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Abst rac t
A  braided monoidal category may be considered a 3-category with one object and one 1-morphism. In

this paper, we show that, more generally, 3-categories with one object and 1-morphisms given by elements of
a group G  correspond to G-crossed braided categories, certain mathematical structures which have
emerged as important invariants of low-dimensional quantum eld theories. More precisely, we show that the
4-category of 3-categories C equipped with a 3-functor B G  !  C which is essentially surjective on objects
and 1-morphisms is equivalent to the 2-category of G-crossed braided categories. This provides a uniform
approach to various constructions of G-crossed braided categories.

1 Intro duct ion

G-crossed braided categories [EGNO15, x8.24] (see also x4.1) have emerged as important mathematical
structures describing symmetry enriched invariants of quantum eld theories in low dimensions. In particular, G-
crossed braided categories arise from global symmetries in (1+1)D chiral conformal eld theory ([Kir02, Kir01,
Mu•g05]) and (2+1)D topological phases of matter [BBCW19], and as invariants of three-dimensional
homotopy quantum eld theories [Tur10, SW18]. They are a central object of study in the theory of G-
extensions of fusion categories [ENO10, GNN09, CGPW16]. In this article we describe a higher categorical
approach to G-crossed braided categories, which unies these perspectives.

When G  is trivial, a G-crossed braided category is exactly a braided monoidal category. It is well-
known that braided monoidal categories are ‘the same as’ 3-categories1 with exactly one object and one
1-morphism [BD95, Table 21] and [CG11]. This is an instance of the Delooping Hypothesis [BS10, x5.6 and
Hypothesis 22] relating k-fold degenerate (n+k)-categories with k-fold monoidal n-categories. However, twice
degenerate 3-categories, 3-functors, transformations, modications, and perturbations form a 4-category,
whereas braided monoidal categories, braided monoidal functors, and monoidal natural transformations
only form a 2-category. This discrepancy can be resolved by viewing ‘2-fold degeneracy’ as a structure on a 3-
category rather than a property, namely the structure of a 1-surjective pointing2 [BS10, Sec 5.6]. Explicitly, the
Delooping Hypothesis may then be understood as asserting that the 4-category of 3-categories equipped with
1-surjective pointings and pointing-preserving higher morphisms between them is in fact a 2-category (all
hom 2-categories between 2-morphisms are contractible) and is equivalent to the 2-category of braided
monoidal categories.

Rather than pointing by something contractible (i.e., a point), we can also study ‘pointings’ by other
categories. In this article, we show that 1-surjective G-pointed 3-categories, i.e 3-categories equipped with a 1-
surjective 3-functor from a group G  viewed as a 1-category B G  with one object, are ‘the same as’ G-crossed
braided categories.

Theorem A .  The 4-category3 3CatG of 1-surjective G-pointed 3-categories and pointing-preserving higher
morphisms (see Denition 3.2) is equivalent to the 2-category GCrsBrd of G-crossed braided categories. In
particular, every hom 2-category between parallel 2-morphisms in 3CatG is contractible.

1 In this article, by a 3-category we mean an algebraic tricategory in the sense of [Gur13, Def 4.1], and by functor, transforma-
tion, modication, and perturbation, we mean the corresponding notions of trihomomorphism, tritransformation, trimodication, and
perturbation of [Gur13, Def 4.10, 4.16, 4.18, 4.21].

2 A  functor between n-categories G !  C is k-surjective if it is essentially surjective on objects and on j-morphisms for all
1  j   k. A  k-surjective pointing on an n-category C is a k-surjective functor  !  C.

3 We never actually work with a 4-category, as all our results can be stated and proven at the level of 2-categories. See
Remark 3.3 for more details.
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We prove Theorem A  as follows. First, we show in Theorem 3.4 and Corollary 3.5 that 3Cat is 2-
truncated by showing it is equivalent to the strict sub-2-category 3Catst  of strict G-pointed 3-categories,
whose objects are Gray-categories with precisely one object, whose sets of 1-morphisms is exactly G, and
composition of 1-morphisms is the group multiplication. Then in Theorem 4.1, we construct a strict 2-
equivalence between 3Catst  and the strict 2-category GCrsBrdst of strict G-crossed braided categories. Finally,
by [Gal17], every G-crossed braided category is equivalent to a strict one (see Denition 4.5 for more details),
so that GCrsBrd is equivalent to its full 2-subcategory GCrsBrdst. In summary, we construct the following
zig-zag of strict equivalences, where the hooked arrows denote inclusions of full subcategories.

3CatG
 Thm.

3.4
3Cats

t

 Thm.
4.1

GCrsBrdst
[Gal17]

GCrsBrd (1)

For the trivial group G  =  feg, Theorem A  specializes to the Delooping Hypothesis for twice degenerate
3-categories (also see [CG11], which uses so called ‘iconic natural transformations’ rather than pointings).

Corol lary B .  The 4-category3 3Catfeg of 1-surjective pointed 3-categories is equivalent to the 2-category of
braided monoidal categories.

Our main theorem was inspired by, and is closely related to, the following two results: Passing from a
G-pointed 3-category to the associated G-crossed braided category generalizes a result of [BGM19] which
constructs G-crossed braided categories from group actions on 2-categories; see Example 1.11 for more
details.     A  version of the construction of a G-pointed 3-category from a G-crossed braided category is
discussed in [Cui19], and we use this construction in Section 4.3 to prove essential surjectivity of the 2-
functor 3Catst  !  GCrsBrdst.

1.1 G-crossed braided categories from G-pointed 3-categories
In the proof of Theorem A, we construct the equivalence 3CatG  GCrsBrd by passing through appropriate
strictications, resulting in the zig-zag (1) of strict equivalences. For the reader’s convenience, we now sketch a
direct construction of a G-crossed braided category (dened in x4 below) from a G-pointed 3-category,
without passing through strictications.

For a group G, we denote by B G  the delooping of G, i.e., G  considered as a 1-category with one object.
Let C be a 3-category equipped with a 3-functor4  : B G  !  C.

To  construct the G-crossed braided category, we will make use of the graphical calculus of Gray-categories
(outlined in Section 2.2 below) and hence assume that C has been strictied to a Gray-category.5 Unpacking the
(weak) 3-functor into the data (; ; ; ! ; ; ) as described in Appendix A, the G-crossed braided category C may be
constructed as follows. Strictifying the situation slightly, we may assume that C has only one object, i.e. is a
Gray-monoid, a monoid object in Gray viewed as a monoidal 2-category, and that the underlying 2-functor
of  is strict (the unitor and compositor data 1; 2 of  is trivial).

We write gC : =  (g) 2  C, and we dene Cg : =  C(1C !  gC ) for each g 2  G. We denote the tensorator g;h
2  C(gC
 hC !  ghC ) and unitor  2  C(1C !  eC ) of  by trivialent and univalent vertices respectively

g h C

g;h =  =  
eC       :

gC         h C

We denote 1-morphisms ag 2  C(1C !  gC ) by shaded disks as follows:

ag =  
gC

bh =  
h C ck =  

k C       :

4 Since a k-category may be viewed as an n-category for n   k  with only identity r-morphism for n   r  >  k, it makes sense to
talk about an n-functor from a k-category to an n-category.

5 In fact, [Gut19] justies working with this graphical calculus even in the context of weak 3-categories.

2



= )
     1

g
g

g

g

) ) )

h h

h
)

g h C

=)
gC

For g; h 2  G, we dene a tensor product (ag ; bh) !  ag

 bh by

gC  

 
h C       

 !  
g h C        

; (2)

and we dene the associator
gh;k  (
g;h  Ck ) )
g ;hk  (Cg

h ; k )  by

g h k C g h k C g h k C

g h C
! g ; h ; k = )  gC h k C ; (3)

gC                       h C         
k C                                                                                                                  

h C                       
k C

where  denotes the interchanger in C (see x2 below). We dene the unit object 1C : =   2  Ce. Unitors
e;g  ( i    )  )  idC g  and
g;e  (       i )  )  idC g  are given respectively by

gC gC

eC gC
= ) and

gC

gC = )
eC

gC gC

gC
eC = ) :

We dene a G-action Fg  : Ch !  Cghg     1  by

ghgC 
1

!

Fg
h C

: =      
g h C

C
: (4)

h C         g     1
C

eC

The functors Fg  come equipped with natural isomorphisms g :
ghg     1 ;gkg      1   (Fg   Fg )  )  Fg

h ; k  built from the coherence isomorphisms !  ;  ;  and interchangers between two black nodes and between a
black node and a shaded disk. For example,     b h ; c k  

is given by

) ! ; ; ) ! ; ; ! ; ; : (5)

The tensorator g;h : Fg  F h  )  Fg h  and the unit map h  : idC     !  Fe jC      are dened similarly. The G-crossed braiding
natural isomorphisms g;h : ag
 bh !  Fg (bh )
 ag are also dened similarly using the interchanger isomorphism  of C:

g h C

gC

ghgC 
1

g h C

g h C

h C
C C         gC  

1

eC

gC

: (6)
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1.2 The delooping hypothesis
Recall (n +  k)-categories form an (n +  k +  1)-category, whereas k-fold monoidal n-categories only form an (n
+  1)-category. Thus one should not think of ‘k-fold degeneracy’ as a property of an (n +  k)-category C but
rather as additional structure, namely the structure of a (k   1)-surjective pointing, and require all
morphisms and higher morphisms between these categories to preserve pointings [BS10, Sec 5.6]. Explicitly,
the Delooping Hypothesis may then be understood as asserting that (k   1)-connected pointed (n +  k)-
categories and pointing-preserving higher morphisms form an (n +  1)-category which is equivalent to the
(n +  1)-category of k-fold monoidal n-categories. This is an instance of a more general higher categorical
principle.

Denit ion 1.1. We call a functor F  : C !  D  of n-categories k-surjective6 if it is essentially surjective on
objects and parallel r-morphisms for r   k. By convention, any functor is (  1)-surjective.

Hypothesis 1.2. Let G be a n-category. The full (n +  1)-subcategory of the under-(n +  1)-category nCatG= on
the k-surjective functors out of G is an (n      k)-category, i.e., all hom (k +  1)-categories between parallel (n
k)-morphisms are contractible.

Remark 1.3. We expect hypothesis 1.2 is a direct consequence of more common assumptions on the (n + 1)-
category of n-categories: Namely, following [BS10, x5.5], we say that a functor F  : C !  D  between n-
categories is j-monic7 if it is essentially surjective on k-morphisms for all k >  j  (including k =  n +  1,
where we interpret surjectivity to mean faithfulness on n-morphisms). By [BS10, Hypothesis 17], the (weak)
bers of such a j-monic functor are expected to be (possibly poset-enriched) ( j    1)-categories.8     Dually, a
functor G  : C !  D  between n-categories is j -epic if for every n-category E, the pre-composition functor
nCat(p; E) : nCat(D !  E ) !  nCat(C !  E ) is (n      1      j )-monic. In particular, any j-surjective functor in the
sense of Denition 1.1 is j-epic.9 Combining these observations, given a k-surjective functor p : G !  C and an n-
category E, the pre-composition functor nCat(p; E) : nCat(C !  E ) !  nCat(G !  E ) is (n      1      k)-monic. Hence,
its ber at a g 2  nCat(G !  E ) is a (possibly poset-enriched) (n   1   k)-category. But the ber of the pre-
composition functor nCat(p; E) at g : G !  E is the hom-category nCatG=(g; p) of the under-category of n-
categories under G. Therefore, the full subcategory of nCatG= on the k-surjective functors is a (possibly poset-
enriched) (n k)-category. Moreover, essential (0-)surjectivity of p : G !  C (also cf. Footnote 9) should imply
that the pre-composition functor nCat(p; E) : nCat(C !  E ) !  nCat(G !  E ) is n-conservative10, and hence
that the enriching posets of the (weak) bers of nCat(p; E) are honest sets.

Example 1.4 (k-fold monoidal n-categories). In the case where G =   is the terminal category, Hypothe-sis
1.2 asserts that (k      1)-surjective (k-fold degenerate) pointed (n + k)-categories form an (n + 1)-category. The
Delooping Hypothesis [BS10, x5.6 and Hypothesis 22] identies this (n +  1)-category with the (n +  1)-category
of k-fold monoidal n-categories.

An important consequence of Hypothesis 1.2 is that it allows us to study certain higher-categorical
objects, namely k-surjective functors and their higher transformations, using lower-categorical machinery. In
many instances, there exist concrete descriptions of the resulting low-dimensional categories which have been
developed and appear in mathematics and physics independently.

As a concrete example, it is easier to describe and work with the 1-category of monoids and monoid ho-
momorphisms than its unpointed variant, the 2-category of categories, functors, and natural transformations.

6 This notion of k-surjectivity does not coincide with the one used in [BS10], where a functor is said to be k-surjective if it
is essentially surjective on k-morphisms.

7 Many of the denitions and statements in this remark are extensively developed in the setting of (1; 1)-categories [Lur09a, Sec
5], and in particular in the (n  +  1; 1)-category of n-categories. However, we are not able to use these (1; 1)-notions and
statements for our purposes, as we are working in the (n + 1; n + 1)-category of n-categories. For example, our j-monomorphisms do
not coincide with the (1; 1)-categorical j-monomorphisms (in this context also known as ( j    1)-truncated morphisms) as the
latter only fulll essential surjectivity conditions with respect to invertible cells.

8 A  functor between n-groupoids is j-monic if and only if its bers are ( j    1)-categories. For functors between general
n-categories, j-monomorphisms have truncated bers but the converse is not necessarily true.

9 More generally, j -surjective functors are expected to correspond to ‘strong j-epimorphisms’ [BS10, Hypothesis 21], that
is, functors that have the left lifting property with respect to j-monomorphisms. Since the (n  +  1)-category of n-categories has
nite limits, any such ‘strong j-epimorphism’ is in particular a j-epimorphism; see [BS10, Sec 5.5].

1 0 An n-functor F  : C !  D  is n-conservative if it reects n-isomorphisms, i.e., for every n-morphism  : f  )  g in D  for which
F ( )  is an isomorphism, it follows that  is an isomorphism.
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Similarly, it is easier to describe and work with the 2-category of monoidal categories, monoidal functors,
and monoidal natural transformations than its upointed variant, the 3-category of 2-categories, 2-functors, 2-
transformations, and 2-modications. Similar examples are shown in Figure 1.

G n +  k =  0
k =   1 ;         0-category
k =  0 point
k =  1        B G

n +  k =  1
1-category

monoid
normal subgroup of G

n +  k =  2
2-category

monoidal category
G-crossed monoid

n +  k =  3
3-category

monoidal 2-category
G-crossed braided category

Figure 1: (n +  k)-categories equipped with k-surjective functors from G form an n-category

In this article, we focus on 1-surjective functors from the delooping B G  of G, i.e., the 1-category with
one object and endomorphisms G.

Hypothesis 1.5 (G-crossed delooping). For n   1, the (n +  3)-category of 1-surjective functors from B G
into (n +  2)-categories is equivalent to the (n +  1)-category of G-crossed braided n-categories.

While we do not present a general denition of G-crossed braided n-category here, this hypothesis is
a desideratum for any such denition (such as for example via Mu•ller and Woike’s ‘little bundles’ op-erad
[MW19]). Observe that the k =  1 version of the delooping hypothesis follows as a consequence for the
trivial group G  =  feg.

In the following, as a warm-up to our main theorem, we discuss the low-dimensional versions (n =  0 and
n =   1) of Hypothesis 1.5 appearing in the last row of Figure 1.

Example 1.6 (G-crossed monoids as G-pointed 2-categories). The 3-category 2CatG of 2-categories C
equipped with 1-surjective 2-functors B G  !  C is equivalent to the 1-category of G-crossed monoids, or ‘G-
crossed braided 0-categories’, dened below. Explicitly, the 2-category 2CatG has

 objects (C; C ) where C is a 2-category and C : B G  !  C is a 1-surjective 2-functor,

 1-morphisms (A; ) : (C; C ) !  (D ; D )  where A  : C !  D  is a 2-functor and  : D  )  A   C is an invertible
2-transformation,

 2-morphisms (; m) : (A; )  )  (B ; )  where  : A  )  B  is a 2-transformation

B G
C

C B G
C

C

D
B V

D
A B

D: D

 3-morphisms p : (; m) V  (; n) where p :  V   is a 2-modication such that

D A   C D  n

C =

A   C
m

pC

C C

B   C: B   C

On the other hand, a natural decategorication of a G-crossed braided monoidal category is a G-graded
monoid M =  qg 2 G Mg  together with a group homomorphism M  : G  !  Aut(M ) such that the following
axioms are satised:

 g (mh ) 2  Mghg     1  for all g 2  G  and mh 2  Mh, and

5



M

G

G

G

g C C

G

 mg  nh =  g (nh )  mg for all m 2  Mg and nh 2  Mh.

We call such a pair (M; M ) a G-crossed monoid, or a ‘G-crossed braided 0-category’. Morphisms (M; M ) !
(N ; N  )  are G-graded monoid homomorphisms that intertwine the G-actions.

To  see that 2Cat     is equivalent to the category of G-crossed monoids, we mirror our proof of Theorem A.
One rst shows that 2CatG is equivalent to the 1-category 2Catst  with

 objects strict monoidal categories C whose set of objects is fgC gg 2 G  with 1C =  eC and tensor product
given by the group multiplication, and

 morphisms A  : C !  D  are strict monoidal functors such that A(gC ) =  gD  for all g 2  G.

The equivalence from 2Catst  to G-crossed monoids is given by taking hom from 1C. We set Mg : =
C(1C !  gC ), and the multiplication on M : =  qg 2 G Mg  is
 in C. The G-action M  : G  !  Aut(M ) is given by conjugation:

M  (mh ) : =  idgC

mh

 idg     1  2  Mghg     1  =  C(1C !  ghg 1):

One then veries the G-crossed braiding axiom by a G-graded version of Eckmann-Hilton. A  1-morphism A  2
2Catst(C !  D )  yields a G-graded monoid homomorphism by restricting to Mg =  C(1C !  gC ). This monoid
homomorphism is compatible with the G-actions by strictness of A. Finally, one veries this construction is an
equivalence of categories.

Example 1.7 (Normal subgroups as G-pointed 1-categories). The 2-category CatG of 1-categories C equipped
with 1-surjective functors B G  !  C is equivalent to the set of normal subgroups of G  (which we may think of
as the ‘0-category of G-crossed braided (  1)-categories’, see below). Explicitly, CatG has

 objects (C; C ) where C is a category and C : B G  !  C is a 1-surjective functor,

 1-morphisms (A; ) : (C; C ) !  (D ; D )  where A  : C !  D  is a functor and  : D  )  A C is a natural
isomorphism, and

 2-morphisms  : (A; )  )  (B ; )  are natural transformations  : A  )  B  such that

B G
C

C B G
C

C

D
B =

D
A B

D: D

It is straightforward to verify that this 2-category is equivalent to a set. Moreover, up to equivalence, the
data of a 1-surjective functor C : B G  !  C is equivalent to the data of a normal subgroup of G, obtained as the
kernel of the surjective group homomorphism G  !  AutC (C ()). Hence, the 2-category CatG is equivalent to
the set of normal subgroups of G.

