM -bases and let {b(n)

i }, {q(n)
j } be approximately inner X |Q|, QM -bases respec-

tively. Defining {ci, j } and {c(n)
i, j } as in Proposition 5.14 gives an XM -basis and an

approximately inner XM -basis respectively.
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For the over braiding,

≈
∑

i, j,k

ci, j

q(n)
k

c†i, j

(q(n)
k )†

=
∑

i, j,k

bi

q j

q(n)
k

q†j

b†i

(q(n)
k )†

=
∑

i, j,k

bi

q j

q(n)
k

q†j

b†i

(q(n)
k )†

≈
∑

i, j,k

bi

q j

q(n)
k

q†j

(q(n)
k )†

b†i

≈
∑

i
b†i

bi

=
∑

i

bi

b†i

=

The first ≈ uses (3), the second equality is the defintion of ci, j , the third equality
uses associativty of the Q–Q bimodule actions, the fourth ≈ uses that X is centrally
trivial over |Q|, the fifth ≈ uses (10), and the sixth equation follows from

= = = = . (11)
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For the under braiding,

≈
∑

i, j,k

c(n)
i, j

qk

(c(n)
i, j )

†

q†k

=
∑

i, j,k

b(n)
i

q(n)
j

qk

(q(n)
j )†

(b(n)
i )†

q†k

=
∑

i, j,k

b(n)
i

q(n)
j

qk

(q(n)
j )†

(b(n)
i )†

q†k

≈
∑

i, j,k

b(n)
i

q(n)
j

qk

(q(n)
j )†

q†k

(b(n)
i )†

≈
∑

i
(b(n)
i )†

b(n)
i

=
∑

i

b(n)
i

(b(n)
i )†

≈ .

The first ≈ uses (4), the second equality is the definition of c(n)
i, j , the third equality

uses associativity of the Q–Q bimodule actions, the fourth≈ uses X is centrally trivial
over |Q| so ‖[b(n)

i , qk]‖2 → 0, the fifth ≈ uses (10), and the sixth equality uses (11)
again.

Theorem 5.16 Realization gives a braided unitary equivalence χ̃ (M)locQ → χ̃(|Q|).

Proof. By Remark 5.7, realization | · | gives a unitary tensor equivalence from Q–
Q bimodules in Bimfgp(M) to Bimfgp(|Q|). By Proposition 5.13, for X ∈ χ̃ (M)locQ ,
|X | ∈ χ̃ (|Q|), and by Proposition 5.15, every bimodule in χ̃(|Q|) arises in this way.
Since χ̃ (M)locQ is a full subcategory of the Q-Q bimodules in Bimfgp(M), χ̃(|Q|) is
a full subcategory of Bimfgp(|Q|), and realization | · | is fully faithful, it restricts to a
unitary tensor equivalence χ̃ (M)locQ → χ̃(|Q|).
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It remains to verify that | · | : χ̃ (M)locQ → χ̃(|Q|) is braided, i.e., the following
diagram commutes.

|X | �|Q| |Y | |Y | �|Q| |X |

|X ⊗Q Y | |X �M Y | |Y �M X | |Y ⊗Q X |
μX ,Y

u|Q|
X ,Y

μY ,X
|uMX ,Y |

The two triangles on either side commute by (9), so it remains to prove the inner
square commutes. Graphically denoting the II1 factor |Q| and the canonical projector
|X �M Y | → |X |⊗|Q| |Y | as in (8), as realization is fully faithful, this is the condition
that

?= .

Let {ck} be a Y|Q|-basis, and let {b(n)
i } be an approximately inner X |Q|-basis. Let {ql} be

a QM -basis and {q(n)
j } be an approximately inner QM -basis. According to Proposition

5.14, {ckql} is a YM basis and {b(n)
i q(n)

j } is an approximately inner XM basis. Then
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≈
∑

i, j,k,l

ck

ql

b(n)
i

q(n)
j

q†l

c†k

(q(n)
j )†

(b(n)
i )†

=
∑

i, j,k,l

ck

ql

b(n)
i

q(n)
j

q†l

c†k

(q(n)
j )†

(b(n)
i )†

≈
∑

i, j,k,l

ck

b(n)
i

ql

q(n)
j

q†l

(q(n)
j )†

c†k

(b(n)
i )†

≈
∑

i,k

ck

b(n)
i

c†k

(b(n)
i )†

=
∑

i,k

ck

b(n)
i

c†k

(b(n)
i )†

=
∑

i,k

ck

b(n)
i

c†k

(b(n)
i )†

≈ .

The first ≈ uses (3) for X �M Y , and the second equality uses associativity of the
bimodule actions. The third ≈ uses X is approximately inner over |Q|, Y is centrally
trivial over |Q| and (q(n)

l ) is a central sequence in |Q|, and the fourth≈ uses (10). The
fifth equality uses an argument similar to (11). The sixth equality is just isotopy, and
the final ≈ uses (3) for X �|Q| Y .
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Finally, since

= =
∑

j q†j

q j

and = ,

we have

=
∑

j

q†j

q j

=
∑

j
q†j

q j

= .

6 Calculation of �̃(M∞) for a non-Gamma finite depth II1 subfactor

In this section, we calculate χ̃(M∞) for the inductive limit II1 factor obtained from
iterating Jones’ basic construction for a finite depth finite index non-Gamma II1 sub-
factor N ⊆ M . These examples are motivated by [74].

Suppose N ⊆ M a finite depth, finite index II1 subfactor, and let C = NCN denote
the unitary fusion category of N–N bimodules generated by N MN . The results of
[79, Sects. 3 and 4] give a bijective correspondence between equivalence classes of
(bifinite) bimodules of M∞ which restrict to R ⊗ N -bimodules of the form Cop � C
and objects of the Drinfeld centerZ(C). The main goal of this section is to extend this
bijection to a fully faithful unitary tensor functor 
 : Z(C) → Bimfgp(M∞) such that
when N is non-Gamma,
 takes values in χ̃ (M∞) and is a braided unitary equivalence.
To do so, we rely on the Q-system realization language from [13] together with the
coend realization viewpoint of [44].

