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Abstract

The vibration-assisted atomic force microscope (AFM)-based nanomachining offers a promising opportunity for low-cost nanofabrication with
high tunability. However, critical challenges reside in advancing the throughput and the quality assurance of the process due to extensive offline
experimental investigations and characterizations, which in turn hinders the wide industry applications of current AFM-based nanomachining
process. Hence, it is necessary to create an in-process monitoring for the nanomachining to allow real-time inspection and process
characterizations. This paper reports a sensor-based analytic approach to allow real-time estimations of the AFM-based nanomachining process.
The temporal-spectral features of collected acoustic emission (AE) sensor signals are applied to predict the depth morphology of nanomachined
trenches under different machining conditions. The experimental case study suggests that the most significant frequency domain information
from AE sensor can accurately predict (R-squared value around 92%) the nanomachined depth profile. It, therefore, breaks the current limitation
of characterization tools at the nanoscale precision level, and opens up an opportunity to allow real-time estimation for quality inspection of

vibration-assisted AFM-based nanofabrication process.
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1. Introduction

As the demand for the shrinking size of electronic devices
inside an integrated circuit chip increases, nanofabrication has
been gleaning popularity in bio-production, nanolithography,
and other intelligent product areas [1-4]. The atomic force
microscope (AFM) has demonstrated its unique atomic-level
manipulation capability to create high-quality nanostructures
for nanofabrication [5,6]. The low-cost setup with exquisite
tunability of AFM offers a promising opportunity for applying
different methods to perform nanofabrication, such as
nanomechanical nanoscratching [7,8], ultrasonic-assisted
nanolithography [9], and thermochemical nanopatterning [10].

Critical challenges reside in advancing the productivity and
reliability of the current AFM-based nanomachining [11]. The
performance of the nanofabrication can be influenced by the

setup parameters such as the properties of the treated materials
and the AFM probes (e.g., spring constant of the cantilever and
probe tip geometry) [12]. Providing an in-process monitoring
and quality control for the nanoscale fabrication is difficult as
the nanofabrication precision is within nanoscale. The
fabricated nanopatterns have smaller feature sizes compared to
the wavelength of light, which has limited imaging resolutions
in the microscale. The nanopatterned morphology, including
feature widths and depths, can only be evaluated using the
AFM setup itself after the completion of the nanofabrication
process [13]. This post-imaging approach cannot provide the
details of the material removal timely during the
nanofabrication process, which means that the performance of
the fabrication and the morphology of nanopatterns, if there are
any, can only be evaluated after the process [14]. No real-time
morphology information can be provided while the
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nanopatterning process is ongoing. In addition, the lack of
temporal recordings of the process hinders the analysis of the
machining parameters selections and the process
characterizations: the process failures, such as AFM tip
breakages and incipient anomalies (e.g., unstable
vibrations/chatters), can only be noticed via post/offline
characterizations [15]. The consequences of this aftermath
mitigation involve costly and time-consuming rework on the
workpiece. Therefore, providing real-time monitoring to
evaluate the performance of the nanofabrication processes is
critical to avoid unnecessary waste, improve the efficiency of
quality inspection, and hence increase productivity.

Researchers have been investigating the possibility of using
viable sensor setups to capture the information associated with
material removals during the manufacturing processes [16].
The acoustic emission (AE) sensor captures the transient elastic
wave generated by the rapid release of energy during the
material removal. The characteristics of AE waveforms are
highly associated with material deformation and frictions and
crack propagations [17,18]. Particularly for machining
processes, the different material removal mechanisms can
relate to different AE signals (in amplitudes and frequency
responses). In conventional machining processes, the AE
temporal features [e.g., root mean squared (RMS) values] can
effectively distinguish different machining conditions and
materials [19] as the signals may have high resolutions [e.g.,
high signal-noise ratio (SNR)]. However, under the nanoscale,
the AE is submerged in the noise and induced with system
vibration, and conventional approaches to extract statistical
features may not reflect the nanofabrication conditions
accurately. Extracting prominent features of AE signal and the
associated analytic tool should be introduced for the process
characterizations and evaluations in the nanoscale. Enabling
AE sensor monitoring scheme opens up chances for in-process
inspection, machine tool wear detection, and characterizations
of machining dynamics [20]. Moreover, due to its high
sensitivity, the AE sensor has demonstrated its prominence in
monitoring material removals at the nanoscale [21-23].
However, the AE signal gathered during AFM-based
nanomachining has not been fully explored toward in-process
morphology characterizations and predictions.