Employing ‘categorical negative thinking’ as in [BS10, x2], we may in fact think of a normal subgroup
of G  as a ‘G-crossed braided (  1)-category’, and hence of the set of normal subgroups as ‘the 0-category of
G-crossed braided (  1)-category’ as it appears in Hypothesis 1.5: Since a (  1)-category may be thought of
as a truth value [BS10, x2], one may dene a G-graded ( 1)-category to be a monoid homomorphism G  !
Bool =  (fT ; F g; ^), where Bool denotes the Booleans which one may think of as the commutative monoid
(symmetric monoidal 0-category) of (  1)-categories. Indeed, by taking the kernel, such ‘G-graded (  1)-
categories’ correspond to normal subgroups of G. This correspondence may be seen a further decategoried
analogue of our construction. Indeed, given (C; C ), the corresponding monoid homomorphism G  !  Bool is
exactly given by g !  C (idC ()  !  C (g)), where the latter is the Boolean which is true if idC ( )  =  (g) and false
otherwise.

Example 1.8 (Shaded monoidal algebras). In [GMP+ 18, Defn. 3.18 and 3.26], the authors dene the notion of a
shaded monoidal algebra, which is an operadic approach to 2-categories with a chosen set of objects and a set of
generating 1-morphisms. The statements of [GMP+ 18, Thm. 3.21 and Cor. 3.23] can be understood
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as examples of Hypothesis 1.2. Indeed, equipping a 2-category with a set of objects and a generating set of
1-morphisms is equivalent to pointing by the free category on a graph  . Hence the 3-category of 1-surjective
 -pointed 2-categories is equivalent to the 1-category of  -shaded monoidal algebras.

Remark 1.9 (Planar algebras). Expanding on Example 1.8, Jones’ planar algebras [Jon99] reect the
philosophy of Hypothesis 1.2. A  2-shaded planar algebra may be understood as a pivotal 2-category C with
precisely two objects ‘unshaded’ and ‘shaded’ together with a generating dualizable 1-morphism between
them with loop modulus . This choice of generating 1-morphism may be understood as equipping C with a 1-
surjective pivotal functor C : T L J  ()  !  C, where T L J  ()  is the free spherical 2-category on a dualizble 1-
morphism with quantum dimension . By (a pivotal version of ) Hypothesis 1.2, such pivotal 2-categories and
functors preserving this ‘TLJ-pointing’ actually form a 1-category, which is equivalent to the 1-category of 2-
shaded planar algebras and planar algebra homomorphisms.

Another instance of this philosophy appears in [HPT16] which shows the 2-category ModTens of pointed
module tensor categories over a braided pivotal category V (dened in [HPT16, x3.1]) is 1-truncated [HPT16,
Lem. 3.6]. By [HPT16, Thm. A], ModTens is equivalent to the 1-category of anchored planar algebras in V.

1.3 Examples
Our main theorem asserts an equivalence between 1-surjective functors B G  !  C and G-crossed braided
categories. Starting with an arbitrary 3-functor  : B G  !  C we may factor it through a 1-surjective functor 0

: B G  !  C0 (where C0 is the subcategory of C with objects and 1-morphisms in the essential image of , and
all 2- and 3-morphisms between them) and apply our construction from x1.1 to obtain a G-crossed braided
category. Most examples discussed below arise in this way.

Example 1.10 (Delooped braided monoidal categories). Let B  be a braided monoidal category, and denote
the corresponding 3-category with one object and one 1-morphism by B2 B. Observe that every weak 3-functor
B G  !  B2 B is automatically 1-surjective. Such 3-functors B G  !  B2 B factor through the maximal sub-3-
groupoid B2 B  of B2 B, delooping the braided monoidal groupoid B  of invertible objects and morphisms in B.
Assuming the homotopy hypothesis for algebraic trigroupoids,11 such functors correspond to homotopy
classes of maps from the classifying space B G  to the 1-connected homotopy 3-type B2 B.

Such 1-connected 3-types are completely determined by the abelian group 2 (B2 B) =  Inv(B) of iso-
morphism classes of invertible objects of B, the abelian group 3 (B2 B) =  Aut(1B ) of automorphisms of the
tensor unit 1B of B, and the k{invariant q 2  H 4 (K (Inv(B); 2); Aut(1B )) =  Quad(Inv(B); Aut(1B )), the group
of quadratic functions on Inv(B) valued in Aut(1B ) [EM54], which is explicitly given by the quadratic function

q : Inv(B) !  Aut(1B ) given by q(b) : =  evb b;b     1   coevb :

Here, evb : b 1

 b !  I  and coevb : I  !  b
 b 1 denote a choice of pairing between b and b 1 and b;b     1  : b
 b 1 !  b 1

 b denotes the braiding.
By [Mac52, EM54], the group Quad(Inv(B); Aut(1B )) is further isomorphic to the group H  (Inv(B); Aut(1B ))

of abelian 3-cocycles (; ), consisting of pairs of a group 3-cocycle  : Inv(B)3 !  Aut(1B ) and a certain
‘-twisted-bilinear’ form  : Inv(B)2 !  Aut(1B ). We refer the reader to [Bra20, (1.2) and x11] for more
details.

By the obstruction theory for homotopy classes of maps into such Postnikov towers (cf. [ENO10, Theorem
1.3]), it follows that, up to natural isomorphism, 3-functors B G  !  B2 B correspond to the following data:

 a 2-cocycle  2  Z 2 (G; Inv(B)), up to coboundary;

 a 3-cochain !  2  C 3 (G; Aut(1B )) such that d !  =  (; ), where (; ) 2  Z 4 (G; Aut(1B )) is the 4-
cocycle in the image of the Pontryagin-Whitehead morphism12 (; )     : H 2 (G; Inv(B)) !

11 The article [Lac11] constructs a model category structure on the category of Gray-categories and Gray-functors which restrict to
a model structure on Gray-groupoids. Even though it is shown that the corresponding homotopy category of Gray-groupoids
localized at the Gray-equivalences is equivalent to the category of homotopy 3-types and homotopy classes of continuous maps, to
the best of our knowledge, it has not yet been shown that this category is also equivalent to the 1-category whose objects are
Gray-groupoids (or algebraic trigroupoids) and whose morphisms are natural equivalence classes of weak 3-functors.

12 Under the isomorphism H 4 (K ( Inv(B ) ; 2) ; Aut(1 B ) )  =  H 3  ( Inv(B ); Aut(1B )) ,  the abelian 3-cocycle (; ) corresponds to
a map (; )  : K ( Inv (B ) ; 2)  !  K (Aut(1B ) ; 4) .      From this perspective, the Pontryagin-Whitehead morphism (; )  : H  (G; Inv(B ) )
!  H  (G; Aut B (1 B ) )  is simply given by postcomposing a class !  : B G  !  K ( Inv(B ) ; 2 )  with (; ).
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 1  1

 1

g B Bg;h g;h

g h

g ;h;k

g ; h ; k!
id

ga  ; h ; k
id

id

 1

H 4 (G; AutB (1B )) for the k-invariant (; ) 2  H 4 (K (Inv(B); 2); Aut(1B )). An explicit expression for
the 4-cocycle (; ) 2  Z 4 (G; Aut(1B )) is given by

(; )(g; h; k; ‘) =  k ; ‘ ; g ; h  g h k ; ‘ ; g h ; k ; g ; h  g h k ; ‘ ; g ; h k ; h ; k  g ; h k ‘ ; h k ; ‘ ; h ; k

g ; h k ‘ ; h ; k ‘ ; k ; ‘  g h ; k ‘ ; g ; h ; k ; ‘  g h ; k ‘ ; k ; ‘ ; g ; h
(7)

This explicit expression can also be obtained, up to conventions, by taking the trivial G-action in
[CGPW16, Eq. (5.6)].

In fact, after strictifying B  to a strict braided monoidal category, so that B2 B is a Gray-category, this
cohomological data may be directly read o from the components of the weak 3-functor  : B G  !  B2 B, using
notation from Appendix A, as follows: We may assume the underlying 2-functor of  is strictly unital, i.e., 1
=  id1      for all g 2  G. By (F-I).ii, this implies 2 =  id1      for all g; h 2  G. We write g;h : =         2  Inv(B). By
(F-I I).iii, id ;id       =  id 2  End(g;h ). Using the isomorphism !g ; h ; k  : gh;k

 g;h !  g ;hk

 h;k ;  descends to a 2-cocycle in Z 2 (G; Inv(B)). To  translate !  into a 3-cochain in C 3 (G; AutB (1B )), we let
C be a skeletalization of B.     In C, we may identify all automorphism spaces of C with Aut(1B ), and hence
recover the associator  in C as an element of Z 3 (Inv(C ); Aut(1B )), and descend the isomorphisms !

: gh;k
 g;h !  g ;hk

 h ; k  to a 3-cochain !  in C 3 (G; AutB (1B )). Unpacking13 (F-1) leads to d !  =  (; ).
We can now explicitly describe the G-crossed braided category resulting from our construction from this

cohomological data by interpreting the diagrams (2), (3), (4), (5), (6).

 Al l  g-graded components are B,

 the monoidal structure is given by interpreting (2): ag
 bh : =  g;h
 ag
 bh, with associator given by interpreting (3):

     1

gh;k
g;h

ag

bh

ck !  g ;hk
h ; k

ag

bh

ck !  g ;hk

ag
h ; k

bh

ck :

 the G-action is given by interpreting (4): Fg (bh ) : =  gh;g     1

 g ;h
 bh

 g;g     1  , with tensorator g

given by interpreting (5).

 the G-crossed braiding is given by interpreting (6).

One can view the resulting G-crossed extension as a twisting of the trivial extension by a 2-cocycle
[ENO10, Pf. of Thm. 1.3]. When B  is fusion, this is a G-crossed zesting of the trivial G-crossed extension B
Vec(G) of B  [DGP+ 20].

Example 1.11 (Generalized relative center construction). The article [BGM19] shows that every (weak) G-
action on a 2-category may be strictied to a strict G-action on a strict 2-category, encoded by a group
homomorphism  : G  !  Autst (B), where Autst (B) is the group of strict 2-equivalences of B  which admit strict
inverses. From such a strict G-action, the authors then construct a G-crossed braided monoidal cate-gory
Z G ( B )  whose g-graded component is the category of pseudonatural transformations and modications
PseudoNat(idB )  (g)): Since (e) =  idB , the trivial graded component is the Drinfeld center Z (B ) .  This
construction generalizes the construction of the relative center Z C (D )  of a G-extension D  of a fusion category C;



by [GNN09], Z C (D )  is a G-crossed braided fusion category whose trivial graded component is Z (C ).
Our construction of a G-crossed braided monoidal category from a G-pointed 3-category may be un-

derstood as a generalization of [BGM19] from G-actions on 2-categories, encoded by 3-functors B G  !  2Cat
from B G  into the 3-category of 2-categories, to arbitrary 3-functors B G  !  C. In particular, we show in
Section 3.2 that we may strictify a 1-surjective weak 3-functor B G  !  C to a Gray-functor B G  !  C0 into a
Gray-category C0 equivalent to C, and construct a G-crossed braided category from this data.

13 Unpacking (F-1) in C introduces six additional associator terms, one for every vertex of the hexagon commutative diagram. As
these terms correspond to the two dierent ways to associate each of the vertex 1-cells in (F-1), the associators alternate  and      1

around the diagram. The resulting 12 sided commutative diagram exactly reproduces, up to conventions, a simplication of
[CGPW16,  Fig. 1] where the G-action is trivial. F ive  of these 12 terms give d! ,  while the other 7 terms give (7). Since the
diagram commutes, we have d !  =  (; ) as desired.

8



A

Example 1.12 (G-crossed extension theory for braided fusion categories). Let C be a braided fusion category,
and consider the monoidal 2-category Mod(C) of nite semisimple module categories [Gre10, DR18]. Given a
monoidal 2-functor  : G  !  Mod(C), our construction produces the G-crossed braided fusion category

M  
Hom(CC !  (g)C ) =  

M  
(g)

g 2 G g 2 G

which is a G-crossed braided extension of the e-graded piece EndMod(C)(CC ) =  C. This G-crossed braided
category is equivalent to the G-crossed extension constructed in [ENO10] (which moreover gives an alternate
proof that faithful G-crossed extensions of braided fusion categories are in fact classied by monoidal 2-
functors G  !  Mod(C)).

Example 1.13 (Permutation crossed extensions). Let C be a symmetric monoidal 3-category, and let A  be an
object of C. Then there exists a monoidal 2-functor  : S n  !  End(An ), where  denotes the symmetric monoidal
product in C. Our construction produces a Sn-crossed braided category whose trivially graded piece is End(id
n  ). For example, if A  is an object in the 3-category of fusion categories [DSPS13, Hau17, JFS17], there is an
equivalence

End(idA n  )  =  Z ( A n )  =  Z ( A ) n ;

where Z ( A )  is the Drinfeld center of A,  and the resulting Sn-crossed braided category is what is known as a
permutation crossed extension of Z ( A ) n .  More generally, the article [GJ19] shows that such permutation
crossed extensions of C n exist for any modular tensor category.

Example 1.14 (Conformal nets). Consider the symmetric monoidal 3-category14 of coordinate free con-
formal nets CN dened in [DH12, BDH15, BDH17, BDH19, BDH18]. A  3-functor B G  !  CN amounts to a
conformal net A  2  CN together with a generalized action of G  on the net A  by invertible topological
defects. Applied to such a 3-functor, our construction produces a G-crossed braided category whose trivial
graded component is the braided category EndCN (1A ) =  Rep(A) of (super-selection) sectors [BDH15, Sec
1.B] of A.  We expect this generalizes a construction of Mu•ger [Mu•g05], which produces a G-crossed braided
category from the action of global symmetries on a coordinatized conformal net. However, it is dicult to
compare these two G-crossed braided categories, since it is not obvious how to construct a symmetric
monoidal 3-category of coordinatized conformal nets.

Example 1.15 (Topological phases). The collection of (2+1)D gapped topological phases is expected to
form a 3-category [GJF19b, GJF19a]. Given a global, onsite symmetry, there is an associated G-crossed
braided category of twist defects [BBCW19]. Our construction can be understood as a direct generalization of
this heuristic. Indeed, our pictures and arguments can be viewed as a more mathematically precise version of
the arguments and structure given in the physical context (e.g., see [BBCW19, Fig. 7]).

Example 1.16 (Homotopy quantum eld theory). Homotopy quantum eld theories are topological eld
theories on bordisms equipped with a map to a xed target space. If this target space is the classifying space
B G  of a nite group G, such eld theories are also known as G-equivariant eld theories. Following the
cobordism hypothesis [BD95, Lur09b], such a fully extended (framed) 3-dimensional G-equivariant topo-
logical eld theory valued in a fully dualizable symmetric monoidal 3-category corresponds to a 3-functor B G
!  C (i.e. a fully dualizable object A  in C equipped with an ‘internal G-action’, given by a monoidal 2-
functor X  : G  !  EndC (A)). It therefore follows from Theorem A  that to any such eld theory, there is an
associated G-crossed braided category.

In particular, if Fus is the 3-category of fusion categories introduced in [DSPS13], we expect the G-
crossed braided category constructed via Theorem A  from a fully extended G-equivariant three-dimensional
eld theory valued in Fus to coincide with the G-crossed braided category constructed in [SW18] by evaluating the
eld theory on (G-structured) circles. In particular, if G  is trivial, this recovers the construction of the Drinfeld
center of a fusion category A  as FusCat(A AA  )  A A A ) .

14 The notion of tricategory used in [DH12, BDH18], namely an internal bicategory in Cat, is expected, but not proven to be
equivalent to the notion of algebraic tricategory [Gur13] used in the present article.
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1.4 Outline
Section 2 contains basic denitions and a brief introduction to the graphical calculus of Gray-monoids used
throughout.

Section 3 proves various strictication results for 1-surjective pointed 3-categories (x3.1) and higher
morphisms between them (x3.2, x3.3, x3.4, x3.5) and shows that 3Cat (Denition 3.2) is equivalent to its
strict sub-2-category 3Catst  (Corollary 3.5).

Section 4 denes the 2-category GCrsBrd of G-crossed braided categories (x4.1) and its equivalent full
sub-2-category GCrsBrdst, constructs the strict 2-functor 3Catst  !  GCrsBrdst (x4.2) and proves that it is an
equivalence (x4.3).

Section 5 discusses how various properties and structures on a 1-surjective G-pointed 3-category, such
as linearity and rigidity, may be translated across the equivalence of Theorem A  to the resulting G-crossed
braided category.

Appendix A  unpacks the denitions of (weak) 3-functors, transformations, modications and perturba-
tions between Gray-monoids in terms of the graphical calculus.

Appendices B  and C  contain most of the coherence proofs from Sections 3 and 4, respectively.
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2 Background on 3-categories and monoidal 2-categories

In this article, by a 3-category we mean an algebraic tricategory in the sense of [Gur13, Def 4.1], and by
functor, transformation, modication, and perturbation, we mean the corresponding notions of trihomomor-
phism, tritransformation, trimodication, and perturbation of [Gur13, Def 4.10, 4.16, 4.18, 4.21]. We include
Appendix A  below which unpacks the full denitions of these notions for Gray-monoids using the graphical
calculus discussed in x2.2 below. When we consider stricter notions of categories or functors we will always use
appropriate adjectives such as ‘Gray’ or ‘strict’.

Remark 2.1. In this article, we use the term invertible as a property, i.e., the existence of a coherent
inverse. Indeed, by [Gur12], every invertible 1-morphism (biequivalence) in a 3-category is part of a biadjoint
biequivalence, and every invertible 2-morphism is part of an adjoint equivalence.     Moreover, there is a
contractible space of choices for these coherent inverses. Whenever we need to make such choices, we will
refer back to this remark.

2.1 Gray-categories and Gray-monoids
In this section, we give a terse denition of Gray-category and Gray-monoid, and a brief discussion on the
diagrammatic calculus for Gray-monoids. We refer the reader to [Gur06] for a more detailed treatment of
Gray-categories and to [BMS12, x2.6] or [Bar14] for a more detailed treatment of the graphical calculus.

Denit ion 2.2. The symmetric monoidal category Gray is the 1-category of strict 2-categories and strict 2-
functors equipped with the Gray monoidal structure [Gur06, x5]. A  Gray-category is a category enriched in
Gray in the sense of [Kel05]. A  Gray-monoid is a monoid object in Gray. Given a Gray-monoid C, its
delooping BC is the Gray-category with one object and endomorphisms C.

We now unpack the notion of Gray-monoid from Denition 2.2.

Notation 2.3. Given a Gray-monoid C, we refer to its objects, 1-morphisms, and 2-morphisms as 0-cells, 1-
cells, and 2-cells respectively in order to distinguish these basic components of C from morphisms in an
ambient category in which C lives.
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The remarks and warning below are adapted directly from [DR18].

