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Abstract

We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget
constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade,
several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value
of the buyer, while eliciting each seller’s true cost for providing their service. These solutions predominantly
take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then
use randomization to determine which subset of services will be procured and how much each of the chosen
providers will be paid, ensuring that the total payment does not exceed the buyer’s budget. Our main result
in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform
the previously proposed auctions in multiple ways.

First, our solutions take the form of descending clock auctions, and thus satisfy a list of very appealing
properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner
privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous
results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an
affirmative answer to one of the main open questions in this literature, asking whether a deterministic
strategyproof auction can achieve a constant approximation when the buyer’s valuation function is submodular
over the set of services. In addition to this, we also provide the first deterministic budget-feasible auction
that matches the approximation bound of the best-known randomized auction for the class of subadditive
valuations. Finally, using our method, we improve the best-known approximation factor for monotone
submodular valuations, which has been the focus of most of the prior work.

1 Introduction

A decade ago, the seminal paper of Singer [32] was the first to analyze the following important mechanism design
problem: a buyer with a hard budget constraint, B, is looking to acquire some services (or goods) from a group
of sellers, N . The buyer has a value function v(S) for receiving the services of each subset of sellers S ⊆ N , and
her goal is to maximize this value, but each seller i ∈ N has a private cost ci for providing the service and would
need to be compensated accordingly. The objective in this problem is to design a polynomial-time auction that
determines which subset of services, S, the buyer should acquire and what payment pi each seller i ∈ S should
receive, while ensuring budget feasibility, i.e.,

∑
i∈S pi ≤ B, and strategyproofness, i.e., that reporting their true

costs is the optimal strategy for all sellers. The main result of Singer [32] was a prior-free auction (i.e., one that
has no prior information regarding the sellers’ costs) that achieves a constant approximation of the optimal value
when the buyer’s valuation function is monotone submodular.

Since then, this problem has received a lot of attention due to its distinctive combination of practical and
theoretical appeal. From a practical standpoint, budget-feasible procurement captures a multitude of application
domains, ranging from crowdsourcing markets [34, 2], to influence maximization [33] and data acquisition [30, 21].
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From a theoretical standpoint, this problem stands out because, unlike most mechanism design problems, budget
feasibility imposes a non-trivial constraint on the payments that the mechanism can use, which introduces
new challenges. A list of impressive results managed to overcome many of these challenges, leading to several
prior-free budget-feasible auctions for instances where the buyer’s valuations are additive [10, 2, 20], monotone
submodular [10, 2, 22], non-monotone submodular [1, 8], and even subadditive [13, 8].

All these results take the form of sealed-bid auctions: the sellers are asked to reveal their private costs to the
auctioneer, who then uses this information to decide the outcome. Although sealed-bid auctions are ubiquitous in
the mechanism design literature, they have significant shortcomings. For example, they lack transparency, so the
bidders need to trust that the auctioneer will not mishandle their private information and will faithfully implement
the auction protocol. Furthermore, even if a sealed-bid auction is provably strategyproof, in practice bidders often
lie to such auctions (see, e.g., [24]), partly because their strategyproofness may be hard to verify. Motivated by
this discrepancy, Li [26] recently introduced a more demanding notion, known as obvious strategyproofness. In
an obviously strategyproof auction, the bidders can trivially verify that they cannot benefit by manipulating
the auction, and experimental evidence verifies that their behavior in practice conforms with the rules of these
auctions. This also implies other sought-after incentive properties, such as weak group strategyproofness (i.e., no
coalition of bidders can misreport collectively and all benefit).

In search for a practical alternative to sealed-bid auctions, Milgrom and Segal [29] recently identified a
particularly noteworthy class of obviously strategyproof auctions, known as clock auctions. In contrast to sealed-
bid auctions, budget-feasible clock auctions take place over multiple rounds: in each round they offer a price to
each bidder and the bidders have the opportunity to reject the price offered to them and permanently exit the
auction. The price offered to each bidder weakly decreases over time, and the auction terminates when the prices
offered to the bidders that remain active add up to no more than the budget, at which point the buyer acquires the
services of the active bidders at the last price that they were offered. Apart from being obviously strategyproof,
these auctions are highly transparent and do not require that the bidder trust the auctioneer. Motivated by these
highly appealing properties, in this work we set out to design budget-feasible clock auctions.

Another important limitation of the previously proposed budget-feasible mechanisms is that the vast majority
of them heavily rely on randomization, making it unlikely that they would be used in practice: on one hand,
bidders can find the notion of randomization and its impact confusing and, on the other hand, it can be hard to
verify that the resulting outcome is indeed the product of the prescribed randomization [28, 23]. Furthermore,
the performance bounds of randomized mechanisms are guaranteed only in expectation rather than ex-post.
However, the design of deterministic budget-feasible auctions for submodular valuations has remained elusive, with
Amanatidis et al. [1] pointing to the problem of “obtaining deterministic, budget-feasible, O(1)-approximation
mechanisms—or showing that they do not exist” as the most intriguing open problem in this line of work.

1.1 Our Results In this paper we propose a new method for designing budget-feasible auctions that
simultaneously addresses many of the shortcomings of previous mechanisms. First, our results take the form of
clock auctions, thus avoiding the shortcomings of sealed-bid auctions and leading to solutions that are much more
likely to be used in practice. Second, they are deterministic, making them even more practical and guaranteeing
their performance ex-post. Finally, our auctions either beat or match the best known approximation bounds by
any other polynomial time strategyproof auction. The approximation guarantees that we achieve through our
deterministic clock auctions are:

• monotone submodular valuations (Section 3): our deterministic approximation of 4.75, improves the
best known randomized approximation of 5 by Jalaly and Tardos [22].

• non-monotone submodular valuations (Section 4): our deterministic approximation of 64, improves
the best known randomized approximation of 505 by Amanatidis et al. [1].

• subadditive valuations (Section 5): our deterministic approximation of O(log(n)/ log log(n)) matches
the best known randomized approximation by Bei et al. [8] and improves the best known deterministic
approximation of O(log3(n)) by Dobzinski et al. [13].

As a corollary, we resolve the open question posed by Amanatidis et al. [1] in the affirmative, by providing the
first deterministic mechanism that combines strategyproofness with a constant factor approximation for instances
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where the buyer valuations are submodular. In fact, rather than using a sealed-bid auction, we achieve this result
using the more restrictive class of clock auctions.

Our method for designing these budget-feasible clock auctions proceeds by initially making a pessimistic
estimate regarding the quality of the optimal solution and determining the first set of prices to offer to the
bidders, aiming to achieve that pessimistic estimate. If some budget-feasible group of bidders that accepted their
prices is sufficient to satisfy the pessimistic estimate, this group is temporarily set aside. Then, the estimate is
updated to be slightly more ambitious, and a new set of prices is offered to bidders, except the ones that were set
aside. If this more ambitious estimate is achieved by a new budget-feasible group of bidders, then the set-aside
bidders are replaced by the new group, and the process continues until the auction reaches an estimate that it is
unable to achieve. By setting aside the group of bidders that achieved the latest estimate, these auctions secure
that estimate before attempting to reach a more ambitious estimate. Meanwhile, these estimates are used as a
guide for gradually more demanding pricing, so the process that leads to the discovery of the final prices has
a primal-dual flavor. When designing our auctions the pace at which we raise the estimate balances a subtle
tradeoff between increasing it slowly enough to avoid overshooting the target value we wish to reach, yet quickly
enough to limit the loss from optimal bidders who are eliminated in each phase due to overlapping value with
non-optimal bidders.

Clock auctions and algorithms. All clock auctions automatically satisfy multiple very appealing prop-
erties, like obvious-strategyproofness, weak group strategyproofness, transparency, simplicity, and unconditional
winner privacy, which are, in general, not satisfied by sealed-bid auctions [29]. An exciting implication is that
this reduces the problem of designing practical auctions to the purely algorithmic problem of designing price in-
crease trajectories without worrying at all about incentives. For instance, note that this paper requires no proofs
regarding strategyproofness: we just design algorithms that follow the format of clock auctions and analyze their
worst-case approximation guarantees. In fact, Milgrom and Segal [29] proved that clock auctions correspond to
a specific class of backward greedy algorithms. Specifically, every budget-feasible clock auction corresponds to a
multi-round greedy algorithm that, in each round, summarizes the “attractiveness” of each bid using a score that
depends only on its cost, and then myopically eliminates the active bidder with the lowest score. This process
continues until the algorithm terminates and accepts all remaining bidders. Therefore, designing clock auctions
is equivalent to designing backward greedy algorithms.

This connection between clock auctions and backward greedy algorithms illuminates some non-trivial design
challenges that we had to overcome. Although there are several classic results that use forward greedy algorithms
for approximately maximizing a submodular function1, we are not aware of any prior work that achieves
comparable guarantees using backward greedy algorithms. A crucial difference is that forward greedy algorithms
proceed by iteratively adding bidders to a set of accepted bidders, A, and they can myopically decide which
bidder i to add based on the marginal increase in value relative to the set of accepted bidders up to this point,
i.e., v(A ∪ {i})− v(A). On the other hand, backward greedy algorithms need to myopically eliminate the “least
appealing” bidders. The main challenge is that it is hard for backward greedy algorithms to gauge the marginal
contribution of each bidder relative to the accepted bidders since it cannot foresee who the accepted bidders are
going to be. The backward greedy algorithm corresponding to our clock auction functions as follows: in each
round we set a gradually more demanding threshold regarding what would make each bidder “acceptable” and
then reject the first bidder who does not pass that threshold.

Overcoming the dependence on randomization. Prior work leverages randomization in two fundamen-
tal ways. First, many of the mechanisms gradually construct two (overlapping) subsets of bidders and then choose
which one of these two sets will be accepted, uniformly at random. This guarantees that the expected value of the
outcome will be at least half of the maximum value among the two subsets, and it, crucially, maintains the mono-
tonicity of the allocation rule, thus not compromising the incentives of the mechanism (see, e.g., [10, 22] for more
details). Second, some recent mechanisms randomly sample some of the bidders, and then use the values of the
sampled bidders to determine an estimate of the optimal value [8, 1]. Then, using this estimate as a benchmark,
they approach the non-sampled bidders and offer them take-it-or-leave-it prices. Deterministic auctions cannot
use random sampling to estimate the optimal value, but our auctions overcome this issue by gradually adjusting
the estimate until they reach a reasonable approximation. Our results are in contrast to previous work that has

1In fact, many of the known strategyproof budget-feasible auctions for submodular valuations closely resemble these classic results,
and are based on forward greedy algorithms.
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uncovered simple instances where the performance of deterministic clock auctions is asymptotically different than
that of randomized ones [14].

