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Abstract

The detection of disease clusters in spatial data analysis plays a crucial role in public health. While
the circular scan method is widely utilized for this purpose, accurately identifying non-circular (irregu-
lar) clusters remains challenging and reduces detection accuracy. To overcome this limitation, various
extensions have been proposed to effectively detect arbitrarily-shaped clusters. In this paper, we combine
the strengths of two well-known methods, the flexible and elliptic scan methods, which are specifically
designed for detecting irregularly shaped clusters. We leverage the unique characteristics of these meth-
ods to create candidate zones capable of accurately detecting irregularly-shaped clusters, along with a
modified likelihood ratio test statistic. By inheriting the advantages of the flexible and elliptic methods,
our proposed approach represents a practical addition to the existing repertoire of spatial data analysis
techniques.

Keywords: Spatial scan statistic, public health, disease cluster identification, candidate zones, likelihood
ratio test statistics

1 Introduction

In public health, surveillance procedures that identify disease clusters play an important role in controlling
and preventing disease outbreaks. Numerous methods can be used for detecting clustering and clusters. For
detecting spatial autocorrelation, methods such as Moran’s I (Moran, 1950) and Geary’s c (Geary, 1954) are
commonly used. These methods quantify a global property over the entire study area and indicate whether
response values are more similar than they would be under the null hypothesis that no spatial autocorrelation
is present. Therefore, Moran’s I and Geary’s c are global indices of spatial autocorrelation and can be used
in situations such as regression analysis when we want to check whether uncorrelated error assumptions are
satisfied or as evidence of clustering across the entire study area. In order to detect local spatial clusters,
other methods were proposed; e.g., the cluster evaluation permutation procedure (Turnbull et al., 1989),
the Besag-Newell method (Besag and Newell, 1991), and the circular spatial scan method (Kulldorff and
Nagarwalla, 1995; Kulldorff, 1997) and its related extensions.

The circular spatial scan method (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997) has gained remarkable
popularity for finding local clusters compared to the aforementioned methods due to its computational
efficiency and its power to detect disease clusters. This method is characterized by (i) the set of candidate
zones to be scanned, and (ii) the likelihood ratio test (LRT) statistic for each candidate zone. The capability
of the spatial scan method in detecting disease clusters inspired other researchers to propose extensions to
improve its accuracy, specifically, for detecting non-circular (irregularly-shaped) clusters. The circular scan
method and its extensions, generally, scan the entire study area and identify the candidate zones that obtain
the largest value of a LRT statistic.

There are many different approaches for constructing the set of candidate zones and for computing the
LRT statistic. Tango and Takahashi (2005, 2012) proposed the flexible scan method, in which non-circular
clusters can be detected more accurately by forming the set of candidate zones from a set of connected regions
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satisfying certain constraints. In the flexible scan method, each connected candidate zone is enclosed within
a circle comprised of a pre-specified set of nearest neighbors. Candidate zones coming from the connected
regions within the circle may not be large enough (or flexible enough) to include highly irregular and long
candidate zones. Additionally, the computational cost of this method becomes increasingly great as the size
of the circle is expanded, which may preclude more arbitrarily-shaped candidate zones from being considered
(Tango and Takahashi, 2005).

Kulldorff et al. (2006) proposed the elliptic scan method, which includes elliptical candidate zones along
with circular ones. Elliptical candidate zones allow the method to detect non-circular clusters with different
shapes and different angles when ellipses rotate around their centers. The elliptic method indeed uses a
variety of elliptical shapes and angles to identify irregularly-shaped clusters; however, its final results are
conditional on the selected shapes. As such, the set of elliptical zones may not have enough versatility to
cover non-elliptical clusters.

Another extension of the circular scan method is the minimum spanning tree method proposed by As-
sunção et al. (2006), which attempts to construct candidate zones based on the regions that result in the
largest LRT statistic. The minimum spanning tree algorithm may detect abnormal clusters that have a
star-like shape because a new region can be added to a current candidate zone regardless of whether the
LRT increases or decreases in relation to the current candidate zone. This tendency to detect star-shaped
clusters is called the “octopus effect”. Costa et al. (2012) extended the minimum spanning tree algorithm by
imposing early stopping criteria to the method. Specifically, a new region can only be added to the current
candidate zone if it increases the current LRT statistic value. Moreover, in order to avoid the octopus effect,
Costa et al. (2012) proposed additional stopping criteria, specifically, selecting only the regions that share at
least two connections with the current candidate zone. A problem with these methods (and also the elliptic
and flexible scan methods) is that adding a low risk region to an existing zone can increase the LRT of the
new zone. Philosophically, it seems unwise to include a low risk region in a cluster, e.g., a region with low
standardized mortality ratio (SMR), where SMR is the ratio of observed to expected cases in a region.

In this study, we propose the flexible-elliptical scan method, which combines the flexible and elliptic
scan methods to address their respective limitations and leverage their advantages. Our approach involves
modifying the set of candidate zones and the likelihood ratio test statistics. We compare the performance
of the proposed flexible-elliptical method with the established elliptic and rflex scan methods for identifying
irregularly-shaped disease clusters. This evaluation includes benchmark data sets comprising 56 diverse
irregularly-shaped cluster models, as well as real-world data sets such as the Northeastern United States
and NTM data. Our findings demonstrate a balanced integration between the flexible and elliptic scan
methods in accurately detecting irregularly-shaped clusters in disease surveillance. The flexible-elliptical
method exhibits better flexibility, inheriting the capabilities of the reflex and elliptic methods, particularly
in constructing the set of candidate zones. The proposed method offers a streamlined and straightforward
approach, eliminating the need for tuning parameters and providing a more adaptable solution to capture
irregular cluster shapes.

The structure of this paper is as follows. In Section 2, we describe the methodology of the circular
scan method, the elliptic scan method, the restricted flexible scan method, and then propose a new flexible-
elliptical scan method. In Section 3, we benchmark the performance of these scan methods and outline the
results using simulated data sets based on the breast cancer mortality of the northeastern United States
made available by Kulldorff (1997). In Section 4, we apply these methods in identifying clusters of the
Northeastern United States data set (Waller et al., 1992, 1994). Additionally, in Section 5, we apply these
methods in identifying and comparing clusters of nontuberculous mycobacterial (NTM) cases in Colorado.
In Section 6, we further discuss our results and draw conclusions.

2 Methods

Consider a geographical map (study area) that is partitioned into N regions (e.g., zip codes). Each region
is represented by its centroid i, i = 1, · · · , N , which is a geographical location inside the region. For each
region, we know (i) the population size, ni, and (ii) the number of cases, Yi. Let Z denote a candidate zone
that is formed from the union of one or more (typically connected) regions. Let Z be the set of candidate
zones. Each Z ∈ Z can be a potential cluster for which we believe the risk of developing disease inside Z is
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higher than the risk of developing disease outside Z. Let p denote the risk of developing disease inside Z.
Let q denote the risk of developing disease outside Z. Therefore, under the null hypothesis of no clustering,
p = q for all Z ∈ Z (the complete list of notation can be found in Appendix A). The alternative hypothesis
states that there is at least one cluster in the study area, i.e., there is at least one Z ∈ Z such that p > q.
More formally

H0 : p = q for all Z ∈ Z versus H1 : p > q for some Z ∈ Z. (1)

In general, the scan methodologies described in this paper are characterized by (i) the set of candidate zones
to be scanned, Z, and (ii) the LRT statistic, λ. We will use different subscripts after Z to indicate the
specific method used to construct the set of candidate zones, such as Zc, Ze, and Zf . Additionally, the LRT
statistics used for different scan methods are indicated by superscripts after λ, such as λc, λe, and λf .

We now define a number of statistics that are common to the methods we discuss. Let y+ =
∑︁N

i=1 Yi

denote the total number of cases and n+ =
∑︁N

i=1 ni denote total population over the entire study area. For a
candidate zone Z, let yin =

∑︁
i∈Z Yi denote the observed number of cases inside Z and nin =

∑︁
i∈Z ni denote

the population size inside Z. The expected number of cases inside Z is denoted by Ein. Assuming the risk
is constant across all regions, the expected number of cases inside Z is Ein = niny+/n+. Alternatively, we
can use other approaches such as generalized linear models to estimate the expected number of cases in each
region (Moraga, 2019). Additionally, we let yout = y+ − yin denote the observed number of cases outside Z,
nout = n+ − nin denote the population size outside Z, and Eout = y+ −Ein denote the expected number of
cases outside Z.

