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Abstract 

The vibration-assisted atomic force microscope (AFM)-based nanomachining offers a promising opportunity for low-cost nanofabrication with 

high tunability. However, critical challenges reside in advancing the throughput and the quality assurance of the process due to extensive offline 

experimental investigations and characterizations, which in turn hinders the wide industry applications of current AFM-based nanomachining 

process. Hence, it is necessary to create an in-process monitoring for the nanomachining to allow real-time inspection and process 

characterizations. This paper reports a sensor-based analytic approach to allow real-time estimations of the AFM-based nanomachining process. 

The temporal-spectral features of collected acoustic emission (AE) sensor signals are applied to predict the depth morphology of nanomachined 

trenches under different machining conditions. The experimental case study suggests that the most significant frequency domain information 

from AE sensor can accurately predict (R-squared value around 92%) the nanomachined depth profile. It, therefore, breaks the current limitation 

of characterization tools at the nanoscale precision level, and opens up an opportunity to allow real-time estimation for quality inspection of 

vibration-assisted AFM-based nanofabrication process.  
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1. Introduction  

As the demand for the shrinking size of electronic devices 

inside an integrated circuit chip increases, nanofabrication has 

been gleaning popularity in bio-production, nanolithography, 

and other intelligent product areas [1–4]. The atomic force 

microscope (AFM) has demonstrated its unique atomic-level 

manipulation capability to create high-quality nanostructures 

for nanofabrication [5,6]. The low-cost setup with exquisite 

tunability of AFM offers a promising opportunity for applying 

different methods to perform nanofabrication, such as 

nanomechanical nanoscratching [7,8], ultrasonic-assisted 

nanolithography [9], and thermochemical nanopatterning [10].  

Critical challenges reside in advancing the productivity and 

reliability of the current AFM-based nanomachining [11]. The 

performance of the nanofabrication can be influenced by the 

setup parameters such as the properties of the treated materials 

and the AFM probes (e.g., spring constant of the cantilever and 

probe tip geometry) [12]. Providing an in-process monitoring 

and quality control for the nanoscale fabrication is difficult as 

the nanofabrication precision is within nanoscale. The 

fabricated nanopatterns have smaller feature sizes compared to 

the wavelength of light, which has limited imaging resolutions 

in the microscale. The nanopatterned morphology, including 

feature widths and depths, can only be evaluated using the 

AFM setup itself after the completion of the nanofabrication 

process [13]. This post-imaging approach cannot provide the 

details of the material removal timely during the 

nanofabrication process, which means that the performance of 

the fabrication and the morphology of nanopatterns, if there are 

any, can only be evaluated after the process [14]. No real-time 

morphology information can be provided while the 
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nanopatterning process is ongoing. In addition, the lack of 

temporal recordings of the process hinders the analysis of the 

machining parameters selections and the process 

characterizations: the process failures, such as AFM tip 

breakages and incipient anomalies (e.g., unstable 

vibrations/chatters), can only be noticed via post/offline 

characterizations [15]. The consequences of this aftermath 

mitigation involve costly and time-consuming rework on the 

workpiece. Therefore, providing real-time monitoring to 

evaluate the performance of the nanofabrication processes is 

critical to avoid unnecessary waste, improve the efficiency of 

quality inspection, and hence increase productivity.  

Researchers have been investigating the possibility of using 

viable sensor setups to capture the information associated with 

material removals during the manufacturing processes [16]. 