1.2 Related Work
Budget-feasible clock auctions. Prior to this work, there were only a few examples of budget-feasible clock

auctions in the literature. Ensthaler and Giebe [16] and Jarman and Meisner [23] focused on the very special case
where v(S) = |S|. Badanidiyuru et al. [5] and Balkanski and Hartline [7] designed budget-feasible posted-price
mechanisms, which are a special type of clock auction, but the former only obtained a O(log n) approximation
for monotone submodular valuations and the latter considered a Bayesian setting where the costs are drawn
from a prior distribution known to the auctioneer. All other known budget-feasible mechanisms take the form
of sealed-bid auctions, and the vast majority of these auctions cannot be implemented as clock auctions, with
just a few exceptions [8, 20, 1]. The mechanisms in [8, 1] rely on randomization by using randomized sampling
to learn the costs of some subset of the bidders and then use this information to determine posted prices for the
remaining bidders. We have also verified that the two auctions in [20] can be implemented as clock auctions, but
their guarantees are restricted to the case of additive valuations.

Other budget-feasible auctions. Starting from the results of Singer [32] several budget-feasible auctions
have been proposed. For the special case of additive valuations, Chen et al. [10] improved the approximation by
providing a 2 +

√
2-approximate deterministic mechanism and a 3-approximate randomized mechanism. They

also proved a lower bound of 2 for any randomized mechanism and a lower bound of 1+
√
2 for any deterministic

one.2 Gravin et al. [20] proved a matching upper bound for randomized mechanisms and additive valuations
and also provided a 3-approximate deterministic mechanism. For monotone submodular functions, Chen et al.
[10] gave a 7.91-approximate randomized mechanism and Jalaly and Tardos [22] further improved this result,
obtaining a randomized mechanism that achieves the best known approximation of 5. In this paper we achieve an
improved approximation of 4.75, while also providing the first polynomial time auction to achieve any constant
approximation for monotone submodular valuations without using randomization.

Beyond monotone submodular valuations, finding mechanisms with small constant approximation factors has
proven more elusive. For non-monotone submodular valuations, Amanatidis et al. [1] gave a 505-approximate
randomized mechanism. Using similar techniques Bei et al. [8] had previously managed to design a randomized
mechanism obtaining a 768-approximation for XOS valuations. For the class of subadditive valuations, Dobzinski
et al. [13] gave a O(log2 n)-approximate randomized mechanism and a O(log3(n))-approximate deterministic one.
Bei et al. [8] improved the former by giving a O(log n/ log log n)-approximate randomized mechanism.3 Section 4
improves the best known approximation for non-monotone submodular from 505 to 64, while providing the first
deterministic auction to achieve any constant approximation for this class. Section 5 improves the best known
deterministic approximation for subadditive valuations from O(log3(n)) to O(log n/ log log n), matching the best
known randomized approximation for this class.

Some prior work has also designed mechanisms for the more tractable large-market model, which assumes
that every bidder represents a vanishing portion of the optimal value. This assumption sidesteps some of the
main obstacles that arise in budget-feasible mechanism design and enables better approximation for additive [2]
and monotone submodular valuations [22].

“Simple” mechanisms and other clock auctions. Our work also adds to the developing literature
on simplicity in mechanism design (e.g., [4, 31, 11]). Even if a mechanism is strategyproof, it may not be
readily used in practice [3], e.g., because the participants may not understand or trust that the mechanism
is strategyproof [24, 26]. Designing simple mechanisms often requires that the algorithmic processes are
straightforward so that the participants can understand them. Clock auctions, however, present an extremely
simple, even obviously strategyproof, interface to the bidders regardless of how sophisticated the algorithmic
techniques computing the clock prices are. Clock auctions then provide a striking balance of algorithmic richness
with practical applicability.

Motivated by the highly desirable characteristics of clock auctions, there is a growing literature examining
their performance in a variety of settings, including procurement settings without budget constraints [25], forward

2These lower bounds are the best known even for the much more general class of subadditive valuation functions.
3The results for XOS and subadditive valuations are obtained in the demand oracle model, not in the value oracle model our

mechanisms for submodular valuations use. It takes an exponential number of value queries in expectation to obtain a (randomized)
n1−ϵ-approximation for XOS function maximization for any fixed ϵ > 0 [1, Theorem 6.2].
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auction settings where the bidders have private values for being served and there is a publicly known constraint
system over the feasible sets of bidders [14, 18, 12], single-item forward auctions where bidders have interdependent
values [19], and double auction settings where the auctioneer interacts with both buyers and sellers [15, 27].

2 Preliminaries

We consider a procurement setting with a set N of n bidders each of which is capable of providing some service
to the auctioneer. Each bidder i ∈ N has a private cost ci ≥ 0 which indicates the minimum payment that i
would require in order to provide her service. The auctioneer has a budget B that they can spend on services,
and a non-negative valuation function v: 2N → R≥0 that defines the value the auctioneer receives from acquiring
the services of the bidders in each subset S ⊆ N .

We say that the valuation function of the auctioneer v is monotone if v(S) ≤ v(T ) for any S ⊆ T ⊆ N
and submodular if v(S) + v(T ) ≥ v(S ∩ T ) + v(S ∪ T ) for all S, T ⊆ N . An equivalent definition of
submodularity is that a function v is submodular if it satisfies the following diminishing returns property:
v(X ∪ {i}) − v(X) ≥ v(Y ∪ {i}) − v(Y ) for all sets X ⊆ Y ⊂ N and all i /∈ Y . We say a valuation function is
subadditive if v(S∪T ) ≤ v(S)+v(T ) for all S, T ⊆ N . For any sets S, T ⊆ N , we denote the marginal contribution
of T when added to S as v(T | S) = v(S ∪ T )− v(S).

A (descending) clock auction offers a sequence of non-increasing prices computed using only public
information, one in each phase of the auction, to bidders. In other words, let pi,t denote the price the mechanism
offers to bidder i in phase t. Then, we have pi,t ≤ pi,t−1 for all bidders i and phases t. Upon receiving their offer,
each bidder may choose to exit or continue the auction. Bidders who choose to continue are said to “accept” the
lower price and are called active bidders. We denote the set of active bidders at the end of phase t as At with
At ⊆ At−1 ⊆ · · · ⊆ A1 ⊆ N . When the auction ends in phase t̂, some subset of the active bidders is selected as
the winning set W and the service of each i ∈W is acquired at her most recently accepted price. An auction that
chooses a winning set W and charges each i ∈W a price pi,t̂ is budget feasible if

∑
i∈W pi,t̂ ≤ B.

We measure the performance of our mechanisms by comparing them against the optimal value achievable by
a computationally unbounded auctioneer that also knows every bidder’s true cost. If the auctioneer knew the
private costs c = (ci)i∈N of the bidders, she would be able to select the subset W of services with the maximum
total value under the budget constraint, paying each bidder i a price pi = ci. For some instance I, let O(I) denote
the optimal set of bidders to be served in instance I and OPT denote v(O(I)). Similarly, letM(I) denote the set
of bidders served in instance I by some mechanismM. We say thatM achieves an approximation factor ρ ≥ 1
for a class of instances I if it always extracts at least a 1/ρ fraction of the optimal value, i.e., ρ ≥ supI∈I

OPT
v(M(I)) .

3 Monotone Submodular Valuations

In this section we develop a deterministic clock auction that achieves a 4.75 approximation for any monotone
submodular valuation function. This is the first deterministic strategyproof budget-feasible mechanism that
achieves a constant approximation for monotone submodular valuation functions in polynomial time, and we
achieve this with a clock auction. At the core of our clock auction is a novel backward greedy technique for
maximizing submodular functions that iteratively eliminates bidders from consideration.

Our clock auction, called Iterative-Pruning, proceeds in phases that iteratively eliminate bidders. In each
phase t we aim to find a set of bidders St with value at least ˜OPT, where ˜OPT is initially a low, rough estimate
of the optimal value OPT that is then gradually increased and refined. At each phase, the mechanism iteratively
considers the remaining bidder i with maximum marginal contribution v({i} | St) to St. It then offers price
pi = min{pi, v({i} | St) · B

˜OPT
} to bidder i, which is the minimum of the last price offered to bidder i and the

marginal contribution of i to the bidders St, scaled in order to reach the target value ˜OPT with budget B. If
bidder i accepts, the mechanism adds i to St, otherwise it eliminates i from the set of active bidders A. Phase t
terminates either when v(St) ≥ ˜OPT, or when there are no more bidders to offer a price to, i.e., A\ (St−1∪St) = ∅.

At the beginning of a new phase t > 1, the target ˜OPTt is updated to be two times the previous target ˜OPTt−1.
We set aside St−1, the bidders who accepted the price they were offered in the previous phase, t − 1. If all the
active bidders are either in St−1 or St at the end of a phase t, then t is the last phase of the mechanism. We
implement sets in our mechanisms as lists that maintain the order in which the bidders were added to them. We
say that the prefix of length k of set S is the subset comprising bidders from the first to the k-th index of the list
representing S.
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MECHANISM 1: Iterative-Pruning, a deterministic budget-feasible clock auction for monotone
submodular valuation functions

Input: Budget B, valuation function v : 2N → R
1 initialize A← N , S0 ← ∅, S1 ← {argmaxi∈N v({i})}, ˜OPT← v(S1), t← 1, pi ← B for all i ∈ N
2 while A \ (St−1 ∪ St) ̸= ∅ do
3 update t← t+ 1, ˜OPT← 2 ˜OPT and initialize St ← ∅ ; // start a new phase

4 while v(St) < ˜OPT and A \ (St−1 ∪ St) ̸= ∅ do
5 let i← argmaxi∈A\(St−1∪St)v({i} | St) ;

6 update pi ← min
{
pi, v({i} | St) · B

˜OPT

}
7 if bidder i accepts price pi then
8 update St ← St ∪ {i} ; // add bidder i to current solution

9 else
10 update A← A \ {i} ; // permanently eliminate bidder i

11 Let W1 ← St−1 and W 2 ← St

12 if
∑

i∈W1
pi > B then // enforce budget feasibility of W1

13 let j∗ ← the last bidder added to St−1

14 update pj∗ ← min{pj∗ , v({j∗} | St) · B
˜OPTt
}

15 update W1 ←W1 \ {j∗}
16 if bidder j∗ accepts price pj∗ then
17 update W 2 ←W 2 ∪ {j∗} ; // move the last bidder j∗ to W 2

18 return Maximize-Value(W1,W 2, p)

After the last phase has concluded, the mechanism lets W1 and W 2 denote the sets generated during the last
two phases. If W1 is not budget feasible based on the latest prices, the last bidder added to it is removed. That
bidder is offered a (weakly) lower price, and if the bidder accepts that lower price it is added to W 2.

