
IDENTIFICATION OF ANISOTROPIC CONSTITUTIVE MODELS FOR COMPLEX LOADING PATHS

Multi-interpolation Method to Linearize Stress Path in Cruciform
Specimen for In-Plane Biaxial Test

JINJAE KIM,1 JORDAN HOFFMAN,1 DILIP K. BANERJEE,2

MARK A. IADICOLA,2 BRAD L. KINSEY,1 and JINJIN HA 1,3

1.—Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA.
2.—Materials Science and Engineering Division, National Institute of Standards and
Technology (NIST), 100 Bureau Dr, Gaithersburg, MD 20899-8553, USA.
3.—e-mail: jinjin.ha@unh.edu

A multi-interpolation method is proposed to determine the displacement tra-
jectory along each axis of a cruciform specimen with the goal of achieving a
linear stress path, corresponding to a constant stress triaxiality, in the center
of the custom-designed, non-standard specimen during in-plane biaxial test-
ing. Finite element simulations are used to obtain the stress path from the
given displacement trajectory, which is the displacement histories imposed on
the specimen loading arms. In every iteration, the displacement trajectory is
updated using the interpolation between the target stress path and adjacent
ones on each side of the curve. The iterations are repeated until a linearity
tolerance is satisfied. In this study, the material is an austenitic stainless
steel, SS316L, with the Hockett–Sherby isotropic hardening model and
Yld2004-18p non-quadratic anisotropic yield function. The method is demon-
strated for five stress states between pure shear and equibiaxial tension. The
results show the successful determination of a displacement trajectory for the
non-standard cruciform specimen so that a linear stress path and constant
triaxiality at the area of interest are achieved.

INTRODUCTION

Sheet metal forming is widely used in manufactur-
ing, e.g., in the automotive, aerospace, and biomedical
industries, due to the efficiency for mass production
with consistent part quality. Common processes used
in these industries include deep drawing,1 spinning,2

and roll forming.3 However, the process design and
parameter optimization are often time consuming,
and require iterative effort if they are solely based on
trial-and-error experimentation. In order to overcome
this problem, finite element (FE) simulations are
utilized to virtually evaluate the process. Key to the
prediction accuracy of FE simulations is correct model
inputs, such as geometry, boundary conditions, and
constitutive models capturing the material behavior
during deformation.4–7

Selection of constitutive models depends on the
materials used in the process, analysis focus of the
FE simulation, and level of prediction accuracy
required. For example, the von Mises isotropic yield
function8 is often used with an isotropic strain-
hardening model9–12 due to simplicity, but it cannot
capture plastic anisotropy and non-linear loading
effects, which are important in sheet metal forming.
Thus, various yield functions have been vigorously
developed in the past decades to better capture the
material behavior as experimentally observed, e.g.,
Barlat,13–15 Banabic–Balan–Comsa,16 Cazacu–
Plunkett–Barlat,17 Yoon,18 etc. Additional complex-
ity, which can be incorporated into modeling efforts,
is plastic behavior influenced by deformation-in-
duced microstructural changes. Fahr19 found that
the ductility and strength of austenitic stainless
steel can be enhanced through a deformation-in-
duced phase transformation from austenite to
martensite phases. Olson and Cohen20 developed a
martensite phase transformation kinetics model,
which is a function of equivalent plastic strain. This(Received June 27, 2023; accepted September 18, 2023)
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model was further extended through extensive
studies to understand the effects of various factors,
such as stress state,21 strain rate,22 temperature,23

etc. In the same vein, Beese and Mohr24 also
proposed a transformation kinetics model with
respect to stress states, i.e., stress triaxiality and
Lode angle parameter, based on the extensive
experimental results available, including uniaxial
tension/compression, simple shear, plane strain
tension, and equibiaxial tension, which were per-
formed using different types of specimens and
machines.