The acoustic emission (AE) sensor captures the transient elastic 

wave generated by the rapid release of energy during the 

material removal. The characteristics of AE waveforms are 

highly associated with material deformation and frictions and 

crack propagations [17,18]. Particularly for machining 

processes, the different material removal mechanisms can 

relate to different AE signals (in amplitudes and frequency 

responses). In conventional machining processes, the AE 

temporal features [e.g., root mean squared (RMS) values] can 

effectively distinguish different machining conditions and 

materials [19] as the signals may have high resolutions [e.g., 

high signal-noise ratio (SNR)]. However, under the nanoscale, 

the AE is submerged in the noise and induced with system 

vibration, and conventional approaches to extract statistical 

features may not reflect the nanofabrication conditions 

accurately. Extracting prominent features of AE signal and the 

associated analytic tool should be introduced for the process 

characterizations and evaluations in the nanoscale. Enabling 

AE sensor monitoring scheme opens up chances for in-process 

inspection, machine tool wear detection, and characterizations 

of machining dynamics [20]. Moreover, due to its high 

sensitivity, the AE sensor has demonstrated its prominence in 

monitoring material removals at the nanoscale [21–23]. 

However, the AE signal gathered during AFM-based 

nanomachining has not been fully explored toward in-process 

morphology characterizations and predictions.  

In this paper, we present an analytic approach that allows in-

process prediction of surface profiles, specifically the cutting 

depths, via the AE sensor-based monitoring scheme. The 

approach was tested based on the experimental case study of 

the vibration-assisted AFM-based nanomachining of 

polymethyl methacrylate (PMMA) samples. The remainder of 

the paper is organized as follows: Sec. 2 presents the hardware 

setup and data collection process from the sensor. The analytic 

approach to capture the surface morphology of the 

nanofabrication via sensor-based monitoring acoustic emission 

signals is introduced in Sec. 3. The results of the experimental 

case study and the discussions are in Sec. 4, followed by the 

concluding remarks in Sec. 5. 

2. Experimental setup and data collection 

2.1. Hardware setup and the experiments 

This vibration-assisted AFM-based nanomachining 

experiment was performed on a customized nanovibrator stage 

within a commercial AFM system (XE7, Park Systems 

Corporation, Suwon, South Korea), as shown in Figure 1. To 

generate the in-plane vibrations for the nanomachining process, 

two piezoelectric actuators are installed on the bottom of the 

aluminum pillar which is used to place the sample. PMMA 

sample with 200 nm thickness was spin-coated on silicon 

substrates with post-bake at 180˚C for 90 seconds. DLC190 

AFM probe was used to fabricate and image the nanotrenches 

on the PMMA sample. A signal generator (USB-6259, 

National Instruments, Austin, TX, USA) and two signal 

amplifiers (PX200, PiezoDrive, Shortland, NSW, Australia) 

are used to generate input signals for the piezoelectric actuators, 

which create in-plane circular xy-vibration (with intrinsic 

frequency of 2 kHz) on the sample based on two sinusoid 

waveforms with 90-degree phase shift. An AE sensor (s9225 

from Physical Acoustics, Princeton Jct, NJ, USA) is installed 

under the sample mounting plate, and a data acquisition (DAQ) 

system (using the NI-USB-6259) is applied to collect the AE 

signal with 500k Hz sample rate during the nanomachining 

process. 

To validate the contribution of sensor-based tech for 

nanoscale process monitoring, a set of nanomachining 

experiments is devised with varying cutting forces (50, 150, 

250, 350, and 450 nNs) on a PMMA sample surface with a 

machining length of about 1 𝜇𝑚. The surface morphology of 

the nanotrenches fabricated with different normal forces is 

shown in Figure 2. To illustrate the significant features (width 

and depth) in Figure 2 a), the cross-sectional profile of the five 

nanotrenches at the 0.8 𝜇𝑚 y-axis, marked with a red line, is 

shown in Figure 2 b). The temporal AE signals of five cuts are 

collected by the mounted AE sensor, which is used to 

investigate the validity of the sensor-based method in the 

monitoring process with different nanofabrication conditions.  

 

 
 
Figure 1. The AE sensor and data acquisition system integrated with the 

vibration-assisted AFM-based nanofabrication platform. 

 

2.2. Data description 

This investigation tries to present an analytic model that 

connects the acoustic emission phenomena and the 

fundamental mechanisms of material removals during the 

nanofabrication. To test the capability of the monitoring setup 

for characterizations of nanofabrication, the spectral features of 

gathered AE signals during the nanomachining are used to 

associate the temporal modifications during the nanomachining 

process; the surface characteristics, in terms of cutting depths, 

of nanofabricated trenches, are selected as the responses.  