We begin this section with some basics on unitary fusion categories and subfactor
standard invariants.
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6.1 Basics on unitary fusion categories and subfactor standard invariants

A unitary fusion category is a unitary tensor category with only finitely many isomor-
phism classes of simple objects. A unitary fusion category C has three commuting
involutions †,∨, · , and the composite of any two is the third. Here, ∨ is the unique
unitary dual functor [67, 86] giving the canonical unitary spherical structure of C [54],
and we may define · := ∨† = †∨.
Definition 6.1 The Drinfeld center of a unitary fusion category C is Z(C) =
EndC−C(C), the Morita dual of Cmp � C acting on C by (amp � b) � c := b ⊗ c ⊗ a,
where Cmp is the monoidal opposite of C from Remark 4.9. Note that the unitary dual
functor ∨ gives a unitary tensor equivalence Cmp → Cop, the opposite fusion category
with the opposite arrows, but the same tensor product. It is useful in the subsections
below to identify Z(C) with EndCop�C(C) with the action (aop � b)� c := b⊗ c⊗ a.

Now Z(C) has another description in terms of pairs (z, σz) of an object z ∈ C
equipped with a half-braiding σz , where Z(C) acts on C via the forgetful functor
(z, σz) �→ z [19, Sects. 7.13 and 8.5]. Our convention for the half-braiding σz is that
the strands for objects in C pass over the z-strand:

σc,z :=
zc

Thus the braiding (z, σz) ⊗ (w, ρw) → (w, ρw) ⊗ (z, σz) in Z(C) is given by ρz,w.

Definition 6.2 There are many equivalent notions of the standard invariant for a finite
index II1 subfactor N ⊆ M . For this article, the standard invariant will mean the 2×2
unitary multitensor category C(N ⊆ M) of N–N , N–M , M–N , and M–M bimodules
generated by L2M under �, ⊕, and ⊆, with generating object N L2MM .

C(N ⊆ M) =
(

NCN NCM
MCN MCM

)

Observe that C(N ⊆ M) is multifusion if and only if N ⊆ M is finite depth. In this
case, the corners NCN and MCM of N–N and M–M bimodules generated by L2M
respectively are unitary fusion categories which are Morita equivalent, and thus share
the same Drinfeld center Z(C).

Remark 6.3 Suppose C and D are two unitary fusion categories and CMD is an inde-
composable unitary C−D bimodule category witnessing a Morita equivalence. Using
the internal hom [64] (see also [61, Appendix A]), we can form a 2 × 2 unitary
multifusion category by

( C M
Mop D

)

. (12)

For a simple X ∈ M, we get two Q-systems X ⊗ X = EndC(X) ∈ C and X ⊗ X =
EndD(X) ∈ D. The map Ad(X) : d �→ X ⊗d ⊗ X gives a unitary tensor equivalence
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between D and X ⊗ X − X ⊗ X bimodules in C. A similar result holds on the other
side.

Suppose now we have a fully faithful unitary tensor functor F : C → Bimfgp(N )

for a II1 factor N . Then the realization M := |X ⊗ X | is a II1 factor containing N , and
the standard invariant of N ⊆ M is unitarily equivalent to the 2×2 unitary multifusion
category (12) with generator |X | as an N–M bimodule. By Remark 5.7, we get a fully
faithful unitary tensor functor G : D → Bimfgp(M) from realization as

D Ad(X)−−−→ BimC(X ⊗ X)
| · |−→ Bimfgp(M).

We now give an important example of Remark 6.3 which will be used in this section
below.

Example 6.4 LetC be a unitary fusion category, and consider theC�Cmp−Z(C)Morita
equivalence bimodule C. One calculates that EndCmp�C(1C) = ⊕c∈Irr(C) c

mp � c,
which we call the symmetric enveloping Q-system after [70, 73]. This algebra object
first appeared in [53], and its realization was later shown to be equivalent to the
symmetric enveloping algebra/asymptotic inclusion by [56]. The infinite version of this
algebra object plays a very important role for the study of analytic properties of infinite
unitary tensor categories [80]. Identifying Cmp ∼= Cop via ∨, which will be useful in
the sequel, the symmetric enveloping Q-system is given by S := ⊕c∈Irr(C) c

op �
c. By Remark 6.3, Z(C) ∼= BimCop�C(S). On the other hand, one calculates that
EndZ(C)(1C) = I (1C), where I : C → Z(C) is the adjoint of the forgetful functor.

6.2 Q-system realization as a coend

Suppose C is a unitary fusion category and G : C → Bimfgp(N ) is a unitary tensor
functor, where N is a II1 factor. Given a Q-system Q ∈ C, the realization |G(Q)| is
a II1 multifactor (finite direct sum of II1 factors) which is a factor if and only if Q is
simple as a Q–Q bimodule in C.

By the Yoneda lemma, we have a canonical isomorphism of vector spaces

|G(Q)| := Hom(NN → N �N G(Q)N ) ∼=
⊕

c∈C
C(c → Q) ⊗C G(c).