We discuss the circular, elliptic, flexible, restricted flexible, and the proposed flexible-elliptical scan
methods below. Additional discussion of the former methods can be found in French et al. (2022).

2.1 The circular scan method

The circular scan method (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997) overlays a circular window on
each centroid i in the study area. We successively add the nearest regions to the starting region until some
percentage of the total population is reached to create a sequence of candidate zones. We then do the same
process for all centroids in the study area to construct Zc.

Kulldorff (1997) modeled the case counts, Yi, using a (i) Binomial or (ii) Poisson distribution in order to
derive the LRT statistic λc. The case counts are modeled as

Yi
indep.∼ Poisson(nip), if i ∈ Z, and Yi

indep.∼ Poisson(niq), if i ̸∈ Z (2)

or

Yi
indep.∼ Binomial(ni, p), if i ∈ Z, and Yi

indep.∼ Binomial(ni, q), if i ̸∈ Z. (3)

Assuming a Poisson distribution for the case counts Yi, the likelihood function of a fixed candidate zone
Z in terms of disease risk parameters p and q is

LP (Z, p, q) =
∏︂
i∈Z

e−nip(nip)
Yi

Yi!

∏︂
i̸∈Z

e−niq(niq)
Yi

Yi!
,

and Kulldorff (1997) derived the LRT statistic for the Poisson case counts as

λc
Z =

supp>q LP (Z, p, q)

supp=q LP (Z, p, q)
=

(︂
yin

nin

)︂yin
(︂

yout

nout

)︂yout(︂
y+

n+

)︂y+
I

(︃
yin
nin

>
yout
nout

)︃

=

(︃
yin
Ein

)︃yin
(︃
yout
Eout

)︃yout

I

(︃
yin
Ein

>
yout
Eout

)︃
, (4)

where I() is an indicator function.
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The LRT statistic in Equation (4) has subscript Z to indicate that the LRT statistic is computed for a
specific zone Z ∈ Zc. The circular scan method proceeds by computing the LRT statistic in Equation (4)
for each candidate zone Z ∈ Zc. The candidate zone that attains the maximum LRT statistic is known as
the most likely cluster (MLC). Therefore, the LRT statistic value for the MLC is computed as

λc = sup
Z∈Zc

λc
Z. (5)

Assuming a Binomial distribution for the case counts Yi, the likelihood function of a fixed candidate zone
Z in terms of disease risk parameters p and q is

LB(Z, p, q) =
∏︂
i∈Z

(︃
ni

Yi

)︃
pYi (1− p)

ni−Yi
∏︂
i ̸∈Z

(︃
ni

Yi

)︃
qYi (1− q)

ni−Yi ,

and Kulldorff (1997) derived the LRT statistic for the Binomial case counts as

λ
′c
Z =

supp>q LB(Z, p, q)

supp=q LB(Z, p, q)

=

(︃
yin
nin

)︃yin
(︃
nin − yin

nin

)︃nin−yin
(︃
yout
nout

)︃yout
(︃
nout − yout

nout

)︃nin−yin

(︃
y+
n+

)︃y+
(︃
n+ − y+

n+

)︃n+−y+
I

(︃
yin
nin

>
nin − yin

nin

)︃
. (6)

The LRT statistic value for the MLC is computed as

λ
′c = sup

Z∈Zc

λ
′c
Z . (7)

The complete list of notation and derivation of the LRT statistic for Poisson and Binomial case counts can
be found in Appendix A.

The “second MLC” is the candidate zone that attains the second highest value of λc while not overlapping
the MLC. Similarly, the “third MLC” and “fourth MLC” can be computed. We use the Monte Carlo
method described in (Waller and Gotway, 2004, p. 126) to assess the significance of the MLC (or the
secondary MLCs). In short, data sets are simulated under the null hypothesis, the test statistic of the MLC
is determined for each simulated data set, and the test statistics for the simulated data sets are used to
compute a Monte Carlo p-value for the test statistic associated with each candidate zone.

2.2 The elliptic scan method

As discussed in the previous section, the circular scan method uses circular windows to construct the set
of candidate zones. Therefore, this method is ineffective for detecting non-circular clusters. To resolve this
limitation, Kulldorff et al. (2006) proposed the elliptic scan method, which modifies the set of candidate
zones Zc.

In the elliptic scan method, the set Ze consists of many overlapping ellipses; each ellipse is characterized
by (i) the x-coordinate and y-coordinate of its origin i, (ii) its shape s, (iii) its angle ϕ, and (iv) its population
size. The shape s ≥ 1 of an ellipse is defined as the ratio of the major axis and minor axis. A window with
s = 1 is a special case of an ellipse that represents a circle, and as s gets larger, the ellipse becomes narrower
and longer. The collection of ellipse shapes recommended by Kulldorff et al. (2006) are s = 1, 1.5, 2, 3, 4,
5, 6, 8, 10, 15, 20, 30, 60, 120. The parameter ϕ is the angle between the major axis and x-axis. Figure 1
displays an ellipse and its associated parameters.

For a fixed center, shape s, and population size, we can define the set of angles ϕ such that a new ellipse
overlaps at least 70% of the previous ellipse. To construct a set of candidate zones, Ze, for a region with a
fixed center located at (x, y), shape s, and angle ϕ, we successively enlarge the size of the ellipse (though
shape s is fixed) until the stopping criterion is met, which is typically including no more than 50% of the
total population in the ellipse. Each time a new centroid falls inside the ellipse, a new candidate zone is
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Figure 1: A study area comprised of 19 polygonal regions. The centroid of each region is indicated by a dot.
The dashed-line ellipse, which includes a collection of regions, is a potential candidate zone Z ∈ Ze. The
elliptic scan method starts with a single centroid i and extends the ellipse until a new centroid is absorbed.
A new candidate zone is created each time a new centroid is absorbed. For each region i, and with a fixed
s = b

a and ϕ, this process continues until a stopping criterion is met (by default, when 50% of the population
is contained within an ellipse).

created by taking the union of all regions with a centroid inside the ellipse. We repeat this process for all
different user specified combinations of centers, shapes, and angles.

To conduct hypothesis testing, both λc
Z and λ

′c
Z in Equations (4) and (6) can be used as LRT statistics.

However, using these unpenalized statistics may cause detecting impractically long and narrow ellipses.
Thus, Kulldorff et al. (2006) suggested an eccentricity penalty function that penalizes very thin clusters.
The eccentricity penalty is

(︁
4s(s+ 1)−2

)︁γ
, where s is the shape of the cluster and γ ≥ 0 is a tuning

parameter. Therefore, the likelihood ratio test statistic for Poisson case counts in the elliptic scan method
is given by

λe = sup
Z∈Ze

(︃
yin
Ein

)︃yin
(︃
yout
Eout

)︃yout

I

(︃
yin
Ein

>
yout
Eout

)︃(︃
4s

(s+ 1)2

)︃γ

. (8)

When s = 1 or γ = 0, there is no penalty. For a fixed s > 1, as γ gets larger, a larger penalty is imposed on
the model. Similarly, for a fixed γ > 0, as s gets larger, a larger penalty is imposed on the model, so long
and narrow clusters are less likely to be detected. When γ → ∞, penalties for non-circular clusters are very
large and only circular clusters can be detected. The same penalty function can be used for the Binomial
case counts LRT given in Equation (6). In the following sections, we focus only on the Poisson case counts.
However, any LRT statistic modification can be applied to the Binomial case counts as well.