The cutting depth coordinates are regarded as the dependent 

variable for the prediction model which can be used to describe 

one of the typical features of the cuts’ morphology. Meanwhile, 

Sensors and amplifiers 
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acoustic emission (AE) signals, are synchronously captured by 

the sensor during the cutting operation, which can be treated as 

the independent variables for the prediction model.  

 

 
 

Figure 2. a) Five nanomachined trenches. b) Cross-sectional profile with 

widths and depths of the trenches. 

 

The surface morphology of five trenches is extracted from 

the machined samples scanned by the AFM. The total sample 

area is 2×1.5 micrometers, and 1200 sample data points are 

collected on each direction axis. The length of each 

segmentation unit on each axis ranges from 1.25nm to 1.70 nm, 

as shown in Figure. 3. The five cuts from left to right are 

machined by various forces (50, 150, 250, 350, and 450 nNs), 

and the heavier force causes a deeper cut, which can be 

reflected from the color in Figure. 3. The dark color represents 

the deeper part and the light color represents the higher parts. 

the width and depth of cuts are marked in Figure. 3. a) and c), 

the cutting direction is marked on Figure. 3. b) and d). The 

extracted surface profile and the cutting depth (surface profile 

along the vertical direction) are shown in Figure. 4.  

 
 

Figure 3. a) Bird view of 3D surface profiles of trenches. b) Top view of 3D 

surface profiles of trenches. c) Front view of 3D surface profiles of trenches. 
d) 3D surface profiles of trenches. 
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Figure 4. a) Top view of 3D surface profiles of trenches. b) 3D morphology 
of Cut 3. c) Depth line of Cut 3.  

 

Figure. 4. shows, in total, five cuts (Cuts 1 to 5 from left to 

right). To show the machined surface morphology, Cut 3 is 

selected as an example. Figure 4 b) shows the 3D morphology 

of Cut 3. The instantaneous depth of cut is depicted in the red 

line in Figure 4 b). Predicting the depth of cut based on the 

sensor signals is critical for in-process evaluations of the 

nanofabrication quality. The 3D cut figure is projected to the y-

axis and z-axis coordinates, and the depth line is shown in the 

coordinate area in Figure 4 c). 

The synchronized AE sensor signals during the 

nanomachining are shown in Figure. 5. The AE signal always 

exhibits highly nonstationary and transient behaviors that 

capture the acoustic emission phenomena during the material 

removals. The most significant spectral AE features in 

distinguishing differences between cutting conditions are 

highly correlated to the failure modes of PMMA materials. To 

analyze the AE signal, its temporal-spectral features are 

extracted to evaluate the frequency responses during the 

nanomachine. It applies a sliding window for Fast Fourier 

transformation (FFT) to extract the time-frequency features 

from AE signals. The represented temporal-spectral features 

are shown in Figure 5, of which the x-axis is the time index and 

the y-axis is the frequency range, and the energy of various 

frequency bands (in dB) is represented using a color map. To 

analyze the AE spectral responses in high resolution, 4095 

different frequency bands of AE signal are generated within the 

range from 0 to 250 kHz (see Figure 5). It is impractical that all 

the 4095 frequency bands are involved in the machine learning 

model, and due to the noise and system vibrations, only critical 

frequency bands are sensitive to the cutting process which can 

be used for the prediction. Therefore, feature selection is an 

unavoidable step in this problem. 

 
Figure 5. The nanomachine trench (shown with the depth profile) with 

synchronously gathered AE signal during the nanomachining. The spectrogram 

shows the frequency component variations during the nanomachining process.  

 

To help select useful spectral features, a random forest 

classification approach is applied. This classification algorithm 

implicitly selects the features (subsets of frequency bands) that 

contribute most to the classification of different cutting 

conditions. Intuitively speaking, the most distinguishable 

frequency domain information associates with different energy 

responses of AE signals during the nanomachining [23]. 