Remark 2.4. Unpacking Denition 2.2, a Gray-monoid consists of the following data:

(D1) a strict 2-category C, where composition of 1-morphisms is denoted by  and composition of 2-
morphisms is denoted by ;

(D2) an identity 0-cell 1C 2  C;

(D3) strict left and right tensor product 2-functors L a  =  a
   and R a  =
 a for each object a 2  C:

L a  =  a
   : C !  C R a  =
 a : C !  C;

(D4) an interchanger 2-isomorphism x ; y  for each pair of 1-cells x  : a !  b and g : c !  d:

x ; y  : ( x
 idd)  (ida

y) )  (idb

y)  (x
 idc )

subject to the following conditions:

(C1) left and right tensor product agree: for all objects a; b 2  C, L a b  =  Rb a =  a
 b;

(C2) tensor product is strictly unital and associative:

L 1 C  =  idC =  R 1 C

L a L b  =  L a

b R b R a  =  R a

b L a R b  =  R b L a ;

(C3) the interchanger  respects identities, i.e., for a 0-cell A  2  C and a 1-cell f  : C  !  D ,

f ; i d A  =  idf

A  i d A ; f  =  idA
f

(C4) the interchanger  respects composition, i.e., for x  : a !  a0, x0 : a0 !  a00, y : b !  b0 and y0 : b0 !  b00,

x 0 x ; y  =  (x 0 ;y   (x
 idb ))  ((x0

 idb0 )   x ; y )  x;y 0 y  =  ((ida0

y0)  x ; y )   (x ;y 0   (ida

y))

(C5) the interchanger  is natural, i.e., for 1-cells x; x0 : a !  a0; y; y0 : b !  b0 and 2-cells  : x  )  x0,  :
y )  y0,

x 0 ;y   ((
 idb0 )   (ida

y)) =  ((ida0

y)  (
 idb))  x ; y  x ;y 0   ( (x

 idb0 )   (ida



))  =  ((ida0

)   (x
 idb))  x ; y

(C6) the interchanger  respects tensor product, i.e., for x  : a !  a0, y : b !  b0 and z : c !  c0,

ida

y ; z  =  ida
y ; z  x

idb ;z =  x;idb

z  x ; y

idc  =  x ; y

 idc

A  Gray-monoid is called linear if the underlying 2-category is linear and for all objects a the functors a

and
 a are linear.
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War n i n g  2.5 (Horizontal composition of 1-morphisms). We warn the reader that the tensor product in a
Gray-monoid does not provide a unique denition of the tensor product of two 1-cells. Given x  : a !  b and y
: c !  d, we dene

x
 y : =  (x
 idd)  (ida

y) ; (8)

this convention is known as nudging [GPS95, x4.5]. We use a similar nudging convention for the tensor
product of 2-cells. With this convention, the data of a Gray-monoid C as described in Denition 2.4 gives rise
to an (opcubical cf [Gur13, x8]) algebraic tricategory BC [Gur13, Thm. 8.12].

Remark 2.6 (Strictication for monoidal 2-categories). By the strictication for tricategories from [GPS95] or
[Gur13, Cor. 9.16], every (linear) weakly monoidal weak 2-category admits a monoidal 2-equivalence to a
(linear) Gray-monoid of the form in Denition 2.4.

2.2 Graphical calculus for Gray-monoids
Gray-categories admit a graphical calculus of surfaces, lines, and vertices in three-dimensional space. We
refer the reader to [BMS12, x2.6] for a rigorous discussion. Here, we will only ever work in a two-dimensional
projection of this graphical calculus for Gray-monoids. Our exposition below follows [Bar14].

The 0-cells of our strict 2-category C (D1) are denoted by strands in the plane

a

and the identity 0-cell 1C (D2) is denoted by the empty strand. The 1-cells are denoted by coupons between
labelled strands

b

x  : a !  b x

a

The composition of 1-cells is denoted by vertical stacking of such diagrams.
The strict tensor product

 is denoted by horizontal juxtaposition. For example, the tensor product functors L a  and R a  (D3) are
denoted by placing a strand labelled by a to the left or right respectively.

c c

L a ( x  : b !  c) : =  ida

x  =  a x R a ( x  : b !  c) : =  x
 ida = x a

b b

Given x  : a !  b and y : c !  d, we dene their tensor product using the nudging convention from Warning
2.5.

b d

x

x
 y : =  (x
 idd)  (ida

y) =
y

a c

Observe that no two coupons ever share the same vertical height.
The 2-cells are inherently 3-dimensional, and can be thought of as ‘movies’ between our 2-dimensional

string diagrams. Rather than drawing 2-cells, we denote them by arrows )  between diagrams corresponding to
their source and target 1-cells. For example, the interchanger x ; y  from (D4) is simply denoted by

b d b d



= )
x

x ; y
y

: y
x

a c a c
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1       2

Notation 2.7. When working with Gray-monoids, one often needs to whisker 2-cells between 1-cells, and the
notation can quickly become cumbersome. Instead, we use the convention of a dashed box when we apply a
2-cell locally to a 1-cell, and we simply label the whiskered 2-cell by the name of the locally applied 2-cell.
Later on, we will draw commutative diagrams whose vertices are 1-cells. When we want to apply two 2-cells
locally in dierent places to the same 1-cell, we will use two dashed boxes with dierent colors, usually red and
blue. When one of these two 2-cells is applied to the entire diagram, we do not use a dashed box, and we only
use one dashed box of another color, usually red. As an explicit example, the second equation in (C4) in string
diagrams is given by:

b d b d

x y

y
x ; y z

z

z x

a c a c
x ; y                                      x ; z

b d

y

x

z

a c

For the convenience of the reader, we have included Appendix A  which unpacks the notions of 3-functor,
transformation, modication, and perturbation for Gray-monoids using this graphical calculus.

3 Str ict i fy ing  G-p ointed 3-categories

Let G  be a group. We recall from x1.1 that B G  denoted the delooping of G, i.e., G  considered as a 1-category
with one object. As discussed at the beginning of x2, the terms n-category and n-functor for n  3 will always
mean weak n-categories and weak n-functors. Observe that since a k-category may be viewed as an n-category
for n  k with only identity higher morphisms, we may talk about an n-functor from a k-category to an n-
category. Recall from Remark 2.1 that we use the adjective invertible for (bi)adjoint (bi)equivalences.

Denit ion 3.1. A  3-functor A  : C !  D  is 1-surjective if it is essentially surjective on objects and if for every pair
of objects c1; c2 of C, the 2-functors A c  ;c     : C(c1 !  c2) !  D(A(c1 ) !  A(c2 )) are essentially surjective on
objects.

Denit ion 3.2. Let G  be a group. We dene the 4-category15 3CatG of G-pointed 3-categories to be the full
sub-4-category of the under-category 3CatBG= on the 1-surjective 3-functors B G  !  C. Explicitly, this 4-
category can be described as follows:

 objects are 3-categories C equipped with a 1-surjective 3-functor C : B G  !  C.

 1-morphisms (A; ) : (C; C ) !  (D ; D )  are pairs where A  : C !  D  is a 3-functor and  : D  )  A   C is an
invertible natural transformation;

15 A l l  results in this section can be stated and proved at the level of various 2-categories of (k       1)-morphisms, k-morphisms and
equivalence classes of (k  + 1)-morphisms of 3CatG ; we therefore will not show that 3CatG forms a 4-category |  and in fact will not
even choose any denition of 4-category. We only use the conceptual idea of a 4-category as an underlying organizational principle for
our results.
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m

G

G

G

G

 2-morphisms (; m) : (A; )  )  (B ; )  are pairs where  : A  )  B  is a natural transformation and m is an
invertible modication

B G
C

C B G
C

C

D
B V

D
A B : (9)

D: D

 3-morphisms (p; ) : (; m) V  (; n) are modications p :  V   together with an invertible perturba-tion :
D A   C D A   C

n m

C C
pC          

C (10)

B   C:

 4-morphisms  : (p; ) (q; ) are perturbations  : p

B   C

q satisfying

m (  C )

n ( q C ) =

m (  C )

( C )
n (p C

) ( q C ) (11)

(  C )  : (   C )

Remark 3.3. As stated, Denition 3.2 and Theorem 3.4 below assume the existence of a (weak) 4-category
3Cat of algebraic tricategories, trifunctors, tritransformations, modications, and perturbations which has the
appropriate homotopy bicategories between parallel k-morphisms. Assuming the existence of such a 4-
category 3Cat, we may dene 3CatG as a certain full sub-4-category of the under-category as in Denition 3.2.
In Theorem 3.4 we show, working a bicategory at a time, that this 4-category 3Cat     is equivalent to a sub-
4-category 3Catpt with only identity 3- and 4-morphisms, and is hence equivalent to a bicategory. After
having established Theorem 3.4, we will from then on only work with this bicategory 3Catpt.

Unfortunately, to the best of our knowledge, such a 4-category 3Cat has not yet been constructed in any
of the established models of weak 4-category. However, none of the results in this article truly depend on
the specics of 4-categories, and 4-categories only appear as a convenient conceptual organizing tool.

The reader uncomfortable with this sort of model-independent argument may unpack the statement of
our main Theorem A  to assert the following:

(1) For a pair of parallel ‘1-morphisms’ as in Denition 3.2, the bicategory of 2-morphisms, 3-morphisms
and 4-morphisms between them is equivalent to a set.

(2) The bicategory of objects, 1-morphisms and 2-morphisms up to invertible 3-morphisms of Denition 3.2 is
equivalent to the 2-category of G-crossed braided categories.

Theorem 3.4. The 4-category 3CatG is equivalent to the 4-subcategory 3Catpt where

 objects (BC ; C ) are those objects of 3CatG for which the 3-category is a Gray-category with one object, and
hence given by BC for some Gray-monoid C, and for which C : B G  !  BC is a strictly 1-bijective Gray-
functor. Equivalently, an object is a Gray-monoid C whose set of 0-cells is fgC : =  C (g)gg 2G and
composition of 0-cells given by group multiplication.

 1-morphisms (A; ) : (BC; C ) !  (BD ; D )  satisfy:
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A
1 e

1

2

C C D e D g ;hC        C g h D

C D C g eD D

C e D

G

G G

G G

1 1
1

D
2

G

G G

1 1 1

2 2 2

A B B A

A B A

{  A(gC ) =  gD  for all g 2  G,
{  the adjoint equivalence  :
D   ( A   A )  )  A
C satises g C ; h C  =  idg h D  : gD

 hD  )  ghD , {  the adjoint equivalence A  =  (A ; 1 )  : I D  )  A   IC  satises A  =  ideD  , and A  =  A1 ,
{  the associators and unitors ! A ; ‘ A ; r A  are identities,
{   =  e D  and g =  idgD  , and idg  =  Ag ,
{  1 =  idide D      

and g;h =  idi d g h D      
for all g; h 2  G.

 2-morphisms (; m) : (A; )  )  (B ; )  satisfy       =  eD , g      =  idg     , 1 =  idid and 2 =  idid
and m =  eD ,  mg =  idid g D  

. That is, m is the identity modication.

 3-morphisms (p; ) : (; m) V  (; n) satisfy p      =  ide     , pg      =  idid , and  =  idid . That is, there
are only identity 3-morphisms.

 4-morphisms  : (p; ) (q; ) satisfy       =  idid . That is, the only 4-endomorphism of an identity
3-morphism is the identity.

Proof. In x3.1, 3.2, 3.3, 3.4, 3.5 below we show that every object, 1-morphism, 2-morphism, 3-morphism,
and 4-morphism respectively in 3CatG is equivalent to one of the desired form in 3Catpt. Al l  proofs in these
further subsections amount to checking the appropriate coherences for 3-functors, 3-natural transformations, 3-
modications, and 3-perturbations outlined in Appendix A  and are deferred to Appendix B. We signify where
the reader may nd the deferred proof of a statement by including a small box with a link to the appropriate
appendix after the statement.

Since the only 3- and 4-morphisms of 3Catpt are identities, it is evident that 3Catpt |  and hence by
Theorem 3.4 also 3CatG |  is 2-truncated and actually denes a 2-category. In the following corollary, we give
a streamlined description of this 2-category without the redundant data.

Corol lary 3.5. The 4-category 3Catpt is isomorphic to the strict 2-category 3Catst, dened as follows:

 An object is a Gray-monoid C whose set of 0-cells is G  (below, we will denote the elements of G  seen
as 0-cells in C by gC ) and composition of 0-cells is given by group multiplication.

 A  1-morphism A  : C !  D  is a 3-functor A  : BC !  B D  such that

{  A(gC ) =  gD  for all g 2  G,
{  the adjoint equivalence  :
D   ( A   A )  )  A
C satises g;h =  idgh : gD

 hD  )  ghD , {  the adjoint equivalence A  =  ( A ; A )  : I D  )  A   IC  satises A  =  ideD  , and A  =  Ae ,
{  the associators and unitors ! A ; ‘ A ; r A  are identities.

 A  2-morphism  : A  )  B  is a natural transformation such that  =  eD ,  g =  idgD  , 1 =  idide and

g;h =  idi d g h D      
for all g; h 2  G.

Composition of 1- and 2-morphisms is the usual composition of 3-functors and natural transformations [Gur13].

Proof. The natural transformation , the modications m and p and the perturbations  and  in the state-ment
of Theorem 3.4 are completely determined by the imposed conditions on their coecients. Moreover, the so
dened coecients always assemble into natural transformations, modications, and perturbations,
respectively, between the respective morphisms described in Corollary 3.5.

We now show that 3Catst  is indeed a strict 2-category. Suppose we have two composable 1-morphisms
(A; A1 ; A2 ; A ; A ) 2  3Catst(D !  E ) and (B ; B 1 ; B 2 ; B ; B )  2  3Catst(C !  D). Then the formulas for the
components for the composite ( A   B ; ( A   B )2 ; (A  B ) 2 ; A B ; A B )  are given by

( A   B )g  =  A(B g )   Ag

( A   B ) x ; y  =  A ( B x ; y )   A B ( x ) ; B ( y )

x ; y       =  A( x ; y )   B ( x ) ; B ( y )

1 
B  =  A(1  )   1 ;

8 g 2  G

8 x 2  C(hC !  kC); 8 y 2  C(gC !  hC )

8 x 2  C(gC !  kC); 8 y 2  C(hC !  ‘C )

which are easily seen to be strictly associative and strictly unital. It is also straightforward to see that
composition of 2-morphisms is strictly associative and strictly unital as well.
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3.1 Strictifying objects
In the following section, we prove the ‘object part’ of Theorem 3.4 and show that every object  =  C : B G  !
C of the 4-category 3CatG is equivalent to a strictly 1-bijective Gray-functor 0 : B G  !  BC0, where C0 is a Gray-
monoid whose set of 0-cells is G  with composition the group multiplication. The following lemma is a direct
consequence of Gurski’s strictication of 3-categories [Gur13, Cor. 9.15].

Lemma 3.6. Any 1-surjective 3-functor  : B G  !  C is equivalent, in 3CatG, to a 1-surjective 3-functor 0

: B G  !  BC0 where C0 is a Gray-monoid.

Proof. By [Gur13, Cor. 9.15], there is a Gray-category C0 and a 3-equivalence C !  C0 . By 1-surjectivity of , it
follows that the composite B G  !  C !  C0 factors through the full endomorphism Gray-monoid C0 of C0 on the
single object in the image of the composite, resulting in a 3-functor 0 : B G  !  BC0 which is equivalent to  : B G
!  C in 3CatG.

To  further strictify  : B G  !  BC , we use the following direct consequence of a theorem of Buhne [Buh14].
Recall that a 3-functor F  : A  !  B  between Gray-categories A  and B  is locally strict if the 2-functors Fa ; b  :
A(a !  b) !  B (F (a) !  F (b))  are strict.

Proposition 3.7. Given Gray-monoids G; C and a locally strict 3-functor  : BG !  BC , there exists a Gray-
monoid C0, an equivalence A  : BC !  BC0, a Gray-functor 0 : BG !  BC0 and a natural isomorphism 0 )  A
.

Proof. By [Buh14, Thm. 8], every locally strict 3-functor from a (small) Gray-category into a cocomplete
Gray-category is equivalent to a Gray-functor. Here, cocomplete is used in the sense of enriched category
theory [Kel05, x3.2].

Given two Gray-categories A; B , we denote by [A; B] the Gray-category of Gray-functors A  !  B. Consider
the Gray-enriched Yoneda embedding y : BC !  [BCop; Gray], where the target is cocomplete as Gray is
cocomplete [Kel05, x3.3]. The composite

BG  !  BC  !  [(BC)op; Gray]

is a composite of a locally strict 3-functor with a Gray-functor and hence itself locally strict. Therefore, there
is a Gray-functor 0 : BG !  [(BC)op; Gray] which is equivalent to the composite.

Now we dene BC0 to be the full sub-Gray-category of [(BC)op; Gray] on the object 0() and dene 0 : BG !
BC0 as the codomain-restriction of 0 to BC0. Finally, observe that both the Gray-Yoneda embedding y : BC
!  [(BC)op; Gray] and the inclusion BC0 !  [(BC)op; Gray] are fully faithful16 Gray-functors which map the
single objects of BC and BC0 to equivalent objects. Hence, there is an equivalence A  : BC !  BC0 and a
natural isomorphism  : 0 )  A   .

Remark 3.8. In general, we cannot get rid of the local strictness assumption on  by the example given in
[Buh15, E x  2.2].

Theorem 3.9 (Strictifying objects). Every object (C; ) 2  3Cat is equivalent to an object (BC0; 0) of the
subcategory 3Catpt where 0 : B G  !  BC0 is a strictly 1-bijective Gray-functor into a Gray-monoid C0 whose
set of 0-cells is G  with composition the group multiplication.

Proof. Since B G  is a 1-category, it follows from [Buh15, Cor 2.6] that every 3-functor B G  !  C is equivalent to
a locally strict 3-functor. Applying Proposition 3.7, we obtain a Gray-monoid D  and a Gray-functor D  :
B G  !  B D  such that (BD ; D )  is equivalent to (C; ) in 3CatG.

Let D0 be the full 2-subcategory of D  whose objects are exactly those in the image of D .  Since D

is a Gray-functor, D0 is a Gray-submonoid of D, which comes equipped with the corestricted Gray-functor
D 0       

: B G  !  BD 0 which is strictly 1-surjective, i.e., onto Ob(D0). Since D  is 1-surjective, (BD ; D )  is
equivalent in 3CatG to (BD 0 ; D 0  

).
Since D      : B G  !  BD0 is a strictly 1-surjective Gray-functor, there is in particular a surjective homo-

morphism  : G  !  Ob(D0). We dene a Gray-monoid C0 as follows. The 0-cells of C0 are the elements of G,
16 Here, by a fully faithful Gray-functor we mean a Gray-functor F  : A  !  B  whose induced 2-functors F a ; b  : A ( a  !  b) !

B (F (a)  !  F ( b ) )  are isomorphisms in Gray.
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and hom categories are given by HomC0 (g !  h) : =  HomD0 ((g) !  (h)). Since  is a homomorphism, C0

inherits a Gray-monoid structure from D0 together with an obvious strictly 1-bijective Gray-homomorphism
0 : B G  !  BC0. Since  is surjective, (BC0; 0) is equivalent to (BD0 ; D 0  

)  in 3CatG.