The elliptic scan method is relatively fast, powerful, and suited for moderately irregular clusters. However,
the elliptic scan method also has many unknown parameters such as shape s, angle ϕ, population size, and
tuning parameter γ that should be specified by users. For the real data sets in which the true clusters are
unknown, picking the right parameters is not simple, and using different parameters has a significant impact
on the final results and decisions. Furthermore, because the set Ze includes only ellipses, the elliptic method
is unable to detect highly irregular cluster shapes, e.g., star-like shape clusters.

2.3 The flexible scan method

The flexible spatial scan method proposed by Tango and Takahashi (2005) is able to detect non-circular
clusters by exhaustively searching all connected candidate zones in within neighborhoods that include up to
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K regions. Given K, for every region i ∈ {1, ..., N} the set of the candidate zones Zf is the union of all
connected subsets among the K nearest neighbors of i that include region i. The algorithm that Tango and
Takahashi (2005) proposed for constructing the connected regions within a circle with radius K is as follows:

1. For each region i ∈ {1, · · · , N}, define the set Wi = {i, i1, · · · , ik} such that ik is the kth nearest region
to the region i.

2. Let Z be a set in the power set of Wi (i.e., Z ∈ P(Wi)) which includes region i. Therefore, Z is a
set that has at most k + 1 regions including centroid i. For example, Z = {i, i2, i8, i5, · · · , ik′}, where
k′ ≤ k.

3. Split the set Z into two subsets Z∗
1 = {i} and Z1 = Z \ Z∗

1.

4. Split set Z1 to two subsets Z2 and Z∗
2 such that Z∗

2 contains all the regions of Z1 that are connected
to set Z∗

1, and Z2 contains all the regions that are not connected to Z∗
1. The process continues until

either Z∗
j or Zj becomes a null set for a j ∈ N.

5. Z in Step 2 is a connected set of regions if Zj in Step 4 becomes a null set first, otherwise Z is
disconnected.

6. If Z in Step 5 is a connected set, it will be added to Zf .

7. Repeat Steps 1 through 6 for all regions i and all sets Z ∈ P(Wi).

Once the set of candidate zones Zf is formed, the LRT statistic λc
Z Equation (4) (for the Poisson case

counts) is calculated for each Z ∈ Zf , and the one that attains the maximum is the MLC. Compared to the
circular and elliptic scan method, this method can detect highly irregular clusters within small neighborhood
sizes. Since the number of candidate zones increases exponentially as a function of K, this method is not
computationally feasible for large K like K ≥ 30 (Tango and Takahashi, 2005). Additionally, in those
situations where the true cluster is circular, the flexible method tends to detect clusters larger than the true
cluster. In the next section, we describe the restricted-flexible scan method, which attempts to address these
limitations.

2.4 The restricted flexible scan method

Due to the computational inefficiency of the flexible scan method, Tango and Takahashi (2012) proposed the
restricted flexible (rflex) scan method to decrease the computation time needed for detecting larger clusters.
To avoid adding low risk regions to the set of candidate zones, for each region Z ∈ Zf , Tango and Takahashi
proposed the following restricted likelihood ratio by taking the risk of each individual region into account:

λr
Z =

(︃
yin
Ein

)︃yin
(︃
yout
Eout

)︃yout

I

(︃
yin
Ein

>
yout
Eout

)︃∏︂
i∈Z

I(pi < α1), (9)

where α1 is a pre-specified significance level and pi is the middle p-value given by

pi = P (Yi ≥ yi + 1) +
1

2
P (Yi = yi) , (10)

where yi is the observed case count for region i, Yi ∼ Poisson(nir), and r = y+/n+ is an estimate of constant
risk. For a low risk region i ∈ Z, the indicator function I(pi < α1) is zero and then the entire candidate zone
Z is considered insignificant, meaning that it will be removed from the set of candidate zones Zf . Removing
low risk zones from the set of candidate zones Zf makes the computational load lighter than the original
method. Tango and Takahashi (2012) provided the following guidance regarding the choice of α1 as follows:

� 0.10 ≤ α1 < 0.20 for detecting small clusters,

� 0.20 ≤ α1 < 0.30 for detecting small to medium clusters,
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� 0.30 ≤ α1 < 0.40 for detecting large clusters.

The tuning parameter α1 is an unknown parameter that must be specified by users that will directly impact
the results and performance of the restricted method. Moreover, even though the restricted flexible method
has a lighter computational load than the original flexible method, it may still be computationally demanding
for large α1.

2.5 The flexible-elliptical scan method

We now describe the flexible-elliptical scan method. The flexible-elliptical method is characterized by (i)
the set of candidate zones Zfe (the subscript “fe” stands for flexible-elliptical) and (ii) the LRT statistic
λfe. Because Tango and Takahashi (2005, 2012) create candidate zones from subsets of connected regions
in concentric circles having K regions, highly irregular and long clusters may be difficult to detect unless K
becomes large. More specifically, K might need to be very large before the irregular cluster in contained in a
concentric circle of K nearest neighbors. Also, the set of elliptic candidate zones Ze is not versatile enough
to cover non-elliptical clusters. To form a larger and more flexible set of candidate zones, we construct the
set of candidate zones based on the set of all connected subsets within the elliptical windows. In other words,
for a fixed region i, fixed shape s, and fixed angle ϕ, first we sequentially enlarge the ellipsis until a stopping
criterion is met; inside the largest ellipse we find all connected subsets that include region i.

The circular and elliptic scan methods tend to detect clusters larger than the true cluster because their
candidate zones absorb low risk regions as they become larger. To eliminate low risk regions from Zfe,
we adjust the LRT statistic in Equation (4) so that a region is only included in a candidate zone if its
standardized mortality ratio (SMR) is at least 1. More formally, Z remains in Zfe if Yi/Ei > 1 for all
i ∈ Z; but, Z is removed from Zfe if Yi/Ei ≤ 1 for some i ∈ Z. Thus, we specify the LRT statistic for the
flexible-elliptical method as

λfe
Z =

(︃
yin
Ein

)︃yin
(︃
yout
Eout

)︃yout

I

(︃
yin
Ein

>
yout
Eout

)︃∏︂
i∈Z

I

(︃
Yi

Ei
> 1

)︃
. (11)

Considering Equation (11), if only one region i has fewer observed cases than what is expected, then the
product

∏︁
i∈Z I(Yi/Ei > 1) becomes zero and the entire candidate zone Z is removed from Zfe. Removing

low risk candidate zones from the set Zf will reduce the computation time compared to the unrestricted
method. Additionally, the flexible-elliptical method may consider fewer candidate zones than the rflex
method when α1 is relatively large (e.g., α1 ≥ 0.40), making it faster to apply. Unlike the restricted LRT
statistic λr in Equation (9), which requires an additional unknown parameter α1 in the model, the proposed
LRT statistic in Equation (11) does not require any additional tuning parameter. This is helpful because
the size of the true cluster is unknown, making it difficult to choose an appropriate α1.

We also can use a different adjustment to the LRT statistic λfe
Z in Equation (11) to eliminate low risk

regions. To accomplish that, let gi = Yi/Ei, i ∈ {1, · · · , N}, denote the empirical region rate and ḡ =
1
N

∑︁N
i=1 gi. Instead of using the multiplier

∏︁
i∈Z I (Yi/Ei > 1) in Equation (11), we can use

∏︁
i∈Z I (gi > ḡ).

For the data sets used in the simulation study section (Section 3), we get almost identical results. Due to
this, in Section 3, we only provide the results of the flexible-elliptical method when using the LRT statistic
in Equation (11).

3 Simulation Study

To assess the performance of the elliptic scan method, we compare its results to the elliptic and rflex scan
method using non-circular benchmark data sets provided by Duczmal et al. (2006). The benchmark data sets
are simulated based on the female breast cancer mortality in the N = 245 counties (or county equivalent)
in the northeastern United States during the years 1988-1992 (Kulldorff et al., 2003). Eleven clustering
models “a” through “k” are generated such that the total number of cases across the study area is y+ = 600
among n+ = 29, 535, 210 people at risk. Figure 2 illustrates clustering models “a” -“i”. Cluster “j” is the
union of “g” and “h”. Cluster “k” is the union of “g”, “h”, and “i”. For each clustering model mentioned
above, 10,000 different data set are generated. Additionally, 99,999 data sets are simulated under the null
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hypothesis of no clustering. These benchmark data sets are available in the neastbenchmark R package,
which can be installed from https://github.com/jfrench/neastbenchmark.

