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In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of
potential buyers. Each buyer 𝑖 has a private value 𝑣𝑖 for receiving this service, and some feasibility constraint
restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-
acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity,
and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these
auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results:
in the absence of prior information regarding the buyers’ values, no deterministic clock auction can achieve a
bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.

We show that these negative results can be circumvented either by using access to prior information or by
leveraging randomization. In particular, we provide clock auctions that give a 𝑂 (log log𝑘) approximation for
general downward-closed feasibility constraints with 𝑘 maximal feasible sets, for three different information
models, ranging from full access to the value distributions to complete absence of information. The more
information the seller has, the simpler and more practical these auctions are. Under full access, we use a
particularly simple deterministic clock auction, called a single-price clock auction, which is only slightly more
complex than posted price mechanisms. In this auction, each buyer is offered a single price, then a feasible set
is selected among those who accept their offers. In the other extreme, where no prior information is available,
this approximation guarantee is obtained using a complex randomized clock auction. In addition to our main
results, we propose a parameterization that interpolates between single-price clock auctions and general clock
auctions, paving the way for an exciting line of future research.

CCS Concepts: • Theory of computation → Algorithmic mechanism design; Computational pricing
and auctions.
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1 INTRODUCTION
Our goal in this paper is to design auctions for the following well-studied class of mechanism
design problems: given some set 𝑁 of 𝑛 buyers that request a service, and a feasibility constraint
F ⊆ 2𝑁 that restricts the subsets of buyers that can be served simultaneously, we need to decide
which feasible subset of buyers 𝐹 ∈ F should be served, and how much each served buyer should
pay for the service. A crucial obstacle is that we do not know the value 𝑣𝑖 of each buyer 𝑖 for the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
EC ’22, July 11–15, 2022, Boulder, CO, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9150-4/22/07. . . $15.00
https://doi.org/10.1145/3490486.3538247

 
Session 6D: Auctions and Bargaining ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

820

https://doi.org/10.1145/3490486.3538247
https://doi.org/10.1145/3490486.3538247
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490486.3538247&domain=pdf&date_stamp=2022-07-13


service, i.e., the amount that they are willing to pay for it. Therefore, unless our auction is carefully
designed, the buyers can choose to misrepresent this value, aiming to minimize their payment.
For a simple concrete example, consider a setting where some ticket broker is looking to sell

100 tickets for a concert and each potential buyer is interested in purchasing a specific number of
tickets so that they can go with their family, or group of friends. The buyers would go to the concert
only if they are able to secure their desired number of tickets (depending on their group size), but
the broker has just 100 tickets, so it would only be feasible to satisfy subsets of buyers whose total
demand for tickets is at most 100. The broker needs to use some mechanism that decides who
should get tickets and how much they should each pay, and there are several different types of
mechanisms to choose from. For example, she could ask each potential buyer to privately submit
a bid with the amount that they are willing to pay, and then use this information to decide the
outcome. A much simpler, but possibly inefficient, option would be to just post a fixed price and
sell the tickets at that price on a first-come-first-served basis.
Milgrom and Segal [52, 53] recently provided a compelling argument that an ideal solution for

this class of problems is a (deferred-acceptance) clock auction, and they designed one for reallocating
radio frequency licenses, generating almost 20 billion dollars in revenue [34]. An ascending clock
auction takes place over a sequence of rounds: each buyer is offered a personalized price that
weakly increases over time and if the price exceeds the amount they are willing to pay, they can
permanently drop out of the auction and pay nothing (note that this is unlike other ascending
auctions that assign prices to items instead). When the set of buyers that remain active (the ones
that have not dropped out) becomes feasible, the auction can terminate and serve these buyers
at the cost of the last price they accepted. Therefore, designing a clock auction reduces to the
algorithmic problem of carefully choosing the vector of prices offered to buyers in each round.
Any mechanism that follows the clock auction format automatically satisfies a list of very

appealing properties that make clock auctions a highly practical solution that is well-suited for
real-world applications. For example, not only are they strategyproof (meaning buyers have no
reason to unilaterally misrepresent their value); they are actually obviously strategyproof [49],
which implies significantly stronger incentive guarantees, including weak group-strategyproofness,
i.e., that even if a coalition of buyers misrepresented their values in a coordinated way, they would
not all benefit from this deviation. Furthermore, clock auctions guarantee (i) transparency (there is
no way in which the auctioneer can mishandle, behind the scenes, the information provided by the
buyers), (ii) unconditional winner privacy (the winners of the auction never need to reveal their true
value), and (iii) simplicity (the buyers do not need to understand the inner workings of the auction;
all they need to know is the price offered to them in each round). These are properties that most
strategyproof auctions do not satisfy (see Section 1.2 for additional discussion on these properties).
Motivated by the strong evidence in favor of clock auctions, subsequent work focused on

analyzing their performance in a variety of different settings (e.g., [8, 10, 14, 26, 29, 38, 39, 45, 50]).
For the problems studied in this paper, these efforts were overshadowed by a strong impossibility
result: even for seemingly very simple instances, all prior-free deterministic clock auctions are
bound to perform poorly [26]. However, the restriction to prior-free auctions, i.e., ones where the
seller has no prior information regarding the amount that the buyers may be willing to pay, is
rather unrealistic, given the vast amounts of historical data being gathered and stored nowadays.
In fact, the standard model in auction design is in the Bayesian setting, where the value 𝑣𝑖 of each
buyer 𝑖 is drawn independently from some distribution 𝐷𝑖 and, although the seller does not know
the realization of the values, she knows the distributions. Also, although deterministic auctions are
more appealing in practice, using randomization to overcome adversarially constructed instances
can be a very effective tool. Despite the long literature on Bayesian auctions and randomized
auctions, the power of these tools in the context of clock auctions remains largely unexplored. In
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this paper, we address this gap in the literature by analyzing both deterministic Bayesian clock
auctions and randomized prior-free clock auctions.

1.1 Our Results
We study the problem of maximizing the social welfare, i.e., the sum of the values of the served
buyers, and we compare the expected welfare of our auctions to the expected optimal welfare. We
consider problem instances with general downward-closed feasibility constraints F and provide
three alternative clock auctions (depending on the amount of information available to the seller)
that all achieve a 𝑂 (log log𝑘) approximation guarantee, where 𝑘 is the number of maximal sets
in F . The more information the seller has, the simpler the proposed auction, providing sellers
with three options that exhibit an interesting trade-off between access to information and auction
simplicity. These results are in stark contrast to the fact that prior-free deterministic clock auctions
cannot achieve any bounded approximation even for very simple instances where 𝑘 = 2 [26].

Result 1: Deterministic single-price clock auction under full access to priors (Section 3).
In the standard Bayesian setting, where buyer values are drawn from known distributions, we show
that the𝑂 (log log𝑘) approximation guarantee can be provided by a deterministic clock auction that
has a particularly simple structure. It is a member of a class of auctions, which we call single-price
clock auctions, which use only a small portion of the power that clock auctions possess and, as we
discuss in Section 3, are closely related to the well-studied class of posted-price mechanisms. Like
posted price mechanisms, single-price clock auctions offer just a single price to each buyer. However,
single-price clock auctions can defer the decision regarding which subset of buyers to serve until
every buyer has responded to the price they were offered, whereas posted-price mechanisms need
to serve every buyer who accepts the offered price. Our results show that this advantage allows
us to achieve an exponential improvement over posted-price mechanisms, which cannot achieve
better than a 𝑂 (log𝑘/log log𝑘) approximation, even for a simple feasibility constraint where all
the 𝑘 maximal feasible sets are disjoint [6, 54].
Result 2: Deterministic clock auction under restricted access to priors (Section 4). Our

second result is a deterministic auction which achieves the same approximation guarantee using
only limited information regarding the distributions: it has access to the expected value of each
bidder and to the expected value of the optimal solution, but has no additional information regarding
the moments of 𝐷𝑖 . This is in line with recent work focusing on mechanism design with limited
information (e.g., [3–5, 15, 16, 20, 33, 42, 57]). In contrast to our first auction, which leverages its
unrestricted access to the distributions to offer only a single price to each bidder, our second auction
may need to interact multiple times with each bidder, over a sequence of rounds. Nevertheless, its
structure remains rather simple: every bidder faces the same price 𝑝 , which is gradually increased
until either the set 𝐴 of active bidders is feasible, i.e., 𝐴 ∈ F , or some feasible subset of the active
bidders 𝐹 ⊂ 𝐴 reaches an appropriate revenue target.

Result 3: Randomized prior-free clock auction (Section 5). Our third result applies to settings
without any access to prior information. Using the tools and intuition from the analysis of the
first two auctions, we show that the “hedging auction" introduced in [14] gives an 𝑂 (log log𝑘)
approximation as well. This provides an exponential improvement over the 𝑂 (

√︁
log𝑘) bound

shown in [14]. The hedging auction is randomized and significantly more complicated than the
deterministic auctions above. It randomly chooses between two alternatives. The first alternative
uses non-uniform pricing (i.e., the price offered to each buyer in each round can be different from
what is offered to others) and the price trajectory is determined by a complex price update process.
The second alternative randomly “samples" a subset of the buyers and then uses their values
to decide which of the non-sampled buyers to serve. Although neither one of these alternatives
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achieves a good performance on its own, we show that the best of the two is guaranteed to perform
well. The hedging auction depends on randomization in two ways: i) it hedges between the two
alternatives, and ii) it uses randomized sampling.

In Section 6, we complement our positive results with an inapproximability result that applies to
all three settings we study. Our lower bound holds for a very simple instance with two maximal
feasible sets and applies even to Bayesian settings with independent values. This is in contrast to a
previous lower bound which holds only under correlated priors [14].

A hierarchy of clock auctions (Section 7). We conclude with a proposed “hierarchy” of clock
auctions, depending on the amount of power that they use. This hierarchy sets the stage for an
exciting new line of research with a broad range of open problems that would help us develop
a more refined understanding of the guarantees that are achievable by a spectrum of gradually
more powerful clock auctions. As an initial step toward that direction, we provide some results and
observations, and discuss interesting connections between the construction of lower bounds for
single-price clock auctions and the literature on large deviations in probability theory.

1.2 The Compelling Advantages of (Deferred-Acceptance) Clock Auctions
The recent surge of interest in clock auctions, starting with the work of Milgrom and Segal [52, 53],
has largely been motivated by the long list of appealing properties that these auctions satisfy, which
make them a better fit for many real-world applications than the widely-studied sealed-bid auctions.
In a sealed-bid auction, the buyers are asked to directly report their values to the auctioneer through
a bid, and the auction then takes all this information into consideration in deciding who should be
served and what the payments should be. The mechanism design literature has produced several
sealed-bid auctions that are strategyproof, but experimental evidence suggests that people often
misreport their values even when faced with simple strategyproof sealed-bid auctions, whereas
they do follow their dominant strategy in clock auctions [43].

Obvious strategyproofness. To provide theoretical justification for this phenomenon, Li [49]
introduced the much more demanding property of obvious strategyproofness (OSP). In simple terms,
an auction is OSP if it provides every bidder with an obviously dominant strategy: at any point
during the auction, each bidder’s utility in the best-case scenario if she deviates from this strategy
is no more than her utility in the worst-case scenario if she follows this strategy. Using both
experimental evidence and theoretical arguments, Li argued that even non-experts can recognize
that an obviously dominant strategy is their optimal choice. He also showed that in clock auctions
it is an obviously dominant strategy for every bidder to remain in the auction until the price she is
offered exceeds her value. In fact, for single-parameter domains like the ones we study here, Li
showed that clock auctions are essentially the only class of auctions that can achieve the stronger
incentive property of OSP. Furthermore, an auction that satisfies OSP, like clock auctions do, is also
guaranteed to be weakly group-strategyproof, i.e., even if the buyers got together and manipulated
the auction in a coordinated way, they would not all benefit from that deviation. This is an incentive
property that very few sealed-bid auctions satisfy. Apart from their improved incentives, clock
auctions also satisfy properties related to transparency, privacy, and simplicity.