At this point, the prices are finalized and what remains is to choose a subset W of active bidders that is
budget-feasible (with respect to the final prices), aiming to maximize v(W ). Maximizing a submodular function
subject to a knapsack constraint is hard to approximate beyond 1−1/e [17, 35], but we show that the Maximize-
Value algorithm achieves the desired approximation by just choosing the best out of two simple candidates: i)
the set W1 and ii) the set W3. The set W3 contains the longest budget-feasible prefix of W 2, denoted W2, and then
uses any leftover budget to also hire the longest possible prefix of bidders from W1 that this leftover budget can
buy. Note that, since the prices have been finalized, one can actually replace the call to Maximize-Value with
their favorite algorithm for submodular maximization or, even better, just use that algorithm within Maximize-
Value to determine another budget-feasible candidate set W4 and just return the set from {W1,W3,W4} that
gives the highest value for each instance. What is particularly exciting about clock auctions is that one can just
plug in any algorithm that they like without affecting the incentives and appealing properties of the auction,
which is unlike most other auction formats.

ALGORITHM 2: Maximize-Value, an algorithm for maximizing value subject to knapsack
constraint

Input: W1, W 2 and the prices pi for all i ∈W1 ∪W 2

1 let W2 ← the longest budget-feasible prefix of W 2

2 let W3 ← W2 ∪ T , where T is the longest prefix of W1 such that W2 ∪ T is budget-feasible
3 Let W ∈ {W1,W3} be the set with the largest value v(W )
4 return W and the corresponding prices

Our main result for this section is that, apart from being a deterministic clock auction, Iterative-Pruning
also achieves the best-known approximation for monotone submodular valuations.

Theorem 3.1. Let v be a monotone submodular valuation function, then Iterative-Pruning is a polynomial-
time deterministic budget-feasible clock auction that achieves a 4.75 approximation.

The fact that Iterative-Pruning is budget feasible is easy to verify since the sets considered by Maximize-
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Value are budget feasible by design, based on the final prices (see Appendix A.3). We defer the argument that
its running time is O(n2 log n) to Appendix A.4, and instead focus on the more challenging argument for proving
the approximation factor.

Let t̂ denote the last phase before the mechanism terminates and let ˜OPTt denote the target value ˜OPT of each
phase t. Also, let Q = {Q ⊆ N \ (W1 ∪W 2) :

∑
i∈Q ci ≤ B} be the collection of all budget-feasible subsets of

bidders in N \ (W1 ∪W 2) (the rejected bidders), and let R = argmaxQ∈Qv(Q | W1 ∪W 2) be the set in Q that

adds the largest marginal value to W1 ∪W 2.
To prove the approximation factor, we later argue that OPT ≤ v(W1 ∪W 2) + v(R | W1 ∪W 2), and show that

our auction achieves a 4.75-approximation of the benchmark on the right hand side. The following lemma plays
a central role in this argument, as it provides an upper bound on the portion of the optimal value lost through
rejections, i.e., the second term of the benchmark.

Lemma 3.1. For any monotone submodular valuation function v, if t̂ is the last phase of Iterative-Pruning,
we have

v(R | W1 ∪W 2) ≤
(
3

2
− 1

2t̂−2

)
· ˜OPTt̂.

Proof. We denote the last bidder that is added to St̂−1 (who is offered a new price in line 14) as j∗. We then

partition R into Ra and Rb where Ra consists of the bidders of R that were rejected in the first t̂− 2 phases and
Rb consists of bidders in R rejected in phases t̂− 1 and t̂ and j∗ if j∗ ∈ R. We say bidders in Ra have total cost
fa ·B and those in Rb have total cost fb ·B where fa + fb ≤ 1.

For any j ∈ Rb that is rejected in phase t̂ − 1, let Tj ⊆ St̂−1 be the subset when j is rejected. Note that Tj

does not include j∗ since j is considered before the addition of j∗, so Tj ⊆W1, and we have:

v({j} | W1 ∪W 2) ≤ v({j} | W1) ≤ v({j} | Tj) ≤ ˜OPTt̂−1

cj
B
≤ ˜OPTt̂

cj
B
.

where the first two inequalities are by submodularity. Similarly, for any j ∈ Rb that is rejected in phase t̂, we
have:

v({j} | W1 ∪W 2) ≤ v({j} | W 2) ≤ v({j} | Tj) ≤ ˜OPTt̂
cj
B
.

If the last bidder j∗ of W1 is rejected to make W1 budget feasible (in line 14), it must be that it rejected the new
price the mechanism offers, i.e.,

v({j∗} | W1 ∪W 2) ≤ v({j∗} | W 2) ≤ ˜OPTt̂
cj∗

B
.

Since the sum of the costs of the bidders in Rb is equal to fb ≤ 1 fraction of budget, i.e.,
∑

j∈Rb
cj = fbB.

we have:

v(Rb | W1 ∪W 2) ≤
∑
j∈Rb

v({j} | W1 ∪W 2) ≤
∑
j∈Rb

˜OPTt̂
cj
B
≤ fb ˜OPTt̂.

Now let S−
t denote the longest budget-feasible prefix of St. We then have v(S−

t ) ≤ ˜OPTt for all t. We also

define St̂−2 =
⋃t̂−2

t=2 S
−
t . For any bidder j ∈ Ra, by the definition of the mechanism we have cj > v({j} | Tk) · B

˜OPTk

for some Tk ⊆ S−
k where 2 ≤ k ≤ t̂− 2 is the phase where j was rejected. Notice that we don’t include S1 since

no bidder can be rejected in phase 1. By submodularity, we have v({j} | Tk) ≥ v({j} | St̂−2). Together with the

fact that ˜OPTk ≤ ˜OPTt̂−2 for all k ≤ t̂− 2, we get that for all j ∈ Ra, v({j} | St̂−2) ≤ ˜OPTt̂−2 · ciB . Similarly, since
the sum of the costs of the bidders in Ra equals to fa fraction of the budget, i.e.,

∑
j∈Ra

ci = faB,

v(Ra | St̂−2) ≤
∑
j∈Ra

v({j} | St̂−2) ≤
∑
j∈Ra

˜OPTt̂−2 ·
cj
B
≤ fa ˜OPTt̂−2.

Recall that St̂−2 =
⋃t̂−2

t=2 S
−
t , by submodularity we have v(St̂−2) ≤

∑t̂−2
t=2 v(S

−
t ) ≤

∑t̂−2
t=2

˜OPTt =
∑t̂

t=4
˜OPTt−2.
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By monotonicity,

v(Ra) ≤ v(Ra | St̂−2) + v(St̂−2) ≤ fa ˜OPTt̂−2 +
t̂∑

t=4

˜OPTt−2 ≤
(
fa + 2− 1

2t̂−4

)
˜OPTt̂−2 ⇒

v(Ra) ≤
(
fa
4

+
1

2
− 1

2t̂−2

)
˜OPTt̂

Combining the analysis of Ra and Rb, we have:

v(R | W1 ∪W 2) ≤ v(Ra | W1 ∪W 2) + v(Rb | W1 ∪W 2) ≤ v(Ra) + v(Rb | W1 ∪W 2) ⇒

v(R | W1 ∪W 2) ≤ max
fa,fb : fa+fb=1

(
fb +

fa
4

+
1

2
− 1

2t̂−2

)
˜OPTt̂ ≤

(
3

2
− 1

2t̂−2

)
˜OPTt̂,

completing the proof.

Next, we bound the loss in value from potentially discarding the last bidder added to St in order to ensure
budget feasibility.

Lemma 3.2. Assume that v is a submodular valuation function and let it denote the final bidder added to St in
phase t. For all t ≥ 2, if St is not budget feasible

v(St \ {it}) ≥
2t−1

2t−1 + 1
· ˜OPTt.

Proof. Observe that for every bidder i we have v({i}) ≤ ˜OPT1 (by definition of ˜OPT1), so v({i}) ≤ ˜OPTt
2t−1 for every

t ≥ 1. Thus, to strictly exceed the target ˜OPTt in any phase t ≥ 2 we must add at least 2t−1 +1 bidders to the set
St. But since our algorithm considers bidders in nonincreasing order of marginal contribution, by submodularity

we have that v({it} | St \ {it}) ≤ 1
2t−1+1 · v(St). Consequently, v(St \ {it}) ≥ 2t−1

2t−1+1 · v(St) ≥ 2t−1

2t−1+1 · ˜OPTt.

Proof. [Proof for Theorem 3.1] Iterative-Pruning is clearly deterministic. Next, note that the sequence of
prices offered to a bidder i is descending since at each update of pi, it is the minimum of the previous price pi
and another price. Moreover, once a bidder rejects a price, it exits the auction and is not considered anymore.
Thus, Iterative-Pruning is a clock-auction.

Throughout the proof, we assume t̂ ≥ 3 and W 2 is budget-feasible, i.e., W 2 = W2. We show our auction
actually achieves a better approximation in the cases where t̂ < 3 or W 2 is not budget feasible in Appendices A.1
and A.2, respectively.

Let W1,W2, and W3 denote the sets defined in the Maximize-Value algorithm. We use Benchmark to refer
to the value of v(W1∪W2)+v(R |W1∪W2), with the assumption W2 = W 2. By submodularlity and monotonicity,
and since the optimal solution needs to be budget feasible, we have that OPT ≤ v(W1 ∪W2) + v(R | W1 ∪W2).
Then, to prove that Iterative-Pruning gives a ρ approximation it is sufficient to show that

v(W1 ∪W2) + v(R | W1 ∪W2)

max{v(W1), v(W3)}
≤ ρ.

Assume, for contradiction, the negation of the above inequality holds true, then it must be that v(W1), v(W3)
both have value less than 1

ρ times Benchmark. We show that for any ρ ≥ 4.75 this assumption leads to a

contradiction. For notational simplicity, we use α and β to denote the constants for which v(W1) = α ˜OPTt̂ and
v(R | W1 ∪W2) = β ˜OPTt̂.