We graphically represent elements of this tensor product by

∑

c∈Irr(C)
ξc

fc
c

c

Q

:=
∑

c∈Irr(C)

fc

Q

c

⊗C ξc

c

=
∑

c∈Irr(C)

fc ⊗C ξc.
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Here, the orange line represents the functorG◦ := Forget ◦G viewed as aW∗-algebra
object in Fun(C → Vect) [44, Prop. 2.18], where Forget : Bimfgp(N ) → Vect is
the forgetful functor. The shaded half of the diagram is read top to bottom, and the
tensorator G2

a,b is denoted by appending an orange trivalent vertex below.
Under this isomorphism of vector spaces, the multiplication and ∗-structure are

given by

( fa ⊗ ξa)(gb ⊗ ηb) =
∑

c∈Irr(C)
α∈ONB(a⊗b→c)

ηb

gb

ξa

fa
b

b

a

a

c

c

QQ

α†

α

( fa ⊗ ξa)
∗ =

ξa

fa
a

a

Q

,

and the unit is given by

1 =

Q

�N

; �N = 1 ∈ N NN .

Example 6.5 Suppose now N ⊆ M is a finite depth, finite index II1 subfactor. The
algebra M considered as an N–N bimodule N MN ∈ NCN is the canonical Q-system
X �M X corresponding to the generator X := N MM ∈ NCM as discussed in Example
5.3. The realization |N MN | is canonically ∗-isomorphic to M :

|N MN | = Hom(NN → N �N MN ) = Hom(NN → N �N M �M MN )

∼= Hom(MM → MM ) = M .

Now consider the Jones tower obtained by iterating Jones’ basic construction
defined inductively by Mn+1 := End((Mn)Mn−1) [23, 39]

M0 = N ⊆ M = M1 ⊆ M2 ⊆ M3 ⊆ · · · .

The II1 factor Mn is ∗-isomorphic to the realization of the Q-system (X �M X)�n ∼=
X alt�n � X alt�n which has multiplication and unit given by

n nn n

n n

n = idXalt�n ; X alt�n := X �M X �N · · · � X ?
︸ ︷︷ ︸

n tensorands

.
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Indeed,

Hom(NN → N �N X alt�n � X alt�n) ∼= End(N �N X alt�n
M or N ) ∼= Mn

by the multistep Jones basic construction [6, 77]. Another way to see this is to use
Remark 6.3; for example, the map Ad(X) takes the basic construction 〈M, N 〉 =
X �N X to (X �M X)�2 with the multiplicaiton as claimed.

As a coend realization, we have a canonical Frobenius reciprocity isomorphism

Mn =
⊕

c∈Irr(C)

C(c → X alt�n�X alt�n)⊗CG(c) ∼=
⊕

c∈Irr(C)

C(c�X alt�n → X alt�n)⊗CG(c).

(13)
Under this isomorphism, in the coend realization diagrammatic calculus, we can draw
the X alt�n horizontally, where the horizontal line should be viewed as slightly tilted
going from the bottom right to the top left, as indicated by the cyan arrows below.

fk k

c

∈ C(c � X alt�n → X alt�n) (14)

The multiplication, ∗, and unit in the realization |X alt�n � X alt�n| ∼= Mn are now
represented respectively by

∑

a,b,c∈Irr(C)
α∈ONB(a⊗b→c) ηb

gb

ξa

fa

b

b

a

a

c

c

nn n

α†

α ,

ξa

fa

a

a

nn

, and

n

=
�N

n

.

Here, the X alt�n horizontal strand is read bottom to top, i.e.,

n = Xalt�n =

X

X

X

...

X?

.
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6.3 The inductive limit factor as a realization

We now give a graphical representation of the inductive limit II1 factor M∞ from the
realized Jones tower from Example 6.5. We begin with a short remark about inductive
limits in the category of tracial von Neumann algebras and trace-preserving unital
∗-homomorphisms, followed by a brief review of construction of the hyperfinite II1
subfactor R ⊆ P with the opposite standard invariant as our finite depth, finite index
II1 subfactor N ⊆ M .

Remark 6.6 Consider the categorywhose objects are pairs (M, tr)whereM is a separa-
ble vonNeumann algebra and tr is a faithful normal tracial state, andwhosemorphisms
are trace-preserving unital ∗-homomorphisms (which are automatically normal by [8,
III.2.2.2] and [41, Prop. 9.1.1]). It is well known that this category admits inductive
limits. We briefly recall the construction for completeness and convenience of the
reader.

For an increasing sequence of tracial von Neumann algebras (Mn, trn), we get a
tracial von Neumann algebra lim−→ Mn by taking the bicommutant of

⋃

n Mn on its GNS
Hilbert space with respect to the limit trace, which is equipped with the faithful tracial
state lim−→ tr := 〈 ·�,�〉L2

⋃

n Mn
. For any tracial von Neumann algebra (N , tr) and

trace-preserving maps ϕn : Mn → N compatible with the inclusions, we get a unique
trace-preserving map ϕ :⋃n Mn → N , which extends uniquely to a trace-preserving
map lim−→ Mn → N .

Indeed, for a fixed x ∈ lim−→ Mn , let ξ ∈ L2N be the image of x� under the induced

map of GNS spaces L2(
⋃

n Mn) → L2N given by the extension of m� �→ ϕ(m)�.
Since there is a bounded sequence (xk) ⊆⋃n Mn with xk → x in ‖ · ‖2, we see

‖Lξn�‖2 = ‖ξn‖2 = ‖Jn∗ Jξ‖2 = lim ‖Jn∗ Jϕ(xk)�‖2 = lim ‖ϕ(xk)n�‖2
≤ lim sup ‖ϕ(xk)‖ · ‖n�‖2. = lim sup ‖xk‖ · ‖n�‖2.

Thus ξ is N -bounded, and necessarily of the form ϕ(x)� for some ϕ(x) ∈ N . Since
multiplication is jointly SOT-continuous on bounded subsets and ∗ is SOT-continuous
on bounded subsets of lim−→ Mn , it is easily verified that the above definition of ϕ(x)
extends ϕ to a unital ∗-homomorphism lim−→ Mn → N .