3.2 Strictifying 1-morphisms
Given objects (BC; C ) and (BD ; D )  in 3Catpt comprised of Gray-monoids C and D  and a strictly 1-bijective Gray-
functor (A; )  2  3CatG     (BC ; C ) !  (BD ; D )  , we construct a 1-morphism (B ; )  2  3Catpt and an equivalence
(B ; )  )  (A; ).     As C ; D are Gray-monoids, we make heavy use of the graphical calculus discussed in x2.2.

Recall that the 3-functor A  consists of the data from Denition A.1. The invertible natural transfor-
mation  : D  )  A   C is comprised of the data from Denition A.2. We depict  by an oriented red strand:

:

By the third unitality bullet point in (T-I I),  we have that id     =  A1  since C is strict. By Remark 2.1, there is a
contractible choice of ways to extend the invertible 0-cell  to a biadjoint biequivalence (BB);  we do so
arbitrarily.

We now dene B  : BC !  B D  as follows. First, B (gC ) : =  gD  for all g 2  G. Given x  2  C(gC !  hC ), we
dene

h D

0 1 h D

h C

B  @ x  A  : = A ( x )       =   
1

gC

g D

h  
1

A ( x )             :

g

g D

Given x; y 2  C(gC !  hC ) and f  2  C (x )  y), we dene B ( f )  to be the following 2-cell in D:

h D h D

A ( x )
A ( f )

A ( y ) :

g D g D

For g 2  G, we dene B g  2  D(idg D  )  B (idg C  ))  to be the composite

g D g D

1

) ) ) A ( i d g )      : (12)

g D g D
g D g D
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For x  2  C(gC !  hC ) and y 2  C(hC !  kC ), we dene B x ; y  2  D (B (y )   B ( x )  )  B (y   x ) )  to be the composite

k D k D k D

A ( y ) A ( y ) A ( y )

h D       ) h D       )
A x ; y

A ( x ) A ( x ) A ( x )

g D g D g D

k D

A ( y x )       : (13)

g D

Lemma 3.10. The data (B ; B 1 ; B 2 )  : C !  D  denes a 2-functor. xB.1

We now endow B  with the structure of a weak 3-functor BC !  BD .

Construct ion 3.11. We dene an adjoint equivalence B  :
D   ( B   B )  )  B
C as follows. First we dene g;h 2  D (g D

 hD  !  ghD ) to be the identity. Next, for x  2  C(gC !  hC ) and y 2  C(kC !  ‘C ), we dene the natural
isomorphism x ; y  2  D (g ; ‘   ( B ( x )
 B (y ))  )  B ( x
 y)  g ;k ) to be the composite

h ‘ D h ‘ D

h ; ‘ h ; ‘

h ‘ D h ‘ D

h ; ‘ h ; ‘

h ‘ D h ‘ D

h ; ‘
h ; ‘

A ( x ) ) A ( x ) ) A ( x ) ) A ( x ) ) A ( x ) )
A ( x )

)

A ( y )                                    
A ( y )

A ( y ) A ( y ) A ( y ) A ( y )

g D k D g D k D g D k D g D k D g D k D g D k D

h ‘ D

h ; ‘

)
(

h ;
‘ )      1

A ( x )

A ( y )

h ‘ D

h ‘ D

h ; ‘

h ; ‘

) A ( x )
x ; y

A ( x )
A ( y )

A ( y )

h ‘ D

A ( x
y ) ( g ; k )      1

g ; k

h ‘ D

A ( x
y )

:

g ; k

g D k D g D k D g D k D
g D k D g D k D

We dene an adjoint equivalence B  =  ( B ; B )  : I D  )  B   IC  by B  =  ide     , and B  : =  B 1  2  D(ide )
B (ide C  ))  from (12). Finally, we dene the associator ! B  and unitors ‘ B ; r B  to be identities.

Lemma 3.12. The data ( B ; B ; ! B ; ‘ B ; r B )  endows B  : BC !  B D  with the structure of a weak 3-functor.
xB.1

Lemma 3.13. The data  =  (  : =  eD ; g : =  idg     ; id     : =  B1; 1 : =  idid       ; 2       : =  idid          ; ) : D  )  B  C denes a
natural isomorphism.                                                                                                                                             xB.1
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We now dene for x  2  C(gC !  hC ) the 2-cell x  given by

A ( h C ) A ( h C ) A ( h C ) A ( h C ) A ( h C ) A ( h C )

A ( x )

) ) ) ) ) : (14)
A ( x ) A ( x ) A ( x ) A ( x ) A ( x )

g D g D g D g D g D g D

Theorem 3.14. The 1-morphisms (A; ); (B ; ) 2  3CatG((BC; C ) !  (BD ; D ) )  are equivalent via the 2-
morphism (; id) : (B ; )  )  (A; )  where  =  (  : =  ; g : =  g ; x; 1 : =  1; 2 : =  2     )  : B  )  A  is the
natural isomorphism where x  is given in (14) above.                                                                                                 xB.1

Remark 3.15. Working a bit harder, we can actually make (B ; )  strictly unital, i.e., B (idg )  =  idg and
B 1  =  idgD      for all g 2  G. This has the following advantages:  becomes trivial, ide     ; x  =  id B ( x )  for all x  2
C(gC !  hC ) by (F-V),  D  =  B   C on the nose, and  : D  )  B   C is the identity transformation. Unfortunately,
this would complicate our denition of the coherence data for B  considerably, and it would further obfuscate
the reasons why certain commuting diagrams commute in the sequel. Moreover, it has not yet been shown in
the literature that every G-crossed braided functor is equivalent to a strictly unital one, although this would
follow as a corollary of our main theorem. We are thus content to work with our (B ; )  with  completely
determined by B .

3.3 Strictifying 2-morphisms
Suppose (BC ; C ); (BD; D ) 2  3Catpt and (A; ); (B ; ) : (BC ; C ) !  (BD ; D )  are two 1-morphisms in 3Catpt.
Since (A; ); (B ; ) are 1-morphisms in 3Catpt, A(gC ) =  gD  =  B (gC ) for all g 2  G, and  =  e D  =   and g =  idg

=  g. Suppose (; m) :2 3CatG ((A; ) )  (B ; )).  We prove that (; m) is equivalent to a 2-
morphism (; id) 2  3Cat ((A; )  )  (B ; )).

As in Dention A.2, we denote the 0-cell  by an oriented green strand. The modication m =  (m; mg) as in
Denition A.3 consists of an invertible 1-cell m :  )
 together with coherent invertible 2-cells

g D g D

m

) : (15)
m

g D g D

Observe that since  =  e D  =   and g =  idg =  g, we may completely omit the dashed lines in (15). As in
Remark 2.1, we extend the invertible 1-cell m 2  D  to an adjoint equivalence arbitrarily.
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For x  2  C(gC !  hC ), we dene an invertible 2-cell x  as the following composite:

h D h D h D h D

m  
1 m  

1 m  
1

m
     1

) ) )
m A ( x )

A ( x ) A ( x ) A ( x ) m

g D  g D g D g D

(16)
h D                                                          h D                                                       h D                                                       h D

m  
1 m  

1 m  
1

B ( x ) B ( x ) m

) ) ) ) :
m                           B ( x )                                   B ( x )

m

g D g D g D g D

We dene the unit map as in (T- I I I )  by 1 : =  idide D      
and the monoidal map as in ( T - I V )  by g;h : =  id id g h D  

.

Lemma 3.16. The data  : =  (  =  e; g =  idg ; x; 1 : =  idide      
 ; g;h : =  ididg h        )  together with the identity

modication denes a 2-morphism (; id) 2  3Catpt((A; ) )  (B ; )) . xB.2

Observe now that by the strictness properties of  and , m : e D  )  . Erasing the dotted lines from (15)
for mg, we see that the same data as m =  (m; mg) actually denes an invertible modication  V  !

Theorem 3.17. The 2-morphisms (; m); (; id) 2  3CatG ((A; ) )  (B ; ) )  are equivalent via the 3-morphism
(m; id) 2  3CatG((; id) V  (; id)). xB.2

3.4 Strictifying 3-morphisms
Suppose now that (; m =  id); (; n =  id) : (A; )  )  (B ; )  are two 2-morphisms in 3Catpt and (p; ) :
(; id) V  (; id) is a 3-morphism in 3Cat .

First, since (; id); (; id) are 2-morphisms in 3Catpt, we have that  =  e D  =   and g =  idg      =  g for all g 2
G, and the modications are identities. This means the perturbation  is a 2-cell

= e D  = e D

= e D  = e D

= m=id e D

= e D

p

)  = e D = p n = i d e D

= e D
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satisfying (P-1) in Denition A.4. We may thus view  as an invertible 2-cell idid )  p, under which (P-1)
becomes 0 1 0 1

@ )  p ) p A  = @ ) p A 8 g 2 G: (17)
g D                                  g D                      g D                                               g D                                   g D

Lemma 3.18. Any 3-morphism in 3CatG between 2-morphisms in the subcategory 3Catpt is an endomor-
phism.                                                                                                                                                                                            xB.3

Theorem 3.19. Any 3-morphism in 3CatG between 2-morphisms in the subcategory 3Catpt is isomorphic
to the identity 3-morphism.

Proof. First, by Lemma 3.18, every 3-morphism is a 3-endomorphism. Suppose (; id) is a 2-morphism in
3Catpt and (p; ) is a 3-endomorphism of (; id). As above, we may view  as an invertible 2-morphism ideD

)  p that satises (17). This is exactly saying that  is a perturbation id(;id) (p; ).

3.5 Strictifying 4-morphisms
Theorem 3.20. The only 4-endomorphism in 3CatG of an identity 3-morphism in the subcategory 3Catpt

is the identity.

Proof. Suppose  is a 4-endomorphism of an identity 3-morphism (p =  id;  =  id) in 3Catpt. Then  satises the
criterion (11), which in diagrams is

0 1 0 1

B  = e D  = e D  B
B m = i d e D

= i d

B
= e D

p = i d e D

n = i d e D

p = i d
e

D
C B

C  = B  m = i d e D

n = i d e D      A B

C
p = i d e D C

= i d
C :

n = i d e D      A

We conclude that  =  id.

4 G-crossed braided categories
In x4.1 below, we dene the strict 2-category GCrsBrd of G-crossed braided categories. By [Gal17], GCrsBrd
is equivalent to the full 2-subcategory GCrsBrdst of strict G-crossed braided categories. In this section, we
prove our second main theorem.

Theorem 4.1. The 2-category 3Catst  is equivalent to GCrsBrdst .

Proof. In x4.2 below, we construct a strict 2-functor 3Catst  !  GCrsBrdst. In x4.3 below, we show this 2-
functor is an equivalence. Indeed, the 2-functor is essentially surjective on objects by [Cui19] explained at the
beginning of x4.3, essentially surjective on 1-morphisms by Theorem 4.21, and fully faithful on 2-morphisms
by Theorem 4.22. We defer all further proofs in this section to Appendix C.

We thus have the following zig-zag of strict equivalences denoted  and an isomorphism = ,  where the
hooked arrows denote inclusions of full subcategories.

3CatG
 Thm.

3.4
3Catpt =

Cor .  3.5
3Cats

t

 Thm.
4.1

GCrsBrdst
[Gal17]

GCrsBrd
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4.1 Denitions
Let G  be a group. We now give a denition of a (possibly non-additive) G-crossed braided category. Below, we
give a denition in terms of the component categories Cg. When each component Cg is linear and the tensor
product functors and G-action functors are linear, C : = Cg is an ordinary G-crossed braided
monoidal category in the sense of [EGNO15, x8.24] (except possibly not rigid nor fusion).

Denit ion 4.2. A  G-crossed braided category C consists of the following data:

 a collection of categories (Cg )g 2G ;

 a family of bifunctors
g;h : Cg  Ch !  Cgh;

 an associator natural isomorphism g;h;k :
gh;k  (
g;h  idC k  )  )
g ;hk  (idC g

h;k );

 a unit object 1C 2  Ce;

 unitor natural isomorphisms  :
e;g  (1C   )  )  idC g  and  :
g;e  (       1C ) )  idC g  .

Using the convention
ag

 bh : =
g;h(ag  bh ) 8 ag 2  Cg and bh 2  Ch;

this data should satisfy the obvious pentagon and triangle axioms of a monoidal category.
Moreover, C is equipped with a G-action Fg  : Ch !  C      1      together with an isomorphism ig : 1C !

Fg (1C ) and natural isomorphisms g, g;h, and g

F g

h ; k F g h F e

Ch  Ck * g
h ; k Cghkg     1 Ck *  g;h Cghkh     1 g      1 Cg *  g Cg

g h g      1 ; g k g      1  ( F g F g ) F g F h
i d C g

which satisfy the following associativity and unitality conditions where we suppress whiskering:

( 1) (associativity) The following diagram commutes:

g h k g       1 ; g ‘ g       1   (

gh g      1 ; g k g       1   ( F g   F g )

F g )

g h k g       1  (  h ; k i d C
g ‘ g       1

 )

g h k g       1 ; g ‘ g       1   ( (F g

h ; k )   F g )

g
h k ; ‘

F g

h ; k ‘   ( idC h

k ; ‘ )

g h g      1 ; gk ‘ g       1   ( F g   (

gk g       1 ; g‘g      1   ( F g   F g ) ) )

g h g       1 ; g k ‘ g       1  ( i d C
g h g       1   k ; ‘ )

g h g      1 ; gk ‘ g       1   ( F g   (F g

k ; ‘ ) )

g
h ; k ‘

(  2) (unitality) For every ah 2  Ch, the following diagram commutes:

1C

 Fg (ah )



e ; g h g      1  ( i g i d C

g
h

g
     1  )       

Fg (1C )
 Fg (ah )

F g ( a h )

Fg (ah )
F

g

( a h  )

g
e ; h

Fg (1C

 ah )

as does a similar diagram where 1C appears on the right with .
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k ‘

h

‘

h h

ga  ; b h

(1) (monoidality) The following diagram commutes:

g

ghkg      1 h      1 ;g h ‘g      1 h      1   ( (Fg   F h )   (Fg   F h ) ) h k h      1 ; h ‘ h      1
Fg

h k h      1 ; h ‘h      1   ( F h   F h )

g h k g      1 h      1 ; g h ‘ g      1 h      1  ( g ; h g ; h )

ghkg      1 h      1 ;g h ‘g      1 h      1   (Fg h   Fg h )

F g (  k ; ‘)

Fg   F h
k ; ‘

g h
k ; ‘

Fg h
k ; ‘

g ; h
k ‘

(2) (associativity) The following diagram commutes:

Fg   F h   F k  
F g ( h ;

k

)
F g   F h k

g ; h g ; h k
k ‘ k      1

g h ; k
‘

Fg h   F k
‘                        

 
Fg h k

(1) (monoidality) The following diagram commutes:

idC h k

h ; k

h k

Fe
h ; k

h ; k   ( idC h  idC k  )

h ; k ( h k )
e
h ; k

h ; k   (Fe   Fe )

(2) (unitality) The following diagrams commute:

idC g h g      1  Fg Fg Fg Fg   idC h

g h g      1
e ; g  Fe   Fg

and g
; e

F g ( h )
:

Fg   Fe

Finally, we have the G-crossed braiding natural isomorphism

Ch  Cg

g h g      1 ; g ( F g i d C g  )

g ; h

swap *  g;h Cgh ag

 bh !  F g ( bh )
 ag 8ag 2  CG ; bh 2  Ch:

Cg  Ch
g ; h

The G-action and G-crossed braiding are subject to the following coherence axioms taken from [EGNO15].
For all ag 2  Cg, bh 2  Ch, and ck 2  Ck , the following diagrams commute, where suppress all labels.

Fg (bh )
 Fg (ck ) Fg (bh

 ck )



Fg (Fh (ck )
 bh )

Fg hg      1  Fg (ck )
 Fg (bh )

Fg h (ck )
 Fg (bh ) (1)

Fg Fh (ck )
 Fg (bh )
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g h
D

2
g h

g g

D

g h
C

C

g h

2D

(ag

 bh )
 ck

ag

 (bh

 ck )

Fg (bh

 ck )
 ag

(Fg (bh )
 Fg (ck ))
 ag

(Fg (bh )
 ag)
 ck

(2)

Fg (bh )
 (ag

 ck )

Fg (bh )
 (Fg (ck )
 ag)

ag

 (bh

 ck )

(ag

 bh )
 ck

Fg h (ck )
 (ag

 bh )

Fg Fh (ck )
 (ag

 bh )

ag

 (Fh (ck )
 bh )

(3)

(ag

 Fh (ck ))
 bh

(Fg Fh (ck )
 ag)
 bh

Denit ion 4.3. Given two G-crossed braided categories C and D,  a G-crossed braided functor (A; a) : C !  D
consists of a family of functors ( A g  : Cg !  D g ) g 2 G  together with a unitor isomorphism A 1  : 1 D  !  A ( 1 C )  and
a tensorator natural isomorphism A a  ;b      : A(ag )
 A( b h )  !  A(ag

 bh ) for all ag 2  Cg and bh 2  Ch satisfying the obvious coherences. The monoidal functor A  =  (Ag ; A 1 ; A 2 )
comes equipped with a family a =  fag : F D   A  )  A   F C g g 2 G  of monoidal natural isomorphisms such that for
all g; h 2  G, the following diagrams commute, where we suppress whiskering from the notation.

F D   F D   A

a h

F D   A   F C

a g

g ; h Fg h   A

a g h

A   Fg h ( 1)
g ; h

A   F D   F C

A(a )
 A( b )

D

F
h

(
A
(

b ) )
 A(a )

a
h

i
d



2

D D

C C

D

C

A a ; b

A F C
( b ) ; a

A ( a
 b)

A ( C )

A ( F C ( b )
 a)

( 2)

A ( F C ( b ) )
 A(a )

Denit ion 4.4. If (A; a); (B; b)  : C !  D  are G-crossed braided functors, a G-crossed braided natural
transformation h : (A; a) )  (B ; b)  is a monoidal natural transformation h : A  )  B  such that for all g 2  G, the
following diagram commutes.

Fg       A  
F g  ( h ( ) )       

Fg       B

a g b g (18)

A   Fg            

h F g  ( )              
B   Fg
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G

G

G

g

h

     1

C h C

It is straightforward to verify that G-crossed braided categories, functors, and natural transformations
assemble into a strict 2-category called GCrsBrd with familiar composition formulas similar to those from the
strict 2-category of monoidal categories. (See the proof of Proposition 4.13 in Appendix C  for full details.)

Denit ion 4.5 (Adapted from [Gal17, p.6]). A  G-crossed braided category is called strict if ; ;  are all
identities, and all ig , g, g;h, and g are identities. Observe this implies that Fe  is the identity as well.

By the main theorem of [Gal17], every G-crossed braided category is equivalent (via a G-crossed braided
functor which is an equivalence of categories) to a strict G-crossed braided category. In particular, the
2-category GCrsBrd is equivalent to the full subcategory GCrsBrdst of strict G-crossed braided categories.

4.2 A  strict 2-functor 3Catst to GCrsBrdst

In this section, we construct a strict 2-functor 3Catst  !  GCrsBrdst. We begin by explaining how to obtain a
strict G-crossed braided category C from an object C 2  3Catst, i.e., C is a Gray-monoid with 0-cells fgC gg 2 G
with 0-composition the group multiplication.