• First, from the fact that v(W1) is strictly less than 1
ρ of the Benchmark, we get

(3.1) v(W1) = α ˜OPTt̂ <
1

ρ
(v(W1 ∪W2) + v(Rb | W1 ∪W2)) ⇒

v(W1 ∪W2)
˜OPTt̂

> (ρα− β) .

• Then, since v(W3) is strictly less than 1
ρ of the Benchmark, and v(W3) ≥ v(W2), we get
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(3.2) v(W2) ≤ v(W3) <
1

ρ

(
v(W1 ∪W2) + β ˜OPTt̂

)
⇒ v(W1 ∪W2) > ρv(W2)− β ˜OPTt̂.

The marginal contribution of each bidder i ∈ W2 in the order that they were added is at least
pi ˜OPTt̂

B so

v(W2) ≥
˜OPTt̂
B

∑
i∈W2

pi. Thus if we let u = 1 −
∑

i∈W2
pi

B be the fraction of the budget left unused by W2,
by Inequality (3.2) we have

(3.3) v(W1 ∪W2) > ρ(1− u) ˜OPTt̂ − β ˜OPTt̂ ⇒
v(W1 ∪W2)

˜OPTt̂
> ρ(1− u)− β

• Furthermore, for the value of W3, using submodularity, we get:

v(W3) = v(W2 | T ) + v(T ) ≥ v(W2 | W1) + v(T ) = v(W1 ∪W2)− α ˜OPTt̂ + v(T )

Using the fact that v(W3) is less than
1
ρ of the Benchmark once again, we get

(3.4) v(W1 ∪W2)− α ˜OPTt̂ + v(T ) <
1

ρ
(v(W1 ∪W2) + β ˜OPTt̂)

Also, note that for every bidder i we have v({i}) ≤ ˜OPT1 (by definition of ˜OPT1), so v({i}) ≤ ˜OPTt
2t−1 for every t ≥ 1.

Let T ′ be the shortest prefix of W1 such that
∑

i∈T ′ pi > uB, i.e., the prefix whose current prices exceed a u

fraction of the budget. As each of these bidders was added to St̂−1 in phase t̂ − 1, the ratio of their marginal

contribution over the price that they were offered was at least
˜OPTt̂−1

B , so their total value, v(T ′) is at least u ˜OPTt̂−1.
If we remove the last bidder from T ′, we retrieve the set T (the longest prefix of W1 whose prices add up to at
most uB and, hence, can be afforded in addition to W2). Since that bidder’s marginal contribution is at most
˜OPTt̂−1

2t̂−2 the value of T must be at least

v(T ) ≥
(
u− 1

2t̂−2

)
˜OPTt̂−1 =

(
u− 1

2t̂−2

)
˜OPTt̂
2

.

Substituting this into (3.4) gives(
1− 1

ρ

)
v(W1 ∪W2) <

β

ρ
+ α− v(T ) <

β

ρ
+ α−

(
u− 1

2t̂−2

)
˜OPTt̂
2
⇒

v(W1 ∪W2)
˜OPTt̂

<
2ρα+ 2β − ρu+ ρ

2t̂−2

2ρ− 2
(3.5)

In summary, the constraints that we get from the assumption that v(W1), v(W2), and v(W3) are not high
enough are the following three:

v(W1 ∪W2)
˜OPTt̂

> ρα− β.

v(W1 ∪W2)
˜OPTt̂

> ρ(1− u)− β.

v(W1 ∪W2)
˜OPTt̂

<
2ρα+ 2β − ρu+ ρ

2t̂−2

2ρ− 2
.

The rest of the proof shows that these three constraints are incompatible, leading to a contradiction. We first
show that it suffices to prove the constraints are incompatible when u = 1−α: we break into casework depending
on whether α ≥ 1− u or if α ≤ 1− u.

• For the first case, assume α ≥ 1−u. Then the second constraint becomes redundant and the third constraint
is least restrictive when u is minimized, we can therefore without loss of generality assume that u = 1− α.
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• Now assume that α ≤ 1 − u. In this case the first lower bound becomes redundant and we can focus on
the second lower bound and the upper bound. Take any values of α, β, and u and let L be the value of the lower
bound and U be the value of the upper bound for this choice of α, β, and u. If the constraints are compatible,
i.e., L ≤ U , then we note that increasing the value of u by some δ > 0 (while keeping α and β fixed), then the
new lower bound would be equal to L − ρδ and the new upper bound would be U − ρ

2ρ−2δ. It is easy to verify
that as long as ρ > 1.5, the distance between the upper bound the lower bound would increase. From prior work,
we know that an approximation factor of

√
2 + 1 or better is not possible even for additive valuations [10], so we

can safely assume that ρ > 1.5. Therefore, the constraints are least restrictive if we let u take the largest possible
value which, for this case, is once again equal to 1 − α.

With the case analysis above, we have shown that proving that the constraints are incompatible when
u = 1 − α implies that they are incompatible in general. Substituting u = 1 − α in the upper bound, it

becomes
3ρα+2β−ρ+ ρ

2t̂−2

2ρ−2 . Combining it with the lower bound, we get

ρα− β <
3ρα+ 2β − ρ+ ρ

2t̂−2

2ρ− 2
⇒

2ρ2α− 2ρβ − 2ρα+ 2β < 3ρα+ 2β − ρ+
ρ

2t̂−2
⇒

(2ρ2 − 5ρ)α− 2ρβ < −ρ+ ρ

2t̂−2

From Lemma 3.2 we get v(W1) ≥ 2t̂−2

2t̂−2+1
˜OPTt̂−1 = 2t̂−2

2t̂−1+2
˜OPTt̂, therefore α ≥ 2t̂−2

2t̂−1+2
. We also have that

v(R | W1 ∪W2) ≤
(

3
2 −

1
2t̂−1

)
˜OPTt̂ from Lemma 3.1, i.e., β ≤ 3

2 −
1

2t̂−1 . Substituting the lower bound for α and

the upper bound for β we get

(2ρ2 − 5ρ)

(
2t̂−2

2t̂−1 + 2

)
− 2ρ

(
3

2
− 1

2t̂−2

)
< −ρ+ ρ

2t̂−2
⇒

(2ρ2 − 5ρ)22t̂−4 − 2ρ
(
3(2t̂−1 + 2)2t̂−3 − (2t̂−1 + 2)

)
< −ρ(2t̂−1 + 2)2t̂−2 + ρ(2t̂−1 + 2) ⇒

(2ρ2 − 5ρ)22t̂−4 − 2ρ
(
3(22t̂−4 + 2t̂−2)− (2t̂−1 + 2)

)
< −ρ(22t̂−3 + 2t̂−1) + ρ(2t̂−1 + 2) ⇒

(2ρ2 − 9ρ)22t̂−4 − 2t̂−1ρ+ 2ρ < 0.

Further simplifying the inequality,

(2ρ2 − 9ρ)22t̂−4 < 2t̂−1ρ− 2ρ ⇒ (2ρ− 9)22t̂−4 < 2t̂−1 − 2

2ρ− 9 <
1

2t̂−3
− 1

22t̂−5
⇒ ρ <

1

2t̂−2
− 1

22t̂−4
+ 4.5,

where the term 1
2t̂−2 − 1

22t̂−4 is maximized at t̂ = 3, at which we have:

ρ < 0.25 + 4.5 = 4.75.

Therefore, for any ρ ≥ 4.75 it is impossible to satisfy all the three constraints listed above, leading to a
contradiction.

We complement our upper bound of 4.75 for the approximation factor of Iterative-Pruning with a lower
bound of 4.5. The proof is deferred to Appendix A.5.

Lemma 3.3. For any constant ϵ > 0, there exists a monotone submodular valuation function v for which
Iterative-Pruning returns a solution S such that OPT > (4.5− ϵ)v(S).

4 Non-Monotone Submodular Valuations

In this section, we develop a deterministic clock auction that achieves a constant factor approximation for
submodular valuation functions (not necessarily monotone) and runs in polynomial time. This is the first
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deterministic budget-feasible mechanism for general submodular valuation functions that achieves a constant
factor approximation, even for non-polynomial time mechanisms, and we achieve this with a clock auction that
runs in polynomial time. The mechanism combines the backward greedy technique from the previous section and
techniques for maximizing non-monotone submodular functions.

Similarly to Iterative-Pruning from the previous section, Simultaneous-Iterative-Pruning, formally
described below as Mechanism 3, proceeds in phases and aims to find a set of bidders with value at least ˜OPTt at
each phase t. The main difference with Iterative-Pruning is that, instead of constructing a single tentative
set St of bidders at each phase t, Simultaneous-Iterative-Pruning constructs two disjoint tentative sets S1

t

and S2
t of bidders at each phase. This technique of constructing two disjoint sets of bidders to handle non-

monotone valuation functions in budget-feasible mechanism design was introduced by Amanatidis et al. [1] with
a mechanism called Simultaneous Greedy. Simultaneous-Iterative-Pruning integrates this technique in
the Iterative-Pruning mechanism designed for monotone valuation functions.

At each iteration of phase t, the mechanism considers bidder i and set of bidders Sk
t ∈ {S1

t , S
2
t } such that

the marginal contribution v({i} | Sk
t ) of i to Sk

t is maximized. It then offers price pi = min
{
pi, v({i} | Sk

t ) · B
˜OPT

}
to bidder i, adds bidder i to Sk

t if i accepts price pi, and permanently eliminates bidder i otherwise. A phase
terminates when either S1

t or S2
t reaches the target ˜OPTt, or when there are no more bidders to offer a price to.

At the beginning of a new phase t, the mechanism sets aside both S1
t−1 and S2

t−1.