Alternatively, in-plane biaxial testing using a
cruciform specimen has been widely used for sheet
metals to evaluate the material behavior under
numerous stress states, such as uniaxial or biaxial
tension,25–28 pure shear,29 and biaxial compres-
sion.30,31 The advantage of this testing method is
that the same specimen and machine can be used to
impose different stress states by simply changing the
loading ratios of each arm. However, the standard
geometry of a cruciform specimen26,32 is only able to
achieve a small plastic strain, typically< 0.05 to
0.08.25,26,33–36 This test method is limited by early
failure in the arms before the deformation is depleted
in the center of the specimen. Geometry modifica-
tions to the standard specimen, e.g., a thickness
reduction to concentrate the deformation at the
desired central locations,37–42 corner notches to
prevent localization,34,43,44 and cut-outs to remove
the unnecessary deformation,45–48 have been
explored. However, inhomogeneities of the deforma-
tion fields exist in the gauge section due to locally
varied stress states. Mamros et al.39 confirmed that
complicated stress and strain states were observed in
their non-standard specimen designed with a thick-
ness reduction and corner notches. The lost homo-
geneity in the gauge area does not allow traditional
measurement of stress using the force signal from
the machine divided by the instantaneous cross-
sectional area. Alternatively, advanced experimen-
tal techniques, e.g., in situ x-ray and neutron diffrac-
tion, enable the measurement of local stresses49,50

which are intergranular stresses calculated by crys-
tal lattice strains. However, the loading must be
paused during the measurement, which allows some
relaxation in the material.

Another issue with employing a non-standard
cruciform specimen geometry is the difficulty in
obtaining a linear stress path when simple bound-
ary conditions, e.g., a linear force or displacement
trajectory applied to the arms, are used. This
creates non-linear stress paths that interrupt the
measurement due to the loading history dependency
of plasticity and martensite transformation kinet-
ics, and makes it difficult to characterize material
behavior under a specific stress state, e.g., uniaxial
tension, shear, equibiaxial tension, etc., equivalent

to a constant stress triaxiality or Lode angle param-
eter.24 Hoffman et al.51 presented a double interpo-
lation method to achieve a non-linear displacement
trajectory producing a linear strain path, but the
corresponding stress path was still non-linear.
Therefore, a new methodology is needed to achieve
a non-linear displacement trajectory corresponding
to a linear stress path. It should be noted that some,
but not all, cruciform test machines utilize closed
loop control to follow a desired strain or stress
deformation path.52–54

This study is an extension of the previous work51

focusing on determining a linear stress, instead of
strain, path that is necessary to characterize
martensite transformation kinetics in austenitic
stainless steels. A multi-interpolation method using
FE simulations is proposed to determine the non-
linear displacement trajectories needed to achieve
the desired linear stress paths using a non-standard
cruciform specimen. Five target stress paths will be
considered between pure shear and equibiaxial
tension. The Hockett–Sherby isotropic strain-hard-
ening model11 and Yld20004-18p non-quadratic
anisotropic plasticity yield function14 are used to
describe the material behavior of SS316L. The
following sections will describe the non-standard
cruciform specimen geometry used, present the
material models implemented, explain the multi-
interpolation method utilized, provide details
related to the numerical simulations, and show the
results for SS316L.

NON-STANDARD CRUCIFORM SPECIMEN
GEOMETRY

The non-standard cruciform specimen geometry
used in this work is taken from a paper by Mamros
et al.39 They optimized a specimen of austenitic
stainless steel SS316L with corner notches and a
central pocket to achieve higher strain than the
standard specimen.26,32 A schematic of the specimen
geometry is shown in Fig. 1, and the dimensions are
summarized in Table I.

MATERIAL MODELING FOR ANISOTROPIC
PLASTICITY

Since this study utilizes a non-standard cruciform
specimen optimized for SS316L,39 the same mate-
rial model and parameters from the reference are
used here. Hooke’s law for isotropic linear elasticity
is assumed with a Young’s modulus E ¼ 193:8 GPa
and Poisson’s ratio t ¼ 0:33. The equivalent stress–
strain relationship (r� e) of SS316L is described by
the Hockett–Sherby isotropic strain-hardening
model:11

r ¼ H � H � r0ð Þ � exp �Q � enð Þ ð1Þ
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where r0 is the initial yield stress and H, Q, and n
are material parameters (Table II), which are
identified by fitting the stress–strain curve obtained
from the uniaxial tensile test in the rolling direction
(RD) (Fig. 2).