Transparency. Another shortcoming of sealed-bid auctions is that the bidders need to trust that
the allocation and prices that the auction outputs are, in fact, the result of the precise computations
dictated by the auction’s rules. For example, they need to trust that the auctioneer will not charge
them more, even though they have revealed exactly how much they are willing to pay, through
their bid. Also, even if the bidders believe that the auctioneer is not malicious, they need to trust
that there were no unintended errors in computing the outcome or the prices, as even very small
errors could violate the incentive properties. This is in stark contrast to clock auctions where every
bidder sees the prices in each round and need not even worry about how they were computed, as
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this does not affect their incentives in any way. In fact, clock auctions are credible, an important
property introduced by Akbarpour and Li [2], meaning that it is optimal for the auctioneer to follow
the stated rules of the auction. When selling a single item Akbarpour and Li [2] showed that an
ascending clock auction is the unique optimal auction that is both credible and strategyproof.

Unconditional Winner Privacy. Sealed-bid auctions also require every bidder to reveal to the
auctioneer exactly how much they are willing to pay for the service. In clock auctions, bidders
reveal their true value only if they choose to drop out, so the winners do not need to ever reveal how
much they were actually willing to pay for the service (which is often very sensitive information).
Milgrom and Segal [53] termed this property unconditional winner privacy, based on a notion
defined earlier by Brandt and Sandholm [11], and demonstrate that the set of auctions which
preserve unconditional winner privacy corresponds to the set of clock auctions.
Simplicity without Sacrificing Sophistication. A particularly exciting property of clock

auctions from an algorithm designer’s standpoint is that they achieve simplicity without sacrificing
sophistication. In the line of work motivated by simplicity in mechanism design (e.g., [7, 41, 55]),
simplicity often implies that the algorithmic aspect of the auction is rather straightforward so that
the participants can understand it. However, clock auctions provide a very simple interface to the
buyers (the ascending prices), and it is always an obviously dominant strategy for them to remain
in the auction while their price does not exceed their value, no matter how the prices are chosen.
Thus, the designer can still make elaborate algorithmic decisions in the “back-end”, in choosing the
sequence of prices that it offers, aiming to achieve good performance guarantees, while maintaining
the incentives of these buyers, and a simple “front-end” that the buyers interact with.

1.3 Other Related Work
In one of the first papers on the performance of clock auctions, Dütting et al. [26] proved a rather
pessimistic result: there exists a seemingly simple family of instances with 𝑛 bidders, where no
deterministic prior-free clock auction can achieve an approximation of𝑂 (log1−𝜖 𝑛) for any constant
𝜖 > 0. In these instances, the auction needs to decide between serving a single bidder or any subset of
the remaining 𝑛− 1 bidders, so it has just 𝑘 = 2 disjoint maximal feasible sets. This simple feasibility
constraint clearly exhibits the impact of the clock auctions’ information limitations, leading to an
inapproximability result that grows arbitrarily with the number of agents, even though 𝑘 is constant.
In recent work, Christodoulou et al. [14] designed a deterministic prior-free clock auction that
guarantees a𝑂 (log𝑛) approximation for general downward-closed feasibility constraints, showing
that this is essentially the class of worst-case instances. To overcome the obstacle posed by these
instances, they proposed a randomized clock auction that achieves a 𝑂 (

√︁
log𝑘) approximation for

downward-closed feasibility constraints, implying a 𝑂 (
√︁
log𝑛) approximation for the interesting

class of feasibility constraints with disjoint maximal feasible sets (generalizing the lower bound
instances). Our results in this paper achieve an exponential improvement over both of these results.
Apart from the work focusing on the design of clock auctions, some recent work has focused

more broadly on the design of auctions that satisfy just one of the clock auction properties, such as
obvious strategyproofness (OSP) [22, 36] or credibility [21, 32, 37]. Most relevant to our results,
Ferraioli et al. [36] showed that the aforementioned setting of two disjoint maximal sets remains an
obstacle for any prior-free deterministic OSP mechanism by demonstrating that no such mechanism
can achieve better than a

√︁
log𝑛-approximation. We thus show an exponential gap between clock

auctions with priors or randomization and prior-free deterministic OSP mechanisms for this setting.
We defer additional discussion on related work to the relevant sections; we discuss related work

on posted-price mechanisms in Section 3 and on auctions with limited information in Section 4.
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2 PRELIMINARIES
A set 𝑁 of 𝑛 buyers request some service and each buyer 𝑖 has a private value 𝑣𝑖 indicating how
much they are willing to pay for it; the vector of all values is denoted by v = (𝑣𝑖 )𝑖∈𝑁 . A feasibility
constraint F ⊆ 2𝑁 contains the subsets of buyers that can be served simultaneously. Throughout
the paper we focus on feasibility constraints that are downward-closed, i.e., if 𝐹 ∈ F then 𝐹 ′ ∈ F
for every 𝐹 ′ ⊆ 𝐹 . That is, if the set of buyers 𝐹 can be served, then any subset of 𝐹 can also be
served; a very mild assumption satisfied by virtually all interesting constraint structures.

Two examples of downward-closed feasibility sets are Disjoint-Maximal-Sets and Knapsack. In
Disjoint-Maximal-Sets, the buyers are partitioned into 𝑘 disjoint groups, 𝑆1, . . . , 𝑆𝑘 , and a set 𝐹 of
buyers is feasible if and only if it is a subset of one of these groups, i.e.,F = {𝐹 ⊆ 𝑁 | ∃𝑆 𝑗 s.t. 𝐹 ⊆ 𝑆 𝑗 }.
In Knapsack, each buyer 𝑖 ∈ 𝑁 has a demand of size 𝑐𝑖 and the auctioneer has a supply constraint
restricting her to serve only subsets whose total demand does not exceed the supply, which is
normalized to 1, i.e., F = {𝐹 ⊆ 𝑁 | ∑𝑖∈𝐹 𝑐𝑖 ≤ 1}.

Our goal is to design auctions that serve a feasible subset of buyers 𝐹 ∈ F , aiming to maximize
the social welfare, 𝑆𝑊 (𝐹 ) =

∑
𝑖∈𝐹 𝑣𝑖 . In the Bayesian setting, the value 𝑣𝑖 of each bidder 𝑖 is

independently drawn from a distribution 𝐷𝑖 and the product distribution over all bidders is denoted
by D = ×𝑖∈𝑁𝐷𝑖 . The social welfare of a Bayesian auction is, therefore, a random variable and, for
simplicity, we use E

v∼D
[auc] to denote the expected social welfare of an auction auc. We evaluate

the performance of our Bayesian clock auctions using the demanding benchmark of the expected
optimal social welfare, i.e., OPT = E

v∼D
[max𝐹 ∈F {

∑
𝑖∈𝐹 𝑣𝑖 }]. We say an auction auc approximates

the optimal welfare within a factor 𝛼 if OPT ≤ 𝛼 · auc for every distribution D. Recall that a
Bayesian auction can use information regarding the distribution D. When clear in the context,
we omit the subscript from the expectation. In the prior-free setting, the values of the bidders
are chosen adversarially and the expected social welfare of a randomized auction is over its own
randomness. Our goal in both settings is to design auctions with small approximation factors.
A clock auction is a multi-round mechanism in which each bidder faces a personalized “clock”

price, which weakly increases over time. At the outset of the auction, all bidders are “active". An
initial vector of prices p1 = {𝑝1𝑖 }𝑛𝑖=1 is posted to the bidders, and every bidder may choose to
permanently exit the auction (this bidder is no longer active) or stay active at the current price. In
each round 𝑡 , the auctioneer posts a new price 𝑝𝑡𝑖 to each active bidders 𝑖 , where 𝑝𝑡𝑖 ≥ 𝑝𝑡−1𝑖 . Each
active bidder can then choose to remain active or exit permanently. If in round 𝜏 the remaining
active bidders form a feasible set 𝐹 ∈ F , the auction can terminate and serve each active bidder 𝑖
at price 𝑝𝜏

𝑖
(all bidders who have exited the auction are not served and pay 0). The prices in each

round are chosen using any public information, such as the history of prices offered, the bidders’
responses to these prices (whether they accepted them or not), and the feasibility structure. In a
setting with prior information, the prior information can also be used to inform this choice.

3 DETERMINISTIC SINGLE-PRICE CLOCK AUCTION WITH PRIORS
We begin by proposing a particularly simple class of clock auctions which we call single-price clock
auctions. Rather than asking each bidder to respond to multiple (increasing) price offers, these
auctions offer a single price to each. As a result, they can be implemented in a decentralized and
asynchronous fashion: each bidder could arrive at a different time, respond to the price that they
are offered, and depart. The mechanism first collects the responses of all bidders and then, using
this information, decides which subset to serve. Single-price clock auctions take the following form:
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MECHANISM 1: Single-price clock auction template
1 Calculate some vector of prices p using public information
2 Set the clock of each bidder 𝑖 to 𝑝𝑖 (bidders then choose to remain active or exit)
3 Among the bidders that chose to remain in the auction, select a “preferred” feasible subset 𝐹
4 Reject all bidders 𝑖 ∉ 𝐹 , accept all bidders in 𝑖 ∈ 𝐹 and charge them 𝑝𝑖

In this section, we first discuss interesting connections between these auctions and the very
well-studied class of posted-price mechanisms. We then show our main technical result of the
section. Given a downward-closed feasibility constraint F , letS = (𝑆1, . . . , 𝑆𝑘 ) denote the collection
of maximal feasible sets in F . We demonstrate that, using full access to the priors, we can design a
single-price clock auction that achieves a 𝑂 (log log𝑘)-approximation to the benchmark welfare.

3.1 Connections to posted-price mechanisms
Single-price clock auctions are closely related to the class of (sequential) posted-price mechanisms,
which has attracted a lot of attention in the algorithmic mechanism design literature (e.g., [13, 24,
27, 28, 35, 40, 46, 54, 56]). These mechanisms approach the buyers sequentially and offer each of
them a take-it-or-leave-it price for being served (possibly depending on the history of responses).
They are then served if and only if they accept the price offered to them. These mechanisms are
typically given access to the full value distributions that the buyer values are drawn from.
This line of work draws upon the “prophet inequality” literature in optimal stopping the-

ory [47, 48]. The literature on sequential posted pricing (and prophet inequalities) includes different
models, depending on the assumption regarding the arrival order of the buyers. The most common
assumption is that buyers arrive in an adversarial order, but other models have been studied too.
For example, in the so-called ordered prophets model, the mechanism designer can choose the order
in which she approaches the buyers (see, e.g., [1, 9, 13, 59]). Similarly, in the prophet secretarymodel,
buyers are assumed to arrive in a random order (see, e.g., [1, 17, 19, 30, 31]).1
From an implementation standpoint, posted-price mechanisms are appealing because they are

decentralized, like single-price clock auctions. However, single-price clock auctions do not commit
to serving all the buyers who accept the prices offered to them (they are not online mechanisms).
They instead defer their decision regarding which subset of buyers to serve after all the buyers
have responded to their offers, which provides these auctions with some additional information.

These mechanisms also differ in the level of adaptivity they may employ in setting prices (see, e.g.,
[18, 51]). A non-adaptive mechanism commits to the prices before receiving any responses, whereas
an adaptive mechanism can offer prices sequentially, conditioning the offers on the responses of
previous buyers. A single-price clock auction uses non-adaptive pricing (every buyer’s price is
determined in advance). Thus, comparing the performance of single-price clock auctions to that of
posted-price mechanisms has interesting implications regarding the power of deferred-acceptance,
that the former have, relative to the power of price-adaptivity, possessed by the latter.

3.2 Achieving the 𝑂 (log log𝑘) bound
In what follows, we demonstrate that if the auctioneer has access to the entire product distri-
bution D = ×𝑖∈𝑁𝐷𝑖 of bidder values, she can design a single-price clock auction which obtains
a 𝑂 (log log𝑘) approximation guarantee. This is in contrast to posted-price mechanisms which
we know cannot achieve better than a 𝑂

(
log𝑘

log log𝑘

)
approximation even for Disjoint-Maximal-Sets

[6, 54]. Thus, our single-price clock auction outperforms all posted-price mechanisms. In this

1It is easy to verify that even ordered prophets can be simulated as multi-round clock auctions.
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light, our result suggests that, in our setting, the ability to defer the acceptance decisions can be
significantly more useful than the ability to adapt the prices.

Theorem 3.1. Every downward-closed setting with 𝑘 maximal sets admits a deterministic single-

price clock auction that obtains an 𝑂 (log log𝑘) approximation to the expected optimal welfare if the

full distribution D is known.