To have a more extensive comparison, we generated 45 irregularly-shaped clustering models based on cir-
cular benchmark data sets provided by Kulldorff et al. (2003). Three different sets of irregularly-shaped clus-
tering models, iurban (i.e., irregularly-shaped urban clustering model), irural, and imixed (i.e., irregularly-
shaped mixed of urban and rural clustering models) are generated. Each clustering model contains 2-16
regions (counties). For each clustering model mentioned above, 10,000 different data set are generated. The
last three plots of Figure 2 illustrate nine of these 45 clustering models.

To evaluate how well a cluster identified by each scan method matches the true cluster, different perfor-
mance measures can be used (Costa et al., 2012; Tango and Takahashi, 2005). We compare the methods in
terms of their sensitivity, PPV, and misclassification as described below. Let z and ẑ denote the true cluster
and the detected cluster, respectively. Let n(X) be the population inside any zone X. Sensitivity is the
proportion of the population of the true cluster that is covered by the detected cluster and is computed as

sensitivity =
n(z ∩ ẑ)

n(z)
. (12)

PPV is the proportion of the population of the detected cluster that is covered by the true cluster and is
computed as

PPV =
n(z ∩ ẑ)

n(ẑ)
. (13)

Misclassification is the proportion of the total population that is not correctly categorized and is computed
as

misclassification =
n[(z ∪ ẑ) ∩ (z ∩ ẑ)c]

n+
. (14)

Ideally, we want to see sensitivity and PPV equal to 1 and misclassification equal to 0.
We compare the performance of the flexible-elliptical, rflex (for both tuning parameters α1 = 0.2, and

α1 = 0.3), and elliptic scan method in terms of the average sensitivity, PPV, and misclassification. The
smerc R package (French, 2021) was used to apply each scan method (two main functions are elliptic.test
and rflex.test) to the benchmark data sets. Each scan method was applied to 1,000 simulated data sets
for each of the 56 clustering models. To keep the set of candidate zones more comparable for all three scan
methods, the stopping criterion for the size of the scanning windows was set to K-nearest neighbors. That
is, for each starting region,i, a maximum of K − 1-nearest neighbors can be added. The rflex scan method
used the middle p-values and the tuning parameters were set to α1 = 0.2 and α1 = 0.3. Both the elliptic
and the flexible-elliptical methods used the default shape and angle values used in the SaTScanTM software
(Kulldorff, 2021). More specifically, shapes are s = 1, 1.5, 2, 3, 4, 5 and the number of angles associated
with each shape is ϕ = 1, 4, 6, 9, 12, 15. Therefore, for each region i, 47 different elliptical windows are
considered; then, each of 47 elliptical shapes is enlarged until K = 20 regions are included. All methods
identified the clusters using the corresponding version of the LRT statistic in Equations (8), (9), and (11),
respectively.

Table 1 summarizes the average sensitivity, PPV, and misclassification for different methods across all
56 benchmark clustering models. Notably, the performance of the rflex method exhibits some inconsistency
between the two α1 levels, 0.2 and 0.3. This observation practically implies that the effectiveness of the rflex
method relies on the chosen value of α1 and the specific characteristics of the clustering model. For instance,
when examining the clustering model “irural05”, the sensitivity ranges from 0.61 for α1 = 0.20 to 0.70 for
α1 = 0.30, while the PPV ranges from 0.79 to 0.74, or the clustering model “iurban08”, the sensitivity
ranges from 0.59 for α1 = 0.20 to 0.71 for α1 = 0.30, while the PPV ranges from 0.81 to 0.78. Overall, the
sensitivity of the elliptic method appears to outperform the other methods. This heightened sensitivity may
be attributed to the fact that the elliptic method has a tendency to detect clusters that are larger than the
true clusters. By detecting larger clusters, the elliptic method captures a greater number of true positives,
resulting in a higher sensitivity value. However, it is important to note that this enhanced sensitivity comes
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Table 1: The average sensitivity, PPV, and misclassification of the flexible-elliptical, rflex (for both α1 = 0.2,
and α1 = 0.3), and elliptic scan methods for 56 different clustering models. For each clustering model, the
average is over 1,000 simulated data sets.

Sensitivity PPV Misclassification

flex-ellip rflex0.2 rfflex0.3 ellip flex-ellip rflex0.2 rflex0.3 ellip flex-ellip rflex0.2 rflex0.3 ellip