MECHANISM 3: Simultaneous-Iterative-Pruning, a deterministic budget-feasible clock auction
for non-monotone submodular valuation functions

Input: Budget B, valuation function v : 2N → R
1 initialize A← N , S1

0 , S
2
0 , S

1
1 ← ∅, S2

1 ← {argmaxi∈N v({i})}, ˜OPT← v(S2
1), t← 1, pi ← B for all i ∈ N

2 while A \ (S1
t−1 ∪ S2

t−1 ∪ S1
t ∪ S2

t ) ̸= ∅ do
3 update t← t+ 1, ˜OPT← 2 ˜OPT and initialize S1

t , S
2
t ← ∅ ; // Start a new phase

4 while max{v(S1
t ), v(S

2
t )} < ˜OPT and A \ (S1

t−1 ∪ S2
t−1 ∪ S1

t ∪ S2
t ) ̸= ∅ do

5 let (i, k)← argmaxi∈A\(S1
t−1∪S2

t−1∪S1
t∪S2

t ),k∈[2]v(i | S
k
t )

6 update pi ← min
{
pi, v({i} | Sk

t ) · B
˜OPT

}
7 if bidder i accepts price pi then
8 Sk

t ← Sk
t ∪ {i} ; // Add bidder i to current solution

9 else
10 A← A \ {i} ; // Permanently discard bidder i

11 let T k
j ← UnconstrainedSubMax(v, Sk

j ), for j ∈ {t− 1, t} and k ∈ {1, 2}
12 let S ← argmaxS′∈{S1

t−1,S
2
t−1,T

1
t ,T

2
t ,T

1
t−1,T

2
t−1}v(S

′)

13 if
∑

i∈S pi > B then // ensure budget feasibility

14 update S ← S \ {i} where i is the last bidder added to S
15 return S and prices pi for each bidder i ∈ S

After the last phase t, the mechanism runs an unconstrained submodular maximization algorithm that achieves
a 2-approximation, for example the algorithm of Buchbinder et al. [9], over valuation function v and ground set of
bidders Sk

j to obtain sets T k
j such that T k

j ≥ 1
2 maxT⊆Sk

j
v(T ) for each set of bidders Sk

j constructed in one of the

last two phases of the mechanism. Finally, we return the set S of bidders of maximum value among 6 solutions
constructed during the last two phases, but without the last bidder added to S if S is not budget feasible.

Our main result for this section is that, apart from being a deterministic clock auction,
Simultaneous-Iterative-Pruning also achieves the best-known approximation for non-monotone submodular
valuations.

Theorem 4.1. Let v be a submodular valuation function, then Simultaneous-Iterative-Pruning is a
polynomial-time deterministic budget-feasible clock auction that achieves a 64-approximation.

The proof that it is budget feasible is identical to the proof of Lemma A.3 which shows the budget feasibility
of Iterative-Pruning. For the running time, the proof that the outer-while loop terminates in polynomial
time is identical to the proof that Iterative-Pruning is a polynomial time mechanism. Finally, for the
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UnconstrainedSubMax subroutine, we use a 2-approximation algorithm for unconstrained non-monotone
submodular maximization, such as the algorithm by Buchbinder et al. [9] which is polynomial time. Thus,
Simultaneous-Iterative-Pruning is a polynomial-time mechanism.

We now turn toward showing that the mechanism achieves a 64-approximation. Lemma 4.1 bounds the loss
from optimal bidders who were eliminated in each phase t. However, the proof for this bound on the loss from
eliminated optimal bidders is different from the proof from the previous section which assumes monotonicity. To
handle non-monotone valuation functions, the proof exploits the fact that we construct two sets S1

t and S2
t at each

phase. For non-monotone valuation functions, it is also not sufficient to lower bound the value of active optimal
bidders, which can be larger than the value of all active bidders. Next, Lemma 4.2 uses the sets T k

j obtained by
running an unconstrained non-monotone submodular maximziation algorithm to approximate the value of active
optimal bidders.

We begin by bounding the loss from optimal bidders who were eliminated in each round t.

Lemma 4.1. Assume that v is a submodular valuation function and let O−
t denote the subset of optimal bidders

rejected in phase t. Then, for all t ≤ t̂, we have that

v(O−
t ) ≤ 6 ˜OPTt.

Proof. By submodularity and non-negativity, we know that

v(O−
t ) ≤ v(O−

t ) + v(O−
t ∪ S1

t ∪ S2
t ) ≤ v(O−

t ∪ S1
t ) + v(O−

t ∪ S2
t ).

We can bound the terms v(O−
t ∪ Sj

t ) for j ∈ {1, 2} separately. By submodularity, we know that

v(O−
t ∪ S1

t ) ≤ v(S1
t ) +

∑
i∈O−

t

v(i | S1
t ).

On the other hand, each i ∈ O−
t was rejected because when it was offered a new price, this price was too low.

Let S1,i
t denote the set S1

t at the point when i was offered a new price. Then we have that v(i | S1,i
t ) ≥ v(i | S1

t ).
Thus, we have

v(O−
t ∪ S1

t ) ≤ v(S1
t ) +

∑
i∈O−

t

ci ·
˜OPTt
B
≤ v(S1

t ) + ˜OPTt.

Similarly,

v(O−
t ∪ S2

t ) ≤ v(S2
t ) + ˜OPTt.

Since for every phase t ≥ 1 we know v({i}) ≤ ˜OPTt we have that v(Sj
t ) ≤ 2 ˜OPTt for j ∈ {1, 2}. Combining

these inequalities, we have that v(O−
t ) ≤ 6 ˜OPTt for all t, completing the proof.

By consequence of Lemma 4.1, if we let O+
t denote the set of bidders in the optimal solution which remain

active at the end of phase t we obtain the following corollary.

Corollary 4.1. Assume that v is a submodular valuation function and let O+
t denote the set of bidders in the

optimal solution which are not rejected by the end of phase t, we then have

v(O+
t ) ≥ OPT− 12 ˜OPTt.

Proof. By submodularity and Lemma 4.1 we have

v(O+
t ) ≥ v(O)−

∑
t′∈[t]

v(O−
t′ ) ≥ OPT−

∑
t′∈[t]

6 ˜OPTt′ .

Since the value of ˜OPT increases by a factor of two in each phase, we can rewrite our above bound as
v(O+

t ) ≥ OPT− 12 ˜OPTt, completing the proof.
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With Corollary 4.1 in hand, we can now give a bound on the approximation obtained from the best set in
{S1

t̂−1
, S2

t̂−1
, T 1

t̂
, T 2

t̂
, T 1

t̂−1
, T 2

t̂−1
}.

Lemma 4.2. For any submodular valuation function v, we have

max
S′∈{S1

t̂−1
,S2

t̂−1
,T 1

t̂
,T 2

t̂
,T 1

t̂−1
,T 2

t̂−1
}
v(S′) ≥ OPT

32

where t̂ is the last phase of the mechanism.

Proof. There are two cases based on when the last phase t̂ of the mechanism occurs. First, if ˜OPTt̂ ≥ OPT
16 , then

we have max{v(S1
t̂−1

), v(S2
t̂−1

)} ≥ ˜OPTt̂
2 ≥

OPT
32 .

Otherwise, ˜OPTt̂ ≤ OPT
16 , which is the main case. Since all of the bidders in O+

t̂
remain active at the end of

phase t̂, we know that any bidder i ∈ O+
t̂

must be contained in one of our four candidate solutions: S1
t̂−1

, S2
t̂−1

,

S1
t̂
, S2

t̂
. But then, by submodularity we have that

(4.6) v(O+
t̂
∩ S1

t̂−1
) + v(O+

t̂
∩ S2

t̂−1
) + v(O+

t̂
∩ S1

t̂
) + v(O+

t̂
∩ S2

t̂
) ≥ v(O+

t̂
)

After our auction completes offering new prices to all active bidders (i.e., the outer while loop terminates), we
apply an unconstrained optimizer. After applying the unconstrained 2-approximate non-monotone submodular
function maximizer, e.g. from Buchbinder et al. [9], to each of our four candidate solutions to obtain T k

t̂−1
and

T k
t̂
for k ∈ [2]. We then have

(4.7) 2v(T 1
t̂−1

) + 2v(T 2
t̂−1

) + 2v(T 1
t̂
) + 2v(T 2

t̂
) ≥ v(O+

t̂
).

Let T ∗ = argmaxT∈{T 1
t̂−1

,T 2
t̂−1

,T 1
t̂
,T 2

t̂
}v(T ). From Equation (4.7) we can then observe

(4.8) 8v(T ∗) ≥ v(O+
t̂
).

Next, combining Equation (4.8) and Corollary 4.1 gives

(4.9) v(T ∗) ≥ OPT

8
− 3

2
˜OPTt̂ ≥

OPT

32

where the last inequality is since ˜OPTt̂ ≤ OPT
16 .

We are now ready to complete the proof of Theorem 4.1 by showing that Simultaneous-Iterative-Pruning
achieves a 64-approximation to the optimal value.

Proof. [Proof for Theorem 4.1] Simultaneous-Iterative-Pruning is clearly deterministic. Next, note that the
sequence of prices offered to a bidder i is descending since each update of pi is the minimum of the previous price
and another price. Moreover, once a bidder rejects a price, it exits the auction and is not considered anymore.
Thus, Simultaneous-Iterative-Pruning is a clock-auction.

There are two cases based on S. If S is initialized to Sk
j or T k

j with j = 1, then we have S =
{argmaxi∈N v({i})} and since

∑
i∈S pi = B, the mechanism does not remove a bidder from S and we have

v(S) ≥ v(T ∗) ≥ OPT
32 by Lemma 4.2.

Otherwise, j > 1, and note that by definition of ˜OPT1 and by submodularity, for any set T and bidder i, we

have v(i | T ) ≤ maxi′ v(i
′) = ˜OPT1 ≤

˜OPTt
2 ≤ max{v(S1

t ),v(S
2
t )}

2 for all t ≥ 2. Let i be the potential bidder that was
removed from S before S is returned. Then,

v(S) ≥ v(S ∪ {i})− 1

2
·max{v(S1

t ), v(S
2
t )} ≥

1

2
max

S′∈{S1
t̂−1

,S2
t̂−1

,T 1
t̂
,T 2

t̂
,T 1

t̂−1
,T 2

t̂−1
}
v(S′) ≥ OPT

64

where the second inequality is since S ∪ {i} = argmaxS′∈{S1
t̂−1

,S2
t̂−1

,T 1
t̂
,T 2

t̂
,T 1

t̂−1
,T 2

t̂−1
}v(S

′) and the last inequality is

by Lemma 4.2.
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5 Subadditive Valuations

In this section we present a secondary result demonstrating how our method of gradually refining an estimate of
OPT while maintaining value monotonicity can be used to derandomize the (randomized) budget-feasible auction of
Bei et al. [8]. This auction achieves the best known approximation of O(log n/ log log n) for subadditive valuations,
and our deterministic auction matches this bound. The resulting deterministic auction improves upon the previous
best deterministic auction of Dobzinski et al. [13] which achieves only a O(log3 n)-approximation. We note that,
unlike our auctions for submodular valuation functions that use value queries, the following auction uses demand
queries. This is due to the fact that, as we highlighted above, no non-trivial approximation can be achieved using
a polynomial number of value queries when maximizing an XOS function [1, Theorem 6.2] and all XOS functions
are subadditive.