In addition to the strain-hardening behavior, the
plastic anisotropy of SS316L and its evolution with
plastic work are captured by the Yld2004-18p non-
quadratic anisotropic plasticity yield function.39 The
model is formulated with six stress components, i.e.,
rij i; j ¼ 1�3ð Þ: r11, r22, r33, r12 ¼ r21, r13 ¼ r31, and
r23 ¼ r32, which are applicable for a solid element
FE model, as follows:
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which include 18 anisotropic parameters, i.e.,
ak k¼1�18ð Þ. The detailed description of the Yld2004-
18p yield function and the tensor transformation
with anisotropic parameters can be found in Ref. 14
The plastic anisotropy evolution of SS316L, exper-
imentally observed in Ref. 39 is captured by formu-
lating the anisotropic parameters as a function of
equivalent plastic strain e:

ak k¼1�18ð Þ eð Þ ¼ Ak � Bk � exp �Dk � eð Þ ð4Þ

Fig. 2. Stress–strain curve from uniaxial tension experiment in the
RD and the Hockett–Sherby isotropic strain-hardening model.39

Table II. Material parameters of the Hockett–
Sherby isotropic strain-hardening model39

r0 (MPa) H (MPa) Q n

339.48 1445.44 1.81 0.89

Table I. Dimensions of the non-standard cruciform
specimen39

Radius of pocket flat area (Rgauge) 5.65 mm
Fillet radius of pocket (Fpocket) 1.5 mm
Arm width (Warm) 30 mm
Initial thickness (T0) 1.2 mm
Thickness of pocket (Tpocket) 0.6 mm
Corner notch radius (Rnotch) 5 mm

Fig. 1. Schematic of the non-standard cruciform specimen geometry.39
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where Ak, Bk, and Dk are constants for each ak; as
summarized in Table III. The corresponding yield
loci evolution is visualized in Fig. 3 for 7 plastic
work levels from 10 MJ/m3 to 150 MJ/m3. As is
shown, the shape of the yield loci contracts during
plastic deformation near the uniaxial and plane
strain tensions in the transverse direction (TD) and
expands outward near the equibiaxial tension stress
state.

MULTI-INTERPOLATION METHOD

In this work, a multi-interpolation method is used
to determine a displacement trajectory for the arms
of the cruciform specimen to achieve a linear stress
path, which is equivalent to deformation under a
constant stress triaxiality, in the center pocket area.

This is an extension of the interpolation method
used in Ref. 51 which considered strain, as opposed
to stress, trajectories and only performed two
iterations of the interpolation. For each interpola-
tion step, a new displacement trajectory is obtained
by interpolating two reference displacement trajec-
tories using weighting factors, which are calculated
by the interpolation of two reference stress paths
(Ref. 1 and Ref. 2 in Fig. 4) to the target stress path.
Since the target is the result of interpolation using
two references and weighting factors, the two
references must be located on opposite sides of the
target path. Thus, two references are the minimum
number required, and more than two are necessary
if the target path and the references cross over each
other. Note that the simplest case of interpolation
method (with two reference paths) is first explained
in the current section. However, the actual applica-
tion to the cruciform simulation is much more
complicated (with more than two reference paths),
and thus the interpolation procedure will be
explained again step-by-step for pure shear condi-
tion in Section ‘‘Results and Discussion’’. Figure 4a
and b describes the details of the interpolation
method at a specific point in the stress path and
displacement trajectory, respectively. It should be
noted that the 11-direction is the RD, and also the
major loading direction, which is located along the
y-axis.

First, the initial reference stress paths (Ref. 1 and
Ref. 2) in Fig. 4a are obtained from FE simulations
with linear displacement trajectories near the tar-
get defined by the slope m of the target stress path.
Then, for each time step of the FE simulation
results, the interpolation point r22; r11ð Þ� on the
target path is found by an intersection between
r22; r11ð Þ1 and r22; r11ð Þ2 on the Ref. 1 and Ref. 2

paths, respectively. By this definition, the interpo-
lation point of the minor loading direction on the
target, r22ð Þ�, can be found as:
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Once r22ð Þ� is obtained from Eq. 5, r11ð Þ� is
calculated using the linear relationship with the
slope m, i.e., r11ð Þ�¼ m � r22ð Þ�, the weighting factors
a0 and b0, which represent the interpolating ratio
between the two references onto the target path, can
be determined from:

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Then, the new displacement trajectory can be
calculated using the same interpolation method and
the weighting factors between two reference dis-
placement trajectories:

Table III. Anisotropic parameters of Yld2004-18p
yield function39

ak Ak Bk Dk

1 0.93 �0.06 10
2 0.56 �0.10 27
3 0.71 0.06 45
4 0.80 �0.13 25
5 0.88 �0.03 35
6 0.89 0.01 8
7 1.22 �0.01 30
8 1.23 �0.03 5
9 0.99 0.18 20
10 1.40 0.12 4
11 1.40 �0.03 3
12 1.22 0.21 17
13 1.25 0.07 20
14 1.12 0.03 20
15 1.11 �0.03 27
16 0.89 �0.02 3
17 0.88 �0.01 20
18 1.20 �0.10 30

Fig. 3. Evolution of Yld2004-18p yield loci at 7 plastic work levels:
contracting uniaxial and plane strain tensions (TD) and expanding
outward near equibiaxial tension stress states according to
increment of plastic work.39
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d22ð Þ�¼ ðd22Þ1 þ
a0

a0 þ b0
� L ð7Þ

where L ¼ d22ð Þ2� d22ð Þ1 is the distance in the 22-
direction of the two points obtained at the same time
step on the two references (Fig. 4b). Note that the
displacement increment in the 11-direction at each
time step is controlled by the boundary condition in
the simulations as the same value for the two
references, i.e., d11ð Þ1¼ d11ð Þ2¼ d11ð Þ�. The entire
displacement trajectory is obtained through the
same procedure at each time step of FE simulation.
Note that the same weighting factors are used for
both stress path and displacement trajectory, even
though they are not linearly related.

To achieve the optimized displacement trajectory
producing the linear stress path that agrees with
the target stress ratio m, the displacement trajec-
tory is continuously updated through multiple iter-
ations. For each iteration, one of the references is

replaced by the displacement trajectory determined
in the last iteration so that the new references are
closer to the target. The procedure for the multi-
interpolation method is described schematically in
Fig. 5. Figure 5a depicts the progression of non-
linear stress paths toward the linear target through
the iterations, while Fig. 5b illustrates the corre-
sponding non-linear displacement trajectories.

Multi-interpolations are performed until the pre-
defined tolerance condition is satisfied. In this
study, two termination criteria are used. One is to
evaluate the total error of the stress path from the
target, i.e., sum of square error (SSE), which is
calculated with respect to the stress triaxiality.
Each target with a specific slope m is selected to
have a unique stress triaxiality value. The SSE is
expressed by:

SSE ¼
Xtot

n ¼ 1

gn � gt
� 	2 ð8Þ

Fig. 4. Schematic of the interpolation method: (a) determination of weighting factors a0 and b 0 interpolating two reference stress paths (Ref. 1 and
Ref. 2, red dash and blue dash-dot lines, respectively) to a target path (solid black line), and (b) new displacement trajectory determined by
interpolation of two references (Ref. 1 and Ref. 2) using the same weighting factors (Color figure online).

Fig. 5. Schematic of iterative progression for multi-interpolation method: (a) successive iterations of the stress interpolation approaching the
target linear path, and (b) displacement trajectories shifting with iterations.
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where tot is total number of time steps. gn is the
stress triaxiality calculated by the mean hydrostatic
pressure rmð Þ and equivalent stress rð Þ, i.e.,
gn ¼ rm=rð Þn, and gt is the target stress triaxiality.
In addition, one more termination criterion, DSSE
based on the difference in consecutive SSE at the
previous n � 1ð Þth and current nð Þth iterations, is
considered to assure optimization robustness of
multi-interpolation method:

DSSE ¼ SSEn � SSEn�1j j ð9Þ

In this study, the tolerance conditions used to
terminate the interpolation progression are SSE �
0:13 and DSSE � 0:03, which are determined
based on the data. These criteria ensure balancing
between the accuracy of interpolation method and
the robustness of the iteration procedure when
performing multi-interpolations.