In this paper, we present an analytic approach that allows in-
process prediction of surface profiles, specifically the cutting
depths, via the AE sensor-based monitoring scheme. The
approach was tested based on the experimental case study of
the vibration-assisted AFM-based nanomachining of
polymethyl methacrylate (PMMA) samples. The remainder of
the paper is organized as follows: Sec. 2 presents the hardware
setup and data collection process from the sensor. The analytic
approach to capture the surface morphology of the
nanofabrication via sensor-based monitoring acoustic emission
signals is introduced in Sec. 3. The results of the experimental
case study and the discussions are in Sec. 4, followed by the
concluding remarks in Sec. 5.

2. Experimental setup and data collection
2.1. Hardware setup and the experiments
This  vibration-assisted ~AFM-based nanomachining

experiment was performed on a customized nanovibrator stage
within a commercial AFM system (XE7, Park Systems

Corporation, Suwon, South Korea), as shown in Figure 1. To
generate the in-plane vibrations for the nanomachining process,
two piezoelectric actuators are installed on the bottom of the
aluminum pillar which is used to place the sample. PMMA
sample with 200 nm thickness was spin-coated on silicon
substrates with post-bake at 180°C for 90 seconds. DLC190
AFM probe was used to fabricate and image the nanotrenches
on the PMMA sample. A signal generator (USB-6259,
National Instruments, Austin, TX, USA) and two signal
amplifiers (PX200, PiezoDrive, Shortland, NSW, Australia)
are used to generate input signals for the piezoelectric actuators,
which create in-plane circular xy-vibration (with intrinsic
frequency of 2 kHz) on the sample based on two sinusoid
waveforms with 90-degree phase shift. An AE sensor (s9225
from Physical Acoustics, Princeton Jct, NJ, USA) is installed
under the sample mounting plate, and a data acquisition (DAQ)
system (using the NI-USB-6259) is applied to collect the AE
signal with 500k Hz sample rate during the nanomachining
process.

To validate the contribution of sensor-based tech for
nanoscale process monitoring, a set of nanomachining
experiments is devised with varying cutting forces (50, 150,
250, 350, and 450 nNs) on a PMMA sample surface with a
machining length of about 1 um. The surface morphology of
the nanotrenches fabricated with different normal forces is
shown in Figure 2. To illustrate the significant features (width
and depth) in Figure 2 a), the cross-sectional profile of the five
nanotrenches at the 0.8 um y-axis, marked with a red line, is
shown in Figure 2 b). The temporal AE signals of five cuts are
collected by the mounted AE sensor, which is used to
investigate the validity of the sensor-based method in the
monitoring process with different nanofabrication conditions.
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Figure 1. The AE sensor and data acquisition system integrated with the
vibration-assisted AFM-based nanofabrication platform.

2.2. Data description

This investigation tries to present an analytic model that
connects the acoustic emission phenomena and the
fundamental mechanisms of material removals during the
nanofabrication. To test the capability of the monitoring setup
for characterizations of nanofabrication, the spectral features of
gathered AE signals during the nanomachining are used to
associate the temporal modifications during the nanomachining
process; the surface characteristics, in terms of cutting depths,
of nanofabricated trenches, are selected as the responses.