Before deriving our single-price clock auction, we first decompose the benchmark welfare into
two parts. For each realization of bidder values there is some maximal feasible set 𝑆 ∈ S that
achieves the maximum social welfare. This set could have a lot of “low” value bidders, a few “high”
value bidders, or a mix of the two. To prove that our auction approximates OPT, we can then divide
OPT into two parts: the portion of this expected welfare that comes from “low” value bidders and the
portion that comes from “high” value bidders. We show that if the low-value contribution is greater,
the approximation factor is achieved by offering all bidders a price of 0 and by accepting only the
bidders from the set with highest expectation. On the other hand, if the low-value contribution is
not within log log𝑘 factor of the benchmark, then the high-value part must make up nearly all of
the expected optimal welfare. We show that the vast majority of the high-value contribution comes
from sets with a logarithmic (or fewer) number of high value bidders. To define the partition of
bidders into high and low values, we set a threshold 𝑡𝑆 for each maximal feasible set 𝑆 ∈ S so that
the expected number of bidders above the threshold is log𝑘 . That is, let

𝑆 (𝑡, v) def== {𝑖 ∈ 𝑆 |𝑣𝑖 > 𝑡}
Then, the threshold 𝑡𝑆 is the value satisfying2

Ev [|𝑆 (𝑡𝑆 , v) |] = log𝑘.
The choice of log𝑘 is a critical point at which it is still likely that for all 𝑘 maximal sets, the
number of bidders exceeding their corresponding set’s threshold 𝑡𝑆 is within a constant factor of
the expectation. This is cast in the following lemma.

Lemma 3.2. Let 𝑡 be a threshold for a set 𝑆 such that Ev [|𝑆 (𝑡, v) |] = log𝑘 . Then
Prv [∃𝑥 ∈ [0, 𝑡) : |𝑆 (𝑥, v) | > 10 · Ev [|𝑆 (𝑥, v) |]] = 𝑜 (1/𝑘2).

Proof. First consider the threshold 𝑡 such that Ev [|𝑆 (𝑡, v) |] = log𝑘 and an interval of thresh-
old values [𝑡 ′, 𝑡) such that Ev [|𝑆 (𝑡 ′, v) |] = 2 · Ev [|𝑆 (𝑡, v) |]. We would like to have |𝑆 (𝑥, v) | <
10Ev [|𝑆 (𝑥, v) |] for all 𝑥 ∈ [𝑡 ′, 𝑡). Consider a set of independent {0, 1}-value random variables
{𝜉𝑖 }𝑖∈𝑆 where 𝜉𝑖

def
== I [𝑣𝑖 ≥ 𝑡 ′]. Note that ∑𝑖∈𝑆 𝜉𝑖 = |𝑆 (𝑡 ′, v) |. By Chernoff bound, it follows that

Prv
[
|𝑆 (𝑡 ′, v) | > 5Ev [|𝑆 (𝑡 ′, v) |]

]
<

(
𝑒4

55

)2·log𝑘
= 𝑜 (1/𝑘2).

For all 𝑥 ∈ [𝑡 ′, 𝑡) we have |𝑆 (𝑥, v) | ≤ |𝑆 (𝑡 ′, v) | and Ev [|𝑆 (𝑥, v) |] ≥ Ev [|𝑆 (𝑡, v) |] = 1
2 · Ev [|𝑆 (𝑡

′, v) |].
Thus, if |𝑆 (𝑡 ′, v) | < 5E [|𝑆 (𝑡 ′, v) |], then |𝑆 (𝑥, v) | < 10E [|𝑆 (𝑥, v) |] for all 𝑥 ∈ [𝑡 ′, 𝑡). Hence,

Prv
[
∃𝑥 ∈ [𝑡 ′, 𝑡) : |𝑆 (𝑥, v) | > 10Ev [|𝑆 (𝑥, v) |]

]
= 𝑜 (1/𝑘2).

Consider the list of intervals [𝑟0, 𝑟1), [𝑟1, 𝑟2), ..., [𝑟ℓ−1, 𝑟ℓ ), where Ev [|𝑆 (𝑟 𝑗 , v) |] = 2Ev [|𝑆 (𝑟 𝑗−1, v) |]
for all 𝑗 = 1, . . . , ℓ and such that 𝑟0 = 0 (or alternatively the lowest value in the support of any
bidder) and 𝑟ℓ = 𝑡 . We may apply the same Chernoff bound argument that we did for the interval
2For simplicity of presentation we assume that such a value exists (e.g., in cases where the expected value is continuous).
Otherwise, we set the threshold 𝑡𝑆 to be the value satisfying inf𝑡𝑆 Ev [ |𝑆 (𝑡𝑆 , v) | ] ≤ log𝑘 . The same is true for the 𝑡 ′ value
described in the proof of Lemma 3.2.
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[𝑡 ′, 𝑡) to any of these intervals and get a bound of 𝑜 (1/𝑘2ℓ−𝑗+1) for the interval [𝑟 𝑗−1, 𝑟 𝑗 ). Then, by
the union bound over all the intervals we get an upper bound of

Prv
[
∃𝑥 ∈ ∪𝑗=ℓ

𝑗=1 [𝑟 𝑗−1, 𝑟 𝑗 ) : |𝑆 (𝑥, v) | > 10 · Ev [|𝑆 (𝑥, v) |]
]
≤

𝑗=ℓ∑︁
𝑗=1

𝑜

(
1

𝑘2ℓ−𝑗+1

)
= 𝑜

(
1
𝑘2

)
.

Consequently, Prv [∃𝑥 ∈ [0, 𝑡) : |𝑆 (𝑥, v) | > 10Ev [|𝑆 (𝑥, v) |]] = 𝑜 (1/𝑘2). □

We now write the following low-high decomposition of the benchmark.

OPT = E

[
max
𝑆 ∈S

∑︁
𝑖∈𝑆

𝑣𝑖

]
≤ E

[
max
𝑆 ∈S

∑︁
𝑖∈𝑆

min(𝑣𝑖 , 𝑡𝑆 )
]

︸                        ︷︷                        ︸
LOW

+E
[
max
𝑆 ∈S

∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
𝑣𝑖 > 𝑡𝑆

] ]
︸                             ︷︷                             ︸

HIGH

, (1)

where for every bidder 𝑖 we define two regimes with respect to every set 𝑆 such that 𝑖 ∈ 𝑆 :

low-value part: 𝑣𝑖,𝑆
def
== min{𝑡𝑆 , 𝑣𝑖 }, high-value part: 𝑣𝑖,𝑆

def
== 𝑣𝑖 · I

[
𝑣𝑖 > 𝑡𝑆

]
,

so 𝑣𝑖,𝑆 ∈ [0, 𝑡𝑆 ], and if 𝑣𝑖,𝑆 > 0 then it must be that 𝑣𝑖,𝑆 > 𝑡𝑆 . Also, one can easily verify that
𝑣𝑖 ≤ 𝑣𝑖,𝑆 + 𝑣𝑖,𝑆 for any bidder 𝑖 and any set 𝑆 such that 𝑖 ∈ 𝑆 .

We first establish the following core-tail decomposition of HIGH = Ev [max𝑆 ∈S
∑

𝑖∈𝑆 𝑣𝑖 ] that
allows us to reduce the problem to the case where all sets 𝑆 ∈ S have size of at most 𝑂 (log𝑘). We
define the core part of HIGH as

HIGH-CORE def
== Ev

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
|𝑆 (𝑡𝑆 , v) | ≤ 10 log𝑘 + 1

] )]
.

It follows that

HIGH ≤ HIGH-CORE + Ev

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
|𝑆 (𝑡𝑆 , v) | > 10 log𝑘 + 1

] )]
≤ HIGH-CORE +

∑︁
𝑆 ∈S

Ev

[∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
|𝑆 (𝑡𝑆 , v) | > 10 log𝑘 + 1

] ]
≤ HIGH-CORE +

∑︁
𝑆 ∈S

Ev

[∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
|𝑆 (𝑡𝑆 , v) − {𝑖}| > 10 log𝑘

] ]
= HIGH-CORE +

∑︁
𝑆 ∈S

∑︁
𝑖∈𝑆

E [𝑣𝑖 ] · Prv [|𝑆 (𝑡𝑆 , v) − {𝑖}| > 10 log𝑘]︸                                                        ︷︷                                                        ︸
HIGH-TAIL

. (2)

In the second inequality, we replace max by sum. In the third, we modify the event in the right
hand side so that it is independent of the value of bidder 𝑖; we also use the fact that 𝑣𝑖 ≤ 𝑣𝑖 . In the
last inequality we use the independence in the right hand side to write the expectation as a product.
We claim that HIGH-TAIL can be covered by the simple single-price clock auction which sets

zero prices to all bidders and selects the set with maximum expected value. Note that it is extremely
unlikely that there are more than 10 log𝑘 bidders above the threshold 𝑡𝑆 in any set 𝑆 , i.e., the
event that |𝑆 (𝑡𝑆 , v) | > 10E [𝑆 (𝑡𝑆 , v)] + 1 = 10 log𝑘 + 1 for each 𝑆 ∈ S has probability of 𝑜 (1/𝑘2).
Indeed, Lemma 3.2 gives an even stronger tail probability bound. Note that a simple single-price
clock auction with prices at zero would select the feasible set with maximum expected value
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and get expected social welfare of max𝑆 ∈S E [
∑

𝑖∈𝑆 𝑣𝑖 ] ≥ 1
𝑘

∑
𝑆 ∈S

∑
𝑖∈𝑆 E [𝑣𝑖 ], which is more than∑

𝑆 ∈S
∑

𝑖∈𝑆 E [𝑣𝑖 ] · 𝑜 (1/𝑘2). Recall that

LOW = E

[
max
𝑆 ∈S

∑︁
𝑖∈𝑆

𝑣𝑖,𝑆

]
= E

[
max
𝑆 ∈S

∑︁
𝑖∈𝑆

min(𝑣𝑖 , 𝑡𝑆 )
]
.

Next we show that the single-price clock auction with zero prices is a 𝑂 (1)-approximation to the
LOW term in (1). To this end, it is useful to rewrite

∑
𝑖∈𝑆 𝑣𝑖,𝑆 =

∫ 𝑡𝑆

0 |𝑆 (𝑥, v) | d𝑥 . By linearity of
expectations we also have

Ev

[∑︁
𝑖∈𝑆

𝑣𝑖,𝑆

]
= Ev

[∫ 𝑡𝑆

0
|𝑆 (𝑥, v) | d𝑥

]
=

∫ 𝑡𝑆

0
Ev [|𝑆 (𝑥, v) |] d𝑥

We use a slightly more complex core-tail decomposition than (2) for the LOW term of (1).

LOW-CORE def
== Ev

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖,𝑆 · I
[
∀𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) | ≤ 10Ev [|𝑆 (𝑥, v) |] + 1

] )]
It follows that

LOW ≤ LOW-CORE + Ev

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖,𝑆 · I
[
∃𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) | > 10Ev [|𝑆 (𝑥, v) |] + 1

] )]
≤ LOW-CORE +

∑︁
𝑆 ∈S

Ev

[∑︁
𝑖∈𝑆

𝑣𝑖,𝑆 · I
[
∃𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) | > 10Ev [|𝑆 (𝑥, v) |] + 1

] ]
≤ LOW-CORE +

∑︁
𝑆 ∈S

Ev

[∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
∃𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) − {𝑖}| > 10Ev [|𝑆 (𝑥, v) |]

] ]
= LOW-CORE +

∑︁
𝑆 ∈S

∑︁
𝑖∈𝑆

E [𝑣𝑖 ] · Prv [∃𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) − {𝑖}| > 10Ev [|𝑆 (𝑥, v) |]]︸                                                                                       ︷︷                                                                                       ︸
LOW-TAIL

(3)

We again may cover the tail (second) term on the right hand side of (3) since by Lemma 3.2
Prv [∃𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) − {𝑖}| > 10Ev̆ [|𝑆 (𝑥, v) |]] = 𝑜 (1/𝑘2). Hence, max𝑆 ∈S E [

∑
𝑖∈𝑆 𝑣𝑖 ] ≥

1
𝑘

∑
𝑆 ∈S

∑
𝑖∈𝑆 𝑣𝑖 is at least Θ(𝑘) times the value of the LOW-TAIL term in the right hand side of (3).