Construct ion 4.6. For each g 2  G, we dene the category Cg : =  C(1C !  gC ). We denote 1-cells in Cg by small
disks. For better readability, we distinguish dierent 1-cells in a given diagram by dierent shadings of the
corresponding disks. We will use the shorthand notation that white, green, and blue shaded disks
correspond to 1-cells into gC; hC; and kC, respectively:

gC h C k C       :

We dene the bifunctor
g;h : Cg  Ch !  Cgh by
  :

gC  

 
h C       

 !  
gC  h C       

:

The associator
gh;k  (
g;h  Ck ) )
g ;hk  (Cg

h ; k )  is the identity. The unit object 1C : =  ide 2  Ce, which we denote by a univalent vertex attached to a
dashed string. The unitors
e;g  ( i    )  )  idC      and
g;e  (       i )  )  idC g  are also identities

eC  gC gC gC  eC

=           =               :

Clearly the associators and unitors satisfy the obvious pentagon and triangle axioms of a G-crossed braided
category.

Construct ion 4.7 (G-action). We dene a G-action Fg  : Ch !  Cghg     1  by

Fg
h C  

!  

: =  
gC  h C  gC  

1       

= :  
ghgC 

1      

:

On the right hand side, we abbreviate this ‘cup’ action by a single g-labelled red cup drawn under the
respective node. The functors Fg  are strict tensor functors, i.e., the tensorators     g :
ghg     1 ;gkg      1  (Fg Fg )  )  Fg

h ; k  are identity natural isomorphisms. The tensorator g;h : Fg   F h  )  Fg h  and the unit map h  : idC     !  Fe
are also both identities. It is straightforward to see that these identity natural isomorphisms

g, g;h, and h  satisfy (  1), (  2), (1), (2), (1), (2).

Construct ion 4.8 (G-crossed braiding). The G-crossed braiding natural isomorphisms g;h are given by
interchangers in C:

gC  h C gC  h C
gC  h C  gC  gC ghg     1

) = = :
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G G
A

1 D 1 e D C

a;b

A

e

g g g

g C

D A g
A

g C)

g

A

)

C g

B C C

G G G

D

G
st

Theorem 4.9. The data (C;
g;h ; Fg ; g;h ) from Constructions 4.6, 4.7, and 4.8 forms a strict G-crossed braided category.

xC.1

Now suppose that C ; D 2  3Catst  and A  2  3Catst(C !  D )  This means A(gC ) =  gD  on the nose for all
g 2  G, the adjoint equivalence A  :
D   ( A   A )  )  A
C satises g;h =  idgh 2  D (g D

 hD  !  ghD ), the adjoint equivalence A  : ( A ; A )  : I D  )  A   IC  satises A  =  ide     , and A  : =  A1  2  D(ide       )
B (ide )), and the associators and unitors ! ; ‘ ; r  are identities.

Let C and D  be the strict G-crossed braided categories obtained from C and D  respectively from Theorem
4.9. We now dene a G-crossed braided functor (A; a) : C !  D.

Construct ion 4.10. First, for a 2  Cg : =  C(eC !  gC ), we dene A(a )  : =  A(a) 2  D (e D  !  gD )  =  Dg . For x  2
Cg(a !  b), we dene A ( x )  : =  A ( x )  2  D g (A(a)  !  A(b)).  It is straightforward to verify A  is a functor. We now
endow A  with a tensorator. For a 2  Cg and b 2  Ch, we dene A 2        2  D ( A ( a )
 A ( b )  !  A ( a
 b)) to be

a;b : (A(a)
 idh )  (ide
A(b))  )  A((a
 idh )  (ide
b)):

We dene the unitor by A 1  : =  A1  2  D ( 1 D  !  A ( 1 C ) )  =  D (ide D  !  A(ideC  )).

Lemma 4.11. The data ( A ; A 1 ; A 2 )  : C !  D  is a G-graded monoidal functor. xC.1

We now construct the compatibility a between the G-actions on C and D.  For a 2  Ch =  C(1C !  hC ),
we dene aa : F D ( A ( a ) )  )  A ( F C (a ) )  using the tensorator A :

h D

Fg  (A(a) )  =  
g     A ( a )

g D h D

1

)  A ( i d g C  )

A ( a )

g D
1 g D h D g D

1

i d         ; a

A ( i d g C

a )

g D h D g D
1

A 1
     1

)
A ( i d g C

a ) i d g C

a ; i d
g C  

1

A ( id       1  )
C

h D
(19)

A ( i d g

a
id      1  )

C

g

0 1
h C

=  A @  g a
A  =  A ( F g  (a)):

Theorem 4.12. The data (A; A1 ; A2 ; a)  is a G-crossed braided monoidal functor. xC.1

Proposition 4.13. The map (A; A ; A )  !  (A; a) strictly preserves identity 1-morphisms and composition of
1-morphisms.                                                                                                                                                                         xC .1

Suppose C; D 2  3Catst, A ; B  2  3Catst(C !  D), and  2  3Catst (A )  B ) .  This means that  =  e D  and g
=  idg for all g 2  G. Let C; D be the G-crossed braided categories obtained from C; D respectively from
Theorem 4.9. Let (A; a); (B; b)  : C !  D  be the G-crossed braided functors obtained from A ; B  respectively
from Theorem 4.12,

Construct ion 4.14. We dene h : (A; a) )  (B ; b)  by ha : =  a  2  D ( A (a )  )  B(a) )  for a 2  Cg =  C(1C !
gC ).

Theorem 4.15. The data h denes a G-crossed braided natural transformation (A; a) )  (B; b) . xC.1

Theorem 4.16. The map C !  (C;
g;h ; Fg ; g;h ), (A; A ; A )  !  (A; a),   !  h is a strict 2-functor 3Catst  !  GCrsBrd .

Proof. By Proposition 4.13, we saw that this candidate 2-functor strictly preserves identity 1-morphisms and



G

composition of 1-morphisms. It remains to prove that the map  !  h preserves identities and 2-composition.
This is immediate from Construction 4.14 as (   )a  =  a   a  as 3Catst  is strict.
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a;b

1

4.3 The 2-functor is an equivalence
We now show our 2-functor 3Catst  !  GCrsBrdst constructed in x4.2 is an equivalence.

Essential surject iv ity on ob jects.     We begin by showing essential surjective, applying the techniques
from [Cui19]. Suppose C is a strict G-crossed braided category. We dene a Gray-monoid C 2  3Catst  as
follows. The 0-cells of C are simply the elements of G, and 0-composition
 is the group multiplication. For g; h 2  G, we dene the hom category C(g !  h) : =  Chg     1  . These hom
categories comprise a strict 2-category by dening vertical composition by the tensor product in C, i.e., if a 2
C(g !  h) =  Chg     1      and b 2  C(h !  k) =  Ck h     1  , we dene

b C a : =  b
C  a =
k h      1 ;hg      1  (b  a):

It is straightforward to verify that C is a strict 2-category by strictness of the associator and unitor of C.
We now endow C with a monoidal product and interchanger. We dene the monoidal product with

identity 1-morphisms as follows. Given a 2  C(g !  h) =  Chg     1  and k 2  G, we set

a
 idk : =  a 2  Chg     1  =  Ch k k      1 g      1  =  C(gk !  hk);

i.e., tensoring on the right with idk does nothing. Tensoring on the left, however, implements the G-action:

idk

a : =  Fk (a)  2  C(kgh 1k 1) =  C(hg !  kh):

The interchanger  is given by the G-crossed braiding. In more detail, given a 2  C(g !  h) =  Chg     1      and b
2  C(k !  ‘ ) ‘ k      1  , we dene

a;b : =  hg      1 ;g ‘k      1 ‘      1  
2  C((a

 id ‘ )  (idg

b) )  (idh

b)  (a
 idk ))

Indeed, since C is strict, Fh g      1  =  F h F g      1  on the nose, and hg      1 ;g ‘k      1 g      1  
is a natural isomorphism

h g      1 g ‘ k      1 g      1 g h      1 ; h g      1  ( F h g      1  i d C h g      1  )  Cg ‘k      1 g      1   Chg     1

*  hg      1 ;g ‘k      1 g      1 Ch ‘k      1 g      1 :

Chg     1   Cg ‘k      1 g      1

h g      1 ; g ‘ k      1 g      1

Notation 4.17. In the graphical calculus, one can think of a 1-cell in C(g !  h) as a 1-cell in C(1C !  hg 1)
with a g-strand on the right hand side, which does nothing.

h hg      1

: =

g g

Vertical composition is then given by

k k h       hg      1

h  : = 2



k h      1 ;hg      1  (Ck h      1   Chg     1  )  =  Ckg     1  :

g g
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A 2

C C

C C C

C C

Tensoring by an identity strand on the right adds a strand on the right which does nothing, whereas tensoring
by an identity on the left implements the G-action.17

h k h  k hg      1 g k k h      1 k h      1

: = : = 2  Chg     1

: = : =  g 2  Cgkh     1 g      1  : g             k                g k                      gk                                                      g

h                g                                        gh

That the interchanger is given by the G-crossed braiding can now be represented graphically by

h ‘ hg      1      ‘ k      1 hg      1 ‘ k      1

= = g

‘ k      1hg      1 h ‘

 
h g      1 ; g ‘ k      1 g      1

h = :

g k g k gk gk g k

One then checks that C dened as above is a Gray-monoid and thus denes an object of 3Catst. Indeed,
the verication is entirely similar to [Cui19] (see also [DR18, Construction 2.1.23]). Moreover, applying our
construction from Theorem 4.9 to the so dened C, recovers the G-crossed braided category C on the nose.
Hence, the strict 2-functor 3Catst  !  GCrsBrdst is in fact strictly surjective on objects.

Essential surject iv ity  on 1-morphisms.     Let C; D be the G-crossed braided categories obtained from
C; D 2  3Catst  respectively from Theorem 4.9, and suppose (A; a) : C !  D  is a G-crossed braided functor.
We now construct an A  2  3Catst(C !  D )  which maps to (A; a) under Construction 4.10 and (19).

Construct ion 4.18. First, we must have A(g )  =  g for all g 2  G. Recall that we have an isomorphism
of categories C(gC !  hC ) =  C(1C !  hg 1) given by the strict 2-functor R g      1      =
 g 1. For a 1-cell x  2  C(gC !  hC ), we dene A ( x )  : =  A ( x
 g 1)
 gD , and similarly for 2-cells f  2  C (x )  y). We dene the unitor

A1 : =  A e
 gD  2  D (idg D  )  A(idgC  )  =  A( ide C  )
 gD );

and for x  2  C(gC !  hC ) and y 2  C(hC !  kC ), the compositor A y ; x  as the composite

A(y )  A ( x )  =  ( A ( y
 hC 

1)
 hD )   ( A ( x
 gC 

1)
 gD )

=  ( A (y
 hC 

1)

 hgD
1

 gD )   ( A ( x
 gC 

1)
 gD )  =  ( (A(y
 hC 

1)

 hgD
1 )  ( A ( x

 gC 
1 ))

 gD

=  ( (A(y
 hC 

1)
 A ( x
 gC 

1 ))
 gD

!
(A( (y
 h 1)
 (x
 g 1 ))
 gD

=
(
A
(
(
y

h
1

h
g
1

)



C

A

(x

 g 1 ))
 gD  =  (A( (y

 g 1)  (x

 g 1 ))
 gD

=  (A( (y   x )
 g 1)
 gD

=  A(y  x):

 gD  strict

Nudging (8)

Nudging (8)

 gC 
1 strict

Lemma 4.19. The data (A; A1 ; A2 ) denes a 2-functor C !  D  such that A(gC ) =  gD  for all g 2  G. xC.2

Construct ion 4.20. The adjoint equivalence A  :
D   ( A   A )  )  A

C is dened as follows. First, g;h
 : =  idg h D      2  D (g D

 hD  )  ghD ). For x  2  C(gC !  hC ) and y 2  C(kC !  ‘C ), we dene the natural

17 This graphical calculus is analogous to diagrams for endomorphisms of a von Neumann algebra or a Cuntz C-algebra
[Izu17, x2] where adding a strand labelled by an endomorphisms of a von Neumann algebra on the right does nothing, and
adding a strand on the left implements the action of that endomorphism.
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g
C  

 

D1 1 e

isomorphism x ; y  2  D ( A ( x )
 A(y ) )  A ( x
 y)) by the composite

A ( x )
 A(y ) =  A ( x
 gC 

1 ))
 gD

 A ( y
 kC 

1 ))
 kD

=  A ( x
 gC 

1 ))

 Fg  (A(y

 kC 
1 )))

 gD

 kD  =  A ( x
 g 1 ))
 Fg  ( A (y

 k 1 )))
 gkD

 !  A ( x
 gC 

1 ))
 A ( F C ( y
 k 1 )))
 gkD

!  A ( x
 gC 

1

 Fg  (y
 kC 

1 ))
 gkD

=  A ( x
 F C  

1  F C (y
 kC 

1)

 gC 
1)

 gkD =  A ( x
 Fe  (y

 kC 
1)

 gC 
1)

 gkD

=  A ( x
 y
 kC 

1

 gC 
1)

 gkD =  A ( x
 y
 (gk)C 

1)
 gkD

=  A ( x
 y):

The adjoint equivalence A  =  (! ; A )  : I D  )  A   IC  is dened by A  : =  ide     , A  : =  A1 . The associator ! A  and



G

C D

G

G G G

G

g 2 G

g 2 G

the unitors ‘ A ; r A  are all dened to be identities.

Theorem 4.21. The data (A; A ; A )  denes a 1-morphism in 3Catst(C !  D ) . xC.2

Finally, we observe that the G-crossed braided functor constructed from A  in Theorem 4.12 is exactly
(A; a) by construction. Indeed, the strict 2-functors
e and
e     are the identity on the nose. Hence,
3Catst  !  GCrsBrdst is in fact surjective on 1-morphisms on the nose.

Fu l l y  faithfulness on 2-morphisms.     For C ; D 2  3Catst, A ; B  2  3Catst(C !  D), and  2  3Catst (A )  B ) ,  let
C; D be the G-crossed braided categories obtained from C; D respectively from Theorem 4.9, and let
(A; a); (B; b) : C !  D  be the G-crossed braided functors obtained from A ; B  respectively from Theorem 4.12. In
Construction 4.14 we dened h : (A; a) )  (B ; b)  by ha : =  a  2  D ( A (a )  )  B(a) )  for a 2  Cg =  C(1C !  gC ).

Theorem 4.22. The map  !  h is a bijection 3Catst (A )  B )  !  GCrsBrdst (A )  B ) . xC.2

5 Induced properties and structures
Theorem A  constructs an equivalence between G-crossed braided categories and 1-surjective G-pointed 3-
categories. In this section, we investigate how various additional structures and properties of 3-categories,
such as linearity and dualizability translate into the corresponding properties of G-crossed braided categories.
Let C : B G  !  C be a 1-surjective G-pointed 3-category and let fCg gg 2 G  be the corresponding G-crossed
braided category constructed via Theorem A.

The rst result below is immediate.

Proposition 5.1 (Linearity). If C is a linear 3-category, then C : =  
L

Cg is a G-crossed braided category
in these sense of [EGNO15, x8.24].

Following the conventions in [DSPS13, Defs. 2.1.1, 2.1.2, 2.1.4], given a 1-morphism f  : c !  d in a
2-category, we write ( f L  : d !  c; evf : f L   f  )  idc; coevf : idd )  f   f L )  for the left adjoint of f  and
( f R  : d !  c; f ev : f   f R  )  idd; f coev : idc )  f R   f )  for its right adjoint. Given an object x  in a
monoidal category M,  we write (x_ ; evx  : x _

 x  !  1M ; coevx : 1 M  !  x
 x _ )  for the right dual of x, and ( _ x ; x  ev : x
 _ x  !  1 M ; x  coev : 1 M  !  _ x
 x )  for the left dual of x.

Recall that a braided monoidal category has right duals if and only if it has left duals.

Lemma 5.2. A  G-crossed braided monoidal category C =  
L

Cg has right duals if and only if it has left
duals.
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Proof. We prove that having right duals implies having left duals; the other direction is analogous. Suppose x
2  Cg has a right dual ( x _  2  Cg     1  ; evx : x _

 x  !  1C; coevb : 1C !  x
 x _ ) .  Then, _ x  : =  g 1 (x _ )  is a left dual with the following evaluation and coevaluation morphism:

x  ev : =  evx (g;g     1

 id x _  )   (x;g      1 ( x _ ) )  : x

 g 1(x _ )  !  1C x  coev : =  g     1 ( x _ ) ; x   x ; x _   g 1(coevx) : 1C !  _ x

 x

That these maps satisfy the zig-zag/snake equations is straightforward.

Remark 5.3. Similar to Lemma 5.2, every 2-morphism between invertible 1-morphisms (or more generally,
between fully dualizable 1-morphisms) in a 3-category has a right adjoint if and only if it has a left adjoint
[Reu19, Prop. A.2].

Proposition 5.4 (Rigidity). Suppose C is linear so that Proposition 5.1 holds. If every 2-morphism in
C(C (e) !  C (g)) has either a right or a left adjoint (and thus necessarily both by Remark 5.3) for all g 2  G,  then
the G-crossed braided linear monoidal category C is rigid.

Proof. As the statement and the assumptions in this proposition are invariant under equivalences in 3Cat
and GCrsBrd respectively, we may assume that C is an object of 3Catst, and hence the delooping B A  of a
Gray-monoid A  whose set of 0-cells is fg A g g 2 G  with 0-composition
 the group multiplication, and that C is the strict G-crossed braided category obtained from Constructions
4.6{4.8.

By Lemma 5.2 it suces to prove that for every g 2  G, every object x  2  Cg (given by a 1-cell x  : 1 A  !  g A  in
the strict 2-category A )  has either a right dual or a left dual. We assume the underlying 1-cell x  : 1 A  !  g A

has a left adjoint x L  : g A  !  1 A  in the 2-category A  and prove that the corresponding object x  2  Cg has a
right dual in the monoidal category C. We use the shorthand notation

: =  
gC                                                

: =  
x L

x                                               gC

Setting
gC  

1
gC  

1

x _  : = = 2  Cg     1  ;

gC

it is a direct consequence of the adjunction between x  and x L  (here denoted " : x L  x  )  ide      and  : idg     )  x
x L )  that the following evaluation and coevaluation morphisms exhibit x _  as a right dual of x:

evx : x _

 x  =

gC  
1  gC eC eC

= = ) =  1C

gC

eC
gC  gC  

1

coevx : 1C =            =

gC  gC  
1

= ) =  x
 x _ :

gC
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We explicitly prove the relation (idx

evx )  (coevx

idx ) =  idx ; the other relation is left to the reader.

id

gC gC

"
gC

gC  gC  
1  gC gC  gC  

1  gC

In the diagram above, the composite (idx
evx )    (coevx
idx ) is the path going down and then to the right. The square commutes as both maps are identical. The
triangle commutes by the adjunction.