For the rest of this section, we fix a finite depth finite index II1 subfactor N ⊆ M .
Recall that its standard invariant can also be described as the subfactor planar algebra
P• whose box spaces are given by

Pk,+ := End(X alt�k) and Pk,− := End(X
alt�k

).

These finite dimensional vonNeumann algebras are equippedwith the canonical traces
which agree with the categorical traces on C(N ⊆ M).

We now rapidly recall how to construct a hyperfinite II1 subfactor with the opposite
standard invariant [62, 69]. For a detailed diagrammatic exposition (in the multifactor
setting), see [2, Sect. 5.1]. Since N ⊆ M is finite depth, the inductive limit tracial
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von Neumann algebras lim−→Pk,± are hyperfinite II1 factor. We have a trace-preserving

injection Pn,+ ↪→ Pn+1,− by adding an X strand to the left, giving a II1 subfactor

R := lim−→Pn,+ ⊆ lim−→Pn,− =: P.

It is well known that by the Ocneanu Compactness Theorem [46, Thm. 5.7.6], the
inclusion Rop ⊆ Pop has the same standard invariant as N ⊆ M [62, 69], and thus
R ⊆ P has the opposite standard invariant.

Letting C := NCN be the unitary fusion category generated by N MN , the above
construction gives a fully faithful unitary tensor functor F : Cop → Bimfgp(R). By [6,
Prop. 3.2], simple objects c ∈ Irr(C) correspond tominimal projections p ∈ M ′

0∩M2n
under the correspondence

M ′
0 ∩ M2n � p �−→ pMn ∈ Bimfgp(N ).

Now consider the Jones tower

R0 = R ⊆ P = R1 ⊆ R2 ⊆ R3 ⊆ · · ·

of our hyperfinite II1 subfactor R ⊆ P . Simple objects cop ∈ Irr(Cop) correspond to
the opposite projections pop ∈ R′

0 ∩ R2n ∼= (M ′
0 ∩ M2n)

op, which corresponds to the
bimodule popRn . As Rn is also isomorphic to lim−→Pk,± (here, ± depends on the parity
of n), we can realize the bimodule popRn graphically as an inductive limit:

F(cop) = popRn ∼= lim−→ C(c � X alt�k → X alt�k) (15)

under the isometric right Rn-inner product preserving inclusions

fk k

c
�−→ fk k

c

.

Indeed, popRn ∼= popRn fn ⊆ popR2n fn , where fn is the multistep Jones projection
[6, 77]. In diagrams, for ξ ∈ C(X alt�k+n → X alt�k+n) ⊆ Rn ↪→ R2n , we have

fn = 1

[M : N ]n/2

n n

�⇒ popξ fn = 1

[M : N ]n/2

k k
n

n

n

n
2n

ξ

p
.

It is now visibly evident how to implement the isomorphism (15).
Now, since we have two subfactors N ⊆ M and R ⊆ P with opposite standard

invariants, we get two fully faithful unitary tensor functors F : Cop → Bimfgp(R)

and G : C → Bimfgp(N ). Consider the symmetric enveloping Q-system S :=
⊕

c∈Irr(C) c
op � c ∈ Cop � C, which is simple as an S − S bimodule, giving the

realized II1 factor |(F � G)(S)|.
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Proposition 6.7 The realization |(F � G)(S)| is ∗-isomorphic to the inductive limit
II1 factor M∞ = lim−→ Mn.

Proof. Observe that by the Yoneda Lemma, we have canonical isomorphisms

|(F � G)(S)| ∼=
⊕

a,b∈Irr(C)

(Cop � C)(aop � b → S) ⊗C (F � G)(aop � b)

=
⊕

c∈Irr(C)

(Cop � C)(cop � c → S) ⊗C (F � G)(cop � c)

∼=
⊕

c∈Irr(C)

(F � G)(cop � c)

=
⊕

c∈Irr(C)

F(cop) ⊗C G(c)

Thus |(F � G)(S)| is ∗-isomorphic to the more general coend realization of F◦ and
G◦ from [44, Sect. 4] (see also [43, Ex. 5.33]), where as above, ◦ denotes taking the
underlying vector space. Using this identification,

⊕

c∈Irr(C)

F(cop) ⊗C G(c) ∼= lim−→
⊕

c∈Irr(C)

C(c � X alt�k → X alt�k) ⊗C G(c) ∼=
(13)

lim−→ Mn .

6.4 EmbeddingZ(C) into �̃(M∞)when N ⊆ M is finite depth

As in Sect. 6.3 above, for this section, we fix a finite depth, finite index II1 subfactor
N ⊆ M , and let C = NCN denote the unitary fusion category of N–N bimodules
generated by N MN . In this section, we extend this bijection to a unitary tensor functor

 : Z(C) → Bimfgp(M∞) such that when N is non-Gamma, 
 takes values in
χ̃(M∞) as is braided. To do so, we use the description of the inductive limit II1 factor
M∞ = |(F � G)(S)| obtained from iterating the Jones basic construction afforded
by Proposition 6.7 for the fully faithful unitary tensor functors F : Cop → Bimfgp(R)

from (15) and G : C → Bimfgp(N ) associated to the subfactor N ⊂ M .
First, applying [13, Cor. C] in the W∗ setting to the fully faithful unitary tensor

functor F � G : Cop � C → Bimfgp(R ⊗ N ), bimodule realization gives a fully
faithful tensor functor from BimCop�C(S) → Bimfgp(M∞). (See also Remark 5.7
above.) Explicitly, on an S − S bimodule X =⊕a,b∈Irr(C) Xab ⊗ (aop � b), we have

|X | = Hom

⎛

⎝(R ⊗ N )R⊗N →
⊕

a,b∈Irr(C)

Xab ⊗ (F(aop) ⊗ G(b)
)

R⊗N

⎞

⎠

∼=
⊕

a,b∈Irr(C)

Xab ⊗ F(aop) ⊗ G(b).