Let us now estimate the LOW-CORE term in (3). Let

IE(𝑆) (v)
def
== I

[
∀𝑥 ∈ [0, 𝑡𝑆 ) : |𝑆 (𝑥, v) | ≤ 10Ev [|𝑆 (𝑥, v) |] + 1

]
be the indicator of the event that for all thresholds 𝑥 in the range from 0 to 𝑡𝑆 the number of bidders
in 𝑆 with values above 𝑥 does not exceed the expected number by a factor of 10. Then

LOW-CORE = Ev

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖,𝑆 · IE(𝑆) (v)
)]

= Ev

[
max
𝑆 ∈S

(
IE(𝑆) (v) ·

∫ 𝑡𝑆

0
|𝑆 (𝑥, v) | d𝑥

)]
≤ Ev

[
max
𝑆 ∈S

∫ 𝑡𝑆

0
(10Ev [|𝑆 (𝑥, v) |] + 1) d𝑥

]
= max

𝑆 ∈S

∫ 𝑡𝑆

0
(10Ev [|𝑆 (𝑥, v) |] + 1) d𝑥

≤ max
𝑆 ∈S

∫ 𝑡𝑆

0
(11Ev [|𝑆 (𝑥, v) |]) d𝑥 = 11max

𝑆 ∈S
Ev

[∫ 𝑡𝑆

0
|𝑆 (𝑥, v) | d𝑥

]
= 11max

𝑆 ∈S
Ev

[∑︁
𝑖∈𝑆

𝑣𝑖

]
.
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In other words, we get that the single-price clock auction with zero prices gets a constant approxi-
mation to the LOW term of (1).

Inequalities (1) and (2) give us an upper boundOPT ≤ LOW+HIGH-TAIL+HIGH-CORE, where
the welfare of a single-price clock auction with zero prices covers the terms LOW and HIGH-TAIL.
It remains to show we can obtain a 𝑂 (log log𝑘) approximation to the HIGH-CORE term of

the benchmark using a single-price clock auction. Our next lemma gives an upper bound on the
HIGH-CORE term. In HIGH-CORE, we may effectively assume that each set 𝑆 ∈ S is of size at
most 10 log𝑘 + 1.

Lemma 3.3. Let𝑚 be any positive integer, and let

Δ
def
== E

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
|𝑆 (𝑡𝑆 , v) | ≤ 𝑚

] )]
.

There exists a uniform price 𝑝 such that

Δ ≤ 𝑂 (log𝑚) · E
[
max
𝑆 ∈S

∑︁
𝑖∈𝑆

E
[
𝑣𝑖

�� 𝑣𝑖 ≥ 𝑝
]
· I

[
𝑣𝑖 ≥ 𝑝

] ]
.

Note that E [max𝑆 ∈S
∑

𝑖∈𝑆 E [𝑣𝑖
�� 𝑣𝑖 ≥ 𝑝] · I [𝑣𝑖 ≥ 𝑝]] is precisely the expected welfare we get in

a single-price clock auction with a uniform price 𝑝 . Lemma 3.3 shows that the best choice of a
single uniform price will give an 𝑂 (log𝑚)-approximation to Δ, which translates to 𝑂 (log log𝑘)-
approximation to HIGH-CORE3 with𝑚 = 10 log𝑘 + 1. We give a proof sketch here; the complete
proof appears in Appendix A.

Proof sketch for Lemma 3.3. Consider the contribution of bidders with value less than 2 ·
Δ to the benchmark (equals to Δ). The 𝑂 (log𝑚) approximation guarantee is achieved by the
revenue (not the welfare) of a single-price clock auction. Observe that the contribution to the
benchmark of bidders with 𝑣𝑖 ≤ Δ

2𝑚 is at most Δ
2 so by ignoring all such bidders we lose at most

a constant factor of Δ. Consider partitioning all remaining bidders in 𝑁 into log𝑚 + 2 buckets[
Δ
2𝑚 , Δ

𝑚

]
,
[
Δ
𝑚
, 2Δ
𝑚

]
, · · · , [Δ, 2Δ] based on their value. Let 𝐵 be the bucket with the largest expected

contribution among all these 𝑂 (log𝑚) buckets. The revenue obtained by posting the lower bound
of the interval for 𝐵 is a 2-approximation to the welfare contained in 𝐵 for each set and, in particular,
the one with maximum realized value.
On the other hand, the uniform price auction with 𝑝 = 2Δ covers the constant fraction of the

contribution from the bidders with 𝑣𝑖 ≥ 2Δ. Indeed, if 𝑣𝑖 ≥ 2Δ for some 𝑖 , then with a constant
probability 𝑖 is the only such bidder. I.e., a single-price clock auction with 𝑝 = 2Δ takes all such
bidders with constant probability and achieves 𝑂 (1) approximation to the contribution of bidders
with 𝑣𝑖 ≥ 2Δ. □

Thus, a single-price clock auction achieves a𝑂 (log log𝑘) approximation to theHIGH term in the
right side of (1). Combined with the constant approximation given by a single-price clock auction
with zero prices to the LOW term, we are ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1. By the analysis above, we can achieve the desired approximation using
one of the following uniform price clock auctions (the one with the highest expected social welfare):
(1) Either let 𝑝𝑖 = 0 for all 𝑖 ∈ [𝑛],

3This is not very surprising given similar statements in the literature, see, e.g., Corollary 1 in [54].
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(2) or choose a 𝑗 ∈ [0, log(10 log𝑘 + 1)] and let 𝑝𝑖 = Δ · 21−𝑗 for all 𝑖 ∈ [𝑛], where

Δ = E

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
𝑣𝑖 > 𝑡𝑆

]
· I

[
|𝑆 (𝑡𝑆 , v) | ≤ 10 log𝑘 + 1

] )]
.

Note that these prices can be found using only the thresholds 𝑡𝑆 and the value of Δ. Both 𝑡𝑆 and Δ
can be inferred from the bidder distributions and constraint system, which are public information.
The uniform price of zero covers the LOW term of our benchmark decomposition (1) and the
HIGH-TAIL portion of (2), whereas the uniform prices of Δ · 21−𝑗 cover the HIGH-CORE portion
of (2) (which, together, cover the HIGH term of (1)). □

3.3 Alternative Parameterizations
Similar to [14], our bounds are parameterized by 𝑘 , the number of maximal feasible sets of the
instance. Alternative parameterizations that have been considered include, e.g., the number of
agents, 𝑛, or the size of the largest feasible set, 𝑟 . For the class of instances with Disjoint-Maximal-
Sets, which are known to pose an obstacle for both posted-price mechanisms and deterministic
prior-free clock auctions, our bounds improve prior results with respect to both parameters.

When using the number of agents as a parameter, it is known that even forDisjoint-Maximal-Sets,
no posted-price mechanism can achieve better than a𝑂 (log𝑛/log log𝑛) approximation [6, 54], and
no deterministic prior-free clock auction can achieve a𝑂 (log1−𝜖 𝑛) approximation for any constant
𝜖 > 0 [26]4. Since, for Disjoint-Maximal-Sets the number of maximal feasible sets is 𝑘 ≤ 𝑛, our
auctions achieve a 𝑂 (log log𝑛) approximation, which is an exponential improvement compared to
both posted-price mechanisms and deterministic prior-free clock auctions.

When using the size of the largest feasible set, 𝑟 , as the parameter, Rubinstein [54] demonstrated
that posted-price mechanisms can achieve a 𝑂 (log𝑛 log 𝑟 ) approximation for general downward-
closed feasibility constraints. Applying the mechanism described in Theorem 3.1, but with Δ = OPT
and𝑚 = 𝑟 (where𝑚 is from the statement of Lemma 3.3), we get an improved bound with respect
to this parameter as well. Indeed, Lemma 3.3 holds for any threshold 𝑡𝑆 , in particular for 𝑡𝑆 = 0.
Since the size of every feasible set is at most 𝑟 , we have I [|𝑆 (𝑡𝑆 , v) | ≤ 𝑟 ] = 1 for all v. Lemma 3.3
then shows the existence of a single price 𝑝 such that the corresponding single-price clock auction
achieves a 𝑂 (log 𝑟 ) approximation to Δ = OPT.

4 DETERMINISTIC CLOCK AUCTIONWITH LIMITED INFORMATION
Our main result in this section is a deterministic uniform price clock auction that achieves an
approximation of 𝑂 (log log𝑘) for any downward-closed F , using only limited prior information
regarding the distributions: the expected value of each bidder and the expected value of the optimal
solution OPT = Ev [max𝑆 ∈S

∑
𝑖∈𝑆 𝑣𝑖 ]. This is in stark contrast to deterministic clock auctions

without this information, which cannot achieve any constant approximation even for 𝑘 = 2 [26]. In
other words, by employing a slightly more complicated auction procedure, i.e., a uniform ascending
price procedure, one can circumvent the need for full distributional knowledge by “discovering”
the appropriate price from Section 3 which gave the approximation guarantee.

This clock auction contributes to the growing literature aiming to design more robust auctions
that do not require full access to the priors. For example, in a “parametric auction” [3, 5] the seller
only knows some parameters of the distributions (e.g., the mean). Another related literature is the
one focusing on the design of auctions that instead have access to a limited number of samples
from each distribution (e.g., [4, 15, 16, 20, 25, 33, 42, 57]).

4This result and all the results in Sections 3 and 4 focus on deterministic mechanisms.
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Our proposed auction starts by checking whether there exists some maximal feasible set 𝑆 ∈ S
whose expected value is at least OPT/log log𝑘 . If such a set exists, then the desired approximation
can easily be achieved by accepting all the bidders of that set, for a price of 0, and rejecting all
other bidders (we refer to this part of the auction as “auc𝑜”). In the more interesting case where no
such set exists, our auction uniformly raises the price of every active bidder using some arbitrarily
small step 𝛿 > 0, giving each bidder the opportunity to drop out after each price increase. While
we present the auction as offering this price simultaneously to all bidders for simplicity, we instead
offer each bidder the increased price one at a time in a consistent, but arbitrary, order. The auction
terminates when the remaining active bidders become feasible, or the revenue of some feasible
subset of active bidders reaches a desired goal of 𝑔 = OPT/(4𝛼) where 𝛼 is the approximation
guarantee given by Corollary 4.2 in Appendix A (we refer to this part of the auction as “u-price𝑔”).
Given its similarity to the proof of Theorem 3.1, we defer the full proof of Theorem 4.1 to Appendix
A and instead provide a sketch below, highlighting the key differences.
MECHANISM 2: A uniform-price clock auction with limited information

1 Let all bidders be active 𝐴 = 𝑁 and set clock price 𝑝 = 0
2 if max𝑆 ∈S

∑
𝑖∈𝑆 E [𝑣𝑖 ] ≥ OPT/log log𝑘 then

3 Accept the bidders in argmax𝑆 ∈S
∑
𝑖∈𝑆 E [𝑣𝑖 ], charge each of them 𝑝 = 0, and reject everyone else

4 else
5 Repeat: increase 𝑝 by some 𝛿 > 0 and offer 𝑝 to all 𝑖 ∈ 𝐴; remove from 𝐴 bidders who reject 𝑝
6 Until: 𝐴 is feasible (i.e., 𝐴 ∈ F ) or there exists some 𝐹 ⊂ 𝐴 such that 𝐹 ∈ F and |𝐹 | · 𝑝 ≥ 𝑔

7 Accept the largest feasible set 𝐹 ⊆ 𝐴, charge each 𝑖 ∈ 𝐹 a price of 𝑝 , and reject everyone else

Theorem 4.1. Mechanism 2 achieves a𝑂 (log log𝑘) approximation to the expected optimal welfare

for any downward-closed F using only E [𝑣𝑖 ] for each 𝑖 ∈ 𝑁 and OPT = Ev [max𝑆 ∈S
∑

𝑖∈𝑆 𝑣𝑖 ].

Proof Sketch. Our proof proceeds similarly as in the last section, again employing our bench-
mark decomposition, inequality (1). Note that auc𝑜 is exactly the single-price clock auction with all
prices equal to zero, which, from our previous section, we know covers the LOW-CORE, LOW-TAIL,
and HIGH-TAIL portions of our benchmark. We can then assume that HIGH-CORE is a 2 approxi-
mation to OPT, as otherwise auc𝑜 would be a 𝑂 (log log𝑘) approximation to OPT. Thus it suffices
to show that u-price𝑔 gives a 𝑂 (log log𝑘) approximation to HIGH-CORE.