a 0.69 0.66 0.66 0.76 0.78 0.80 0.76 0.80 0.02 0.02 0.02 0.02

b 0.49 0.42 0.46 0.63 0.74 0.79 0.76 0.76 0.05 0.04 0.04 0.04

c 0.62 0.63 0.69 0.78 0.85 0.83 0.82 0.79 0.01 0.01 0.01 0.01

d 0.51 0.46 0.49 0.65 0.79 0.84 0.80 0.75 0.03 0.02 0.03 0.02

e 0.33 0.30 0.32 0.45 0.76 0.81 0.76 0.73 0.04 0.04 0.04 0.04

f 0.31 0.25 0.28 0.49 0.71 0.75 0.70 0.77 0.09 0.09 0.09 0.07

g 0.25 0.19 0.21 0.27 0.63 0.65 0.62 0.66 0.08 0.08 0.08 0.08

h 0.46 0.36 0.41 0.42 0.76 0.77 0.74 0.68 0.07 0.08 0.08 0.08

i 0.29 0.27 0.29 0.40 0.75 0.76 0.74 0.72 0.06 0.06 0.06 0.06

j 0.29 0.22 0.25 0.32 0.84 0.83 0.81 0.77 0.14 0.15 0.15 0.15

k 0.22 0.15 0.17 0.24 0.69 0.64 0.64 0.62 0.16 0.17 0.17 0.17

imixed02 0.95 0.95 0.95 0.96 0.87 0.87 0.84 0.84 0.01 0.01 0.01 0.01

imixed03 0.92 0.92 0.92 0.93 0.85 0.87 0.81 0.79 0.01 0.01 0.01 0.01

imixed04 0.89 0.89 0.90 0.93 0.84 0.86 0.81 0.79 0.01 0.01 0.01 0.01

imixed05 0.89 0.88 0.90 0.90 0.88 0.88 0.86 0.83 0.01 0.01 0.01 0.01

imixed06 0.89 0.88 0.89 0.90 0.88 0.89 0.85 0.82 0.01 0.01 0.01 0.01

imixed07 0.85 0.83 0.85 0.86 0.88 0.88 0.84 0.80 0.01 0.01 0.01 0.01

imixed08 0.85 0.84 0.86 0.87 0.87 0.87 0.84 0.80 0.01 0.01 0.01 0.01

imixed09 0.81 0.79 0.80 0.83 0.88 0.88 0.84 0.79 0.01 0.01 0.01 0.02

imixed10 0.80 0.78 0.81 0.83 0.90 0.89 0.86 0.82 0.01 0.01 0.01 0.02

imixed11 0.80 0.78 0.80 0.82 0.90 0.89 0.86 0.80 0.01 0.01 0.01 0.02

imixed12 0.75 0.72 0.74 0.79 0.91 0.90 0.87 0.81 0.02 0.02 0.02 0.02

imixed13 0.75 0.71 0.75 0.81 0.92 0.91 0.88 0.83 0.02 0.02 0.02 0.02

imixed14 0.72 0.68 0.71 0.77 0.91 0.89 0.86 0.81 0.02 0.02 0.02 0.02

imixed15 0.59 0.57 0.60 0.71 0.86 0.87 0.84 0.77 0.02 0.02 0.02 0.02

imixed16 0.70 0.67 0.71 0.77 0.91 0.91 0.88 0.82 0.02 0.02 0.02 0.02

iurban02 0.96 0.95 0.95 0.87 0.75 0.82 0.75 0.77 0.02 0.01 0.02 0.02

iurban03 0.93 0.90 0.92 0.93 0.79 0.84 0.79 0.85 0.03 0.02 0.03 0.03

iurban04 0.86 0.81 0.87 0.82 0.71 0.76 0.72 0.68 0.03 0.03 0.03 0.04

iurban05 0.85 0.82 0.87 0.90 0.79 0.85 0.81 0.82 0.04 0.03 0.04 0.04

iurban06 0.82 0.75 0.83 0.86 0.79 0.84 0.79 0.78 0.05 0.05 0.05 0.05

iurban07 0.83 0.75 0.82 0.87 0.84 0.89 0.85 0.85 0.06 0.06 0.05 0.05

iurban08 0.70 0.59 0.71 0.74 0.77 0.81 0.78 0.71 0.07 0.07 0.06 0.08

iurban09 0.70 0.60 0.72 0.81 0.79 0.83 0.80 0.76 0.07 0.07 0.06 0.06

iurban10 0.62 0.49 0.62 0.65 0.77 0.80 0.78 0.69 0.09 0.09 0.08 0.10

iurban11 0.60 0.46 0.60 0.66 0.76 0.78 0.78 0.68 0.09 0.10 0.09 0.11

iurban12 0.53 0.42 0.52 0.69 0.81 0.81 0.80 0.73 0.12 0.13 0.12 0.11

iurban13 0.70 0.56 0.69 0.74 0.84 0.86 0.85 0.74 0.08 0.09 0.08 0.10

iurban14 0.49 0.35 0.48 0.55 0.79 0.79 0.79 0.68 0.12 0.14 0.12 0.14

iurban15 0.51 0.37 0.49 0.54 0.79 0.81 0.80 0.70 0.12 0.13 0.12 0.14

iurban16 0.65 0.51 0.64 0.73 0.85 0.86 0.86 0.78 0.09 0.11 0.09 0.10

irural02 0.95 0.97 0.96 0.97 0.92 0.86 0.83 0.90 0.00 0.00 0.00 0.00

irural03 0.93 0.95 0.95 0.96 0.92 0.86 0.82 0.87 0.00 0.00 0.00 0.00

irural04 0.80 0.91 0.92 0.90 0.89 0.83 0.80 0.86 0.00 0.00 0.00 0.00

irural05 0.69 0.61 0.70 0.72 0.81 0.79 0.74 0.60 0.01 0.00 0.01 0.01

irural06 0.82 0.86 0.87 0.89 0.89 0.85 0.80 0.84 0.00 0.00 0.00 0.00

irural07 0.59 0.74 0.76 0.78 0.82 0.83 0.78 0.81 0.01 0.00 0.00 0.00

irural08 0.47 0.60 0.69 0.75 0.83 0.81 0.75 0.79 0.01 0.00 0.00 0.00

irural09 0.62 0.76 0.78 0.79 0.85 0.85 0.82 0.71 0.01 0.00 0.00 0.01

irural10 0.62 0.74 0.77 0.79 0.85 0.84 0.82 0.76 0.01 0.00 0.00 0.00

irural11 0.51 0.50 0.55 0.64 0.83 0.84 0.80 0.70 0.01 0.01 0.01 0.01

irural12 0.45 0.60 0.71 0.74 0.76 0.82 0.83 0.63 0.01 0.01 0.01 0.01

irural13 0.42 0.54 0.65 0.68 0.77 0.81 0.81 0.65 0.01 0.01 0.01 0.01

irural14 0.52 0.50 0.56 0.69 0.85 0.85 0.83 0.74 0.01 0.01 0.01 0.01

irural15 0.42 0.52 0.61 0.71 0.81 0.83 0.83 0.75 0.01 0.01 0.01 0.01

irural16 0.30 0.36 0.44 0.64 0.74 0.79 0.79 0.70 0.02 0.02 0.02 0.01
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Figure 3: Box plots of the average (a) sensitivity, (b) PPV, and (c) misclassification for all 56 cluster
models.

at the cost of potentially including some false positives in the identified clusters. In contrast, the flexible-
elliptical demonstrates a more consistent sensitivity and PPV across all different clustering models. Unlike
the rflex method, which exhibits varying results based on the chosen value of α1, the flexible-elliptical method
achieves a more constant sensitivity and PPV across different clustering models. Additionally, the flexible-
elliptical method does not suffer from unnecessarily detecting larger clusters like the elliptic method. While
the flexible-elliptical method may not always surpass the rflex and elliptic methods individually, it provides
a robust and stable performance compare to the other two methods.

Figure 3 shows the results extracted from Table 1, presenting box plots of the average sensitivity, PPV,
and misclassification for each method among all 56 clustering models. On average, the elliptic method
demonstrates better performance compared to other methods. The flexible-elliptical method exhibits similar
sensitivities to the rflex method with α1 = 0.3, showcasing its overall robust performance. In terms of
PPV, on average, the rflex method with α1 = 0.2 and the flexible-elliptical method demonstrate the highest
average PPV values among the tested methods. This underscores the effectiveness of the flexible-elliptical
method in identifying true clusters while minimizing false positives compared to elliptic method. On the
other hand, the elliptic method exhibits a relatively lower PPV, highlighting the advantages offered by the
flexible-elliptical method in achieving precise and reliable cluster identification. Regarding misclassification,
the results indicate similar average levels across all clustering models for each method.

4 Application to Northeastern United States data

We now detect clusters of breast cancer mortality cases in the Northeastern United States during the years
1988-1992. This data set is the inspiration for the simulated data examined in the previous section. We
compare the clusters identified by the elliptic, rflex, and flexible-elliptical scan methods. The total number
of observed breast cancer mortality cases is y+ = 58, 943, which was aggregated across the years 1988-–1992.
The population of each region used in this analysis is the 1990 U.S. census estimate, with the total number
of persons at risk being n+ = 29, 535, 210. More information related to the Northeastern data set can be
found in Kulldorff et al. (2003).

Figure 4 provides choropleth maps of the case count (left panel) and SMR (right panel) for each region
in the Northeastern data set. The number of cases per region ranged from 2 to 2,169 with a median of 86
cases. The SMR of each region is computed as SMRi = Yi/Ei, where Ei is the population size of each region
multiplied by the constant risk = y+/n+. The SMRs of the regions ranged from 0.33 to 1.81. While the case
count plot in the left panel of Figure 4 does show patterns of large case counts, it is not clear whether this
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Figure 4: Breast cancer mortality cases (left panel) and SMR (right panel) for the Northeastern United
States data.

pattern is unusual because the plot doesn’t account for the population size of each region. The SMR plot
in the right panel of Figure 4 doesn’t indicate any systematic pattern of high SMRs. Therefore, spatial scan
methods must be applied to this data set to identify clusters.

The Northeastern data were analyzed using the previously discussed scan methods, each of which identi-
fied different clusters. The maximum number of regions allowed in each candidate zone was set to K = 20.
The default values of s and ϕ provided in Section 3 are used for the elliptic and flexible-elliptical method.
For the middle p-value, two tuning parameters α1 = 0.2 and α1 = 0.3 were considered for the rflex method.
For the elliptic method, γ = 0 was used for the penalty function in Equation (8).

Figure 5 displays clusters detected by each scan method. There are seven clusters identified by the rflex
method using α1 = 0.2. Eight clusters are detected by the rflex method using α1 = 0.3. Six clusters are
detected by the elliptic and flexible-elliptical scan method. A summary of the significant clusters found at
level α = 0.05 is given in Table 2.

The flexible-elliptical method exhibits several key properties that are worth focusing on. Notably, the
clusters detected by this method encompass a larger number of cases, on average, compared to both the
elliptic and rflex methods. Furthermore, the clusters identified by the flexible-elliptical method tend to have
the largest population at risk, indicating their significance in terms of potential public health impact. While
the rflex methods tend to yield clusters with higher SMR values, the flexible-elliptical method demonstrates
slightly smaller SMR values, reflecting its ability to capture clusters with more precise risk estimates. In
contrast, the elliptic method, which has a tendency to include low-risk regions, yields the lowest mean SMR
values among the methods even though the population at rick is not as high as the flexible-elliptical method.
This again show balancing the advantages of both rflex and elliptic method. For example, consider Cluster 1
detected by the flexible-elliptical method. This cluster encompasses the largest population at risk compared
to any other clusters. Intriguingly, the rflex method detects two smaller clusters, namely Clusters 2 and 4,
which when combined, form a subset of Cluster 1. This example demonstrates that the flexible-elliptical
method is capable of identifying more extensive and impactful clusters when compared to multiple smaller
clusters detected by the rflex method.