Remark 5.5. There is a version of Proposition 5.4 that holds in the non-linear setting; one must be careful
to dene the correct notion of duals.

The following propostion is also immediate.

Proposition 5.6 (Multifusion). Suppose C is as in the hypotheses of Proposition 5.4 so that C is rigid linear
monoidal. If each 2-morphism category C(C (e) !  C (g)) is semisimple, then C is multifusion. If moreover the 2-
morphism idC (e)  : C (e) !  C (e) is simple, then C is fusion.

Since the fusion 2-categories of [DR18] satisfy the hypotheses of Proposition 5.6, we get the following
corollary.

Corol lary 5.7. If C is a fusion 2-category in the sense of [DR18] and  : G  !  C is a monoidal 2-functor
which is essentially surjective on objects, then C is a G-crossed braided fusion category.

Remark 5.8 (Unitarity). We dene a dagger structure on a Gray-monoid C in terms of the unpacked
Denition 2.4 above. We require the strict 2-category C to be a dagger 2-category, all 2-functors to be
dagger 2-functors, and all isomorphisms to be unitary. Similarly, one can dene the notion of a C  or W Gray-
monoid. Given a dagger Gray-monoid C and an appropriately compatible G  action on C (all actions are by
dagger functors and all isomorphisms are unitary), we expect our construction will yield a G-crossed braided
dagger category. We expect analogous results in the C  and W settings. However, the notion of dagger
Gray-monoid is not compatible with weak equivalences and Gray-ication. These notions merit further study.

A Functors  and higher morphisms between Gray-monoids

In this section, we unpack the denitions of trihomomorphism, tritransformation, trimodiciation, and per-
turbation of [Gur13, Def 4.10, 4.16, 4.18, 4.21] between two Gray-monoids in terms of the graphical calculus.

We remind the reader that as in Notation 2.3, given a Gray-monoid C, we refer to its objects, 1-morphisms,
and 2-morphisms as 0-cells, 1-cells, and 2-cells respectively in order to distinguish these basic components of
C from morphisms in an ambient category in which C lives. The notion of adjoint equivalence in a 2-category

is well-known, so we will not unpack it further. A  biadjoint biequivalence [Gur12] 0-cell  in a Gray-monoid
consists of 0-cells ;  

1 which we depict in the graphical calculus as oriented red strands:

;
 
1
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c

y ; x

2

2 2

2

and cup and cap 1-morphisms

together with 2-isomorphisms

= = = =
( B B )

= = = =

fullling certain coherence conditions; see [Gur12, Def. 2.1, Rem. 2.2, Def. 2.3].

A .1 3-functors between Gray-monoids

Denit ion A.1.  Suppose C ; D are Gray-monoids. A  3-functor A  : BC !  B D  consists of:

(F- I)  A  2-functor (A; A1 ; A2 ) : C !  D. That is, a function on globular sets A, an invertible 2-cell A1  :
idA ( c )  )  A(idc ), and an invertible 2-cell A2 : A(y )  A ( x )  )  A(y  x), which satisfy the following
coherence conditions:

(F-I).i For all x  2  C(a !  b), y 2  C(b !  c), and z 2  C(c !  d), the following diagram commutes:

A ( d )

A ( z )

A ( c )

A ( y )

A ( b )

A ( x )

A ( a )

A z ; y

A ( d )

A ( z y )

A ( b )

A ( x )

A ( a )

A ( d )

A ( z )
A y ; x

A ( c )

A ( y x )

A ( a )

A z ; y x

A ( d )

A z y ; x           
A ( z y x )

A ( a )
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1

1 2

2

a;b

A

A

)

A

A

A

A

A

A

(F-I).ii For all x  2  C(a !  b), the following two triangles commute:

A ( b )

A ( b )

A ( x )

A ( x )
A a

A ( a )

A ( i d a )

A ( a )

A ( a )

A b
i d A ( x )            A x ; i d a

A ( b )

A ( i d b )

A ( b )

A ( x )

A ( a )

A ( b )

A i d b ; x
A ( x )

A ( a )

(F- I I )  An adjoint equivalence A  :
D   ( A   A )  )  A
C in the 2-category of 2-functors C  C !  D. Explicitly, this is given by, for each pair of 0-cells (a; b) 2  C
C, an adjoint equivalence 1-cell A      

 : A(a)
 A(b) !  A(a
 b) and for each pair of 1-cells (x; y) : (a; b) !  (c; d), an invertible 2-cell

A ( c
d)

A ( c
d)

a ; b
A ( f

g)
A ( c ) A ( d )  f ; g       

A(a
b) : A ( f )
A

a ; b

A ( g )

A ( a ) A ( b )
A ( a ) A ( b )

That A  is a 2-transformation means we have the following cohrences.

(F-I I). i  For all x; x0 : a !  c and y; y0 : b !  d and all f  : x  )  x0 and g : y )  y, the following square
commutes:

A ( c
d)

A ( c
d)

a ; b
A ( x

y )A ( c ) A ( d ) x ; y
A ( a

b) 
A ( x )

a ; b

A ( y )

A ( a )         A ( b )
A ( a )         A ( b )

A ( f )
A ( g ) A ( f
g )

A ( c
d)

A ( c
d)

a ; b

A ( c ) A ( d )        x 0 ; y 0

A ( x 0 )

A



( y 0 )
A ( x 0

y 0 )

A ( a
b)

a ; b

A ( a )         A ( b )
A ( a )         A ( b )
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1

A

A

A

A

A

A

A

A

A
A

2 2 A

A

A

A

1 1 A

(F-I I).i i  For all 1-cells x1 2  C(a1 !  a2), x2 2  C(a2 !  a3), y1 2  C(b1 !  b2), and y2 2  C(b2 !  b3),

A ( a 3

b3 )

a ; b

A ( a 3 ) A ( b 3 )

A ( x 2 ) x 2 ; y 2

A ( a 2 ) A ( y 2 )

A ( x 1 ) A ( b 2 )

A ( y 1 )

A ( a 1 )       A ( b 1 )

     1

A ( a 3

b3 )

a ; b

A ( a 3

b3 )

A ( x 1

y 1 )

a ; b x 2 ; y 2

A ( a 2 ) A ( b 2 )

A ( x 2 )

A ( y 2 )

A ( a 1 )       A ( b 1 )

A ( a 3

b3 )

A ( a 3

b3 )

A ( x 2

y 2 )

A ( a 2

b2 )

A ( x 1

y 1 )

A ( a 1

b1 )

x 1 ; y 1

A ( a 1 )       A ( b 1 )

A ( a 3

b3 )

A ( a 3

b3 )

2
A ( ( x 2

y 2 ) ( x 1

y 1 ) )  
x 2

y 2 ; x 1

y 2         A ( a 1
b1 )

a ; b

A ( a 1 )       A ( b 1 )

A ( )

A ( a 3 ) A ( b 3 )

A ( x 2 )

A ( x 1 )

a ; b

A x 2 ; x 1

A y 2 ; y 1         A ( a 3 ) A ( b 3 )         x 2 x 1 ; y 2 y 1

A ( x 2 x 1 )

A ( ( x 2 x 1 )
( y 2 y 1 ) )

A ( a 1

b1 )

a ; b

A ( y 2 )

A ( y 1 )

A ( a 1 )       A ( b 1 )

A ( y 2 y 1 )

A ( a 1 )       A ( b 1 )
A ( a 1 )       A ( b 1 )

(F-I I).iii  For all 0-cells a; b 2  C, the following diagram commutes:

A ( a
b)

A ( c
d)

a ; b A a
b

A ( i d x

y )

A ( a
b)

a ; b

A ( a )         A ( b )

A ( a )         A ( b ) A a

A b i d a ; i d b

A ( a
b)

a ; b

A ( a ) A ( b )

A ( i d a )

A ( i d b )

A ( a )         A ( b )

(F- I I I )  An adjoint equivalence A  : I D  )  A I C  (in the 2-category of 2-functors  !  D )  where IC  :  !  C is the
inclusion of the trivial 2-category into C which picks out 1C ; id1C ; idid1C 

, and similarly for D. Explicitly,
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A

A

A

A A

A 1
11 C

A

B C B C
B C B C
B C B CB C B C

1

e 1

A

A

A

A

A

)

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

A

A

A

A A

A A

this is given by an adjoint equivalence 1-cell  : 1 D  !  A(1C ) and an invertible 2-cell 0
1 0 1

A ( 1 C ) A ( 1 C ) A ( 1 C ) A ( 1 C )

B C B C
B               )         A ( i d 1 C  )  C  = B                )          A ( i d 1 C  )  C :

@ A ( 1 C ) A @ A ( 1 C ) A

That A  is a 2-transformation implies that A  equals the map on the right hand side above, which is a
whiskering with A1. This means A  is automatically natural and compatible with A2.

(F- IV)  An invertible associator 2-modication ! A .  Explicitly, this is given by, for each a; b; c 2  C, an invertible
2-cell

A ( a
b
c ) A ( a
b
c )

a

b ; c  A ( a

b)

a ; b

! a ; b ; c

a ; b

c  A ( b

c)

b ; c

A ( a )      A ( b )      A ( c ) A ( a )      A ( b )      A ( c )

and the fact that !  is a 2-modication means that for all x  2  C(a1 !  a2), y 2  C(b1 !  b2), and z
2  C(c1 !  c2),

A ( c
b
c )

a 2
b 2 ; c 2

a 2 ; b 2
x ; y

A ( x )

A ( y )

A ( z )

A ( a 2

b2

c 2 )

a 2
b 2 ; c 2

A ( x
y )

a 1 ; b 1

A ( z )

A ( a 2

b2

c 2 )

a 2
b 2 ; c 2

A ( x
y )

x
y ; z

A ( z )

a 1 ; b 1

A ( a 2

b2

c 2 )

A ( x
y
z )

a 1
b 1 ; c 1

a 1 ; b 1

A ( a 1 )       A ( b 1 )       A ( c 1 )

! a 2 ; b 2 ; c 2

A ( c
b
c )

a 2 ; b 2
c 2

A ( a 1 )       A ( b 1 )       A ( c 1 )

A ( c
b
c )

a 2 ; b 2
c 2

A ( a 1 )       A ( b 1 )       A ( c 1 )

A ( c
b
c )

a 2 ; b 2
c 2

A ( a 1 )       A ( b 1 )       A ( c 1 )

! a 1 ; b 1 ; c 1

A ( a 2

b2

c 2 )

A ( x
y
z )

b 2 ; c 2
A ( x )

A ( x )
b2 ; c 2

A ( x )
y ; z x ; y
z

a 1 ; b 1
c 1

A ( y
z )

A ( y ) A ( y )
b 1 ; c 1 b 1 ; c 1

A ( z ) A ( z )

A ( a 1 )       A ( b 1 )       A ( c 1 ) A ( a 1 )       A ( b 1 )       A ( c 1 ) A ( a 1 )       A ( b 1 )       A ( c 1 ) A ( a 1 )       A ( b 1 )       A ( c 1 )
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A

A

‘ c r c

A

A

A

A

A

A

A

A

A

A

A

A

(F -V)  invertible unitor 2-modications ‘ A  and r A ,  i.e., for each c 2  C, invertible 2-cells

A ( c ) A ( c ) A ( c )

1 C ; c
A A

1 C ; c

A ( 1 C ) ) ( A ( 1 C )

A ( c ) A ( c ) A ( c )

The fact that ‘  and r  are 2-modications means that for all x  2  C(a !  b), the following diagram
commutes:

A ( b )

1 C ; b
A ( b )

‘ b
A ( x )

A ( a )
A ( x )

A ( a )

1

‘ a

A ( b ) A ( b )
A ( b )

1 C ; b 1 C ; b
A ( x )

A ( i d 1 C  ) A ( i d 1 C  ) i d 1 C  ; x

1 C ; a

A ( x )

A ( x )

A ( a )
A ( a ) A ( a )

and a similar condition for r.

This data is subject to the additional two coherence conditions c.f. [Gur13, Def. 4.10]:
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A

A

A

A

A

A

A

A

A

A A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

(F-1) For all a; b; c; d 2  C, the following diagram commutes:

A ( a
b
c
d)

a
b
c ; d

a

b ; c

! a ; b ; c

A ( a
b
c
d)

a
b
c ; d

a ; b

c

! a;b
c ; d

A ( a
b
c
d)

a ; b
c
d

b
c ; d

a ; b b ; c b ; c

A ( a )         A ( b ) A ( c )         A ( d ) A ( a )         A ( b ) A ( c )         A ( d ) A ( a )         A ( b ) A ( c )         A ( d )

! a
b ; c ; d

A ( a
b
c
d)

a
b ; c
d

     1
c ; d

a ; b

A ( a
b
c
d)

a
b ; c
d

a ; b

c ; d

! b ; c ; d

A ( a
b
c
d)

a ; b
c
d

! a ; b ; c
d

b ; c

d

c ; d

A ( a )         A ( b ) A ( c )         A ( d ) A ( a )         A ( b ) A ( c )         A ( d ) A ( a )         A ( b ) A ( c )         A ( d )

(F-2) For all a; b; c 2  C, the following diagram commutes:

A ( a
b) A ( a
b)

a ; b a ; b

a ; 1

C ! a ; 1 C ; b
1 C ; b

A ( a ) A ( b ) A ( a ) A ( b )
r a

‘ b

A ( a
b)

a ; b

A ( a )         A ( b )

A .2 Transformations between functors of Gray-monoids
Denit ion A.2.  Suppose C ; D are Gray-monoids and A ; B  : BC !  B D  are 3-functors. A  transformation  :
A  )  B  consists of:

(T- I )  An object  2  D, which we depict by an oriented green strand:

(T- I I )  An adjoint equivalence  : D(id; )  A  )  D(; id)  B  in the 2-category of 2-functors C !  D.
Explicitly, this is given by, for each c 2  C, an adjoint equivalence 1-cell c :

 A(c) )  B (c)
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x

which we depict as a crossing
B ( c ) B ( c )

c = c = : ;

A ( c ) A ( c )

together with, for each x  2  C(a !  b), invertible 2-cells

B ( b ) B ( b )

B ( x )

A ( b )  )  A ( b ) :
A ( x )

A ( a ) A ( a )

The fact that  is a 2-natural transformation means that:

(T-I I) . i  For every x; y 2  C(a !  b) and f  2  C (x )  y), the following diagram commutes:

B ( b ) B ( b )

B ( x )
x

A ( x )

A ( a ) A ( a )

A ( f ) B ( f )

B ( b ) B ( b )

B ( y )
y

A ( y )

A ( a ) A ( a )
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2 2

1

1

c c

A

1

B

1 1C
B 1

(T-I I). i i  For every x  2  C(a !  b) and y 2  C(b )  c), the following diagram commutes:

B ( c ) B ( b ) B ( b )

B ( y ) B ( y )

A ( y )
y x

B ( x )

A ( x ) A ( x )

A ( a ) A ( a ) A ( a )

A y ; x B y ; x

B ( c ) B ( b )

B ( y x )
y x

A ( y x )

A ( a ) A ( a )

(T-I I). i i i  For every c 2  C, the following diagram commutes:

B ( c )

B ( c )

A c

A ( i d c )

A ( c )

A ( c )
B c

i d c

B ( c )

B ( i d c )

A ( c )

Observe this immediately implies that idc  =  B 1   (A1 )  1 for all c 2  C.

(T- I I I )  A  unit coherence invertible 2-modication

B ( 1 C ) B ( 1 C )

A ( 1 C )  )

The 2-modication criterion for 1 is automatically satised by (F- I I I )  (which says A  =  A1        and 1 =
B 1

C
 )  and (T-I I).i i i  above.
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A

)

B

A

A A

B

A 2

B B B B

2
B

(T - I V )  For every a; b 2  C, a monoidality coherence invertible 2-modication

B ( a
b) B ( a
b)

2 a ; b  A ( a

b)
a ; b      

 B ( a ) B ( b )

a ; b

A ( a ) A ( b ) A ( a ) A ( b )

That 2 is a 2-modication means that for all x  2  C(a1 !  a2) and y 2  C(b1 !  b2),

B ( a 2

b2 )
B ( a 2

b2 ) B ( a 2

b2 ) B ( a 2

b2 )

B ( x
y )

a 2 ; b 2 x ; y
A ( x

y )
x

y

B ( x
y )

a 1 ; b 1
a 1 ; b 1

A ( x )

A ( y )
a 1 ; b 1 a 1 ; b 1

A ( a 1 )       A ( b 1 )
A ( a 1 )       A ( b 1 ) A ( a 1 )       A ( b 1 ) A ( a 1 )       A ( b 1 )

a 2 ; b 2
x ; y

B ( a
b) B ( a
b) B ( a
b) B ( a
b)

a 2 ; b 2 a 2 ; b 2 a 2 ; b 2 a 2 ; b 2

B ( x ) B ( x )

x
     1 y B ( y )

B ( x )

A ( y )

A ( x )

A ( y ) A ( y )

A ( a 1 )       A ( b 1 ) A ( a 1 )       A ( b 1 ) A ( a 1 )       A ( b 1 ) A ( a 1 )       A ( b 1 )

This data is subject to the following additional three coherences c.f. [Gur13, Def. 4.16]
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A

A

A

B

B

B

B

B

A

B

A

2 2

B

A

A

A

B

B

B

2 2

A

A

B

A

B

B

B

B

A

2

B

A

(T-1) For all a; b; c 2  C, the following diagram commutes:

B ( a
b
c )  B ( a
b
c )  B ( a
b
c ) B ( a
b
c )

a
b ; c a
b ; c a
b ; c

a

b ; c
a

b ; c a ; b
     1

a ; b

a ; b

a ; b a ; b

A ( a )         A ( b ) A ( c ) A ( a )         A ( b ) A ( c ) A ( a )         A ( b ) A ( c ) A ( a )         A ( b ) A ( c )

! a ; b ; c ! a ; b ; c

B ( a

b

c )

B ( a
b
c )

a ; b
c

B ( a
b
c )

a ; b
c

a ; b
c

B ( a
b
c )

a ; b
c

a ; b
c

b ; c
b ; c

b ; c

b ; c b ; c

A ( a )         A ( b ) A ( c ) A ( a )         A ( b ) A ( c ) A ( a )         A ( b ) A ( c )

A ( a )         A ( b ) A ( c )

(T-2) For all c 2  C, the following diagram commutes:

B ( c ) B ( a
b)        B ( a
b)

1 C ; c 1 C ; c

1 C ; c
1 C ; c 1

A ( c ) A ( c ) A ( c )

     1

‘ c B ( a
b)

B ( c ) 1 C ; c

‘ c

A ( c )

A ( c )

and a similar coherence equation holds for rc      as well.

Observe that (T-2) completely determines 1 in terms of lower data. This means that one needs only verify
the existence of some 1 satisfying (T-2) to verify (T- I I I )  above.