Top twenty significant features selected from the random 

forest classification model are regarded as the independent 

variables for the inputs in the prediction model, and the depths 

of cut are taken as the dependent variable. These data are 

applied to the multivariate linear regression model, and the 

fitted model can apply to make the prediction for the depths of 

different trenches.  

3. Methodology 

For the feature selection, fast Fourier transformation (FFT) 

is used to convert five cuts’ AE signals to the temporal-spectral 

domain. 

In FFT process, the sliding windows with the window length 

𝑁=5000 (with time duration of 10 milliseconds) are introduced 

to capture a set of AE signal at time index t, i.e., 

{𝑥𝑡−𝑁+1, 𝑥𝑡−𝑁+2, … , 𝑥𝑡}. 

The temporal-frequency relationship in FFT can be 

formulated as:  

𝑋𝑘
(𝑡)

= ∑ 𝑥𝑛𝑒−
𝑖2𝜋𝑘𝑛

𝑁      𝑘 = 0, … , 𝑁 − 1             

𝑡

𝑛=𝑡−𝑁+1

           (1) 

𝑥𝑛  is the temporal AE signal which can be represented as 

{𝑥𝑛 , 𝑛 = 𝑡 − 𝑁 + 1, 𝑡 − 𝑁 + 2, … 𝑡} in a sliding window, the 

FFT converts the signal to the frequency components 
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𝑿(𝑡) = [𝑋1
(𝑡)

, 𝑋2
(𝑡)

, … , 𝑋𝑁
(𝑡)

]𝑇. With the movement of the sliding 

window, the set of all windows’ frequency components can be 

represented as 𝑹 = [𝑿(𝑁), 𝑿(𝑁+𝑆), … , 𝑿𝑀], S is the step of the 

sliding window and 𝑀  denotes the discrete time index after 

transformation. 𝑹 records the magnitudes of the Fourier which 

can represent the matrix of the signal spectrogram. 

In the spectrogram figure, the x-axis represents the time and 

y-axis represents the different frequency bands. The energy of 

the frequency bands at various time is depicted by the color 

map. The frequency range for the signal is depended on the 

sample rate of the FFT which is 500 kHz, the signal frequency 

range is also half of the sample rate. Essentially, the energy of 

the spectrum in various frequency bands is related to the 

nanomachining process which, can be written as 𝑭(𝑖) =

𝐸1
(𝑖)

, 𝐸2
(𝑖)

, … , 𝐸𝑤
(𝑖)

 ], 𝑖 = 1,2 … , 𝑏, 𝑤 = 1,2, … , 𝑀 , where 𝑭(𝑖) 

represents the frequency band, Ew represents the energy at 

various times, b represents the frequency bands’ index for the 

signal. The R matrix also can be represented by frequency 

bands which can be written as 𝑹 = [𝑭(1), 𝑭(2), … , 𝑭(𝑏)] , and 

each frequency band can represent a signal feature in the 

classification model. The R matrix can be illustrated with 

symbols in Figure. 6. 

 
 

Figure 6. The notations for the extracted temporal spectral features. 

 

In order to find the most significant features, a random forest 

classification approach is used to distinguish the different cuts 

and non-cuts’ depth and order the most important spectral 

information contributing to the classification problem. For the 

five cuts with different depths, the mean value of each cut depth 

is used to represent the cutting classification label and replaces 

the cutting depths’ coordinates values, the non-cut’ depth is 

donated to zero. Depth coordinates of cut can be written as 𝐶 =
{𝑐1, 𝑐2, … 𝑐𝑧}, where z represents the coordinates for the cut’s 

depth, the dependent variable depth is written as 𝒀 =
[𝐶𝐼 , 𝐶𝐼𝐼 , 𝐶𝐼𝐼𝐼 , 𝐶𝐼𝑉 , 𝐶𝑉 , 𝐶𝑛𝑜𝑛]𝑇({I, II, III, IV, V, non} is the index 

of the five different cut and non-cut), which assembles five cuts 

and non-cut’s depth coordinate values.  