Also, Cluster 1 detected by the flexible-elliptical method was disconnected into two separate clusters,
namely Cluster 1 and Cluster 4, by the elliptic method. This could be due to its ability to detect clusters
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Table 2: Significant clusters detected by the rflex method (both α1 = 0.2 and α1 = 0.3), flexible-elliptical
(flex-ellip) method, and elliptic method. The Monte Carlo p-value was computed using 999 null data sets
under the constant risk hypothesis at the significance level of α = 0.05.

Method Cluster population cases expected SMR p-value
rflex (α1 = 0.2) Cluster 1 1922489 4525 3836 1.18 0.001

Cluster 2 2232866 5150 4456 1.16 0.001
Cluster 3 920991 2248 1838 1.22 0.001
Cluster 4 228322 643 455 1.41 0.001
Cluster 5 660581 1537 1318 1.17 0.001
Cluster 6 507044 1201 1011 1.19 0.001
Cluster 7 104057 291 207 1.40 0.003

mean = 939,478 mean = 2228 mean = 1.25

rflex (α1 = 0.3) Cluster 1 1922489 4525 3836 1.18 0.001
Cluster 2 2232866 5150 4456 1.16 0.001
Cluster 3 920991 2248 1838 1.22 0.001
Cluster 4 228322 643 455 1.41 0.001
Cluster 5 660581 1537 1318 1.17 0.001
Cluster 6 507044 1201 1011 1.19 0.001
Cluster 7 104057 291 207 1.40 0.004
Cluster 8 470397 1084 938 1.15 0.041

mean = 880,843 mean = 2085 mean = 1.23

flex-ellip Cluster 1 3256369 7480 6498 1.15 0.001
Cluster 2 2062671 4853 4116 1.18 0.001
Cluster 3 920991 2248 1838 1.22 0.001
Cluster 4 1673793 3703 3340 1.11 0.001
Cluster 5 507044 1201 1011 1.19 0.004
Cluster 6 104057 291 207 1.40 0.009

mean = 1,420,821 mean = 3296 mean = 1.21

elliptic Cluster 1 1917315 4517 3826 1.18 0.001
Cluster 2 1701906 3979 3396 1.17 0.001
Cluster 3 1102261 2598 2199 1.18 0.001
Cluster 4 1841814 4062 3675 1.11 0.001
Cluster 5 889355 2035 1774 1.15 0.002
Cluster 6 635396 1480 1268 1.17 0.002

mean = 1,348,008 mean = 3112 mean = 1.16

13



Clusters

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

rflex 0.2

Clusters

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

rflex 0.3

Clusters

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

flexible−elliptical

Clusters

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

elliptic

Figure 5: A map of an eight-county region in upstate New York. The significant clusters identified by
the rflex method (for both tuning parameters α1 = 0.2 and α1 = 0.3), the flexible-elliptical method, and
the elliptic method are shown. In each map, the first and last clusters are the most significant and least
significant clusters, respectively. The level of significance is α = 0.05. Cluster 1 is the MLC, with each
successive cluster having a lower LRT statistic.
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of various shapes and sizes, making it more flexible and realistic in capturing different types of clusters. In
contrast, the elliptic method tends to identify more compact and elliptical-shaped clusters. Almost all the
clusters detected by the elliptic method in Figure 5 have elliptical shapes, which might be unlikely in reality.
It is important to note that, since the data set is real, definitive conclusions regarding the nature of the
clusters cannot be made. However, the results from the proposed flexible-elliptical method demonstrate its
ability to provide more diverse and versatile cluster configurations while maintaining a high number of cases,
SMR values, and population at risk. This method strikes a balance between the characteristics of the rflex
and elliptic methods, offering a more comprehensive approach to cluster detection and potentially yielding
more meaningful and interpretable results.

5 Application to NTM data

To provide a more extensive comparison, we also analyze Nontuberculous mycobacterial (NTM) patient
data and identify disease clusters by comparing the discussed three spatial scan approaches. NTM data were
obtained from the National Jewish Health (NJH) hospital Electronic Medical Record database in Denver,
Colorado. All patients (those with cystic fibrosis and those without) who had sought treatment at NJH,
had a diagnosis of NTM infection (i.e., at least one positive culture) and were resident in Colorado during
February 2008 through January 2018 were included in this dataset, totaling y+ = 822 patients. Since NTM
is considered a rare disease, we aggregated patient data over a 10-year period and tabulated patient data
for each zip code tabulation area (ZCTA). We used the total population of Colorado as determined by the
2010 US Census, fixed at n+ = 5, 029, 374 people. Because the incubation period of NTM is not currently
understood, we did not have a reliable time of disease onset variable and therefore we could not consider a
temporal analysis to identify disease clusters. The use of this dataset was approved by the NJH Institutional
Review Board (HS-3148).

Figure 6 displays the significant NTM clusters detected by each scan method at significance level α = 0.05.
To compute the p-value, 999 null data sets were simulated under constant risk hypothesis. The rflex method
with α1 = 0.2 and α1 = 0.3 identified the same Cluster 1 but the rflex method with α1 = 0.3 includes
additional regions for Cluster 2 compared to the rflex method with α1 = 0.2. For Cluster 1, the flexible-
elliptical method included a longer, narrower set of zip codes compared to those identified by the rflex
methods. For Cluster 2, the rflex methods differed from the flexible-elliptical method by only one zip code.
The elliptic method detected the largest clusters among all the methods tested. The elliptic method detected
Cluster 1 zip codes within the same location as the previous methods but covered a larger area of zip codes.
For Cluster 1, all methods identified some variation of zip codes within the center to the eastern end of the
city of Denver and in suburban regions south of Denver. For Cluster 2, the elliptic method identified a much
larger cluster compared to those identified by the other methods. In Cluster 2, all methods included zip
codes located in the city of Arvada. The rflex methods and the flexible-elliptical method also included zip
codes located in Boulder County. The elliptic method did not include the Boulder zip codes but included
the Arvada zip codes. Cluster 2, identified by the elliptic method, extended farther west into the Rocky
Mountains. All methods detected Cluster 3, as this included one zip code in Pitkin County with only 20
residents.

NTM are commonly found in water, and the hypotheses surrounding NTM exposure and acquisition
focus on municipal water supplies. The water supply for zip codes located in Cluster 1 comes from different
regions along the Western Slope than for zip codes located in Cluster 2 (for clusters identified by the rflex
and flexible-elliptical methods). Recent studies have demonstrated an association between a trace metal,
molybdenum, in the raw water supply and NTM infection risk in Colorado (Lipner et al., 2021, 2020).
Regions that supply water to zip codes in Clusters 1 and 2 have naturally occurring molybdenum in high
abundance, as evidenced by the fact that large molybdenum mines are located in these regions. These regions
with high molybdenum concentrations are located within Cluster 2 identified by the elliptic method.

The rflex method and the flexible-elliptical method present zip codes in Boulder County and the city of
Arvada as part of Cluster 2. The Boulder zip codes receive their water supply from sources that are different
from the Arvada zip codes. Since the Boulder zip codes were not identified in the elliptic method cluster,
this identification may lead us to further examine those regions.

The elliptic method, because it typically exhibits greater sensitivity, tends to generate clusters including
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Figure 6: A map of the significant NTM clusters identified by the rflex, elliptic, and flexible-elliptical scan
method. In each map, the first and last clusters are the most significant and the least significant clusters,
respectively. The level of significance is α = 0.05. Cluster 1 is the MLC, with each successive cluster having
a lower LRT.

more zip codes and that have larger geographic area. However, its detected clusters tend to have lower PPV
as not all zip codes within the detected clusters are likely to be high risk. The rflex and flexible-elliptical
methods typically have greater PPV, so they are likely more useful for identifying the highest risk regions
within the true cluster. Because its detected clusters tend to be larger, the elliptic method may provide more
opportunities for hypothesis generation in the initial stages of data exploration, while the elliptic-flexible
method possibly focuses in on the most high-risk regions of each cluster.