The cutting depth coordinates are regarded as the dependent
variable for the prediction model which can be used to describe
one of the typical features of the cuts’ morphology. Meanwhile,



Author name / Manufacturing Letters 00 (2023) 000—-000 3

acoustic emission (AE) signals, are synchronously captured by 40 Bird View
the sensor during the cutting operation, which can be treated as a)
the independent variables for the prediction model. 2
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Figure 2. a) Five nanomachined trenches. b) Cross-sectional profile with
widths and depths of the trenches.

The surface morphology of five trenches is extracted from
the machined samples scanned by the AFM. The total sample
area is 2x1.5 micrometers, and 1200 sample data points are
collected on each direction axis. The length of each
segmentation unit on each axis ranges from 1.25nm to 1.70 nm,
as shown in Figure. 3. The five cuts from left to right are

machined by various forces (50, 150, 250, 350, and 450 nNs), -30 T T T T
and the heavier force causes a deeper cut, which can be 0 0.5 " 1 1.5 2
reflected from the color in Figure. 3. The dark color represents a 3D(C _m)

lew

the deeper part and the light color represents the higher parts.
the width and depth of cuts are marked in Figure. 3. a) and ¢),
the cutting direction is marked on Figure. 3. b) and d). The 40-
extracted surface profile and the cutting depth (surface profile
along the vertical direction) are shown in Figure. 4.

Cutting
-20 4 Direction
0 0
05 i 0.5
15 1
2 15
X(pm) Y(um)

Figure 3. a) Bird view of 3D surface profiles of trenches. b) Top view of 3D
surface profiles of trenches. ¢) Front view of 3D surface profiles of trenches.
d) 3D surface profiles of trenches.
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Figure 4. a) Top view of 3D surface profiles of trenches. b) 3D morphology
of Cut 3. ¢) Depth line of Cut 3.

Figure. 4. shows, in total, five cuts (Cuts 1 to 5 from left to
right). To show the machined surface morphology, Cut 3 is
selected as an example. Figure 4 b) shows the 3D morphology
of Cut 3. The instantaneous depth of cut is depicted in the red
line in Figure 4 b). Predicting the depth of cut based on the
sensor signals is critical for in-process evaluations of the
nanofabrication quality. The 3D cut figure is projected to the y-
axis and z-axis coordinates, and the depth line is shown in the
coordinate area in Figure 4 c).

The synchronized AE sensor signals during the
nanomachining are shown in Figure. 5. The AE signal always
exhibits highly nonstationary and transient behaviors that
capture the acoustic emission phenomena during the material
removals. The most significant spectral AE features in
distinguishing differences between cutting conditions are
highly correlated to the failure modes of PMMA materials. To
analyze the AE signal, its temporal-spectral features are
extracted to evaluate the frequency responses during the
nanomachine. It applies a sliding window for Fast Fourier
transformation (FFT) to extract the time-frequency features
from AE signals. The represented temporal-spectral features
are shown in Figure 5, of which the x-axis is the time index and
the y-axis is the frequency range, and the energy of various
frequency bands (in dB) is represented using a color map. To
analyze the AE spectral responses in high resolution, 4095
different frequency bands of AE signal are generated within the
range from 0 to 250 kHz (see Figure 5). It is impractical that all
the 4095 frequency bands are involved in the machine learning
model, and due to the noise and system vibrations, only critical
frequency bands are sensitive to the cutting process which can
be used for the prediction. Therefore, feature selection is an
unavoidable step in this problem.
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Figure 5. The nanomachine trench (shown with the depth profile) with
synchronously gathered AE signal during the nanomachining. The spectrogram
shows the frequency component variations during the nanomachining process.

To help select useful spectral features, a random forest
classification approach is applied. This classification algorithm
implicitly selects the features (subsets of frequency bands) that
contribute most to the classification of different cutting
conditions. Intuitively speaking, the most distinguishable
frequency domain information associates with different energy
responses of AE signals during the nanomachining [23].