From the proof of Lemma 3.3 in Appendix A we may conclude the following related corollary.

Corollary 4.2. Let𝑚 be any positive integer, and let

Δ
def
== E

[
max
𝑆 ∈S

(∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
|𝑆 (𝑡𝑆 , v) | ≤ 𝑚

] )]
.

There exist an 𝛼 = 𝑂 (log𝑚) and a uniform price 𝑝 such that

Δ ≤ 𝛼 · 𝑝 · E
[
max
𝑆 ∈S

∑︁
𝑖∈𝑆
I
[
𝑣𝑖 ≥ 𝑝

] ]
or Δ ≤ 𝛼 · E

[
max
𝑖∈𝑁

E
[
𝑣𝑖

�� 𝑣𝑖 ≥ 𝑝
]
· I

[
𝑣𝑖 ≥ 𝑝

] ]
.

Corollary 4.2, thus, proves the existence of a uniform price 𝑝 such that either the expected
revenue obtained by serving the set with the largest number of bidders with value above 𝑝 is
a 𝑂 (log log𝑘) approximation to HIGH-CORE or the expected welfare from serving the single
highest value bidder is a 𝑂 (log log𝑘) approximation to HIGH-CORE. Without access to the full
prior distributions, however, we cannot calculate this price in advance. Instead, we use u-price𝑔
to gradually sweep through a full range of prices, aiming to find one that yields revenue at least
𝑔 = OPT

4𝛼 . However, this could fail if u-price𝑔 reaches a lower price that also satisfies the revenue
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target and stops too soon, selecting a set with low social welfare. We address this by a more careful
analysis of the expected welfare of u-price𝑔, conditioning on the expected size E [|𝑇 (v) |] of the
largest feasible set 𝑇 (v) of bidders who would accept price 𝑝 . When E [|𝑇 (v) |] ≥ 8 we show that
with constant probability we serve at least half the expected number of bidders and obtain the
𝑂 (log log𝑘) approximation from the revenue of u-price𝑔. On the other hand, when E [|𝑇 (v) |] < 8
we show that the expected social welfare of u-price𝑔 is within a constant factor of the single highest
value bidder, which then gives us the desired approximation. □

5 RANDOMIZED PRIOR-FREE CLOCK AUCTION
In this section, we consider prior-free settings; i.e., settings where no information is given about the
bidder values. Using the analytical tools and intuition developed in the previous sections, we can
now provide a tighter analysis of the randomized clock auction (the “hedging auction”) introduced
in [14], showing that it achieves a 𝑂 (log log𝑘) approximation (an exponential improvement over
the 𝑂 (

√︁
log𝑘) bound shown in [14]). This auction provides guarantees even in prior-free settings,

but this is at the expense of simplicity and practicality; namely, it is randomized and uses non-
uniform pricing. Note that our randomized clock auctions are distributions over deterministic clock
auctions, and thus they satisfy all the properties of deterministic clock auctions ex post (rather than
in expectation).

For completeness, we first explain how this auction works and provide some intuition regarding
its approximation guarantee. The hedging function runs either the “water-filling clock auction”
(WFCA) or the “sampling auction", each with probability 1/2. We begin by defining the “water-
filling clock auction” (WFCA). Let 𝑃 = {𝑝 = 𝑥 · 𝜖 : 𝑥 ∈ N} denote the set of possible prices that
the WFCA considers. As was demonstrated in [14], the WFCA obtains welfare at least 𝑟 ∗/2 where
𝑟 ∗ = max𝑝∈𝑃,𝐹 ∈F {𝑝 · |𝑖 ∈ 𝐹 : 𝑣𝑖 ≥ 𝑝 |}, i.e., the maximum possible revenue an auction could obtain
by offering one of the prices in 𝑃 to all bidders. This then translates to an𝑂 (log |𝑆 |)-approximation
for any given set 𝑆 .
MECHANISM 3: The deterministic water-filling clock auction (WFCA)

1 let 𝑡 ← 0, 𝐴← 𝑁 , and 𝑝𝑖 ← 0 for all 𝑖 ∈ 𝑁
2 while 𝐴 ∉ F do
3 𝑡 ← 𝑡 + 1
4 let𝑊 ← argmax𝑆 ∈F:𝑆⊆𝐴 {

∑
𝑖∈𝑆 𝑝𝑖 } be the latest set of conditional winners

5 let ℓ ← min𝑖∈𝐴\𝑊 {𝑝𝑖 } be the lowest price among conditional losers
6 foreach bidder 𝑖 ∈ 𝐴 \𝑊 with 𝑝𝑖 = ℓ do
7 update 𝑝𝑖 ← 𝑝𝑖 + 𝜖
8 if 𝑖 rejects updated price then
9 let 𝐴← 𝐴 \ {𝑖}

10 return 𝐴

We next describe the sampling auction. The sampling auction “samples” bidders independently
with probability 1/2 by raising their clock until they reject. We let 𝑇 ⊆ 𝑁 denote the sampled
bidders and𝑈 = 𝑁 \𝑇 denote the unsampled bidders. This sampling process ideally allows us to
estimate the value of each 𝑆 since 𝑣 (𝑆) = 2 · E [𝑣 (𝑆 ∩𝑈 )] = 2 · E [𝑣 (𝑆 ∩𝑇 )].
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MECHANISM 4: The Sampling Auction: A randomized clock auction
Input :The set S of all maximal sets in F

1 let 𝑇 ← ∅
2 for each bidder 𝑖 ∈ 𝑁 do
3 With probability 1/2: increase the clock of 𝑖 until she rejects and let 𝑇 ← 𝑇 ∪ {𝑖}
4 Let 𝑅 ← argmax𝑆 ∈S 𝑣 (𝑆 ∩𝑇 )
5 return 𝑅 \𝑇

Intuitively, the water-filling auction and sampling auction work when sets of high value are
small and large, respectively. This is because when sets are small the optimal revenue in hindsight
𝑟 ∗ is close in value to the optimal welfare and when sets are large we expect with reasonably high
probability that a random sample of the bidders will give a good estimate of the total value of the
set. The “Hedging Auction” leverages this intuition. It combines the benefits of the water-filling
clock auction (WFCA) and the sampling auction by running one or the other with equal probability.
MECHANISM 5: The Hedging Auction
Input :The feasibility constraint F , and set S of all maximal sets in F

1 With probability 1/2: Run the WFCA (Mechanism 3) on input F
2 With the remaining probability 1/2: Run the Sampling Auction (Mechanism 4) on input F

Theorem 5.1. The Hedging Auction obtains a 𝑂 (log log𝑘)-approximation to the social welfare for

any downward-closed feasibility constraint F , where 𝑘 is the number of maximal feasible sets in F .

Proof. We fix the vector of bidder values v. For a set 𝑆 ∈ S let 𝜏 (𝑆) be the threshold 𝑝 such
that {|{𝑖 ∈ 𝑆 : 𝑣𝑖 ≥ 𝑝}| = 60 log𝑘} and 𝑆top denote the subset of bidders with value at least 𝜏 (𝑆) in
𝑆 (i.e., the 60 log𝑘 highest value bidders in 𝑆)5. Let 𝑂 denote the optimal set. We then have that
the WFCA obtains a 𝑂 (log log𝑘)-approximation to the welfare in 𝑂top. Since we run the WFCA
with probability 1/2 in the hedging auction, it just remains to show that the sampling auction
obtains a𝑂 (log log𝑘)-approximation to 𝑣 (𝑂) − 𝑣 (𝑂top). We can upper bound 𝑣 (𝑆) − 𝑣 (𝑆top) for any
𝑆 by using our 𝑆 (𝑡, v) notation from Section 3 as 𝑣 (𝑆) − 𝑣 (𝑆top) = 𝑣 (𝑆 \ 𝑆top) ≤

∫ 𝜏 (𝑆)
0 |𝑆 (𝑥, v) |𝑑𝑥

since every bidder in 𝑆 \ 𝑆top has value no more than 𝜏 (𝑆) by definition. To show that the sampling
auction obtains a 𝑂 (log log𝑘)-approximation to

∫ 𝜏 (𝑂)
0 |𝑂 (𝑥, v) |𝑑𝑥 , we use the following lemma.

We defer the proof to Appendix A as it is similar to that of Lemma 3.2.

Lemma 5.2. When running the sampling auction on any instance we have that for any 𝑆 ∈ S,
Pr [∃𝑥 ∈ [0, 𝜏 (𝑆)] : |𝑇 ∩ 𝑆 (𝑥, v) | ∉ [1/9, 8/9] · |𝑆 (𝑥, v) |] = 𝑜 (1/𝑘2).

By taking a union bound over the 𝑘 maximal sets in S, we obtain the following corollary.

Corollary 5.3. When running the sampling auction on an instance with 𝑘 maximal sets in S,
Pr [∀𝑆 ∈ S ∀𝑥 ∈ [0, 𝜏 (𝑆)] : |𝑇 ∩ 𝑆 (𝑥, v) | ∈ [1/9, 8/9] · |𝑆 (𝑥, v) |] = 1 − 𝑜 (1/𝑘).

We can now complete the proof. We first assume that 𝑣 (𝑂)/100 ≥ max𝑆 𝑣 (𝑆top) as otherwise the
WFCA would give a 𝑂 (log log𝑘)-approximation. Let 𝑆∗ = argmax𝑆 ∈S𝑣 (𝑆 ∩𝑇 ). We then have that
the random sampling auction obtains welfare 𝑣 (𝑆∗ ∩𝑈 ). Since 𝑆∗ was the set of highest sampled
welfare, with probability 1 − 𝑜 (1/𝑘) the event in Corollary 5.3 holds and we have that

𝑣 (𝑆∗ ∩𝑇 ) ≥ 𝑣 (𝑂 ∩𝑇 ) ≥
∫ 𝜏 (𝑂)

0
|𝑇 ∩𝑂 (𝑥, v) |𝑑𝑥 ≥

∫ 𝜏 (𝑂)

0

1
9 |𝑂 (𝑥, v) |𝑑𝑥 ≥

1
9 · (𝑣 (𝑂) − 𝑣 (𝑂top)),

5We assume consistent (lexicographical) tie-breaking in the event that there isn’t a price for which exactly 60 log𝑘 bidders
have value above the threshold.
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where the third inequality is due to the lower bound on |𝑇 ∩𝑂 (𝑥, v) | from Corollary 5.3. But then,
since 𝑣 (𝑂top) ≤ 𝑣 (𝑂)/100 we have that 𝑣 (𝑆∗ ∩𝑇 ) ≥ 11𝑣 (𝑂)

100 . We can bound 𝑣 (𝑆∗ ∩𝑈 ) similarly by

𝑣 (𝑆∗ ∩𝑈 ) ≥
∫ 𝜏 (𝑆∗)

0
|𝑈 ∩ 𝑆∗ (𝑥, v) |𝑑𝑥 ≥

∫ 𝜏 (𝑆∗)

0

1
9 |𝑆
∗ (𝑥, v) |𝑑𝑥 ≥ 1

9 · (𝑣 (𝑆
∗) − 𝑣 (𝑆∗top))

≥ 1
9 ·

(
𝑣 (𝑆∗) − 𝑣 (𝑂)

100

)
≥ 1

9 ·
(
𝑣 (𝑆∗ ∩𝑇 ) − 𝑣 (𝑂)

100

)
≥ 1

9 ·
(
11𝑣 (𝑂)
100 − 𝑣 (𝑂)

100

)
≥ 𝑣 (𝑂)

900 ,

where the second inequality is due to the fact that |𝑈 ∩ 𝑆∗ (𝑥, v) | + |𝑇 ∩ 𝑆∗ (𝑥, v) | = |𝑆∗ (𝑥, v) | and
the upper bound on |𝑇 ∩ 𝑆∗ (𝑥, v) | from Corollary 5.3. Thus, when the WFCA does not give a
𝑂 (log log𝑘)-approximation, the sampling auction gives a 𝑂 (1)-approximation, as desired. □

6 LOWER BOUND
To complement our positive results, in this section we show that no clock auction (single-price or
not) can achieve better than a 29/27-approximation to the expected optimal welfare even under
full information and independent values. This is in contrast to the lower bound in [14], which
applies only with respect to correlated priors. Moreover, our bound applies in a very simple
feasibility instance that is a special case of both Disjoint-Maximal-Sets and Knapsack (which is
the simplest setting beyond matroid feasibility, for which an optimal solution can be obtained
using a deterministic prior-free clock auction [53].) This result demonstrates that in the process of
discovering the high-valued bidders, it may be inevitable that the auction loses some low-valued
bidders along the way.