MECHANISM 4: A deterministic budget-feasible clock auction for subadditive valuation functions

Input: Budget B, valuation function v : 2N → R
1 initialize A← N , Sprev ← ∅, Scurr ← ∅, t← 0;
2 while A \ (Sprev ∪ Scurr) ̸= ∅ do
3 t← t+ 1 ; // start a new phase

4 Sprev ← argmaxS∈{Sprev,Scurr}{v(S)};
5 update price pi of each bidder i ∈ A \ Sprev to B/t;
6 if bidder i rejects new price then
7 update A← A \ {i} ; // permanently eliminate bidder i
8 Let Scurr be the feasible subset of A \ Sprev returned by the 2-approximation algorithm of

Badanidiyuru et al. [6] at the current price level;

9 let Sfinal ← argmaxS∈{Sprev,Scurr}{v(S)};
10 return Sfinal and prices pi for each bidder i ∈ Sfinal

Notice that our auction for subadditive valuations follows a similar template to our auctions for submodular
valuations. While for submodular valuations we gradually increase a benchmark value for the subset of bidders
we include in our temporary solution, in Mechanism 4 we gradually increase a benchmark size for the subset
of bidders we include in our temporary solution. Notably, in both settings we maintain two solutions which
ensures that the value that our auction obtains is monotone non-decreasing. This is a key tool that allows for
the approximation guarantees of all of our auctions. We note that the analysis of the approximation factor of our
auction follows almost directly from the analysis in Bei et al. [8]. We include a detailed proof of the approximation
factor for completeness, below.

Theorem 5.1. Let v be a subadditive valuation function, then Mechanism 4 is a polynomial-time deterministic
budget-feasible clock auction that obtains a O(log n/ log log n)-approximation.

Proof. Let O = {1, 2, 3, . . . ,m} denote the optimal set of bidders indexed in non-increasing cost order, i.e.,

c1 ≥ c2 ≥ . . . cm. We divide the agents from O into disjoint subsets Z1, . . . , Zr+1 such that Z1 contains the
⌊

B
c1

⌋
first bidders. For all i ≥ 2, let j(i) denote the bidder in O of largest cost not contained in any Zk for all k < i.

We then may define Zi as the
⌊

B
cj(i)

⌋
first bidders beginning at j(i) (or fewer if we exhaust all bidders).

We now proceed via case-analysis on the sets {Zi}i∈[r+1]. First suppose that there exists some set Zi with

v(Zi) ≥ log log n
10 log n · v(O). We argue that the mechanism then outputs a set of value at least log log n

40 log n · v(O). By

definition, each bidder in Zi has cost less than or equal to cj(i), and note that we offer price B/k to all bidders
in round k. But then we must offer prices weakly above the cost of all bidders in Zi for all rounds up to and
including |Zi|. Thus all of the bidders in Zi will be active at the point when the price of B

|Zi| is offered to all

bidders in the auction. Hence, if no bidders in Zi are included in Sprev we will identify a set of value at least
1
2v(Zi) in this phase of the auction. Since our auction obtains value equal to the set of highest value identified
in any phase, we are done. Suppose not, that is, suppose that some portion of Zi is contained in Sprev. Since,
in each phase, we identify some feasible set giving a 2-approximation to the highest achievable value given the
current prices, we know that v(Sprev ∩ Zi) ≤ 2v(Sprev). Moreover, we know that the set Scurr that we select in
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phase |Zi| is such that v(Zi \ Sprev) ≤ 2v(Scurr). But then, by subadditivity, we have that

v(Zi) ≤ v(Sprev ∩ Zi) + v(Zi \ Sprev) ≤ 2v(Sprev) + 2v(Scurr) ≤ 4 ·max {v(Sprev), v(Scurr)} .

Finally, since our auction obtains value equal to the highest value identified in any phase, we know that we obtain

a set of value log log n
40 log n · v(O). Thus, we obtain a O

(
logn

log log n

)
-approximation whenever there exists some set Zi

with v(Zi) ≥ log log n
10 log n · v(O).

We now deal with the other case. That is, suppose that for all i ∈ [r+1] we have that v(Zi) <
log log n
10 log n · v(O).

By subadditivity, we know that
r+1∑
i=1

v(Zi) ≥ v(O).

But then, it must be that (r + 1) · log log n
10 log n · v(O) > v(O), which implies that

(5.10) r >
10 log n

log log n
− 1 ≥ 5 log n

log log n
≥ 5 logm

log logm
.

We know that O is budget feasible, i.e.,
∑

i∈m ci ≤ B. Also, by construction we have cj(i) > B
|Zi|+1 for all

i ∈ [r]. Combining these gives

B ≥
m∑
j=1

cj

≥ c1 + |Z1| · cj(2) + |Z2| · cj(3) + · · ·+ |Zr| · cj(r+1)

>
B

|Z1|+ 1
+
|Z1| ·B
|Z2|+ 1

+ · · ·+ |Zr−1| ·B
|Zr|+ 1

.

Note that the only possibly empty set is Zr+1 by construction. Thus, for all i < r+1 we know that 2|Zi| ≥ |Zi|+1.
We then may conclude that

1 ≥ 1

|Z1|+ 1
+
|Z1|
|Z2|+ 1

+ · · ·+ |Zr−1|
|Zr|+ 1

≥ 1

2|Z1|
+
|Z1|
2|Z2|

+ · · ·+ |Zr−1|
2|Zr|

≥ 1

2
· r
[

1

|Z1|
· |Z1|
|Z2|

· · · · · |Zr−1|
|Zr|

]1/r
,

where the last step uses the AM-GM inequality. Simplifying gives 2 ≥ r ·
(

1
|Zr|

)1/r
, i.e., |Zr| ≥

(
r
2

)r
. On the

other hand, we have that m ≥ |Zr|. Combining these two with Equation (5.10) we then have

logm ≥ r · log r

2

≥ 5 logm

log logm
·
(
log logm− log log logm+ log

5

2

)
which is a contradiction. In other words, it must be that there exists some Zi with v(Zi) ≥ log log n

10 log n · v(O),
completing the proof.

6 Conclusion

With the auctions that we propose in this paper, we significantly improve our understanding of budget-feasible
mechanism design in two important ways:

First, our auctions achieve improved approximation factors in a deterministic fashion and resolve one of the
main open problems in the area. In contrast to some prior work that depends on randomized sampling in order to
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estimate the optimal value, we instead introduce a deterministic discovery process with a primal-dual flavor. We
start with a low estimate of the optimal value, which we use in order to determine the initial prices offered to the
bidders. Then, depending on the bidders’ responses to these prices (i.e., depending on which bidders accept the
prices offered to them), we update our estimate and repeat this process. This way, our auction gradually refines
its estimate of the optimal value, while simultaneously discovering the appropriate prices for approximating the
optimal value in a budget-feasible way.

Second, our solutions take the form of a clock auctions. Unlike sealed-bid auctions, where the bidders directly
report their costs to the auctioneer, clock auctions can only assess these costs indirectly, by offering a sequence of
descending prices to the bidders. The price discovery process described above meets this restriction, and gradually
develops a better understanding of the bidders’ true costs. The fact that our solutions are clock auctions implies
that they satisfy a list of highly desirable properties, making them more attractive for practical applications.
Another implication, which is particularly interesting from a theoretical perspective, is that they yield non-trivial
backward greedy algorithms for submodular maximization, which nicely complement the existing literature on
submodular maximization, which is dominated by forward greedy algorithms.

Limitations of posted-price mechanisms. To complement our positive results regarding the ability of
budget-feasible clock auctions to achieve a constant factor approximation, we also considered the special class of
clock auctions that take the form of posted-price mechanisms. These mechanisms approach the bidders in some
order and offer them a take-it-or-leave-it price. This approach proved useful for the design of randomized clock
auctions that can use sampling to estimate the optimal value [8, 1]. We were able to verify that, without the
estimate that the randomized sampling provides, these mechanisms are insufficient for achieving any non-trivial
approximation, suggesting that the approach of Bei et al. [8] and Amanatidis et al. [1] could not be extended
toward a deterministic solution. These results have been deferred to Appendix B.

Future directions. Our results provide an optimistic view toward the design of practical budget-feasible
auctions, and they give rise to interesting open problems such as the following:

• Is there a separation between the performance of the best possible budget-feasible clock auction and the
best possible strategyproof budget-feasible mechanism?

• Do there exist budget-feasible clock auctions that can achieve a constant factor approximation beyond
submodular valuations (e.g., for subadditive valuations)?

Regarding the first question, there is no known separation between clock auctions and general strategyproof
mechanisms, even for interesting special classes of valuations, such as additive ones. Note that the best known
approximation guarantees (for both randomized and deterministic auctions), for the case of additive valuations,
are currently due to Gravin et al. [20]. Although these auctions are presented as sealed-bid mechanisms, we were
able to verify that they are one of the few examples that can also be implemented as clock auctions. As a result,
for the special case of additive valuations, the state of the art approximations can be achieved by clock auctions.

Regarding the second question, for the more general class of strategyproof mechanisms, we know that there
exists a constant factor mechanism, through a non-constructive argument, based on Yao’s lemma due to Bei et al.
[8]. Therefore, designing a specific strategyproof auction that achieves this guarantee remains open. However,
focusing our attention on the more restrictive class of clock auctions can help us gain some traction on this
problem. For example, this restriction would make it more tractable to prove larger lower bounds; something
that would have been much more demanding for the richer class of strategyproof mechanisms.
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A Proofs missing from Section 3

A.1 The Analysis of the Approximation for t̂ ≤ 2

Lemma A.1. If t̂ ≤ 2, Then Iterative-pruning auction would guarantee a 4.5 approximation of the optimal
value.