Using the well-known equivalence BimCop�C(S) ∼= Z(C) from Example 6.4, we get
the following proposition.
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Proposition 6.8 Bimodule realization gives a fully faithful unitary tensor functor 
 :
Z(C) → Bimfgp(M∞).

We now want an explicit model for 
(z, σz) for each object (z, σz) ∈ Z(C). To do
so, we give an explicit description of the S − S bimodule Xz ∈ BimCop�C(S) under
the unitary tensor equivalence.

Definition 6.9 Given (z, σz) ∈ Z(C), we define Xz :=⊕a,b∈Irr(C) C(b → z ⊗ a) ⊗
(aop � b). The left S-module structure of Xz is given as follows. First, we observe

S ⊗Cop�C Xz =
⊕

a,b,c∈Irr(C)

C(b → z ⊗ a) ⊗ ((cop ⊗ aop) � (c ⊗ b))

=
⊕

a,b,c,d,e∈Irr(C)

C(b → z ⊗ a) ⊗ Cop(dop → cop ⊗ aop)

⊗ C(e → c ⊗ b) ⊗ (dop � e)

=
⊕

a,b,c,d,e∈Irr(C)

C(b → z ⊗ a) ⊗ C(c ⊗ a → d) ⊗ C(e → c ⊗ b)

⊗ (dop � e)

The left action map is given component-wise by

z a

b

f ⊗
c a

d

g ⊗
c b

e

h �−→

g

h

f

e

c

b

a

z d

The right S-module structure is defined similarly. Observe

Xz ⊗Cop�C S =
⊕

a,b,c∈Irr(C)

C(b → z ⊗ a) ⊗ (aop ⊗ cop) � (b ⊗ c)

=
⊕

a,b,c,d,e∈Irr(C)

C(b → z ⊗ a) ⊗ C(a ⊗ c → d) ⊗ C(e → b ⊗ c)

⊗ (dop � e),
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and the right action map is given component-wise by

z a

b

f ⊗
a c

d

g ⊗
b c

e

h �−→

g

f

h
e

b

c

a

z d

We now describe the realization

|Xz | = lim−→
⊕

a,b∈Irr(C)

C(b → z ⊗ a) ⊗C C(a � X alt�n → X alt�n) ⊗C G(b). (16)

First, note that by semisimplicity and Frobenius reciprocity, we can alternatively
describe the first two tensorands in the direct sum for |Xz | as
⊕

a∈Irr(C)

C(b → z ⊗ a) ⊗C C(a � X alt�n → X alt�n)

∼=
⊕

a∈Irr(C)

C(z � b → a) ⊗C C(a → X alt�n � X alt�n)

∼= C(z � b → X alt�n � X alt�n)

∼= C(b � X alt�n → z � X alt�n)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(17)
We may thus graphically represent elements in a dense subspace of |Xz | as

⊕

b∈Irr(C)

n n
z

ξb

fb

b

b
∈ lim−→

⊕

b∈Irr(C)

C(b � X alt�n → z � X alt�n) ⊗C G(b)

where as in (14), the horizontal line in the top half of the diagram should be viewed
as slightly tilted going from the bottom right to the top left, as indicated by the cyan
arrows above. The right M∞-action on |Xz | is the obvious diagrammatic one, and the
left one is similar, but uses the half-braiding for z:
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( fa ⊗ ξa) � (gb ⊗ ηb) :=
∑

c∈Irr(C)
α∈ONB(a⊗b→c)

z

n n n

ηb

gb

ξa

fa

b

b

a

a

c

c

α†

α
.

The M∞-valued inner product of |Xz | is given by

〈 fa ⊗ ξa |gb ⊗ ηb〉|Xz |
M∞ :=

∑

c∈Irr(C)
α∈ONB(a⊗b→c)

z

n n n

ηb

gb

ξa

fa

b

b

a

a

c

c

α†

α
.

By the definition of the realization (16) for |Xz | and |Xw| and the right and left S-action
on Xz and Xw respectively, the tensorator 
2

z,w is given on |Xz | �M∞ |Xw| by

n n

z

fa

ξb

a

b
b

�
M∞

n n

w

gc

ηd

c

d
d


2
z,w�−→

∑

e, f ∈Irr(C)
α∈ONB(a⊗c→e)
β∈ONB(b⊗d→ f )

z
w

n n n

ηd

gc

ξb

fa
c

c

a

a

e

d

d

b

b

f
f

β†

β

α†

α

←→
(17)

∑

f ,β

w

z

n n

ηd

g′
b

ξb

f ′
b

n

d

d

b

b

f
f

β†

β

under the semisimplicity isomorphism (17).
Wenowshow that the imageof the unitary tensor functor
 : Z(C) → Bimfgp(M∞)

lies in χ̃ (M∞) when N is non-Gamma.

Lemma 6.10 Since N ⊆ M is finite depth, there is a k > 0 such that every c ∈ Irr(C)

is isomorphic to a summand of (X � X))�k = X alt�2k . There is a finite subset
{ei }mi=1 ⊆ Cop(X alt�2k → z � X alt�2k) such that

idz�Xalt�2k = 2k

z
=

m
∑

i=1

2k
2k

2k
z z

ei e†i
. (18)
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Proof For each c ∈ Irr(C), we pick

• a finite family of isometries {ιic : c → X alt�2k}mc
i=1 such that (ιic)

† · ιic = 1c and
∑

c
∑mc

i=1 ιic · (ιic)
† = 1Xalt�2k , and

• an orthonormal basis {αc} ⊆ C(c → z � X alt�2k) under the isometry inner
product, i.e., α†

c · α′
c = δαc=α′

c
idc.