Theorem 6.1. For any constant 𝜖 > 0, no clock auction can obtain 29/27 − 𝜖 approximation to the

expected optimal welfare, even in simple Disjoint-Maximal-Sets or Knapsack feasibility constraints

and even under full access to the independent value distributions.

Proof. Consider an instance with two disjoint maximal feasible sets 𝑆 and 𝑇 . 𝑆 consists of
a single bidder with deterministic value 1. 𝑇 consists of two bidders, each has value 2/5 with
probability 𝑝 = 2/3 and value 1with probability (1−𝑝) = 1/3, independently. The expected optimal
welfare is 1 · 𝑝2 + 7/5 · 2𝑝 (1 − 𝑝) + 2 · (1 − 𝑝)2 = 4/9 + 28/45 + 2/9 = 58/45. We show that no clock
auction can achieve a higher expected welfare than 54/45, concluding the assertion of the theorem.
A clock auction that always serves the bidder in 𝑆 can only obtain value 1. A clock auction

that always serves the bidders in 𝑇 without increasing either clock above 2/5 obtains value 4/5 ·
𝑝2 + 7/5 · 2𝑝 (1 − 𝑝) + 2 · (1 − 𝑝)2 = 16/45 + 28/45 + 2/9 = 54/45. It remains to consider the
case where the clock auction increases the clock of at least one bidder in 𝑇 above 2/5. Fix one of
the bidders in 𝑇 and suppose its clock increases above 2/5. If its value is 2/5 (this happens with
probability 𝑝), then the auction loses that bidder and can obtain value of at most 1. If its value is 1
(this happens with probability 1 − 𝑝), the auction obtains value 1 from this bidder, and an expected
value 𝑝 · 2/5 + (1 − 𝑝) · 1 from the other bidder. Together, the auction obtains an expected welfare
of at most 𝑝 · 1 + (1 − 𝑝) (1 + 𝑝 · 2/5 + (1 − 𝑝) · 1) = 54/45, as desired. □

7 A HIERARCHY OF CLOCK AUCTIONS AND ADDITIONAL RESULTS
Our positive results from the previous sections using simple clock auctions provide hope that
clock auctions with prior information can achieve even stronger performance guarantees. To better
understand their power and limitations, we propose the study of these auctions through a hierarchy
of gradually increasing power.

In the figure below, we provide a sketch of this hierarchy among classes of clock auctions, with
the arrows pointing from less general to more general classes. The class of adaptive single-price
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clock auctions includes all mechanisms that can combine the strengths of posted-prices mechanisms
and single-price clock auctions: an adaptive single-price clock auction can offer a price to each
buyer in any desired order, and the price offered to each buyer can adapt to the responses provided
by other buyers, earlier in the ordering. Furthermore, the decision regarding which subset of buyers
should be served can be deferred until all buyers have responded to their offers.

Single-Price
Clock Auctions

Posted-Price
Mechanisms Adaptive Single-Price

Clock Auctions
Multi-Round

Clock Auctions

In the remainder of this section, we first present some initial results and observations for single-
price clock auctions (§7.1). We then propose the refinement of multi-round clock auctions based on
the number of distinct prices offered to each bidder, or the extent to which the choice of the prices
can adapt to previous bidder responses (§7.2).

7.1 Single-Price Clock Auctions
Binary valuations. A class of instances that emphasizes the benefits of single-price clock auctions
over posted-price mechanisms is that of binary valuations, i.e., where the value of each bidder
can be either 0 or 1. Although this class is seemingly simple, it actually poses some of the most
significant obstacles for posted-price mechanisms. Many of the lower bounds in the prophet
inequality literature come from this class, and even for the special case of Disjoint-Maximal-Sets
with 𝑛 binary value bidders, one cannot obtain a better than 𝑂 (log𝑛/log log𝑛) approximation
[46, 54]. This is in stark contrast to single-price clock auctions, which can trivially achieve the
optimal social welfare:

Observation 7.1. For the special case of binary valuations (i.e., 𝑣𝑖 ∈ {0, 1} for all 𝑖 ∈ 𝑁 ), every

downward-closed set system admits a single-price clock auction that achieves OPT.

Indeed, the auction can just set a price of, say, 1/2 for all bidders6, at which point the bidders
whose value is 0 will drop out, revealing the bidders with value 1. Then, the auction can choose to
serve the largest feasible subset of the remaining bidders, leading to the optimal social welfare.
Distributions with bounded support size. Amore general class of instances where a single-price
clock auction performs well is instances with bounded support size. Specifically, if the support size
supp(𝐷𝑖 ) is at most ℓ for every 𝑖 ∈ 𝑁 , then we can achieve an approximation of ℓ (proof deferred
to Appendix A.4).

Claim 7.2. Suppose |supp(𝐷𝑖 ) | ≤ ℓ for all 𝑖 ∈ 𝑁 , then there is a single-price clock auction using

the full distributional prior D that obtains ℓ approximation to the expected optimal social welfare.

Connections to large deviation theory. In cases beyond constant support size and binary
valuations, the question of whether single-price clock auctions can achieve a constant approximation
is quite non-trivial. In fact, the problem remains non-trivial even if we restrict attention to the very
special case of Disjoint-Maximal-Sets with equal size maximal sets (i.e., 𝑘 disjoint maximal sets of
𝑚 = 𝑛/𝑘 bidders each) and i.i.d. bidders (i.e., 𝐷𝑖 = 𝐷 for all 𝑖 ∈ 𝑁 ). As we discuss in greater detail in
Appendix B, this question appears to be related to the large deviation theory [23] and, particularly,
the distributions of the values of sums of random variables when the values of the sums far exceed
their expectations.

6Clearly, any price 𝑝 ∈ (0, 1) would achieve the same result.

 
Session 6D: Auctions and Bargaining ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

836



7.2 Multi-Round Clock Auctions
As we demonstrate in Sections 4 and 5, moving beyond single-price clock auctions opens up an even
greater set of design options. Gradually increasing prices over time allows a clock auction to more
carefully discover the preferences of the bidders. In particular, in Section 4, we leverage multiple
rounds of uniform prices to reduce the prior information required, and, in Section 5, we leverage
randomization and multiple rounds of non-uniform prices to eschew the need for prior information
altogether. Examining the trade-off between auction complexity versus prior information access is
a fundamental question that follows naturally from our work.

An interesting example where multiple rounds of prices are clearly more powerful than a single
price with distributional information is the case of selling a single item: the well-known second-
price auction is implementable as an ascending price clock auction (with uniform prices for all
bidders as in our auction from Section 4). In this case, even without prior information, a multi-round
clock auction obtains the optimal welfare. On the other hand, a single-price clock auction with
access to full prior information cannot obtain the optimal welfare in the single item setting even if
bidders’ values are drawn from i.i.d. distributions. The relative power of offering multiple rounds
of prices versus distributional information also then seems to depend on the feasibility constraint
in question, suggesting a rich and fundamental line of further research.

The multi-round clock auctions we describe in this work use prior information in a very minimal
way (or use no information at all). General multi-round clock auctions with full distributional
information, however, can follow highly complicated price trajectories which leverage this informa-
tion without sacrificing any of their appealing properties. One could then use this price discovery
process to update the posterior beliefs regarding bidder values over time to possibly obtain even
better performance as a function of the underlying “complexity” of the clock auction itself.
We believe that an interesting way to gradually evaluate the power of more complicated clock

auctions is through an even more refined hierarchy depending on (i) the number of prices offered
to each bidder, and (ii) whether or not they can adapt these queries to the responses of the bidders.
The class of clock auctions maintains its appealing properties no matter how many prices they
offer to the bidders, yet, as we reflect in this work, increasing the number of prices comes at a cost.
Minimizing the number of prices offered to each bidder reduces the burden on them and speeds
up the auction which may be desirable from an implementation perspective, further motivating a
deeper analysis of the hierarchy we propose.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we achieve significantly improved social welfare approximation guarantees using
Bayesian and randomized clock auctions; our results suggest many directions for future work. Most
notably, understanding the best approximation guarantees that can be obtained by deterministic
Bayesian clock auctions or randomized prior-free clock auctions under various feasibility constraints
is an open line of research. Even for the conceptually simple Disjoint-Maximal-Sets setting, there
is an asymptotic gap between the best known upper and lower bounds. A particularly exciting
question is whether or not clock auctions can achieve constant approximation guarantees for all
downward-closed settings, via access to priors or randomization.

Another direction for future research is toward a refined understanding of the impact that limited
prior information has on the performance of clock auctions. For example, how would the results
change if the auctioneer has only a limited number of samples from the value distribution of each
bidder? This direction has been studied in the prophet inequality literature (see, e.g., [4, 12, 16, 44,
57]).

 
Session 6D: Auctions and Bargaining ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

837



Finally, it would be interesting to gain a better understanding of the hierarchy of clock auctions
discussed in Section 7. For example, is there an asymptotic separation between the best approxima-
tion that can be guaranteed by general clock auctions with full distributional priors and single-price
clock auctions (with the same distributional information) in various settings? Moreover, one can
define a hierarchy of clock auctions based on the number of different prices they are allowed to offer
to each bidder. Results in this paper are obtained at the two extremes: single-price clock auctions
or clock auctions that use an arbitrary number of rounds. What is the power of clock auctions that
are allowed to offer up to 𝑞 > 1 prices to each bidder?
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A OMITTED PROOFS
A.1 Proof of Lemma 3.3 and Corollary 4.2
We note that the proofs of Lemma 3.3 and Corollary 4.2 are the same. We thus provide one unified
proof for both below.

Proof. Let𝑚 = 10 log𝑘 + 1 and Δ = E [max𝑆 ∈S (
∑

𝑖∈𝑆 𝑣𝑖 · I [|𝑆 (𝑡𝑆 , v) | ≤ 𝑚])]. Consider an event
that there exists a bidder with value greater than or equal to 2Δ. By posting the price of 2Δ for
every bidder, we identify all such bidders and would serve at least one if they exist. Following the
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same reasoning as in [54], let 𝑞𝑖 be the probability that bidder 𝑖 has value 𝑣𝑖 ≥ 2Δ. Then

Δ ≥ 2 · Δ · Prv [∃𝑖 : 𝑣𝑖 ≥ 2Δ] = 2 · Δ ·
(
1 −

∏
𝑖

(1 − 𝑞𝑖 )
)
.

Rearranging gives 1
2 ≤

∏
𝑖 (1 − 𝑞𝑖 ) ≤ 𝑒−

∑
𝑖 𝑞𝑖 but then

∑
𝑖 𝑞𝑖 ≤ ln 2. The probability that we would

want to accept a bidder and cannot (because there is some other bidder in another feasible set we
are taking) is less than ln 2 so we must obtain at least a (1 − ln 2)-fraction of the contribution from
bidders with value above 2 · Δ by serving at most one such bidder.
Consider how much the small bidders with value less than 2 · Δ contribute to the benchmark.

The approximation guarantee is achieved by the revenue (not the welfare) of a single-price clock
auction. Observe that the contribution to the benchmark of bidders with 𝑣𝑖 ≤ Δ

2𝑚 is at most Δ
2 so

by ignoring all such bidders we lose at most a constant factor against the benchmark. Consider
partitioning all remaining bidders into log𝑚 + 2 buckets

[
Δ
2𝑚 , Δ

𝑚

]
,
[
Δ
𝑚
, 2Δ
𝑚

]
, · · · , [Δ, 2Δ] based on

their value. We can decompose the remaining half of the benchmark (among bidders with value
less than 2 · Δ) by upper bounding it by the sum of the best set for each of these buckets. By the
pigeonhole principle, the largest expected contribution of these buckets is a 𝑂 (log𝑚) fraction of
the contribution to the benchmark among bidders with value less than 2 · Δ. Consider the best
of these buckets 𝐵. The revenue obtained by posting the lower bound of the interval for 𝐵 is a
2-approximation to the welfare contained in 𝐵 for each set (by construction) and, in particular,
the one with maximum realized value. Thus, posting the price equal to the lower bound of 𝐵
for each bidder and then selecting the set with the greatest number of accepting bidders obtains
revenue which is a 𝑂 (log𝑚) fraction of the expected contribution from values less than or equal
to 2Δ. Finally, choosing the better of the core (prices below 2Δ) and the tail (𝑝 = 2Δ) then gives a
𝑂 (log𝑚)-approximation to Δ. □

A.2 Proof of Lemma 5.2
Proof. Consider an arbitrary set 𝑆 and the threshold 𝜏 (𝑆) for which |𝑆 (𝜏 (𝑆), v) | = 60 log𝑘 .