In the classification model, the cuts and non-cuts’ depths 

coordinates are regarded as the responses for the classification 

labels, and the corresponding spectral features of cuts and non-

cut’s AE signal are taken as the predictors which can be written 

as 𝑿 = [𝑹(𝐼), 𝑹(𝐼𝐼), 𝑹(𝐼𝐼𝐼), 𝑹(𝐼𝑉), 𝑹(𝑉), 𝑹(𝑛𝑜𝑛)]. 

During the training process, the random forest approach 

generates several decision tree models to train the bootstrapped 

data samples. Each data sample set is selected randomly from 

the original data with replacement, and the number of samples 

in each set is same as the original set {𝑿}  and {𝒀}. The features 

are randomly sampled and the best split among these selected 

predictors is chosen for each node of the tree models. Assuming 

that the splitting variable Xj is split at point xj to segment the 

predictor set. The voting mechanism of random forest can 

finally classify each independents variables set to the 

corresponding classifications. Meanwhile, random forest 

method performs a feature selection by using the subset of the 

{𝑋𝑗} in classification problem. The Gini important values for 

each feature F(b) in matrix R will be calculated and ranked to 

show the relevance to the classification results [24].  

The Gini impurity 𝐺𝑖𝑛𝑖(𝜂) equation can be formulated as: 

𝐺𝑖𝑛𝑖(𝜂) = 1 − ∑ 𝑝𝑐
2

𝑐

                                                                   (2) 

𝑃𝑐 = 𝑛𝑐/𝑛 represents the fraction of the nc samples from the 

class 𝐶𝑢𝑡 = {𝐶𝑢𝑡1, 𝐶𝑢𝑡2, 𝐶𝑢𝑡3, 𝐶𝑢𝑡4, 𝐶𝑢𝑡5, 𝐶𝑢𝑡_𝑛𝑜𝑛}  (𝑐 ∈
𝐶𝑢𝑡1, 𝐶𝑢𝑡2, 𝐶𝑢𝑡3, 𝐶𝑢𝑡4, 𝐶𝑢𝑡5, 𝐶𝑢𝑡𝑛𝑜𝑛) of the total n sample at 

node .  

The decrease  𝐺𝑖𝑛𝑖  which results from splitting and 

sending the samples to sub-nodes 𝜂𝑙 and  𝜂𝑟 (with respective 

sample fractions 𝑝𝑙 = 𝑛𝑙/𝑛 and 𝑝𝑟 = 𝑛𝑟/𝑛). The function can 

be written as： 

∆𝐺𝑖𝑛𝑖(𝜂) =  𝐺𝑖𝑛𝑖(𝜂) −  𝑝𝑙𝐺𝑖𝑛𝑖(𝜂𝑙) − 𝑝𝑟𝐺𝑖𝑛𝑖(𝜂𝑟)               (3) 

In an exhaustive search over all variables Xj at the nodes and 

over all possible thresholds xj obtains a pair {𝑋𝑗 , 𝑥𝑗}, which 

leads to a maximal ∆𝐺𝑖𝑛𝑖 value. The decrease in Gini impurity 

is accumulated for all nodes 𝜂  in all trees D in the forest, 

individually for all variables Fj: 

𝐼𝐺𝑖𝑛𝑖(𝑋𝑗) =  ∑ ∑ ∆𝐺𝑖𝑛𝑖{𝑋𝑗}

𝜂𝐷

(𝜂, 𝐷)                                          (4) 

The 𝐼𝐺𝑖𝑛𝑖 can suggest how often a feature is selected for a 

split, which can be regarded as criteria to evaluate the 

importance of the features. 