Then we have (reading diagrams right to left)

2k

z
=
∑

c∈Irr(C)

∑

αc

2k

z

2k

z

αc α
†
cc

=
∑

c∈Irr(C)

∑

αc

mc
∑

i=1

2k

z

2k

z
α
†
c

αc (ιic)† ιicc 2k
.

So we define our set {ei } to be⋃c∈Irr(C){αc · (ιic)
†}mc

i=1.

Proposition 6.11 Let {ei } be as in (18) above. For n ≥ 0, define subsets {bi } and {b(n)
i }

of |Xz | by

bi :=

2k2k
z

�N

ei

1C
1C b(n)

i :=

2k2k

z
2n2n

�N

ei

1C
1C

. (19)

Then {bi } is an |Xz |-basis and {b(n)
i } is an approximately inner |Xz |M∞ -basis. This

implies |Xz | is approximately inner.
Proof. The first claim is immediate from (18). Similarly, {b(n)

i } is an |Xz |M∞ -basis

for every fixed n, and moreover, [b(n)
i , a] = 0 for all a ∈ M2n ⊆ M∞. Since M∞ =

lim−→ Mn , for a ∈ M∞, ‖a − EMn (a)‖2 → 0 (e.g., see [2, Lem. B.7]). Then for all
a ∈ M∞,

‖ab(n)
i − b(n)

i a‖2 ≤ ‖(a − EMn (a))b(n)
i ‖2 + ‖EMn (a)b(n)

i − b(n)
i EMn (a)‖2

+ ‖b(n)
i (EMn (a) − a)‖2

≤ 2‖b(n)
i ‖2‖EMn (a) − a‖2 −→ 0.

Assumption 6.12 For the remainder of this section, we now assume the II1 factor N
in our finite index finite depth subfactor N ⊆ M is non-Gamma. This implies M is
also non-Gamma by [76, Prop. 1.11].

Lemma 6.13 Let {bi } be as in (19). For each central sequence (an) ⊆ N∞, ‖anbi −
bian‖2 → 0.
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Proof. Since N ⊆ M is finite depth and N is non-Gamma, by [74, Prop. 3.2(3)], every
Jones basic construction Mn has spectral gap in M∞ for every n. This implies that
‖an − EM ′

2k+1∩M∞(an)‖2 → 0. Since [EM ′
2k+1∩M∞(an), bi ] = 0, we have

‖anbi − bian‖2 ≤ ‖(an − EM ′
2k+1∩M∞(an))bi‖2

+ ‖EM ′
2k+1∩M∞(an)bi − bi EM ′

2k+1∩M∞(an)‖2
+ ‖bi (EM ′

2k+1∩M∞(an) − an)‖2
≤ ‖bi‖2 · ‖an − EM ′

2k+1∩M∞(an)‖2
+ ‖an − EM ′

2k+1∩M∞(an)‖2 · ‖bi‖2 −→ 0.

Proposition 6.14 |Xz | is centrally trivial.
Proof. By Proposition 4.4, we must show that for each central sequence (an) ⊆ M∞,
‖anx − xan‖2 → 0, for every x ∈ |Xz |. Suppose (an) is such a central sequence. Let
{bi } be the |Xz |M∞ -basis as in (19), and let K > 0 such that ‖bi‖2 ≤ K for all i . By
Lemma 6.13,

‖anx − xan‖2

=
∥

∥

∥

∥

∥

an
∑

i

bi 〈bi |x〉|Xz |
M∞ −
∑

i

bi 〈bi |x〉|Xz |
M∞an

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

∑

i

(anbi − bian)〈bi |x〉|Xz |
M∞

∥

∥

∥

∥

∥

2

+
∥

∥

∥

∑

bi
(

an〈bi |x〉|Xz |
M∞ − 〈bi |x〉|Xz |

M∞an
)∥

∥

∥

2

≤ K‖x‖2 ·
∑

i

‖anbi − bian‖2 + K
∑

i

∥

∥

∥an〈bi |x〉|Xz |
M∞ − 〈bi |x〉|Xz |

M∞an
∥

∥

∥

2

−→ 0.

Combining the statements of Propositions 6.11 and 6.14, our unitary tensor functor

 : Z(C) → Bimfgp(M∞) lands in χ̃ (M∞).

Proposition 6.15 The unitary tensor functor 
 : Z(C) → χ̃ (M∞) is braided, i.e., for
z, w ∈ Z(C), the following diagram commutes

|Xz | �M∞ |Xw| |Xw| �M∞ |Xz |

|Xz⊗w| |Xw⊗z |

u|Xz |,|Xw |


2
z,w 
2

w,z


(σz,w)

(20)

Proof Let {b(n)
i } ⊆ |Xz | and {c j } ⊆ |Xw| be approximately inner |Xz |M∞ -basis and

|Xw|M∞-basis respectively as in (19). By (5), u|Xz |,|Xw | = limn
∑

i, j |c j �b(n)
i 〉〈b(n)

i �
c j |. For x = ( fa ⊗ ξa) ∈ |Xz | and y = (gb ⊗ ηb) ∈ |Xw| with fa ∈ C(X alt�2t →
a � X alt�2t ) and gb ∈ C(X alt�2t → b � X alt�2t ) for t sufficiently large, we have
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∑

i, j


2
w,z(|c j � b(n)

i 〉〈b(n)
i � c j |x � y〉|Xz |�M∞|Xw |

M∞ )

=
∑

i, j

∑

c∈Irr(C)
α∈ONB(a⊗b→c)

z

w

2k

2n

2k c j

bi

c†j

b†i
fa gb

ξa ηb

a

a

b

b

c
c

α†

α

=
∑

i, j

∑

c∈Irr(C)
α∈ONB(a⊗b→c)

z

w

2k

2n

2k

bi

c j c†j

b†i
fa gb

ξa ηb

a

a

b

b

c
c

α†

α
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=
∑

c∈Irr(C)
α∈ONB(a⊗b→c)

2t
z

w

fa gb

ξa ηb

a

a

b

b

c
c

α†

α

=
∑

c∈Irr(C)
α∈ONB(a⊗b→c)

2t

w

z fa gb

ξa ηb

a

a

b

b

c
c

α†

α

= 
(σz,w) · 
2
z,w(x � y).