Since in the sampling auction each bidder is sampled independently with probability 1/2 we
have that E [𝑇 ∩ 𝑆 (𝜏 (𝑆), v)] = 30 log𝑘 = E [𝑈 ∩ 𝑆 (𝜏 (𝑆), v)]. Now consider the threshold 𝑡 ′

𝑆
such

that |𝑆 (𝑡 ′
𝑆
, v) | = 80 log𝑘 = 4/3 · |𝑆 (𝜏 (𝑆), v) |. Similarly as above, we have that E [𝑇 ∩ 𝑆 (𝑡 ′

𝑆
, v)] =

E [𝑈 ∩ 𝑆 (𝑡 ′
𝑆
, v)] = 40 log𝑘 . By a Chernoff bound, it follows that

Pr
[
|𝑇 ∩ 𝑆 (𝑡 ′𝑆 , v) | >

4
3 E

[
|𝑇 ∩ 𝑆 (𝑡 ′𝑆 , v) |

] ]
<

(
𝑒1/3

(4/3)4/3

)40 log𝑘
< 0.95140 log𝑘 = 𝑜 (1/𝑘2). (4)

Now, for all 𝑝 ∈ [𝑡 ′
𝑆
, 𝜏 (𝑆)] we know that |𝑇 ∩ 𝑆 (𝑝, v) | ≤ |𝑇 ∩ 𝑆 (𝑡 ′

𝑆
, v) | and E [|𝑇 ∩ 𝑆 (𝑝, v) |] ≥

E [|𝑇 ∩ 𝑆 (𝜏 (𝑆), v) |] = 3
4 · E [|𝑇 ∩ 𝑆 (𝑡

′
𝑆
, v) |]. Therefore, if |𝑇 ∩ 𝑆 (𝑡 ′

𝑆
, v) | < 4

3 E [|𝑇 ∩ 𝑆 (𝑡
′
𝑆
, v) |], then

|𝑇 ∩ 𝑆 (𝑝, v) | < 16
9 E [|𝑇 ∩ 𝑆 (𝑝, v) |] for all 𝑝 ∈ [𝑡 ′

𝑆
, 𝜏 (𝑆)]. Hence, we have

Pr
[
∃𝑝 ∈ [𝑡 ′𝑆 , 𝜏 (𝑆)) : |𝑇 ∩ 𝑆 (𝑝, v) | > 16

9 E [|𝑇 ∩ 𝑆 (𝑝, v) |]
]
= 𝑜 (1/𝑘2). (5)

Consider intervals [𝑟0, 𝑟1), [𝑟1, 𝑟2), . . . , [𝑟ℓ−1, 𝑟ℓ ) where E [|𝑇 ∩𝑆 (𝑟 𝑗 , v) |] = 3
4 ·E [|𝑇 ∩𝑆 (𝑟 𝑗−1, v) |] for

all 𝑗 = 1, . . . , ℓ and such that 𝑟0 = 0 and 𝑟ℓ = 𝜏 (𝑆). We can apply the same Chernoff bound argument
that we did for the interval [𝑡 ′

𝑆
, 𝜏 (𝑆)) to any such interval and get a bound of 𝑜

(
1/𝑘2· (4/3)ℓ−𝑗+1

)
for
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the interval [𝑟 𝑗−1, 𝑟 𝑗 ). But then, we may take a union bound over all of these intervals to obtain that

Pr
[
∃𝑝 ∈ ∪𝑗=ℓ

𝑗=1 [𝑟 𝑗−1, 𝑟 𝑗 ) : |𝑇 ∩ 𝑆 (𝑝, v) | > 16
9 · E [|𝑇 ∩ 𝑆 (𝑝, v) |]

]
≤

𝑗=ℓ∑︁
𝑗=1

𝑜

(
1

𝑘2· (4/3)ℓ−𝑗+1

)
= 𝑜

(
1
𝑘2

)
.

Consequently, Pr [∃𝑝 ∈ [0, 𝜏 (𝑆)) : |𝑇 ∩ 𝑆 (𝑝, v) | > 16
9 · E [|𝑇 ∩ 𝑆 (𝑝, v) |]] = 𝑜 (1/𝑘2). Since we have

E [|𝑇 ∩𝑆 (𝑝, v) |] = 1
2 · |𝑆 (𝑝, v) | we obtain Pr [∃𝑝 ∈ [0, 𝜏 (𝑆)) : |𝑇 ∩𝑆 (𝑝, v) | > 8

9 · |𝑆 (𝑝, v) |] = 𝑜 (1/𝑘2).
We can repeat the argument replacing the sampled set of bidders𝑇 with the unsampled set𝑈 = 𝑁 \𝑇
and obtain that Pr [∃𝑝 ∈ [0, 𝜏 (𝑆)) : |𝑈∩𝑆 (𝑝, v) | > 16

9 ·E [|𝑈∩𝑆 (𝑝, v) |]] = 𝑜 (1/𝑘2) and thus Pr [∃𝑝 ∈
[0, 𝜏 (𝑆)) : |𝑈 ∩𝑆 (𝑝, v) | > 8

9 · |𝑆 (𝑝, v) |] = 𝑜 (1/𝑘2). Finally, since𝑈 ∩𝑆 (𝑝, v) = 𝑆 (𝑝, v) \ (𝑇 ∩𝑆 (𝑝, v)),
we obtain Pr [∃𝑝 ∈ [0, 𝜏 (𝑆)) : |𝑇 ∩ 𝑆 (𝑝, v) | < 1

9 · |𝑆 (𝑝, v) |] = 𝑜 (1/𝑘2), completing the proof. □

A.3 Proof of Theorem 4.1
Proof. Our proof proceeds similarly as the one in Section 3, again employing our benchmark

decomposition, inequality (1). Note that auc𝑜 is exactly the single-price clock auction with all
prices equal to zero, which, from Section 3, we know covers the LOW-CORE, LOW-TAIL, and
HIGH-TAIL portions of our benchmark. In other words, from our analysis in the previous section,
we have the following two claims:

Claim A.1. HIGH-TAIL ≤ Ev [auc𝑜 (v)] = max𝑆 ∈S
∑

𝑖∈𝑆 E [𝑣𝑖 ]

and

Claim A.2. LOW ≤ 12 · Ev [auc𝑜 (v)] = 12 ·max𝑆 ∈S
∑

𝑖∈𝑆 E [𝑣𝑖 ].

Inequalities (1) and (2) give us an upper boundOPT ≤ LOW+HIGH-TAIL+HIGH-CORE, where
the welfare of auc𝑜 covers the terms LOW andHIGH-TAIL by claims A.1 and A.2: 13·Ev [auc𝑜 (v)] ≥
LOW + HIGH-TAIL. Thus

OPT − 13 · Ev [auc𝑜 (v)] ≤ HIGH-CORE ≤ OPT.
We can now assume that HIGH-CORE is a 2 approximation to OPT, as otherwise auc𝑜 would be

a 26 < log log𝑘 approximation to OPT. Thus it suffices to show that u-price𝑔 gives a 𝑂 (log log𝑘)
approximation to HIGH-CORE. From the proof of Lemma 3.3 we obtain Corollary 4.2 which shows
that there is a single price 𝑝 such that either our revenue will be a 𝑂 (log log𝑘) approximation to
HIGH-CORE when we uniformly post 𝑝 for each bidder 𝑖 ∈ 𝑁 and serve a maximal feasible set
of accepting bidders, or the price 𝑝 is so high that by just serving a single bidder we can get the
expected welfare to be a 𝑂 (log log𝑘) approximation to HIGH-CORE.

Note that 𝑝 ·E [max𝑆 ∈S
∑

𝑖∈𝑆 I [𝑣𝑖 ≥ 𝑝]] is precisely the expected revenue we get in a clock auction
with a uniform price 𝑝 . Corollary 4.2 shows that the best choice of a single uniform price will give
an 𝑂 (log𝑚)-approximation to Δ, which translates to 𝑂 (log log𝑘)-approximation to HIGH-CORE
with𝑚 = 10 log𝑘 + 1. The proof of this corollary directly follows the proof of Lemma 3.3.

Note that Corollary 4.2 proves the existence of a uniform price 𝑝 that would give us the desired
approximation of 𝑂 (log log𝑘). Since we cannot calculate this price in advance, u-price𝑔 gradually
sweeps through a full range of prices, aiming to find one that yields the desired revenue. However,
this could fail if u-price𝑔 reaches a lower price that also satisfies the revenue target and stops too
soon, selecting a set with low social welfare. We get around this problem by more careful analysis
of the expected welfare of u-price𝑔. We choose revenue goal 𝑔 = OPT

4𝛼 in u-price𝑔 based on the
approximation guarantee 𝛼 in Corollary 4.2. Recall that

𝑔 =
OPT
4𝛼 ≤ HIGH-CORE

2𝛼 . (6)
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We consider three cases for u-price𝑔. Let 𝑇 (v) be a feasible set of maximum size among the
bidders who accept the price 𝑝 from Corollary 4.2.

Case 1: Ev [|𝑇 (v) |] ≥ 8, i.e., the expected size of the set 𝑇 is large. Note that

|𝑇 (v) | = max
𝑆 ∈S

∑︁
𝑖∈𝑆

𝑋𝑖 , where 𝑋𝑖
def
== I

[
𝑣𝑖 ≥ 𝑝

]
are independent Bernoulli r.v. for 𝑖 ∈ 𝑁 .

Thus, one can think of |𝑇 (v) | as an XOS (maximum of additive) function 𝑓 (𝑋1, . . . , 𝑋𝑛) with
marginal contribution of each coordinate 𝑖 in [0, 1]. According to [58], such functions enjoy strong
concentration with Chernoff-type bounds. In particular, Corollary 3.2 in [58] gives us

Pr [|𝑇 | ≤ E [|𝑇 |] /2] ≤ 𝑒−E [ |𝑇 | ]/8 ≤ 𝑒−1.

Let us assume that |𝑇 (v) | ≥ E [|𝑇 |]/2. According to Corollary 4.2 and (6) we have 2𝑔 ≤ HIGH-CORE
𝛼

≤
𝑝 · E [|𝑇 |], i.e., 𝑔 ≤ 𝑝 · |𝑇 (v) |. In this case, u-price𝑔 obtains welfare of at least 𝑔. Indeed, the auction
must stop at price 𝑝 or earlier, as the revenue goal of 𝑔 would have been attained at price 𝑝 . Note
that the auction can stop only when the revenue goal is reached, or all active bidders can be served.
In the former case, the revenue of u-price𝑔 is at least 𝑔. In the latter case, all the bidders in𝑇 (v) will
be served before reaching the price 𝑝 , i.e., everyone in𝑇 (v) with the welfare of at least 𝑔. Therefore,
the expected social welfare of u-price𝑔 is at least

Pr [|𝑇 | ≥ E [|𝑇 |] /2] · 𝑔 ≥ (1 − 𝑒−1)𝑔 =
OPT

𝑂 (log log𝑘) .

Case 2: Prv [u-price𝑔 serves set 𝐹 :
∑

𝑖∈𝐹 𝑣𝑖 ≥ 𝑔] ≥ 1
2 . Then the expected welfare of u-price𝑔 is at

least 𝑔/2 = OPT
𝑂 (log log𝑘) .

Case 3: Ev [|𝑇 (v) |] < 8 and Prv [u-price𝑔 serves set 𝐹 :
∑

𝑖∈𝐹 𝑣𝑖 ≥ 𝑔] < 1
2 . Thus, we stop at set 𝐹

with
∑

𝑖∈𝐹 𝑣𝑖 < 𝑔 with probability more than 1/2. When
∑

𝑖∈𝐹 𝑣𝑖 < 𝑔, u-price𝑔 must be serving the
whole set 𝐴 of active bidders. In particular, it means that a bidder 𝑗 ∈ argmax𝑖∈𝑁 𝑣𝑖 must be served
in𝐴, as we can assume without loss of generality that each bidder in 𝑁 can be served as a singleton.
We show in the following Claim A.3 that the expected welfare of u-price𝑔 must be at least half of
the expected maximum.7

Claim A.3. Assume Prv [u-price𝑔 serves set 𝐹 :
∑

𝑖∈𝐹 𝑣𝑖 ≥ 𝑔] < 1
2 . Then the expected social welfare

of u-price𝑔 is at least
1
2 Ev [max𝑖 𝑣𝑖 ] .