The classification results of the random forest model are 

shown in Figure. 7, and important values’ scores for the 

features are shown in Figure. 8. 
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Figure 7. The classifications using the temporal spectral features on 

characterizations of different cutting conditions.  
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Figure 8. Scores of frequency domain information on distinguishing different 
nanomachining condition. 

 

In Figure. 7, the classification result shows that random 

forest method can perfectly classify the cut’s depth with the 

temporal-spectral feature of AE signal, and Figure. 8. can 

illustrate that the frequency bands around 50kHz and 150kHz 

have significant contributions to the classification problem. 

Based on the classification results and features’ score, several 

temporal-frequency features have significant contributions to 

the cuts’ depth recognition.  

To reduce the calculation time and cost, the features’ scores 

are ranked from top to bottom and only some top features are 

selected for the classification model. After multiple model 

fitting tests, top twenty features (frequency bands) can 

successfully classify the depths of the cut, which means that the 

top twenty frequency bands have enough information for the 

cutting depths’ prediction. 

Therefore, the cut depth prediction model will only pick the 

top twenty important frequency band features 

{𝑭𝑡1, 𝑭𝑡2, … , 𝑭𝑡20}  as the independent variables. The top 

twenty frequencies for each cut will be extracted from their 

spectrogram matrix separately, and the twenty frequency bands 

will be regarded as twenty predictors in the multivariate linear 

regression. The predictors (using the top twenty most 

significant spectral features) can be represented as 𝑷ℎ =
[𝑭𝐼

𝑡ℎ, 𝑭𝐼𝐼
𝑡ℎ, … , 𝑭𝑉

𝑡ℎ]𝑇 , ℎ = 1,2,3. . . ,20 . 
Multivariate linear regression can solve the prediction 

problem with multiple independent variables. The prediction 

formulation can be expressed as: 

𝑌 =  𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛                                        (5) 

Y is the response value, the 𝑥1  to 𝑥𝑛  are the n distinct 

independent variables, the 𝛽1  to 𝛽2  are the regression 

coefficients, the 𝛼  is the value of Y when all the predictors 

equal zero. To fit the prediction model, the top twenty 

frequency bands of each cut are treated as twenty predictor 

variables, and the depth coordinates for each cut are matched 

to the response of the model.  The model can be represented as: 

[𝐶𝐼 , 𝐶𝐼𝐼 , … , 𝐶𝑉 , ]𝑇 =  𝛼 + 𝛽1𝑷1 + 𝛽2𝑷2 + ⋯ + 𝛽20𝑷20         (6) 

After model training, the cut’s temporal-frequency feature 

of the AE signal will be used to predict the cut’s depth. All 

frequency features of the five cuts will be separated into 80% 

training data and 20% testing data, and the R squared and 

RMSE (root-mean-square deviation) methods will be used to 

evaluate the stability of the model. In addition, the original 

depth’s coordinates and predicted depth’s coordinates will also 

be compared and discussed in the next part.  

4. Results and Discussions 

To validate the prediction method for estimating surface 

profile in nanoscale, the five cuts’ depths are extracted from the 

trenches’ surface profiles, and the corresponding top twenty 

important frequency features for each cut are selected as the 

predictors for the multivariate linear regression. The original 

depth and predicted depth of the training model and testing 

model are shown in Figure. 9, the black line (Ytrain) represents 

the original depth line and the red line represents the predicted 

line (Ptrain), The green line (Ytest) is the original depth line and 

the blue one (Ptest ) is the predicted results for the testing data.  

 
 

Figure 9. The prediction results using the presented analytic approach with a) 

training and b) testing datasets: a) The ground truth is plotted in black and the 

predicted values are portraited in red lines; b) The ground truth of the testing 
set is depicted in green and the predicted values are shown in blue lines.  

 

The prediction results are shown in Figure. 9. and Table 1. 

To validate the effectiveness of the model, the R squared and 

RMSE are introduced to evaluate the performance of the 

model. R squared is a statistical measure of fit that indicates 

how much variation of a dependent variable is explained by the 

independent variables in a regression model. Therefore, the R 

squared can suggest whether the temporal-frequency of AE 

signal can reflect the depth feature of the cuts. RMSE is a used 

measure of the differences between values predicted by a 

model and the values observed, which values can prove the 

accuracy of the model. 