Thus (20) commutes on a dense subspace of |Xz | �M∞ |Xw|, and the result follows.

Corollary 6.16 Let C be a braided fusion category, then there exists a II1 factor M
with a braided fully faithful monoidal functor C ↪→ Z(C) → χ̃(M).

6.5 Calculation of �̃(M∞)when N ⊆ M is non-Gamma and finite depth

As in Sect. 6.3 above, we suppose N ⊆ M is a fixed finite depth finite index II1
subfactor.We also continueAssumption 6.12 that N is non-Gamma.We nowprove our
main result, which uses a technical result on centralizers in braided tensor categories
in Sect. 6.6 below.

Theorem 6.17 Let N ⊆ M be a finite depth finite index inclusion of non-Gamma
II1 factors. Let M∞ denote the inductive limit II1 factor from the Jones tower, and let
C = NCN be the evenpart of the standard invariantC(N ⊆ M). Then χ̃ (M∞) ∼= Z(C).

Proof Consider our construction of 
 : Z(C) → χ̃(M∞). Let L := I (1C) ∈ Z(C)

be the canonical Lagrangian algebra, where I : C → Z(C) is adjoint to the forgetful
functor. By Example 6.4, the Q-systems L ∈ Z(C) and S ∈ Cop � C are related as in
Remark 6.3, i.e., S = X ⊗ X and L = X ⊗ X for X = 1C in the Morita equivalence
Cop � C − Z(C) bimodule category C. This result first appeared in [36]; see also
[58]. Thus we can identify |
(L)| with the basic construction of R ⊗ N ⊆ M∞
by the discussion in Example 6.5. But this implies that |
(L)| is Morita equivalent
to R ⊗ N , and in particular, by Example 4.16, χ̃(|
(L)|) = χ̃(R ⊗ N ) is trivial.
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By Proposition 5.16, χ̃ (M∞)loc
(L)
∼= χ̃(|
(L)|). This implies no non-trivial simple

object in χ̃(M∞) centralizes 
(Z(C)), since the free module functor x �→ x ⊗ L for
x ∈ 
(Z(C))′ ⊆ χ̃ (M∞) is fully faithful. Thus 
(Z(C))′ ⊆ χ̃ (M∞) is trivial. Since
Z(C) is non-degenerately braided by [58], by Proposition 6.21 in the next subsection,

(Z(C)) = χ̃ (M∞).

Remark 6.18 Kawahigashi studied a relative version of Connes’ χ(M) and Jones κ

invariant for finite index II1 subfactors N ⊆ M [48, 49]. In particular, Kawahigashi
provides bounds and computations for relativeχ for finite depth finite index subfactors
of the hyperfinite II1 factor. For a given finite depth hyperfinite subfactor N ⊆ M ,
there exists a non-Gamma inclusion A ⊆ B with the same standard invariant [78].
By [74, Thm. 4.2], χ(A∞) ∼= χ(N ⊆ M). By Theorem 6.17 and Example 4.11,
χ(N ⊆ M) ∼= Inv(Z(C(N ⊆ M))), the group of isomorphism classes of invertible
objects of the Drinfeld center of C(N ⊆ M).

Remark 6.19 Suppose N ⊆ M is a finite index inclusion of non-Gamma II1 factors
with A2n Jones–Temperley–Lieb standard invariant. Then Z(C(N ⊆ M)) is a unitary
modular tensor category with no non-trivial invertible objects. This distinguishes the
corresponding M∞ factors pairwise, but they all have the same trivial Connes’ χ

invariant. Popa considers these examples of II1 factors with trivial χ which are not
s-McDuff in [74], answering a question of Connes in the negative. (Recall a II1 factor
is s-McDuff if it is of the form R ⊗ N for N non-Gamma). This leads us to ask the
natural extension of Connes question.

Question 6.20 If M is McDuff and χ̃(M) is trivial, is M s-McDuff?

6.6 A technical result on centralizers in braided tensor categories

The goal of this section is to prove the following technical result for braided unitary
tensor categories. We expect this result holds in the greater generality of semisimple
ribbon tensor categories; see the paragraph before [59, Prop. 2.5] for more details in
this direction.

Proposition 6.21 Suppose C is an arbitrary braided unitary tensor category and
D � C is a non-degenerately braided proper fusion subcategory. There exists
a ∈ Irr(C)\ Irr(D) which centralizes D.

Let C be a braided unitary tensor category. Let trC denote the (unnormalized) cat-
egorical trace corresponding to the unique unitary spherical structure from minimal
solutions to the conjugate equations [54]. (The normalization is trC(idc) = dim(c) for
each c ∈ C.) For each a ∈ Irr(C) define a function γa : Irr(C) → C by

γa(b) := 1

db
trC(σb,aσa,b).

Then γa(b) extends linearly to a character on the fusion ring, i.e.