Proof. Sample v ∼ D and fix the bidder 𝑖 = argmax𝑗 𝑣 𝑗 with the maximum value 𝑣𝑖 = 𝑡 .
Assuming that 𝑖 is the bidder with maximum value 𝑡 , it suffices to show that u-price𝑔 serves 𝑖 with
probability at least 1/2 for any 𝑖 ∈ 𝑁 and 𝑡 ≥ 0. To this end, consider independently sampling
valuation profile v′-𝑖 ∼ D′-𝑖 : ∀𝑗 ≠ 𝑖 𝑣 ′𝑗 ∼ 𝐷 𝑗 | 𝑣 ′𝑗 < 𝑡 . Note that (i) v′-𝑖 has exactly the same distribution
as v-𝑖 conditioned on 𝑣𝑖 = 𝑡 being the maximum in v and (ii) D′-𝑖 is stochastically dominated by
ṽ-𝑖 ∼ D-𝑖 = ×𝑗≠𝑖𝐷 𝑗 , i.e., we can do probability coupling between v′-𝑖 ∼ D′-𝑖 and ṽ-𝑖 ∼ D-𝑖 , so that
each v′-𝑖 is coordinate-wise smaller than ṽ-𝑖 (∀𝑗 ≠ 𝑖, 𝑣 ′𝑗 ≤ 𝑣̃ 𝑗 ).

By the Claim’s assumption the social welfare of u-price𝑔 on a random valuation profile (ṽ-𝑖 , 𝑣̃𝑖 ) ∼
D is less than 𝑔 with probability more than 1/2. Now, if this welfare is less than 𝑔, then the revenue
of offering a uniform price 𝑞 must be smaller than 𝑔 for any price 𝑞 ≥ 0, i.e.,

∀𝑞 ≥ 0, 𝑞 · |{ 𝑗 ∈ 𝑁 : 𝑣̃ 𝑗 ≥ 𝑞}| < 𝑔 =⇒ ∀𝑞 ≥ 0, 𝑞 · |{ 𝑗 ≠ 𝑖 : 𝑣 ′𝑗 ≥ 𝑞}| < 𝑔. (7)

7Despite the fact that we serve the maximum bidder with probability more than 1/2, we still need to show that u-price𝑔
gets sufficiently high expected welfare.
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Therefore, u-price𝑔 must serve bidder 𝑖 on the valuation profile (v′-𝑖 , 𝑡), as (a) 𝑖 has the maximum
bid and would always stay active; (b) we cannot reach the revenue goal of 𝑔 with a uniform price 𝑞
without using bidder 𝑖 according to (7). This concludes the proof, as the probability of having a
(ṽ-𝑖 , 𝑣̃𝑖 ) ∼ D such that the welfare of u-price𝑔 (ṽ-𝑖 , 𝑣̃𝑖 ) < 𝑔 is greater than half and we will serve 𝑖
on each corresponding profile (v′-𝑖 , 𝑡). □

Nowwe can conclude the analysis of case 3. ClaimA.3 gives a lower bound of 1
2 Ev [max𝑖 𝑣𝑖 ] on the

expected welfare of u-price𝑔. When E [|𝑇 |] < 8, the expected maximum Ev [max𝑖 𝑣𝑖 ] is a constant
approximation to the revenue 𝑝 · E [|𝑇 |] of u-price𝑔. On the other hand, 1

2 Ev [max𝑖 𝑣𝑖 ] is also a
constant approximation to the other term E [max𝑖∈𝑁 E [𝑣𝑖

�� 𝑣𝑖 ≥ 𝑝] · I [𝑣𝑖 ≥ 𝑝]] in Lemma 4.2. □

A.4 Single-price clock auctions for the distributions with constant support sizes
Let F be any downward-closed family of feasible sets over the set of 𝑁 bidders. We assume that all
possible values 𝑣𝑖 of each bidder 𝑖 ∈ 𝑁 can be described by a list of size at most ℓ , i.e., the support
supp(𝐷𝑖 ) of each distribution 𝐷𝑖 has size at most ℓ . We now give the proof of Claim 7.2.

Proof. Let us write all possible types in each distribution𝐷𝑖 in the increasing order (𝜃𝑖,1, . . . , 𝜃𝑖,ℓ ).
Consider the following ℓ single-price clock auctions: for a given 𝑗 ∈ {1, 2, . . . , ℓ}
(1) set price 𝑝𝑖 = 𝜃𝑖, 𝑗 for each 𝑖 ∈ 𝑁 .
(2) among the bidders who accepted their price select 𝑆 ⊂ {𝑖 : 𝑣𝑖 ≥ 𝜃𝑖, 𝑗 } with maximal revenue

max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝜃𝑖, 𝑗 .

Our single-price clock auction is the one among these ℓ auctions with the highest expected revenue8,
which can be written as

max
𝑗 ∈[ℓ ]

Ev

[
max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝜃𝑖, 𝑗 · I
[
𝑣𝑖 ≥ 𝜃𝑖, 𝑗

] ]
.

We have the following upper bound on the benchmark.

OPT = Ev

[
max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝑣𝑖

]
= Ev

[
max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝑣𝑖

ℓ∑︁
𝑗=1
I
[
𝑣𝑖 = 𝜃𝑖, 𝑗

] ]
≤ Ev

[
ℓ∑︁
𝑗=1

max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝑣𝑖 · I
[
𝑣𝑖 = 𝜃𝑖, 𝑗

] ]
=

ℓ∑︁
𝑗=1

Ev

[
max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝜃𝑖, 𝑗 · I
[
𝑣𝑖 = 𝜃𝑖, 𝑗

] ]
≤ ℓ · max

𝑗 ∈[ℓ ]
Ev

[
max
𝑆 ∈F

∑︁
𝑖∈𝑆

𝜃𝑖, 𝑗 · I
[
𝑣𝑖 = 𝜃𝑖, 𝑗

] ]
, (8)

where to get the first inequality we used that for each valuation profile v the maximal sum
∑

𝑖∈𝑆 𝑣𝑖
for 𝑆 ∈ F can be covered by ℓ sums

∑
𝑖∈𝑆 𝑣𝑖 · I

[
𝑣𝑖 = 𝜃𝑖, 𝑗

]
. To conclude the proof we notice that for

each valuation profile v and feasible 𝑆 ∈ F∑︁
𝑖∈𝑆

𝜃𝑖, 𝑗 · I
[
𝑣𝑖 = 𝜃𝑖, 𝑗

]
≤

∑︁
𝑖∈𝑆

𝜃𝑖, 𝑗 · I
[
𝑣𝑖 ≥ 𝜃𝑖, 𝑗

]
,

i.e., the last term in (8) is not more than ℓ times the revenue of our single-price clock auction, which
is not more than the welfare. □

8Note that we can write the revenue of the auction in this way because F is downward-closed set system.
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B CONNECTIONS TO LARGE DEVIATION THEORY
As we mentioned in Section 7, in cases beyond constant support size and binary valuations, the
question of whether single-price clock auctions can achieve a constant approximation is quite
non-trivial. In fact, the problem remains non-trivial even if we restrict attention to the very special
case of Disjoint-Maximal-Setswith equal size maximal sets (i.e., 𝑘 disjoint maximal sets of𝑚 = 𝑛/𝑘
bidders each) and i.i.d. bidders (i.e., 𝐷𝑖 = 𝐷 for all 𝑖 ∈ 𝑁 ). This question appears to be related to
the large deviation theory [23] and, particularly, the distributions of the values of sums of random
variables when the values of the sums far exceed their expectations.

For instances where all 𝑘 maximal disjoint sets have the same size𝑚, and all 𝑛 = 𝑘𝑚 bidders
have their 𝑣𝑖 values drawn i.i.d., the expected optimal welfare is equal to the maximum taken over
𝑘 independent samples of 𝜉 (𝑚) = ∑𝑚

𝑖=1 𝑣𝑖 . We are interested in the case where this maximum is
significantly larger than the expectation of E [𝜉 (𝑚)] which only happens for large 𝑘 = Θ(2𝑚). In
this case, the expectation of this maximum is roughly equal to the value of the top 𝑘-th quantile of
𝜉 (𝑚). Note that in the limit when 𝑘 = Θ(2𝑚) and𝑚 →∞, the tail probability for the distribution of
𝜉 (𝑚) is captured by Cramer’s theorem (a fundamental result in large deviation theory). According
to this theorem, there is a certain rate function 𝐼 such that 𝜉 (𝑚) satisfies a large deviation principle

with rate function 𝐼 , meaning that Pr [ 𝜉 (𝑚)
𝑚
≥ 𝑥] = 𝑒−𝐼 (𝑥) ·𝑚 · (1+𝑜 (1)) .

On the other hand, in a single-price clock auction with price vector p, the agents with 𝑣𝑖 < 𝑝𝑖
drop out, so the event that 𝑣𝑖 ∼ 𝐷𝑖 lies in the “tail” of 𝐷𝑖 (𝑣𝑖 ≥ 𝑝𝑖 ) is instead captured by the
Bernoulli random variable 𝑣𝑖 = I [𝑣𝑖 ≥ 𝑝𝑖 ] · E [𝑣𝑖 | 𝑣𝑖 ≥ 𝑝𝑖 ]. Given the set of bidders that accepted
the prices offered to them, the obvious choice is then to serve the feasible subset with the largest
sum of prices, leading to an expected social welfare of max𝑆 ∈S

∑
𝑖∈𝑆 𝑣𝑖 .

We can think of the variable 𝑣𝑖 as a binary approximation of the random variable 𝑣𝑖 up to an
additive error9 of 𝑂 (E [𝑣𝑖 ]). Formally, a binary approximation of a random variable 𝜉𝑖 : Ω𝑖 → R on
a probability space Ω𝑖 is the following (generalized) Bernoulli random variable 𝜉𝑖 defined for an
event E𝑖 ⊂ Ω𝑖 .

𝜉𝑖 : E [𝜉𝑖 | E𝑖 ] w.p. Pr [E𝑖 ] , E
[
𝜉𝑖 | E𝑖

]
w.p. Pr

[
E𝑖

]
Then, to achieve 𝑂 (1) approximation single-price clock auctions, we need to cover the tail prob-
abilities of 1

𝑚

∑𝑚
𝑖=1 𝑣𝑖 in the large deviation regimes by the constantly related tail probabilities of

1
𝑚

∑𝑚
𝑖=1 𝑣𝑖 . In the language of large deviation theory, we need to cover the tail probability of the

sum of i.i.d. random variables by the tail probability of the sum of binary approximations. This is
captured in the following claim.

Claim B.1. Assume that there is a single-price clock auction for the Disjoint-Maximal-Sets with 𝑘
sets of size𝑚 and 𝑛 = 𝑘 ·𝑚 i.i.d. bidders that is𝑂 (1) approximation ∀𝑘,𝑚 ∈ N. Then for any collection
(𝜉𝑖 )𝑚𝑖=1 of𝑚 non-negative i.i.d. random variables and for every 𝑥 > 𝑂 (E [𝜉𝑖 ]) there must exist binary

approximations (𝜉𝑖 )𝑚𝑖=1 of (𝜉𝑖 )𝑚𝑖=1 such that

Pr

[∑𝑚
𝑖=1 𝜉𝑖
𝑚

≥ 𝑥 · Ω(1)
]
≥ Pr

[∑𝑚
𝑖=1 𝜉𝑖
𝑚

≥ 𝑥

]
.

We note that the binary approximations 𝜉𝑖 in Claim B.1 may not be identical. If, on the other
hand, we could achieve the constant approximation using a uniform single-price clock auction
(which is reasonable to expect in the i.i.d. setting), then this would imply a stronger Claim B.1 with
identical binary approximations (𝜉𝑖 )𝑚𝑖=1.
9As a single-price clock auction with 0 prices achieves in expectation the welfare of𝑚 · E [𝑣𝑖 ], we can safely ignore the
additive terms of order𝑂 (E [𝑣𝑖 ]) for each bidder 𝑖 .
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