Proof. From Lemma 3.1 we bound the optimal solution as follows

OPT ≤ v(W1 ∪W 2) + v(R | W1 ∪W 2) ≤ 2max{v(W1), v(W 2)}+ v(R | W1 ∪W 2)

When t̂ = 2, W1 is budget feasible without removing any of its bidders since W1 is initialized to S1 which
is simply the maximum value item offered the entire budget. We can also assume W 2 is budget feasible, i.e.
W 2 = W2, or else we get a 4.5 approximation by Appendix A.2. Otherwise we show that by picking the greater
value set out of W1 and W2 we can achieve a 4 approximation by demonstrating

2max{v(W1), v(W2)}+ v(R | W1 ∪W2)

max{v(W1), v(W2)}
≤ 4

In this case, following the analysis of v(R |W1∪W2) in Lemma 3.1 we get a stronger bound of v(R |W1∪W2) ≤
˜OPTt̂ when t̂ = 2. This is because the auction only consists of two phases so we can omit the ( 12 −

1
2t̂−2 ) ˜OPTt̂ loss

from Ra from rounds before t̂− 1. We also know v(W1) =
1
2

˜OPTt̂ since no bidders had to be removed from W1 to

make it budget feasible. Therefore for t̂ = 2,

2max{v(W1), v(W2)}+ v(R | W1 ∪W2)

max{v(W1), v(W2)}
≤

˜OPTt̂ + ˜OPTt̂
1
2

˜OPTt̂
= 4

as desired, showing that we a 4.5 approximation in the worst case.

A.2 The Analysis of the Approximation for Non-Budget-Feasible W 2

Lemma A.2. If W 2 is not budget feasible, then Iterative-Pruning auction would guarantee a 4.5 approxima-
tion of the optimal value by outputting W3.

Proof. First note that by definition we have v(W3) ≥ v(W2). From Lemma 3.1 we can upper bound the optimal
solution as follows:

OPT ≤ v(W1 ∪W 2) + v(R | W1 ∪W 2) ≤ v(W1) + v(W 2) + v(R | W1 ∪W 2)

To upper bound the value of W 2, notice that the maximum possible value of v(W 2) is obtained if, during the
construction of St̂, adding the last bidder makes W 2 exceed the budget. Further, the last bidder added to St̂−1,

j∗, accepted the new price and was added to W 2. Regardless of whether W 2 \ {j∗} is budget feasible or not, we
remove at most 2 bidders from W 2 to get W2. Then, the largest budget-feasible prefix of W 2, is bounded by ˜OPTt̂,

i.e., v(W2) < ˜OPTt̂. Note that for every bidder i we have v({i}) ≤ ˜OPT1 =
˜OPTt

2t−1 for every t ≥ 1. Then the value of

W 2 should be no more than W2 combined with two extra bidders, by submodularity the value of W 2 is at most

v(W 2) ≤ v(W2) + 2 ˜OPT1 <

(
1 +

1

2t̂−2

)
˜OPTt̂.

If W 2 \ {j∗} is not budget feasible, by lemma 3.2 we have:

v(W3) ≥ v(W2) ≥
2t̂−1

2t̂−1 + 1
v(St̂) ≥

2t̂−1

2t̂−1 + 1
˜OPTt̂.

Otherwise if W 2 \ {j∗} is budget feasible, then we have:

v(W3) ≥ v(W2) ≥ v(W 2)− v({j∗}) ≥
(
1− 1

2t̂−1

)
˜OPTt̂.
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And by lemma 3.1, we also get the the marginal contribution of R is

v(R | W1 ∪W 2) ≤
(
3

2
− 1

2t̂−2

)
˜OPTt̂.

Therefore the approximation in the case W 2 \ {j∗} is not budget feasible would be:

OPT

v(W3)
≤ v(W1) + v(W 2) + v(R | W1 ∪W 2)

v(W2)
<

1
2 + 1 + 1

2t̂−2 + 3
2 −

1
2t̂−2

2t̂−1

2t̂−1+1

⇒

OPT

v(W3)
<

3
2t̂−1

2t̂−1+1

≤ 4.5.

for any t̂ ≥ 2.
On the other hand, the approximation in the case W 2 \ {j∗} is budget feasible would be :

OPT

v(W3)
≤ v(W1) + v(W 2) + v(R | W1 ∪W 2)

v(W2)
<

1
2 + 1 + 1

2t̂−2 + 3
2 −

1
2t̂−2

1− 1
2t̂−1

⇒

OPT

v(W3)
<

3

1− 1
2t̂−1

≤ 4.

for any t̂ ≥ 3.
Note that the second case can’t occur when t̂ = 2 since W1 is guaranteed to be budget feasible without

removing j∗ so W 2 never includes j∗. Thus over all instances where W 2 is not budget feasible we achieve at least
a 4.5 approximation.

A.3 Budget feasibility of Iterative-Pruning

Lemma A.3. Iterative-Pruning is a budget-feasible mechanism.

Proof. Since we return either W1,W2, or W3, it suffices to show each set is budget feasible.
W1 is initialized to St̂−1 at the end of the last phase. If the last bidder j∗ added to W1 during phase t̂ − 1

was not removed from W1 by the mechanism, then by the condition of the if statement,
∑

i∈W1
pi ≤ B and W1

is budget feasible.
Otherwise, W1 = St̂−1 \ {j∗} and, by the condition of the inner while loop, we have v(St̂−1 \ {j∗}) < ˜OPTt̂−1.

Let Si
t̂−1

be the set St at the beginning of the iteration of phase t̂− 1 where bidder i is considered. The prices p⋆i

paid to each i ∈ W1 are the last price they were offered, so we have p⋆i ≤ pti = v(i | Si
t̂−1

) · B
˜OPTt̂−1

where pt̂−1
i is

the price pi at phase t̂− 1. We get that∑
i∈W1

p⋆i ≤
∑

i∈W1\{j∗}

v(i | W1) ·
B

˜OPTt̂−1

= v(W1 \ {j∗}) ·
B

˜OPTt̂−1

≤ B

and W1 is budget feasible.
W2 is budget feasible by definition as it is the largest budget feasible prefix of W 2. Similarly W3 is also

budget feasible by definition as it is W2 joined with the largest prefix of W1 that will not exceed the available
budget not used by W2. Thus each of W1,W2, and W3 are budget feasible sets, making Iterative-Pruning a
budget feasible mechanism.

A.4 Running time of Iterative-Pruning

Lemma A.4. Iterative-Pruning has O(n2 log n) running time.
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Proof. We first compute the time of completing one round of the auction (i.e., one iteration of the outer while
loop) and then upper bound the total number of rounds. Observe that the inner while loop completes at most
n times per iteration of the outer while loop since a bidder is either removed from A or added to St on each
iteration. The body of the inner while loop completes in O(n) time as at most n value queries are made to find
the bidder of largest marginal contribution. Thus, in total, lines 3 through 10 take O(n2) time per iteration of
the outer while loop.

We now move to bound the number of iterations of the outer while loop. Observe that if at some iteration of
the outer while loop the estimate ˜OPT exceeds the actual value of the optimal solution then the inner while loop
will only terminate when A \ (St−1 ∪ St) = ∅, which, by consequence, will also terminate the outer while loop.
However, we have that ˜OPT begins as the single highest value of any individual bidder and, by submodularity, OPT
is at most n times this initial value. Thus, since ˜OPT doubles in each round, there are at most O(log n) iterations
of the outer while loop. Thus, in total, the first phase of the auction terminates in O(n2 log n) time.

Since the pruning phase (lines 11 through 17 and Maximize-Value) completes in O(n) time (even if the sum
of clock prices needs to be computed again), the entirety of the auction completes in O(n2 log n) time.

A.5 Proof of Lemma 3.3

Lemma 3.3. For any constant ϵ > 0, there exists a monotone submodular valuation function v for which
Iterative-Pruning returns a solution S such that OPT > (4.5− ϵ)v(S).

Proof. Consider an instance with the following 4 sets of bidders A1, A2, A3, A4. A1 consists of a single bidder i1
with v({i1}) = 1 and ci1 = B. A2 consists of 3 bidders i2, i3, i4 where v({i2}) = v({i3}) = v({i4}) = 2

3 + ϵ. The

costs of the bidders in A2 are ci2 = ci3 = 0, ci4 = (2/3+ϵ)B
2 . A3 consists of

4
3ϵ identical bidders with value ϵ and cost

0. Finally A4 consists of 8
ϵ bidders with value ϵ

2 and cost (ϵ/2+δ)B
4 where δ ≪ ϵ. All of the bidders have additive

value with each other except for i2 and the bidders in A3 which are “capped additive” (i.e., budget additive) with
cap 4/3 = v(A3). In other words, for any S ⊆ A3 ∪ {i2} we have v(S) = min

{∑
i∈S v({i}), 4/3

}
and for any

output set S ⊆ A1 ∪A2 ∪A3 ∪A4 we have that v(S) =
∑

i∈S;i/∈A3∪{i2} v({i})+min
{∑

i∈S;i∈A3∪{i2} v({i}), 4/3
}
.

Now run Iterative-Pruning with a budget B and these bidders. The mechanism would start by initializing
S1 to A1 with ˜OPT1 = 1 since i1 has the highest individual value out of all the bidders. Then the mechanism

would set ˜OPT2 = 2 and approach all of the bidders in A2 offering a price of (2/3+ϵ)B
2 to each of them leading to

all of them being accepted to S2.
Since v(A2) ≥ ˜OPT2, the mechanism would set ˜OPT3 = 4 and move onto constructing S3. First i1 would be

offered a price of B
4 causing it to reject. Then the auction would approach all of the bidders in A3 with a price

of ϵB
4 causing them all to accept and be added to S3. Finally the mechanism would approach each bidder in A4

with a price of ϵB
8 causing them all to reject since (ϵ/2+δ)B

4 > ϵB
8 . Since every item not in S2 or S3 has been

rejected at this point, the initial while loop concludes giving us W1 = S2 = A2 and W2 = S3 = A3. By offering

each of i2, i3, i4 a price of (2/3+ϵ)B
2 we exceed the total budget for W1 and accordingly update the price of i4 to

(2/3+ϵ)B
4 . Then i4 rejects this price so we are left with W1 = {i2} ∪ {i3} and W2 = A3.
Moving to the Maximize-Value subroutine, we have T = {i2} so W3 = {i2} ∪ A3. Thus we are left with

v(W1) = 4/3 + 2ϵ, v(W2) = 4/3 and v(W3) = 4/3 leading the mechanism to return W1. However, the optimal
budget feasible solution consists of {i2} ∪ {i3} ∪ A3 ∪ A4 \ {i−} where i− is the last item in A4 since all of the
bidders in {i2} ∪ {i3} ∪ A3 have 0 cost and the cost of A4/{i−} is B(1 + 2δ

ϵ −
ϵ
8 + δ

4 ) < B. i1, i4 have much
worse marginal densities per cost than the bidders in A4 so they are left out of OPT in favor of A4. Thus we have

OPT = v({i2} ∪ {i3} ∪A3 ∪A4) =
2
3 + ϵ+ 4

3 + 4− ϵ/2 giving an approximation factor of 6+ϵ/2
4/3+2ϵ which is no better

than a 4.5 approximation for an arbitrary ϵ.