FINITE ELEMENT ANALYSIS

The material models discussed previously, i.e.,
Hooke’s linear elasticity and Yld2004-18p non-
quadratic anisotropic plasticity yield function com-
bined with the Hockett–Sherby isotropic strain-
hardening model, are implemented into a user-
defined material subroutine (UMAT) for ABAQUS/
Standard 2022.55 In order to reduce the computa-
tional time, a 1/8th geometry of the cruciform
specimen is modeled by considering the orthotropic
symmetry in the material orientation and the
specimen geometry. The specimen is meshed with
8-node linear brick elements with reduced integra-
tion (C3D8R), as shown in Fig. 6. Finer meshes are
assigned in the center pocket area while the meshes
along the arms are coarser. Four elements are

included through the half-thickness. A displace-
ment boundary condition is applied at the end of
each arm, where the specimen is gripped in the
experiment.

Figure 7a and b shows the linear displacement

trajectories dL
d22:d11

� �
applied to the end of arms and

the corresponding stress paths r0
dL

22
:dL

11

� �
, respec-

tively. (Please refer to the nomenclature in Appen-
dix A). It should be noted that the stress paths are
extracted from the surface element for a central
integration point located at the center of the pocket,
assuming the deformation within a 1 mm radius
from the center is uniform in a practical sense. This
range is chosen because the area is large enough for
x-ray or neutron diffraction measurements. Target

stress paths rt
r22:r11

� �
are selected, specifically rt

�1:1

(near pure shear), rt
�1:2, rt

0:1 (uniaxial tension), rt
1:2

(near plane strain tension), and rt
1:1 (equibiaxial

tension), which are equivalent to gt ¼ 0, 0.111,
0.333, 0.505, and 0.666, respectively. To ensure that
there are sufficient references for each target, FE
simulations with ten linear displacement trajecto-
ries, i.e., dL

�7:6, dL
�1:1, dL

�2:3, dL
�1:2, dL

�1:3, dL
0:1, dL

1:2, dL
2:3,

dL
1:1, and dL

4:3 (Fig. 7a), were conducted, and the
corresponding ten stress paths, i.e., r0

�7:6, r0
�1:1,

r0
�2:3, r0

�1:2, r0
�1:3, r0

0:1, r0
1:2, r0

2:3, r0
1:1, and r0

4:3 (Fig. 7b),
were obtained as references. The stress paths
generated by linear displacements are highly non-
linear (Fig. 7b), except for r0

1:1.

RESULTS AND DISCUSSION

The multi-interpolation process has been applied
to each stress path individually. Figure 8 shows an
example of the multi-interpolation procedure for
pure shear, i.e., rt

�1:1, equivalent to gt�1:1 ¼ 0. (Please
refer to the nomenclature in Appendix A). In the
first iteration, the interpolation is performed in
three segments due to intersections, i.e., when
r11 <447 MPa, 447 MPa � r11 < 643 MPa, and
643 MPa � r11 , with different sets of reference
stress paths among r0

�7:6, r0
�1:1, r0

�2:3, and r0
�1:2. For

the first segment, when r11 < 447 MPa, r0
�7:6 and

r0
�1:1 are used as the two references because they are

located on opposite sides of the target path and are
the closest ones before r0

�1:1 crosses over the target.
Then, r0

�1:1 and r0
�2:3 are the new references for the

second segment when 447 MPa � r11 < 643 MPa,
and, finally, r0

�2:3 and r0
�1:2 are used for the rest of

path when 643 MPa � r11. After the first iteration,
the new displacement trajectory, i.e., d1

�1:1, is deter-
mined, as shown in Fig. 8 (black dash lines). The
superscript indicates the number of interpolation
iterations. Even after this first interpolation, the
stress path is significantly closer to the target
(Fig. 8a). The corresponding non-linear displace-
ment trajectory (Fig. 8b) is found between theFig. 6. FE model for cruciform specimen with 1/8th symmetry and

mesh design.
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references. From r1
�1:1, the stress triaxiality g1

�1:1 in
Fig. 8c is calculated based on the extracted data to
evaluate the error. The SSE of the first iteration,
obtained from Eq. 8, is 4.096 (Table IV), and thus
requires a second iteration, since it is significantly
higher than the pre-defined tolerance of
SSE � 0:13.