To test the stability of the model, the training and testing 

data are randomly selected ten times without the proportion 

change in the dataset, and the model is fitted ten times with 

different training and testing data. The quartiles, variance and 
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mean values of the ten models’ R squared and RMSE are 

shown in Table 1. 

As for the training phase, the prediction model obtained a 

high R-squared value (see Table 1), which indicates that the 

independent variable (frequency features of the AE signal) can 

explain almost 92% variation of the cutting depths; the 

prediction results as shown in Figure 9 b), where the blue line 

is the predicted value and the green line is the ground truth of 

the surface profile, suggest that the presented approach can 

accurately predict the tendency of the surface profile, in terms 

of the cutting depths. In addition, the RMSE achieves a mean 

of 0.0161 based on ten computations, which verifies that the 

approach is stable for inferencing the machined profiles based 

on AE signals.  

Table 1. Statistic description for R squared and RMSE for predicted model. 

 Q1 Q2 Q3 Q4 Variance Mean 

R Squared 0.8974 0.9127 0.9371 0.9373 0.0002 0.9237 

RMSE 0.0144 0.0150 0.0175 0.0184 0.0000 0.0161 

 

Next, we show the capability of the presented approach on 

creating a real-time cyber-twin of the surface profile. In Figure. 

10, the real cuts’ depths line (Y) and their predicted depths line 

(Yhat) are compared. The black dot line is the predicted results 

and the red line is the original depths line.  

 

 

 

 

 
Figure 10. The results comparisons between the ground truth (surface profile 

in the color map and the surface depth in the red line) and predicted depth 

profile plotted in black dash line. 

 

Based on the cutting depths figure, the predicted depths of 

the training model and testing model can mostly depict the 

variety and the tendency of the original cutting depths without 

certain dramatic changes and machining errors. The R-squared 

value and RMSE value suggest that the multivariate linear 

regression can output stable predicted results with high 

accuracy. Therefore, it is evidenced that the temporal-spectral 

feature of the nanomachine process can be used to characterize 

and predict the nanomachine surface morphology. 

5. Conclusion  

This paper presents an AE sensor-based monitoring 

approach for in-process estimation of the surface profiles by 

vibration-assisted AFM-based nanomachining. The main 

contribution of this paper can be summarized as follows: 

1. The AE sensor-based monitoring approach for the 

nanofabrication process is discussed in this paper. Further 

investigations suggest that the temporal-spectral features of AE 

signals are highly related to recognize different machining 

conditions in terms of cutting depths during the AFM-based 

nanofabrication. 

2. The random forest algorithm was applied to classify the 

cut and non-cut nanofabrication conditions. Based on the 

importance values generated by the random forest model, the 

most significant AE spectral features that contribute to 

distinguish different cutting conditions are selected as the 

predictors for estimating the in-process surface morphology 

using a multivariate linear regression model.  

3. The experimental case study suggests that the selected 

spectral features can predict the surface profile in terms of the 

cutting depth, and the variations under different cutting forces 

(within the range of nano-Newtons). The prediction model 

achieves an R-squared value of more than 92% to accurately 

estimate the surface profile at the nanoscale achieved by the 

AFM-based nanofabrication.   

In brief, the presented AE sensor-based monitoring 

approach breaks the current limitation of characterization tools 

at the nanoscale precision level. It hence opens up an 

opportunity to allow real-time estimation of the machining 

quality of AFM-based nanofabrication process.  

In future, advanced approaches toward selection AE 

characteristics will be incorporated to advance the prediction 

accuracy for building the digital-twin of AFM-based 

nanofabrication. The physical informed analytic model will be 

further investigated to predict other surface profile quantifiers 

such as the cutting width and the overall morphology with 

complicated 2D/3D patterns.  
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