A .3 Modications between transformations of Gray-monoids



Denit ion A.3.  Suppose C; D are Gray-monoids, A ; B  : BC !  B D  are 3-functors, and ;  : A  )  B  are
transformations. A  modication m :  V   consists of:
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m c

(M-I) a 1-cell m :  !   depicted m

(M-II) For each c 2  C, an invertible 2-modication

B ( c ) B ( c )

m

)
m

A ( c ) A ( c )

Explicitly, this means that mc satises the following coherence condition for all x  : a !  b:

B ( b ) B ( b ) B ( b )

B ( x )

m A ( x )
x

A ( x ) m m

A ( a ) A ( a ) A ( a )

m b m a

B ( b ) B ( b ) B ( b )

m m B ( x )

x
B ( x )

     1
m

A ( x )

A ( a ) A ( a ) A ( a )

This data is subject to the following two conditions c.f. [Gur13, Def. 4.18]:
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A A

B2

A

B B B

2

A A

B

A

B

(M-1) For all a; b 2  C,

B ( a
b) B ( a
b) B ( a
b)

m m

m
m a

b a ; b a ; b

a ; b a ; b

A ( a )         A ( b ) A ( a )         A ( b ) A ( a )         A ( b )

     1

B ( a
b) B ( a
b)        B ( a
b)        B ( a
b)

a ; b

a ; b
a ; b

a ; b a ; b

m a m b
m

m
m m

A ( a )         A ( b ) A ( a )         A ( b ) A ( a )         A ( b ) A ( a )         A ( b )

(M-2) The following diagram commutes:

B ( 1 C ) B ( 1 C ) B ( 1 C )

m m

m
m 1 C

1

     1

B ( 1 C ) B ( 1 C )

1

m m

Observe this coherence completely determines m1C in terms of 1 and 1.

A .4 Perturbations between modications of Gray-monoids
Denit ion A.4.  Suppose C ; D are Gray-monoids, A ; B  : BC !  B D  are 3-functors, ;  : A  )  B  are
transformations, and m; n :  V   are modications. A  perturbation  : m n consists of a 2-cell  : m
)  n satisfying the following coherence condition c.f. [Gur13, Def. 4.21]:
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G

(P-1) For each c 2  C, the following square commutes:

B ( c ) B ( c )

m
m c

m

A ( c ) A ( c )

B ( c ) B ( c )

n
n c

n

A ( c ) A ( c )

B Coherence proofs for strictication

This appendix contains all proofs from x3 which amount to checking/using various coherence conditions
from Appendix A. As most of the proofs in this section are similar, we provide full detail for one part of each
coherence proof below, and we explain the components of the proof in other parts whose details are left to
the reader. To  make the commutative diagrams more readable, we suppress all whiskering notation, including
Notation 2.7.

B .1 Coherence proofs for Strictifying 1-morphisms x3.2
We remind the reader that (BC ; C ); (BD; D ) are two objects in 3Catpt, so that C ; D are Gray-monoids, and (A; )
2  3CatG((BC; C ) !  (BD ; D )) .  We specied data for (B ; )  : (BC ; C ) !  (BD ; D )  above in x3.2, together with data
for (; id) : (B ; )  )  (A; ).

Notation B.1.  In this section, we will use a shorthand notation for 1-cells in D  for proofs using commutative
diagrams. For x  2  C(a !  b), y 2  C(b !  c), and z 2  C(c !  d), we will denote their corresponding image in D
under A  as a small shaded square, e.g.,

A ( b ) A ( c ) A ( d )

: =  A ( x ) : =  A ( y ) : =  A ( z )

A ( a ) A ( b ) A ( c )

While the 1-composition  in D  is stacking of diagrams, we denote A  applied to a 1-composite in C by
vertically joining the shaded squares:

A ( c )

: =  A ( y ) A ( x )

A ( a )

A ( c )

: =  A ( y x )  :

A ( a )

Since 1-composition in C and D  are both strict, we denote a triple 1-composite by stacking three boxes, and
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we denote A  applied to a triple 1-composite by vertically joining three boxes:

A ( d )

: =  A ( z ) A ( y ) A ( x )

A ( b )

A ( d )

: =  A ( z y x )  :

A ( a )

For the
 composite of 1-cells, we use the nudging convention as in (8). We denote A  applied to a
 composite of 1-cells in C by joining the shaded boxes along corners. For the following example, given x1 2  C(a1

!  b1), y1 2  C(b1 !  c1), x2 2  C(a2 !  b2), and y2 2  C(b2 !  c2), we write

A ( b 1 )

: =  A ( x 1 )

A ( a 1 )

A ( c 1 )

: =  A ( y 1 )

A ( b 1 )

A ( b 2 )

: =  A ( x 2 )

A ( a 2 )

A ( c 2 )

: =  A ( y 2 )

A ( b 2 )

We then write
A ( b 1 )  A ( b 2 ) A ( b 1

b2 )

: =  A ( x 1 )
A ( x 2 )

A ( a 1 )  A ( a 2 )

: =  A ( x 1

x 2 )  :

A ( a 1

a 2 )

In this notation, we would write the following diagram for A  applied to the following composites:

A ( c 1

c 2 )

: =  A ( y 1

y 2 ) A ( x 1

x 2 )

A ( a 1

a 2 )

A ( c 1

c 2 )

: =  A ( y 1 x 1 )

A ( y 2 x 2 )  :

A ( a 1

a 2 )

Proof of Lem. 3.10: (B ; B 1 ; B 2 ) is a 2-functor. We must check (F- I)  for B .  We provide a complete proof
for (F-I).i, and leave most of (F-I).ii as an exercise for the reader.

(F-I).i For x  2  C(gC !  hC ), y 2  C(hC !  kC ), and z 2  C(kC !  ‘C ), we use the following shorthand as in
Notation B.1:

A ( h C ) A ( k C ) A ( ‘ C )

: =  A ( x ) : =  A ( y ) : =  A ( z )

A ( g C ) A ( h C ) A ( k C )
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2

2 2

2

x ; y

B
BB
B

A

A

C
CC
C

B
2

)
A 2

)

A y ; x

A z ; y
( F - I ) . i A z ; y x

A z y ; x

Every square except for the bottom right square commutes by functoriality of 1-cell composition  in a Gray-
monoid, that is, applying two 2-cells locally to non-overlapping regions in a 1-cell commutes. The bottom
right square commutes by (F-I).i  applied to the underlying 2-functor of A.

(F-I).ii Follows from the properties of the adjoint equivalence  (see Remark B.2 below) together with (F-I).ii
for the underlying 2-functor of A.

Remark B.2.  In subsequent proofs, we will freely combine squares that commute by functoriality of 1-cell
composition  when the involved 2-cells applied locally are part of the biadjoint biequivalence  ( B B )  or the
adjoint equivalences g. We will then simply state this larger face commutes by the properties of the adjoint
equivalence , i.e., the properties of the biadjoint biequivalence  ( B B )  and the properties of the adjoint
equivalences g.

Proof of Lem. 3.12: (B ; B ; B ; ! ; ‘ ; r )  is a weak 3-functor BC !  B D .

(F-I I). i  Every component which makes up B ,  in Construction 3.11, especially A ,  is natural.
(F-I I).i i  For x1 2  C(a1 !  b1), y1 2  C(b1 !  c1), x2 2  C(a2 !  b2), and y2 2  C(b2 !  c2), we use the following

shorthand as in Notation B.1:

A ( h C )

: =  A ( x 1 )

A ( g C )

A ( k C )

: =  A ( y 1 )

A ( h C )

A ( q C )

: =  A ( x 2 )

A ( p C )

A ( r C )

: =  A ( y 2 )

A ( q C )

For the following diagram to t on one page, we compress the denition of B       from Construction 3.11 into four
steps 0 1

B

x ; y  : =  B
@

)
( h ; q )      1 h ; q

)
( g ; p )      1

g ; p

C

C ; (20)

A
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A2

A

A 2

A

2
2

A

A

A

A

A

A

A

2

2 A

A

A

2 2

2 2

2

A
2

A

2

2

2 2

2

A

2 A 2 2

1 e

we suppress as many interchangers as possible, and we combine commuting squares involving only  and
the g as in Remark B.2.

k ; r

( k ; r )      1
y 1 ; y 2

h ; q ( h ; q )      1

( h ; q )      1

1 ( h ; q )      1

k ; r

( k ; r )      1
y 1 ; y 2

h ; q h ; q

( k ; r )      1

     1 x 1 ; x 2

k ; r

(F-I I).i i  for A h ; q

g ; p

( k ; r )      1

A y 1 ; x 1

A y 2 ; x 2

     1
x 1 ; x 2 ( g ;

p)      1

k ; r

A y 1 ; x 1

A y 2 ; x 2

A y 1
y 2 ; x 1
x 2

g ; p g ; p

A ( )

A y 1 ; x 1

A y 2 ; x 2

( g ; p )      1 ( g ; p )      1

k ; r

( k ; r )      1
y 1 x 1 ; y 2 x 2 ( g ; p )      1 A ( ) A y 1

y 2 ; x 1
x 2

g ; k

Non-labelled faces either commute by functoriality of 1-cell composition , axioms (C4) and (C5) of the
interchanger, or Remark B.2.

(F-I I).iii  This follows by Remark B.2 and functoriality of 1-cell composition , together with (F-I I).i i i  applied
to A.

(F- I I I )  This part is automatic as B  : =  B 1 .
(F- IV)  This follows by Remark B.2 and functoriality of 1-cell composition , together with (F- IV)  applied to

A  and two instances of (T-1) for the transformation  : D  )  A   C.
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2
g          g g

1 1

2
g g g

g g g

D B

x ; y

(F-V)  This follows by Remark B.2 and functoriality of 1-cell composition , together with (F-V)  applied to
A  and two instances of (T-2) for the transformation  : D  )  A   C.

(F-1) Every map is the identity map.

(F-2) Every map is the identity map.

Proof of Lem. 3.13: (; g ; idg ; 1; 2) is a 2-natural transformation D  )  B   C . (T-I I) . i  This

condition is immediate as the only 1-cells and 2-cells in B G  are identities.
(T-I I). i i  This step amounts to checking Bi d  ;id      (B 1   Bg )  =  Bg . Using Remark B.2 and functoriality of 1-

cell composition , this reduces to the identity Aidg ; idg  
 (A1   A1 ) =  A1 .

(T-I I). i i i  This condition is immediate as (D )1  =  idid g D      
and 1 =  B 1 .

(T- I I I )  This condition is automatically satised.

(T- I V )  This condition is immediate as g;h =  idg h D  =  g ;h
C  

and g =  idg for all g 2  G. (T-1)

Every map is the identity map.

(T-2) Every map is the identity map.

Proof of Thm. 3.14: (; id) : (B ; )  )  (A; )  is an invertible 2-morphism in 3CatG.
It suces to prove that  denes a 2-transformation  : B  )  A, as it clearly invertible.

(T-I I) . i  Every component which makes up x  in (14) is natural in x.

(T-I I). i i  This follows by Remark B.2.

(T-I I). i i i  This follows by Remark B.2.

(T- I I I )  This condition is automatically satised.

(T- I V )  For x  2  C(gC !  hC ) and y 2  C(kC !  ‘C ), we use the following shorthand as in Notation B.1:

A ( h C ) A ( ‘ C )

: =  A ( x ) : =  A ( y )

A ( g C ) A ( k C )

For the following diagram to t on one page, we compress the denition of B       from Construction 3.11 into four
steps as in (20), we suppress as many interchangers as possible, and we combine commuting squares
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A

A

A

A

A

A

2

2

2

A

A

2

A 2

g ;h;k g ;h;k

g g g g

G G

involving only  and the g as in Remark B.2.

( h ; ‘ )      1
h ; ‘ x ; y

g ; k

h ; ‘ h ; ‘

( g ; k ) 1

h ; ‘ h ; ‘

x x
y

h ; ‘

y
h ; ‘

x ; y g ; k

g ; k

Every square here commutes by properties of the biadjoint biequivalence  (BB),  the adjoint equivalences g,
and functoriality of 1-cell composition .

(T-1) Since ! B is the identity, it is equal to !
D        

. Since (T-1) holds for  : D  )  A   C, we conclude (T-1)
holds for  : B  )  A.

(T-2) Since ‘ B ; r B  are identities, they are equal to ‘
D  

; r
D  

respectively. Since (T-2) holds for  : D  )  AC , we
conclude (T-2) holds for  : B  )  A.

B .2 Coherence proofs for Strictifying 2-morphisms x3.3
We remind the reader that (BC ; C ); (BD; D ) are two objects in 3Catpt, (A; ); (B ; ) 2  3Catpt((BC; C ) !  (BD ; D )) ,
and (; m) 2  3CatG ((A; ) )  (B ; )).  We specied data for (; id) : (A; )  )  (B ; )  above in x3.3.

Proof of Lem. 3.16: (; id) : (A; )  )  (B ; )  is a 2-morphism in 3CatG. It suces to check that  : A  )  B  is a 2-
natural transformation.

(T-I I) . i  Every component which makes up x  in (16) is natural in x.
(T-I I). i i  This follows by Remark B.2 and functoriality of 1-cell composition , together with (T-I I). i i  applied
to  : D  )  A   C.

(T-I I). i i i  This follows by Remark B.2 and functoriality of 1-cell composition , together with (T-I I). i i i  applied
to  : D  )  A   C.

(T- I I I )  This condition is automatically satised.

(T- I V )  For x  2  C(gC !  hC ) and y 2  C(kC !  ‘C ), we use the following shorthand as in Notation B.1:

h D ‘ D h D ‘ D

: =  A ( x ) : =  A ( y ) : =  B ( x ) : =  B ( y ) : =
m

g D k D g D k D

: =  
m  

1       

:
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x

B x C

For the following diagram to t on one page, we compress the denition of  from (16) into three steps 0
1

x  : =  @     ) ) )      A ;

and we combine and suppress as many interchangers as possible, simply writing .

A

(M-1)

(M-1)
A

x

y
2

B

2 (T - IV )  for B

x y

x
x

y

x

y

y

Non-labelled faces commute by either functoriality of 1-cell composition  or by properties of a (bi)adjoint
(bi)equivalence.
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G

m g

G

pg

(T-1) Every map is the identity map.

(T-2) Every map is the identity map.

We remind the reader that by the strictness properties for ;  as components of 1-morphisms in 3Catpt, m
: e D  )  , and mg is an invertible 2-cell

m ) m       : (15)
g D                       g D

Proof of Thm. 3.17: (m; id) : (; id) V  (; m) is an invertible 3-morphism in 3CatG. It suces to check that m :
V   is an invertible 3-modication.

(M-II) This condition corresponds for m :  V   corresponds to the outside of the following commutative
diagram, where we use the following shorthand notation for x  2  C(gC !  hC ) and m; m 

1:

h D h D

: =  A ( x ) : =  B ( x ) : =
m

g D g D

: =  
m  

1

x m g

m h

m h  
1

x m g

Al l  inner faces in the above diagram are squares which commute by functoriality of 1-cell composition .

(M-1) This is exactly (M-1) applied to m viewed as a modication m :  V  (   idC )    as in (9) above
(M-2) By the strictness properties of (A; )  and (B ; ),  (M-2) for the modication m :  V  (   id C  )    as in (9)

above tells us that m1C =  1 on the nose. This exactly gives the coherence (M-2) for .

B .3 Coherence proofs for Strictifying 3-morphisms x3.4
We remind the reader that in this section, (; m =  id); (; n =  id) : (A; )  )  (B ; )  are two 2-morphisms
in 3Catpt and (p; ) : (; id) V  (; id) is a 3-morphism in 3CatG. This means  is an invertible 2-cell idide D

)  p satisfying the coherence
0 1 0 1

@ )  p ) p A  = @ ) p A 8 g 2 G: (17)
g D                                  g D                      g D                                               g D                                   g D

Proof of Lem. 3.18: x  =  x  for all x  2  C(gC !  hC ). For x  2  C(gC !  hC ), we use the following shorthand as in
Notation B.1.

h D h D e D

: =  A ( x ) : =  B ( x ) : =  p

g D g D e D
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G

st

The outside of the following commutative diagram is a bigon with one arrow x  and one arrow x ; hence x
=  x :

( C 5 )

x

(17) p h (M- I I )

x

pg     (17)

x
     1

x
( C 5 )

The unlabeled faces commute by functoriality of 1-cell composition .

C Coherence proofs for G-crossed braided categories

This appendix contains all proofs from x4 which amount to checking/using various coherence conditions
using the properties listed in Appendix A. To  make the commutative diagrams more readable, we suppress
all whiskering notation, including Notation 2.7.

C .1 Coherence proofs for the 2-functor 3Catst to GCrsBrdst from x4.2
We now supply the proofs for statements in x4.2. We remind the reader that (C;
g;h ; Fg ; g;h ) is the data constructed from C 2  3CatG in Constructions 4.6, 4.7, and 4.8.

Proof of Thm. 4.9: (C;
g;h ; Fg ; g;h ) forms a strict G-crossed braided category. We remind the reader that we use the shorthand
notation that white, green, and blue shaded disks correspond to 1-morphisms into gC; hC; and kC,
respectively:

gC h C k C       :

It remains to check the commutativity of (1), (2), and (3). We treat (1) in detail. Going around the
outside of the diagram below corresponds to (1). The large face consists of only equalities, so it manifestly
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commutes.
ghgC 

1  gkgC 
1

= g
g                                                       g

g

= ghg     1 ;g

g

= = =

=
g g

gh (1)
g

= =

h = g;h
g g

The top left square commutes as the only two non-trivial maps are the same interchanger.
The equations (2) and (3) are similar. In the two diagrams below, the outside 7 diagrams are the

vertices in the heptagons (2) and (3) respectively. There is only one non-trivial face in each the two
diagrams below corresponding to these two coherences, and this face commutes by the axiom (C4) of the
interchanger in a Gray-monoid.

gC  h C  k C

= =  ( C 4 )
=

= = g
=

=
=

=
= (2)

g g
=

g

=
=

g = g

g g
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G G G

gC  h C  k C

= =  ( C 4 )
=

= =
= h

=
= =

(3)

gh h
=

=
=

h

g;h = g;h

This completes the proof.

For C ; D 2  3Catst, A ; B  2  3Catst(C !  D), and  2  3Catst (A )  B ) ,  let C; D be the G-crossed braided
categories obtained from C; D respectively from Theorem 4.9. In Construction 4.10 and (19), we dened the
data (A; a) : C !  D.

Proof of Lem. 4.11: (A ; A 1 ; A 2 )  : C !  D  is a G-graded monoidal functor. That each A g  is a functor follows
immediately from the fact that A  is a functor. The data A 2  satises associativity by property (F- IV)  of
(A; A ; A ),  and the data A 2  and A 1  satises unitality by property (F-V)  of (A; A ; A ).  (Observe that in (F- IV)
and (F-V),  all instances of , ! A ,  ‘A ,  and r A  are identities, so these reduce to the usual associativity and
unitality conditions for a monoidal functor.)

Proof of Thm. 4.12: (A; A1 ; A2 ; a)  : C !  D  is a G-crossed braided monoidal functor. Naturality of a follows
by naturality of A 1  and (F-I I). i  of A .  It remains to prove the coherences (1) and (2).