6 Discussion

In this study, we proposed the flexible-elliptical scan method, which combined the flexible and elliptic
scan methods to address their respective limitations and leverage their advantages. Our approach involved
modifying the set of candidate zones and the likelihood ratio test statistics. We thoroughly compared the
performance of the proposed flexible-elliptical method with the elliptic and rflex methods for identifying
irregularly-shaped disease clusters. This evaluation included benchmark data sets comprising 56 diverse
irregularly-shaped cluster models, as well as real-world data sets related to breast cancer mortality and NTM
cases. Our findings demonstrated a balanced performance between the flexible and elliptic scan methods in
accurately detecting irregularly-shaped clusters in disease surveillance.

In our simulation study, it was revealed that the elliptic method generally displayed higher sensitivity
compared to the other scan methods. This heightened sensitivity is attributed to the elliptic method’s
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Figure 7: Two examples of non-circular clusters detected by different scan methods. Left plots: clustering
model imixed12 detected by the elliptic method and the flexible-elliptical method. Right plots: clustering
model “a” detected by the rflex method with α1 = 0.2 and the flexible-elliptical method.
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tendency to detect larger clusters, increasing the chances of capturing the true cluster. In contrast, the
rflex method with α1 = 0.2 exhibited the lowest sensitivity, likely due to the elimination of moderate rate
regions by the middle p-value. However, the sensitivity of the flexible-elliptical method closely aligned with
that of the rflex method with α1 = 0.3, indicating its comparable performance in identifying irregularly-
shaped clusters. Importantly, the proposed flexible-elliptical method moderates the trade-off between cluster
size and accuracy without relying on any specific tuning parameter, providing a more flexible and versatile
approach to capturing the true cluster.

The simulation study also revealed that, on average, the flexible-elliptical method demonstrated a better
performance based on PPV. The PPV of the rflex method with α1 = 0.2 was comparable to the flexible-
elliptical method, but the rflex method with α1 = 0.3 resulted in lower PPV. The elliptic method had the
lowest PPV values, which again can be attributed to its tendency to detect clusters larger than the true
clusters. PPV ensures more accurate and reliable cluster identification, holding significant implications for
the precision and validity of cluster detection studies. By effectively detecting and capturing clusters, the
proportion of the detected clusters accurately aligning with the true clusters in the population increased,
which is an important measure. This further highlights the flexible-elliptical method as a versatile approach
to maintain high accuracy and impact in cluster detection while avoiding dependence on a tuning parameter
and detecting excessively larger clusters.

The performance in terms of misclassification was generally comparable across all methods. This sim-
ilarity arose from the definition of misclassification in Equation (14), where the denominator represented
the total population at risk. The breast cancer data set in Section 3 had a large total population size of
n+ = 29, 535, 210, contributing to the similarity in misclassification rates. However, it is worth noting that
the proposed flexible-elliptical method demonstrated improved performance in certain clustering models,
such as models “j”, “k”, and “iurban13”.

The flexible-elliptical method exhibited flexibility, inheriting the capabilities of the rflex and elliptic
methods, particularly in constructing the set of candidate zones. The elliptic method often struggled to
identify clusters with highly irregular shapes, limiting its effectiveness in capturing complex disease patterns.
Similarly, the rflex method faced challenges in detecting very long and narrow clusters due to its reliance
on circular-shaped windows and the user-defined α1 tuning parameter. By incorporating the strengths of
these two methods, the flexible-elliptical method demonstrated a more adaptable approach to candidate
zone construction, enabling it to capture highly non-circular shaped clusters as shown in Figure 7. This
heightened flexibility allowed for the detection of a broader range of cluster shapes, rendering the flexible-
elliptical method a valuable tool in identifying irregular disease clusters and leveraging the advantages of
both elliptic and reflex methods.

While the rflex method’s performance can vary depending on the chosen tuning parameter values, the
proposed flexible-elliptical method eliminates the need for such parameter adjustments. The flexible-elliptical
method demonstrates independence from tuning parameters, ensuring consistent and reliable cluster detec-
tion outcomes. While the rflex method with tuning parameters α1 = 0.2 and α1 = 0.3 exhibited relatively
good sensitivity and PPV, a closer examination reveals that α1 = 0.2 yielded a superior PPV, whereas
α1 = 0.3 achieved better sensitivity (Figure 3). Moreover, the number of significant clusters can be influ-
enced by the choice of tuning parameter (e.g., Figure 5). On the other hand, the elliptic method imposed
an eccentricity penalty on the likelihood ration test statistic that required another tuning parameter. By
adjusting the tuning parameter, the elliptic method avoided detecting very narrow and long clusters. In the
proposed flexible-elliptical method, no eccentricity penalties have been used. Firstly, we considered not only
elliptical windows but also connected regions inside them. Secondly, we filtered out windows having low-risk
regions. Therefore, even if a very narrow and thin cluster is obtained, an additional penalty is not required
due to the fact that we include only high-risk regions in each cluster. An example of such a cluster can be
found in the bottom-right plane of Figure 7, which is a very long cluster, as it should be.

The flexible-elliptical method avoids including low-risk regions, which could potentially be an advantage,
but it does allow for disconnecting a large cluster. For example, consider two large significant clusters that
are connected with a single region, and that region is a low-risk region. In this situation, the flexible-elliptical
method presumably detects one of them. It is possible that the other cluster is detected as a secondary cluster
but it is not guaranteed. It is important to note that there were some situations where the elliptic method
detects clusters containing disconnected regions. For example, in the clustering models such as the cluster
“c” in Figure 2, the nearest neighbors are not necessarily connected and elliptical windows may include
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disconnected regions. Another example is shown in Cluster 1 detected by the elliptic method in Figure 6.
Unlike the elliptic method, the flexible-elliptical method disconnects regions systematically. This can be
a limitation of the proposed flexible-elliptical method and it could be extended when taking other criteria
into account before removing a region only based on whether it is a low-risk region. Similar to algorithms
proposed by Costa et al. (2012), we may avoid eliminating those low-risk regions by having specific geographic
proximity criteria. For example, consider a current window that involves only high-risk regions. We can let
a low-risk region be added to this current window if the region has two connections (borders) and increases
the current likelihood test statistic value. Furthermore, although the proposed method is relatively simple, it
is possible to impose additional restrictions on the regions to further enhance speed and accuracy in cluster
detection.

In summary, the proposed method combines two well-known methods for detecting irregularly shaped
clusters, taking advantage of their individual strengths and achieving a balanced approach. The flexible-
elliptical method inherits the favorable features of both the elliptic and rflex methods. It demonstrates a
better positive predictive value (PPV) compared to the elliptic method and comparable PPV to the rflex
method with α1 = 0.2. Notably, the flexible-elliptical method does not rely on the tuning parameter α1,
offering a more streamlined and straightforward approach. The construction of the set of candidate zones
in the proposed method provides greater flexibility compared to the rflex method, allowing for improved
adaptability to irregular cluster shapes.
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A Appendix

List of notation

N Number of regions in the study area.
i Centroid of each region.
Yi Number of cases in region i.
ni Population size of region i.
Ei Expected number of cases in region i (under the null).
θi Risk of developing the disease in region i

y+ Total number of cases in the study area, i.e.,
∑︁N

i=1 Yi = y+.

n+ Total population of the study area, i.e.,
∑︁N

i=1 ni = n+.
Z Set of all candidate zones.
Z A candidate zone.
yin Number of cases inside the candidate zone Z, i.e.,

∑︁
i∈Z yi = yin.

nin Population size inside the candidate zone Z, i.e.,
∑︁

i∈Z ni = nin.
Ein Expected number of cases inside the candidate zone Z, i.e.,

∑︁
i∈Z Ei = Ein.

yout Number of cases outside the candidate zone Z, i.e.,
∑︁

i̸∈Z yi = yout.

nout Population size outside the candidate zone Z, i.e.,
∑︁

i ̸∈Z ni = nout.