γa(b)γa(c) =
∑

d

Nd
bcγa(d).
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Furthermore, characters are related by the following equation:

γa(c)γb(c)

dc
=
∑

e

de
dadb

Nc
abγe(c). (21)

Suppose D is a non-degenerately braided full fusion subcategory of C (which is
thus modular by unitarity). Then by non-degeneracy, {γa}a∈Irr(D) forms a complete
set of characters of K0(D). But any b ∈ Irr(C) also defines a character γb, and thus
γb|Irr(D) = γ f (b) for some uniquely defined f (b) ∈ Irr(D). Thus we have a function
f : Irr(C) → Irr(D).
Now we define the fusion hypergroup of a semisimple unitary tensor category C as

the fusion algebra K0(C) with the distinguished basis λa = [a]
da
. We then have

λaλb =
∑

c

Mc
abλc where Mc

ab := dc
dadb

Nc
ab.

Lemma 6.22 The assignment f (λa) := λ f (a) extends to a homomorphism of fusion
algebras K0(C) → K0(D).

Proof For x ∈ Irr(D) and a, b ∈ Irr(C), we compute d−1
x γa(x)γb(x) in two ways.

First, we can apply (21) and then swap γc with γ f (c), or we can swap γa, γb with
γ f (a), γ f (b) respectively and then apply (21). Equating these two computations gives
the equality

∑

c∈Irr(C)

dc
dadb

Nc
abγ f (c)(x) =

∑

y∈Irr(D)

dy
d f (a)d f (b)

N y
f (a) f (b)γy(x),

which implies

∑

y∈Irr(D)

⎛

⎝

∑

c∈ f −1(y)

Mc
ab − My

f (a) f (b)

⎞

⎠ γy(x) = 0. (22)

Since (22) holds for all x ∈ Irr(D), we have

∑

y∈Irr(D)

⎛

⎝

∑

c∈ f −1(y)

Mc
ab − My

f (a) f (b)

⎞

⎠ γy = 0,

which is an equation in the space of functions on Irr(D). But since {γy}y∈Irr(D) is a
complete set of characters for the fusion algebra K0(D), it forms a basis for the space
Fun(Irr(D) → C) (where we idenitfy Fun(Irr(D) → C)with the dual space K0(D)∨),
and is thus linearly independent. This immediately implies

∑

c∈ f −1(y)

Mc
ab = My

f (a) f (b) ∀ y ∈ Irr(D).
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We then see that

f (λa) f (λb) = λ f (a)λ f (b) =
∑

y

My
f (a) f (b)λy =

∑

y

⎛

⎝

∑

c∈ f −1(y)

Mc
ab

⎞

⎠ λy

=
∑

c

Mc
abλ f (c) = f (λaλb)

as claimed.

Proof of Proposition 6.21 We prove the contrapositive. That is, we will show that if C
is a braided unitary tensor category and D ⊆ C is a non-degenerately braided fusion
subcategory, then the absence of a nontrivial centralizing simple object forD in Irr(C)

implies C = D.
First, by [59, Prop. 2.5], c ∈ Irr(C) centralizesD if and only if γc|D = γ f (c) = γ1D .

Suppose that the only c ∈ Irr(C) for which f (c) = 1D is c = 1C . Let τC be
the functional on K0(C) which picks off the coefficient of the identity object, and
similarly define τD on K0(D). Note that τC, τD are positive definite on the ∗-
algebras K0(C), K0(D) respectively. For any η ∈ K0(C), our hypothesis implies
τ(η) = τ( f (η)), where we have extended f linearly. But then f : K0(C) → K0(D)

is injective, since if f (η) = 0, then 0 = f (η∗) f (η) = f (η∗η), and thus 0 =
τD( f (η∗η)) = τC(η∗η), which implies η = 0. In particular,

rank(C) = dim(K0(C)) ≤ dim(K0(D)) = rank(D).

But as D ⊆ C, we must have D = C.

7 Open problems

We end our article by advertising the following list of open problems related to χ̃(M).
In this section, we assume M is a separable II1 factor. The first question below was
asked by Popa when he introduced χ̃(M) and remains open.

Question 7.1 [68, Rem. 2.7] If M XM ∈ Bimfgp(M) is a dualizable (bifinite) M–M
bimodule which is approximately inner and centrally trivial, is its conjugate M XM

also approximately inner and centrally trivial?

Our local extension result Theorem B is similar in spirit to Connes’ exact sequence
to compute χ̃(M), but not an exact analog. Popa discusses the possible existence of a
categorical analog of Connes’ short exact sequence.

Question 7.2 [68, Rem. 2.7] If N ⊆ M is a finite index II1 subfactor, is there a
categorical analog of Connes’ short exact sequence to compute χ̃(M) in terms of N
and the categorical data of the standard invariant?

The next two problems were suggested by Yasuyuki Kawahigashi based on the
analogy with conformal nets afforded by the local extension result Theorem B.
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Question 7.3 (Kawahigashi) Do the SU (N )k modular tensor categories from the
WZW models arise as χ̃ (M) for some finite von Neumann algebra M?

Question 7.4 (Kawahigashi) Is there a quantity measuring the size of χ̃ (M), analo-
gous to the μ-index

∑

X d2X for a conformal net?

Based on Kawahigashi’s questions above, we ask the following.

Question 7.5 Is the braiding on χ̃ (M) always non-degenerate?

The next question was alluded to in the introduction after Theorem A based on the
existence of the braiding on χ̃ (M) and the local extension result Theorem B.

Question 7.6 Is there a 3-category whose objects are II1 factors M such that
End(idM ) ∼= χ̃ (M)?

At this time, it may be more tractable to develop more robust evidence for the
existence of such a 3-category. In particular, for conformal nets with a group action,
the fixed point DHR braided tensor category can be related to the original braided
tensor category by the categorical process of gauging [11, 60]. This can be understood
as arising from the 3-categorical structure of conformal nets [5] by the techniques
developed in [45].

Question 7.7 Suppose G is a finite group acting outerly on a II1 factor M such that
the action is neither approximately inner nor centrally trivial. Is the braided tensor
category χ̃(MG) the gauging of χ̃ (M)?
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