(1) Observe that since C and D  are strict, the coherence condition (1) is actually a triangle. For a 2  Ck, we
use the shorthand notation a small shaded box for A(a). For g; h 2  G  and a 2  Ck =  C(1C !  kC ), we use the
following shorthand as in Notation B.1:

g D

: =  idgD : =  A ( i d g ) : =  idh D

g D

h D

k D

: =  A ( i d h ) : =
A ( a )

h D

Observe that since C is Gray, we have an equality idgC

idhC  =  idghC :

g h D

= =  A(id g h C  )

g h D

Expanding (19), we see that (1) follows from the following commuting diagram. (Recall that the cups on
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1
1

1

1

1

1
1

1

1
1

1 1

C

the bottom in (19) are really identity maps, and do not need to be drawn.)

A g h C
A

A h C
( F - I I ) . i i i  A ( F - I V )

A g C

A

A
(

g

h ) C  
1 A

( F - I I ) . i i i      A

( F - I V )
A

h C  
1

A A A

A
g C  

1

A g C
A

h C  
1 A A

( F - I I ) . i i i
A

h C  
1

A g C A          ( F - I V ) A

A A
g C  

1 A A
g C  

1

Each square above is labelled by the property for A  which makes it commute. Unlabelled squares commute
by functoriality of 1-cell composition .

(2) For g; h 2  G, a 2  Cg =  C(1C !  gC ), and b 2  Ch =  C(1C !  hC ), we use the following shorthand as in
Notation B.1:

e D

: =  A ( i d e )

e D

g D

g D h D

: =  A ( i d g ) : =                                   : =
A ( a ) A ( b )

g D

h D

: =
A ( F g  (b ) )

Recall that by Construction 4.8 of the G-crossed braiding in C, we have the identities

= = :
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1 1

1 1

2 2

1

1

1

1 1

1

1

g g

1

1

1

1 1

G

2

2

A

Going around the outside of the diagram below corresponds to (2).

A
A ( )

( F - I ) . i i A i d h ; a

A b ; i d e
A h

A e
( F - I I ) . i i

( F - I I ) . i i        
A 2 A

A h

A e       A

( F - V )

A e

A e      

( C 5 )

A A

= A

A e
A

A g
A e  A g

( F - I ) . i i
A ( F - I V ) A

A 2

A 2

A e
A ( F - V ) A

( F - V ) ( F - I I ) . i i i A g

A

A e
A e

A 1
     1

A 1  C

A
g C  

1

A g

A

Again, each square above is labelled by the property for A  which makes it commute.

Remark C .1 .  By an argument similar to the right half of the commutative diagram in the proof of (2)
above, for a functor A  2  3Catst, x  2  C(1C !  gC ), and y 2  C(h)C !  kC ), the following square commutes:

g D k D

g k D

A ( x )

A ( i d k C  )
A

A ( y )

h D

A i d k C  
; y

g D k D

A ( x
id k C  )

A ( y )

h D

(21)
A x

i d k C  
; y

g k D

A ( x )
x ; y

A ( x

y )  

A ( y )

h D

h D

Proof of Prop. 4.13: (A; A ; A )  !  (A; a) is strict.
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G

G G

e e e e
2 A B B A 2 2

1 A 1 D g

A
A

C g

g gC Dg g

A

1
1 1 1 1

1

B

B B

1

A

C g

1
1 1

A

C g

C g

A

C g

It is straightforward to see that if (A; A1 ; A2 ; A ; A ) 2  3Catst(C !  C) is the identity 3-functor, then so is
(A; A1 ; A2 ; a)  2  GCrsBrdst(C !  C). Suppose now we have two composable 1-morphisms (A; A1 ; A2 ; A ; A ) 2

3Catst(D !  E ) and (B ; B 1 ; B 2 ; B ; B )  2  3Catst(C !  D).     We now calculate the composition formu-las
for the composite G-crossed braided monoidal functor ( A   B ; ( A   B ) 1 ; ( A   B)2 ; a  b)  associated to
(A B ; (A B ) 2 ; (A B ) 2 ; A B ; A B ) .  The unitor ( A B ) 1  and tensorator ( A B ) 2  are straightforward:

( A   B ) 1  =  ( A   B ) 1  =  A(B 1 )   A1 =  A ( B 1 )   B 1

( A   B ) x ; y  =  x ; y       =  A( x ; y )   B ( x ) ; B ( y )  =  A ( B x ; y )   A B ( x ) ; B ( y ) :

To  compute (a  b ) x  for x  2  C(1C !  gC ), we use the following shorthand as in Notation B.1, where black
rectangles and strings corresponds to 1-cells in E after applying A, and blue rectangles and strands
corresponds to 1-cells in D  after applying B .  We also draw red strands to denote idg in both D  and E. For
example:

h D h E

: =                                     : =
B ( x ) A ( B ( x ) )

g h E

: =  A ( i d g D

B ( x ) )

gE

We draw unshaded boxes on red strands to denote B (id ); B (id      1  , A(id ); A(id      1  .
D D

g D

: =  B(id g C  )

g D

gE

: =  A ( B (id g C  ) )

gE

gE

: =  A(id g D  )

gE

The composite along the diagonal in the commuting diagram below is the denition of (a  b)x .  Each face
without a label above commutes by functoriality of 1-cell composition .

A g i d g D  ; B ( x ) A g      1
i d g

B (
x ) ;
i d

1  
D

by  def ’n.

( A B ) g

( F - I I ) . i
A ( B g ) ( F - I I ) . i A ( B g

i d B ( x ) ) A ( B g

i d B ( x ) ) A ( B g

i d B ( x )

 i d g D  )

B ( i d g C  ) ; B ( x )

by  def ’n.
A B
i d g C  ; x

A
g

1

A ( i d g C  ; x )

A
g

1

B ( i d g      )
B (
x ) ;
i d

1  
D

( F - I I ) . i
A ( i d g C  ; x ) A ( i d g C  ; x

i d g D  )

B ( i d g
x ) ;
i d

1  
D

by  def ’n.

( A B )
g     

 

1

( F - I I ) . i
A ( B

g     

 

1  ) A ( i d B ( i d g C
x )

B
g     

 

1  )

B ( i d g
x ) ; B
( i d
1  )

C

by  def ’n.
A B
i d g

x ; i
d
1

C

B ( i d g
x ) ; B
( i d
1  )

C



g
As the above diagram commutes, (a  b ) x  =  A ( a F D ( B ( x ) )   aB ( x ) .

Finally, we observe this data agrees with the composite data for the data for the composite of the
G-crossed braided monoidal functors (A; A1 ; A2 ; a)  and (B; B1 ; B2 ; b)  in GCrsBrd.
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G G G

e e

2 2

C

gC g

1 A 1
C g

1 B 1
B

C g

A

G

g h
C

D C D C

For C ; D 2  3Catst, A ; B  2  3Catst(C !  D), and  2  3Catst (A )  B ) ,  let C; D be the G-crossed braided
categories obtained from C; D respectively from Theorem 4.9, and let (A; a); (B; b)  : C !  D  be the G-
crossed braided functors obtained from A ; B  respectively from Theorem 4.12. In Construction 4.14 we
dened h : (A; a) )  (B ; b)  by ha : =  a  2  D ( A (a )  )  B(a) )  for a 2  Cg =  C(1C !  gC ).

Proof of Thm. 4.15: h : (A; a) )  (B ; b)  is a G-crossed braided monoidal transformation.

Naturality: This is immediate by the denition hx : =  x  for x  2  Cg =  C(1C !  gC ) and (T-I I).i.

Unitality: By (T-I I).iii. h1C  =  ide C  
=  B 1   (A1 )  1 =  B 1   (A 1 )  1.

Monoidality: That B x ; y   (hx

 hy ) =  hx

y   A x ; y  follows immediately by (T- IV) .
(18) For x  2  Ch =  C(1C !  hC ), we use the following shorthand as in Notation B.1. We also draw red strands
to denote idg in D, and we draw unshaded boxes on red strands to denote each of A(idgC  ); A(idg      1      and
B (id ); B (id      1  , For example:

D

h D h D

: =                                   : =
A ( x ) B ( x )

g D

: =  A ( i d g C  )

g D

g D

: =  B(id g C  )

g D

The outside of the commuting diagram below corresponds to (18).

A g i d g C  ; x A g      1
i d g

x ; i
d
1

C

( T - I V )
x ( T - I I ) . i i i i d g
x

( T - I I ) . i i i

i d g

C

x
       ( T - I V )

B g i d g C  ; x B g      1
i d g

x ; i
d
1

C

This completes the proof.

C .2 Coherence proofs for the equivalence x4.3
In this section, we supply the proofs from x4.3 which prove that the strict 2-functor 3Catst  !  GCrsBrdst

from Theorem 4.16 is an equivalence. We begin by expanding on Notation B.1.

Notation C .2.  In this section, we use an expanded shorthand notation for 1-cells in D  and D  for proofs using
commutative diagrams. For x1 2  C(gC !  hC ), x2 2  C(hC !  kC ), y1 2  C(pC !  qC ), and y2 2  C(qC !  rC ), we
will denote the image under A  after tensoring with the identity of the source object using small shaded
squares with one strand coming out of the top, e.g.,

h g D
1

: =
A ( x 1

gC  
1 )

k h D
1

: =
A ( y 1

h C  
1 )

q p D
1

: =
A ( x 2

pC  
1 )

r q D
1

: =
A ( y 2

qC  
1 )

We denote the G-actions F D  and F D  as in Construction 4.8 by a red strand underneath the 1-morphism in
C, where red corresponds to g and green corresponds to h. We denote A  applied to the G-actions Fg      and
F C  by outlining the shaded square with red or green respectively, e.g.,

gqp     1 g D
1

: =
F g  ( A ( x 2

pC  
1 ) )

gqp     1 g D
1

: =
A ( F g  ( x 2

pC  
1 ) )

hr q      1 h D
1

: =
F h  ( A ( y 2

qC  
1 ) )

hr q      1 h D
1

: =
A ( F h  ( y 2

qC  
1 ) )
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D D

D| {z

     1
C

C      1 )

 

C
     

D D| { | {z

     1A ( z
k         

 
)

g D

  1

| z C
  

| {

D

D

We use a similar convention for the
 composite of 1-cells as in Notation B.1. For example, if x  2  Cg =  C(1C !  gC ) and y 2  Ch =  C(1C !  hC ),
we write

hg      1 qp     1

: =                                   : =
A ( x ) A ( y )

gC h C gC

h C  : =                                                : =
:

A ( x )
A ( y ) A ( x
y )

This means that by Construction 4.8 of the G-crossed braiding in C, we have that
!

A      h g      1 ; g r q      1 g      1

 
x 1

g

     
; F g  ( y 2

q C ! :

Proof of Lem. 4.19: (A; A1 ; A2 ) : C !  D  is a 2-functor.
(F-I).i For x  2  C(gC !  hC ), y 2  C(hC !  kC ), and z 2  C(kC !  ‘C ), using the nudging convention (8), the

square for A2  is exactly

id
A 2

id

A (z
 kC 

1)
 A ( y
 h

z
1)

 A ( x
 gC 

1)
 g 

}
C A (z

 kC 
1)

 A ( y
 hC 

1

 x
 gC 

1)
 g 

}  
A ( z ) A ( y ) A ( x )                                                                                                                                             A ( z ) A ( y x )

A 2

i d A ( x
g

C  
1 )

 i d g D

A (z
 kC 

1

 y
 hC {

)

 A ( x
 gC 

1)
 g 

}  
A ( z y ) A ( x )

A 2

i d g D

A 2

i d g D A( (z
 kC 

1)
 (y
 h

z
1)

 (x
 gC 

1 ))
 g 

}  
A ( z y x )

which commutes by strictness of C; D and associativity of A2 .

(F-I).ii For x  2  C(gC !  hC ), using the nudging convention (8), the lower triangle for A1  and A2  is exactly

e D A ( x



DC| {z

D| {z

e
C

G
A

 gC 
1)

 g 
}  

A ( x )

A 1

i d A ( x
g

     1 )

 i d g D

A(eC )
 A ( x
 g 1)
 g 

}  
A ( i d h ) A ( x )

id x

A 2

i d g D
A(eC

 x
 gC 

1)
 g 

}  
A ( x )

which commutes by unitality of A1 ; A2 .  The other triangle is similar.

Proof of Thm. 4.21: (A; A ; A )  2  3Catst(C !  D ) .

(F-I I). i  Each component in the denition of y ; x  is natural in x  and y.
(F-I I).i i  For g; h 2  G, x1 2  C(gC !  hC ), x2 2  C(hC !  kC ), y1 2  C(pC !  qC), and y2 2  C(qC !  rC ), we use the

following shorthand as in Notation B.1:

h g D
1

: =
A ( x 1

gC  
1 )

k h D
1

: =
A ( y 1

h C  
1 )

q p D
1

: =
A ( x 2

pC  
1 )

r q D
1

: =
A ( y 2

qC  
1 )
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= C h
     

g C =
h

h
     

g C

Observe that by the denition of A  from A  and the nudging convention (8), we have

A ( y 1 )

A ( y 2 )

A ( x 1 )
A ( y 1

h      1 )

F D ( A ( y 2

qC  
1 ) )

A ( x 1

gC  
1 )

F D ( A ( x 2

p     1 ) )

g p D
g

A ( x 2 )
g p D

A ( ( y 1

y 2 ) ( x 1

x 2 ) )      = A ( ( y 1

h C  
1 )

F C ( y 2

qC  
1 )

( x 1

gC  
1 )

F C ( x 2

p     1 ) )

g p D  =
g p D

Going around the outside of the diagram below corresponds to (F-I I).ii, except we leave o the extra
gpD strand on the right hand side of each string diagram.

h a h A 2
g g g

(1) a h
g

    

 

1
     1 =      1

h, g      1 ;g
a g h, g      1

g
g g g

A 2 A 2
a g

a g

(2)

A 2 A ( ) A 2

g g g g g

A 2 a g  monoidal a g a g a g

A 2 A ( ) a g
A 2 A 2

g
A 2
A 2

a g A 2 A 2 A 2

A 2 A ( i d

)  A 2

A 2
A 2

A 2
A 2

A ( ) = A ( )



D

D
1 2 1 1 2 1 D 1

A 1

2

The faces without labels above commute either by naturality or by associativity of A2 .

(F-I I).iii  This follows since each Fg       is strictly unital, and thus for all g 2  G,

A e  =  Aid e ; id e   (Ae

 Ae ) =  A i d e ; F g  ( ide )   (Ae ; Fg (Ae ):

(F- I I I )  This part is automatic as 1 =  Ae .
(F- IV)  This follows by monoidality of ag and associativity of A2 .  We omit the full proof as it is much easier
than (F-I I).i i  above.

(F-V)  This reduces to unitality of A 1  and A2 ,  i.e., for all x  2  C(gC !  hC ),

A i d e ; x

gC  
1   ( A 1

 id A ( x

gC  
1 ) )  =  id A ( x

gC  
1 )  :
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G

G
st
G D

C C

C C g g

B
C g

1 A
C

e e

The other unitality axiom is similar.

(F-1) Every map is the identity map.

(F-2) Every map is the identity map.

Proof of Thm. 4.22: the map 3Catst (A )  B )  !  GCrsBrd(A )  B )  is bijective.
Suppose that ;  2  3Catst(A )  B )  satisfy x  =  x  for every x  2  C(1C !  gC ) for all g 2  G. Since ;  are 2-

morphisms in 3Cat , we have  =  e D  =  , g =  idg      =  g for all g 2  G. For an arbitrary y 2  C(gC !  hC ), we have
y

g     1  =  y

g     1  . By (T- I V )  for  : A  )  B ,  the following diagram commutes:

h g D
1 g D g D

A ( y
gC  

1 ) A

A ( y )  
A ( g C )

g D

g D

y

g C  
1

i d g C y (22)

h g D
1 g D g D

B ( y
gC  

1 ) B

B ( y )  
B ( g C )

g D

g D

as does a similar diagram for  replacing . Since y

g     1  =  y

g     1  by assumption, idg  =  B 1  (A1 )  1 =  idg  by (T-I I).iii, and A ; B  are invertible 2-cells, we conclude that x  =
x .

Now suppose h : A  )  B  is a G-monoidal natural transformation. We dene  : A  )  B  by  =  eD , g =
idgD  for all g 2  G, and for y 2  C(gC !  hC ), we use (22) above to dene

y  : =  y

gC  
1 ;gC  

 (hy

g     1

 (B 1   (Ag )  1 ))  (y

g     1 ;gC  
)  1:

By construction, provided  is a transformation  !  h. It remains to verify that  : A  )  B  is indeed a
transformation. We prove one of the coherences below, and we give a hint as how to proceed for the other
coherences.

(T-I I) . i  Every composite step in the denition of  is natural.

(T-I I). i i  This follows from functoriality of 1-cell composition  together with the fact that h is monoidal, and
two instances each (one for each of A  and B )  of (F-I).ii, (21), and (F- IV).

(T-I I). i i i  This follows using 2 instances of (F-I I).iii  (one for each of A  and B )  together with the fact that

hide =  B 1

 (A 1 )  1 =  B 1   (A1 )  1

which is unitality for a monoidal natural transformation.

(T- I I I )  This condition is automatically satised.



(T - I V )  For x  2  C(gC !  hC ) and y 2  C(kC !  ‘C ), we use the following shorthand as in Notation B.1 and
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Notation C.2:

h D

: =  A ( x )

g D

h D

: =  B ( x )

g D

h g D
1

: =
A ( x
gC  

1 )

h g D
1

: =
B ( x
gC  

1 )

‘ D

‘ k D 1

: =  A ( y ) : =
A ( y

k C  
1 )  k D

‘ D

‘ k D
1

: =  B ( y ) : =
B ( y

k C  
1 )  k D

j D

: =  A(id j C  ) 8 j  2  G:

j D

j D

: =  B ( i d j C  ) 8 j  2  G:

j D

Suppose x  2  C(gC !  hC ) and y 2  C(kC !  ‘C ). We begin with the following observation that the following
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diagram commutes:

A ( A )      1

( F - I V )
A ( F - I V ) A A

A

A

A

( F - I V )
A

( F - I I ) . i i i

A ( F - I V ) A A
A

( F - I V )
A

A

A A 1

A 1 A 1 A 1 A 1
A 1

A 1

A A

A

( A 1 )      1
(23)

A

A

A 1 A 1

A 1

A 1

A 1  A 1 A

A 1
( F - I V ) A ( F - I I ) . i i i

A 1

Dent ion  of a

A         A

( F - V )  
A 1

a A

Observe that (23) above also holds with (A; A1 ; A ; A; a) replaced by (B ; B 1 ; B ; B; b).
Going around the outside of the diagram below corresponds to (T- IV) ,  where we also use the abuse of
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notation of h for B 1   (A1 )  1.

A ( A )      1

A

A A 1
(23) for A

( A 1 )      1

h
h h

h A 1

A 1

A 1

a A

A h

B 1

i d

A 1

B h
h h
h (18)

h

h h  monoidal h

h

h b
B

B

( A )      1
B 1

B 1

B
1

B
1

(23) for B

h
h

B

B B 1

( F - I V )

B
B

B ( B )      1

The faces without labels above commute by functoriality of 1-cell composition  or by the shorthand h =
B 1   (A1 )  1.

(T-1) Every map is the identity map.

(T-2) Every map is the identity map.
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