In the second iteration, the references are
updated to new ones closer to the target path to
narrow down the interpolation range. One of the old
references, r0

�7:6, is replaced by r1
�1:1, but three

others, r0
�1:1, r0

�2:3, and r0
�1:2, are used again. The

second iteration is performed in the same manner as
the first one and obtains r2

�1:1 and d2
�1:1, as shown in

Fig. 8a and b (green dash dot lines). The SSE is
reduced to 0.102 (< 0.13), but the DSSE still exceeds
the tolerance at 0.173 (> 0.03). Thus, the same
procedure is repeated for four iterations until the
termination criteria are fully satisfied, i.e., SSE �
0:13 and DSSE � 0:03. During the consecutive
interpolations, the stress path and the triaxiality
(Fig. 8c) clearly show the progression to the target
path, and become much more linear compared to the
first, single interpolation. The corresponding non-

Table IV. Progression of SSE and DSSE during
multi-interpolation r

i ¼ 1;4
�1:1

Iteration SSE DSSE

0 4.096 –
1 0.275 3.821
2 0.102 0.173
3 0.043 0.059
4 0.021 0.022

Fig. 7. Initial data used for the multi-interpolation method: (a) ten linear displacement trajectories, and (b) corresponding stress paths and five
target paths (gray dash lines) (Color figure online).

Fig. 8. Progression of multi-interpolation: (a) stress paths ri¼1;4
�1:1 , corresponding (b) displacement trajectories d i ¼ 1;4

�1:1 , and (c) stress triaxialities
gi ¼ 1;4
�1:1 (Color figure online).
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linear displacement trajectories, which cross over
several linear trajectories, are compared in Fig. 8b.
It should also be noted that the average SSE for the
central integration point at surface elements located
within a 1 mm radius from the center is 0:017,
which is nearly 10 times smaller than the termina-
tion criteria; thus, the data extraction from the
center element is reasonable.

Similarly, the interpolation process is performed
for the other four stress paths, i.e., rt

�1:2, rt
0:1, rt

1:2,
and rt

1:1. Each interpolation begins with a set of
reference paths and continues until both termina-
tion criteria are satisfied (see Appendix B). The
results of the multi-interpolation process are shown
in Fig. 9 for the linearized stress paths near the
targets, and in Fig. 10 for the corresponding non-
linear displacement trajectories. Figure 11 shows
the stress triaxiality from the stress paths in Fig. 9.
The gray dash lines are the targets for comparison.
The superscript indicates the number of interpola-
tion iterations required to satisfy the termination
criteria for the target stress path. Based on the
results, it can be concluded that the constant stress
triaxiality can be successfully achieved by the
proposed multi-interpolation method. Moreover, it
should be noted that the multi-interpolation method
can be applied to any non-standard specimen
geometry.

CONCLUSION

A multi-interpolation method has been intro-
duced to determine a non-linear displacement tra-
jectory which can produce a linear stress path, i.e.,
constant stress triaxiality, in the center reduced
thickness pocket area of a non-standard cruciform
specimen. FE simulations have been performed
using material models, i.e., Hooke’s linear elasticity
and Yld2004-18p non-quadratic anisotropic plastic-
ity yield function combined with the Hockett–
Sherby isotropic strain-hardening model, to
describe the elasto-plastic deformation behavior of
the SS316L material. The interpolation procedure is
applied to five target stress paths between pure
shear and equibiaxial tension, and iterated to
linearize the stress paths near the targets. Initially,
two or more reference paths were produced by

linear displacement trajectories, and replaced by
the closest one to the target for each iteration. Two
termination criteria were used to achieve accurate
results, which were evaluated by SSE � 0:13ð Þ, and
to ensure robustness of the iteration method with
DSSE � 0:03ð Þ. As the number of iterations
increases, the stress paths clearly show the pro-
gression to the target paths and the corresponding
stress triaxialities get closer to constant values.
Using these non-linear displacement trajectories,
experiments imposing constant stress triaxialities
can be conducted to assess, e.g., the austenite to
martensite transformation, which is affected by
stress state. Future experiments will validate the
numerical simulations and this methodology to
determine the non-linear displacement trajectories.
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APPENDIX A: NOMENCLATURE

Nomenclature used in this study is provided in
Table V.

APPENDIX B: PROGRESSION
OF INTERPOLATION TERMINATION

CRITERIA

Termination criteria values for each interpolation
of the target stress path are provided in Table VI.
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