B Limitations of posted-price mechanisms

The existence of deterministic budget-feasible clock auctions that achieve a constant approximation raises the
question of whether there exist even simpler families of budget-feasible mechanisms with which one can obtain
constant approximation mechanisms. In this section, we study deterministic posted-price mechanisms, which
are arguably the simplest family of mechanisms. We show that even for the special cases of additive valuation
functions (Section B.1) and symmetric valuation functions (Section B.2), there are no deterministic posted-price
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mechanisms that achieve a constant approximation. Recall that posted-price mechanisms approach sellers in
some order and make “take-it-or-leave-it” offers. In other words, a posted-price mechanism offers each seller i a
single price pi (the price offers can differ for each seller), which i accepts if pi ≥ ci and rejects otherwise. For a
posted-price mechanism to be budget feasible, the sum of the prices of the accepted offers must not exceed the
budget.

B.1 Additive Valuation Functions We first examine the special case of additive valuation functions. A
valuation function v is additive if for all S ⊆ N we have that v(S) =

∑
i∈S vi. We show that deterministic

posted-price mechanisms cannot achieve an approximation factor better than Ω (
√
n).

Theorem B.1. No deterministic posted-price mechanism can achieve an approximation better than
√
n/2 for

instances with additive valuation functions.

Proof. We consider a family of instances with n bidders where there is a single bidder with value
√
n and each

remaining bidder has value 1. We denote the high value bidder bh and in each instance cbh = B. The family
of instances differ only on the costs of the small value bidders. We perform case analysis on the offers that any
mechanism makes to the bidders.

Case 1 Suppose the mechanismM offers some positive price to a small value bidder before it makes an offer
to bidder bh. Let i denote the first small value bidder the mechanism makes a positive offer pi to. Consider the
instance where ci = pi and all the other sellers have cost B. Then, regardless of the other offers, to maintain
budget feasibility the mechanism can only obtain value 1, where the optimal solution is to output bidder bh and
obtain value

√
n. We then have:

α ≥ OPT

v(M)
=

√
n

1
>
√
n/2.

Case 2 Suppose the mechanism M offers each bidder before bh price 0 and offers the entire budget B to
bidder bh. Consider the instance where all the small bidders have cost 1

n−1 . The mechanism will then obtain

total value equal to
√
n. On the other hand, the optimal solution would be to output the n − 1 smaller bidders

and the value would be n− 1. We then have:

α ≥ OPT

v(M)
=

n− 1√
n

>
√
n/2.

Case 3 Suppose the mechanismM offers each bidder before bh price 0 and offers price ph < B to bidder bh.
Consider the instance where the cost of each seller is B. Then the mechanism can only obtain value 1, whereas
the optimal solution is to output bidder bh, obtaining a value of

√
n. We then have:

α ≥ OPT

v(M)
=

√
n

1
>
√
n/2,

completing the proof.

B.2 Symmetric Submodular Valuation Functions We now consider another special subclass of submodu-
lar valuation functions. A function v : 2N → R≥0 is symmetric submodular if there exist r1 ≥ r2 ≥ · · · ≥ rn ≥ 0,

such that v(S) =
∑|S|

i=1 ri for all S ⊆ 2N . This class of functions was studied in the work of Vickrey [36] on multi-
unit auctions and was studied in the context of budget feasible procurement by Singer [32] and Badanidiyuru
et al. [5]. We show that within this restricted family of instances, where the goal of the auctioneer is to maximize
the number of sellers that accept the prices offered to them, no deterministic posted-price mechanism can achieve
a constant approximation. 4

Theorem B.2. No deterministic posted-price mechanism can achieve an approximation factor better than logn
4

for instances with symmetric submodular valuation functions.

4We also note that our lower bound also applies to symmetric additive valuations, i.e., where ri = 1 for all i ∈ [n]
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Instance 1
4B

log n
,
4B

log n
, · · · , 4B

log n︸ ︷︷ ︸
# = logn

4

B,B, . . . , B

Instance 2
4B

log n
,
4B

log n
, · · · , 4B

log n︸ ︷︷ ︸
# = logn

4

2B

log n
,
2B

log n
, . . . ,

2B

log n︸ ︷︷ ︸
# = logn

2

B,B, . . . , B

Instance k
4B

log n
,
4B

log n
, · · · , 4B

log n︸ ︷︷ ︸
# = logn

4

2B

log n
,
2B

log n
, . . . ,

2B

log n︸ ︷︷ ︸
# = logn

2

. . .
B

2k log n
,

B

2k log n
, . . . ,

B

2k log n︸ ︷︷ ︸
# = 2k−3 log n

B,B, . . . , B

...

Figure 1: Seller costs for the instances used in the construction of Lemma B.2

Proof. Consider a specific symmetric function v(S) = |S|. We define a family of instances, where in instance k,
we partition the bidders into k + 1 groups. Each of the j ≤ k groups contains 2j−3 log n bidders each with cost

B
2j−3 logn . Notice that each group is budget feasible since 2j−3 log n · B

2j−3 logn = B. Then the k + 1-th group

contains all the remaining bidders each with cost B. For example, instance 1 has logn
4 bidders with cost 4B

logn ,
and all the remaining bidders have a cost of B. We can see that the optimal solution in instance k is to output
all sellers in group k, let OPTk denote the optimal value of instance k, we have:

OPTk = 2k−3 log n.

In order to achieve the logn
4 approximation factor in any instance k, a mechanism M needs to output at

least OPT
logn/4 ≥ 2k−1 sellers in instance k. Therefore to simultaneously achieve the logn

4 approximation factor in

instance 1 through k, M needs to output 2j−1 bidders in instance j for all j ∈ [1, k] and the minimum amount
the mechanism needs to pay is then

4B

log n
+

k∑
j=2

2j−2 · 4B

2j−1 log n
=

2B

log n
· (k + 1)

by purchasing exactly 2j−1 − 2j−2 = 2j−2 bidders from group j.

Solving 2B
logn · (k + 1) = B we get that k = logn

2 − 1 = log
√
n − 1. In other words, to satisfy log

√
n− 1

instances, we need to use all of our budget. Now let no be the total number of bidders with cost less than B in
the log

√
n− 1-th instance. We then have:

no =

log
√
n−1∑

j=1

2j−3 log n,

and by geometric sum we have:

no =
log n

4
· 2

log
√
n−1 − 1

2− 1
=

√
n/2 log n− log n

4
<

√
n log n

8

Now consider a instance with log
√
n − 1 groups as we defined, (each group j ∈ [1, log

√
n] has 2j−3 log n sellers

and each seller costs B
2j−3 logn ), and remaining sellers all have a cost B

n−no
, we get:

OPT = n− no > n−
√
n log n

8

However, the mechanism would have used up the budget in the process of guaranteeing the approximation
factor in the log

√
n instances we defined, therefore it has no remaining budget to purchase any seller. But then,
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the total value the mechanism must obtain is

v(M) = 2log
√
n−2 =

√
n

4
.

Therefore, the approximation factor is at least:

α =
OPT

v(M)
≥ n−

√
n log n/8√
n/4

= 4
√
n− log n

2
>

log n

4

completing the proof (since the valuation function v is a symmetric submodular function).

We now present a mechanism that achieves a O(log n) approximation to the optimal welfare with symmetric
submodular valuations. Note that we assume that ci ≤ B for all agents i.

MECHANISM 5: A posted-price mechanism for symmetric submodular valuations.

Input: A public budget B, and an arbitrarily ordered set of bidders {i}[n] with private costs ci;
a public additive valuation function v.

1 Initialize a← 0;
2 Initialize W ← ∅;
3 set aside an arbitrary agent j;
4 for i ∈ [n] \ {j} do
5 if a = 0 then
6 Offer pi ← B

2 lnn to agent i;
7 else
8 Offer pi ← B

a·2 lnn to agent i;
9 if agent i accepts then

10 a← a+ 1;
11 W ←W ∪ {i}
12 if a = 0 then
13 Offer pj ← B to agent j;
14 return W

Theorem B.3. Mechanism 5 obtains a O(log n) approximation to the optimal value for instances with symmetric
submodular valuations.

Proof. First, if all the agents accept our offer, the total payment would be

(1 + 1 + 1/2 + 1/3 + · · ·+ 1/(n− 1))
B

2 lnn
≤ ln (n− 1) + 2

2 lnn
B < B

Therefore, at anytime of the execution of the mechanism, we would not exhaust the budget. Let ri be the marginal
gain of adding the the ith agent to the winning set. Now consider the following cases:

Case 1 If no agent accepts the offer, the mechanism M would return the agent j giving v(M) = r1, since
each agent is offered and then rejected at a price of B

2 lnn , we have for each agent i, ci >
B

2 lnn . We can fit at most

2 lnn + 1 more agents. OPT ≤
∑2 lnn+1

i=1 ri. By the definition of symmetric submodular, r1 ≥ r2 ≥ · · · ≥ rn, we

have OPT ≤
∑2 lnn+1

i=1 ri ≤ (2 lnn+ 1) · r1

α =
OPT

v(M)
=

(2 lnn+ 1) · r1
r1

< 2 lnn+ 1.

Case 2 Now let k be the number of agent returned byM, we first have v(M) =
∑k

i=1 ri ≥ k ·rk. Now for any
agent j rejected after the kth accepted agent, the price offered is B

k·2 lnn , therefore we have that cj > pj =
B

k·2 lnn .

For any agent i rejected before agent k, we have ci > pi > pj = B
k·2 lnn , therefore the optimal solution can at fit

less than k · 2 lnn+ k agents. OPT <
∑k·2 lnn+k

i=1 ri ≤ v(M) + (k · 2 lnn)rk. We have:

α =
OPT

v(M)
=

v(M) + (k · 2 lnn)rk
v(M)

= 1 +
(k · 2 lnn)rk

v(M)
< 1 +

(k · 2 lnn)rk
k · rk

= 2 lnn+ 1,

completing the proof.
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