Eout Expected number of cases outside the candidate zone Z, i.e.,
∑︁

i ̸∈Z Ei = Eout.

Deriving the likelihood ratio test statistic when the case counts are modeled by a Poisson or a Binomial
random variable.
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A.1 Poisson cases counts

We provide a derivation of the likelihood ratio test statistic when the case counts are modeled by a Poisson

random variable. Assume Yi
indep.∼ Poisson(niθi). Thus, the likelihood function is

LP (Z, θi) =

N∏︂
i=1

e−niθi(niθi)
Yi

Yi!
.

Assume:

� The risk of disease for all regions i ∈ Z is p. That is, θi = p for all i ∈ Z.

� The risk of disease for all regions i ̸∈ Z is q. That is, θi = q for all i ̸∈ Z.

A.1.1 Under the alternative hypothesis of existing at least one cluster

The likelihood function can be written as:

LP (Z, p, q) =
∏︂
i∈Z

e−nip(nip)
Yi

Yi!

∏︂
i̸∈Z

e−niq(niq)
Yi

Yi!

=
e−p

∑︁
i∈Z nip

∑︁
i∈Z Yi

∏︁
i∈Z nYi

i∏︁
i∈Z Yi!

e−q
∑︁

i̸∈Z niq
∑︁

i̸∈Z Yi
∏︁

i ̸∈Z nYi
i∏︁

i ̸∈Z Yi!

=
e−pnin pyin e−qnoutqyout

∏︁
i∈Z nYi

i

∏︁
i ̸∈Z nYi

i∏︁N
i=1 Yi!

(because
∑︁

i∈Z ni = nin and
∑︁

i̸∈Z ni = nout)

= C e−pnin pyin e−qnoutqyout . (where

∏︁
i∈Z nYi

i

∏︁
i ̸∈Z nYi

i∏︁N
i=1 Yi!

= C)

Compute log function of the LP (Z, p, q), i.e., lP (Z, p, q):

lP (Z, p, q) = logC − pnin + yin log p− qnout + yout log q.

Differentiate with respect to p and set equal to zero to find the maximum.

∂

∂p
lP (Z, p, q) = −nin + yin

1

p

set
= 0 ⇒ p̂ =

yin
nin

∂2

∂p2
lP (Z, p, q) = −yin

1

p2
< 0 ⇒ p̂ =

yin
nin

is a maximum.

Similarly, q̂ =
yout
nout

.

A.1.2 Under the null hypothesis of no clustering

Under the null hypothesis of no clustering, we believe p = q. Thus,

lP (Z, p = q) = logC − p (nin + nout) + (yin + yout) log p.
(we know nin + nout = n+, and yin + yout = y+)

⇒ ∂

∂p
lP (Z, p = q) = −n+ + y+

1

p
⇒ p̂ = q̂ =

y+
n+

.
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A.1.3 Likelihood ratio test statistic

λc
Z =

supp>q LP (Z, p, q)

supp=q LP (Z, p = q)
=

C e
−
yin
nin

nin
(︃
yin
nin

)︃yin

e
−
yout
nout

nout
(︃
yout
nout

)︃yout

C e
−
y+
n+

n+
(︃
y+
n+

)︃y+

=

e−(yin+yout)

(︃
yin
nin

)︃yin
(︃
yout
nout

)︃yout

e−y+

(︃
y+
n+

)︃y+
(where e−(yin+yout) = e−y+)

=

(︃
yin
nin

)︃yin
(︃
yout
nout

)︃yout

(︃
y+
n+

)︃y+

=

⎛⎜⎝ yin
y+

n+
nin

⎞⎟⎠
yin

⎛⎜⎝ yout
y+
n+

nout

⎞⎟⎠
yout

=

(︃
yin
Ein

)︃yin
(︃
yout
Eout

)︃yout

. (because
y+

n+
nin = Ein, and

y+

n+
nout = Eout)

Since we are interested in clusters that the risk of developing disease inside is larger than outside (i.e.,

hotspots), the LRT is multiplied by the I
(︂

yin

Ein
> yout

Eout

)︂
. Thus,

λc
Z =

supp>q LP (Z, p, q)

supp=q LP (Z, p = q)
=

(︃
yin
Ein

)︃yin
(︃
yout
Eout

)︃yout

I

(︃
yin
Ein

>
yout
Eout

)︃
.

A.1.4 Likelihood ratio test statistic for the most likely cluster

By taking maximum over all Z ∈ Z the likelihood ratio test statistic for the most likely cluster is obtained.
That is,

λc = sup
Z∈Zc

λc
Z.

A.2 Binomial cases counts

Deriving the likelihood ratio test statistic when the case counts are modeled by a Binomial random variable

Yi
indep.∼ Binomial(niθi). Thus, the likelihood function is

LB(Z, θi) =

N∏︂
i=1

(︃
ni

Yi

)︃
θi

Yi (1− θi)
ni−Yi

Assume:

� The risk of disease for all regions i ∈ Z is p. That is, θi = p for all i ∈ Z.

� The risk of disease for all regions i ̸∈ Z is q. That is, θi = q for all i ̸∈ Z.
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A.2.1 Under the alternative hypothesis of existing at least one cluster

The likelihood function can be written as:

LB(Z, p, q) =
∏︂
i∈Z

(︃
ni

Yi

)︃
pYi (1− p)

ni−Yi
∏︂
i ̸∈Z

(︃
ni

Yi

)︃
qYi (1− q)

ni−Yi

=

(︄∏︂
i∈Z

(︃
ni

Yi

)︃)︄
p
∑︁

i∈Z Yi (1− p)
∑︁

i∈Z(ni−Yi)

⎛⎝∏︂
i̸∈Z

(︃
ni

Yi

)︃⎞⎠ q
∑︁

i̸∈Z Yi (1− q)
∑︁

i̸∈Z(ni−Yi)

= C pyin (1− p)
nin−yin qyout (1− q)

nout−yout . (where C =
∏︁

i∈Z

(︁
ni

Yi

)︁
·
∏︁

i ̸∈Z

(︁
ni

Yi

)︁
)

Compute log function of the LB(Z, p, q), i.e., lB(Z, p, q):

lB(Z, p, q) = logC + yin log p+ (nin − yin) log(1− p) + yout log q + (nout − yout) log(1− q)

Differentiate with respect to p and set equal to zero to find the maximum.

∂

∂p
lB(Z, p, q) = yin

1

p
− (nin − yin)

1

1− p

set
= 0 ⇒ p̂ =

yin
nin

. Similarly, q̂ =
yout
nout

.

A.2.2 Under the null hypothesis of no clustering

Under the null hypothesis of no clustering, we believe p = q. Thus,

lB(Z, p = q) = logC + (yin + yout) log p+ (nin + nout − (yin + yout)) log(1− p)

⇒ ∂

∂p
lB(Z, p = q) = y+

1

p
− (n+ − y+)

1

1− p

set
= 0 ⇒ p̂ = q̂ =

y+
n+

.

A.2.3 Likelihood ratio test statistic

λ
′c
Z =

supp>q LB(Z, p, q)

supp=q LB(Z, p = q)
=

C

(︃
yin
nin

)︃yin
(︃
1− yin

nin

)︃nin−yin
(︃
yout
nout

)︃yout
(︃
1− yout

nout

)︃nout−yout

C

(︃
y+
n+

)︃y+
(︃
1− y+

n+

)︃n+−y+

=

(︃
yin
nin

)︃yin
(︃
nin − yin

nin

)︃nin−yin
(︃
yout
nout

)︃yout
(︃
nout − yout

nout

)︃nout−yout

(︃
y+
n+

)︃y+
(︃
n+ − y+

n+

)︃n+−y+
.

A.2.4 Likelihood ratio test statistic for the most likely cluster

By taking maximum over all Z ∈ Z the likelihood ratio test statistic for the most likely cluster is obtained.
That is,

λ
′c = sup

Z∈Zc

λ
′c
Z .
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