Top twenty significant features selected from the random
forest classification model are regarded as the independent
variables for the inputs in the prediction model, and the depths
of cut are taken as the dependent variable. These data are
applied to the multivariate linear regression model, and the
fitted model can apply to make the prediction for the depths of
different trenches.

3. Methodology

For the feature selection, fast Fourier transformation (FFT)
is used to convert five cuts’ AE signals to the temporal-spectral
domain.

In FFT process, the sliding windows with the window length
N=5000 (with time duration of 10 milliseconds) are introduced
to capture a set of AE signal at time index ¢ i.e.,
{Xe-N+1 Xe—n42r o Xe )

The temporal-frequency relationship in FFT can be

formulated as:

t
_i2mkn

x® = x,e” N k=0,..,N—1 €))
n=t-N+1

X, is the temporal AE signal which can be represented as

{xp,n=t—N+1,t—N+2,..t}in a sliding window, the

FFT converts the signal to the frequency components
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X = [Xl(t), Xz(t), o X ,E,t)]T. With the movement of the sliding
window, the set of all windows’ frequency components can be
represented as R = [X™), X(N+9) | XM] S is the step of the
sliding window and M denotes the discrete time index after
transformation. R records the magnitudes of the Fourier which
can represent the matrix of the signal spectrogram.

In the spectrogram figure, the x-axis represents the time and
y-axis represents the different frequency bands. The energy of
the frequency bands at various time is depicted by the color
map. The frequency range for the signal is depended on the
sample rate of the FFT which is 500 kHz, the signal frequency
range is also half of the sample rate. Essentially, the energy of
the spectrum in various frequency bands is related to the
nanomachining process which, can be written as F®) =
EQED, EP) i=12..,bw=12,..,M, where FO
represents the frequency band, E, represents the energy at
various times, b represents the frequency bands’ index for the
signal. The R matrix also can be represented by frequency
bands which can be written as R = [F®D, F®, ., F®)]  and
each frequency band can represent a signal feature in the
classification model. The R matrix can be illustrated with
symbols in Figure. 6.
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Figure 6. The notations for the extracted temporal spectral features.

In order to find the most significant features, a random forest
classification approach is used to distinguish the different cuts
and non-cuts’ depth and order the most important spectral
information contributing to the classification problem. For the
five cuts with different depths, the mean value of each cut depth
is used to represent the cutting classification label and replaces
the cutting depths’ coordinates values, the non-cut’ depth is
donated to zero. Depth coordinates of cut can be written as C =
{c1, ¢y, ... c,}, where z represents the coordinates for the cut’s
depth, the dependent variable depth is written as ¥ =
[C1, Cit, Crity Cry Cyy Cron )T (AL, L, 1L, 1V, V, non} is the index
of the five different cut and non-cut), which assembles five cuts
and non-cut’s depth coordinate values.

In the classification model, the cuts and non-cuts’ depths
coordinates are regarded as the responses for the classification
labels, and the corresponding spectral features of cuts and non-
cut’s AE signal are taken as the predictors which can be written
as X = [R(I)’R(II)’R(III)’R(IV)’R(V)’R(non)]'

During the training process, the random forest approach
generates several decision tree models to train the bootstrapped
data samples. Each data sample set is selected randomly from
the original data with replacement, and the number of samples
in each set is same as the original set {X} and {Y}. The features
are randomly sampled and the best split among these selected
predictors is chosen for each node of the tree models. Assuming
that the splitting variable JX; is split at point x; to segment the
predictor set. The voting mechanism of random forest can
finally classify each independents variables set to the
corresponding classifications. Meanwhile, random forest
method performs a feature selection by using the subset of the
{X;} in classification problem. The Gini important values for
each feature F® in matrix R will be calculated and ranked to
show the relevance to the classification results [24].

The Gini impurity Gini(n) equation can be formulated as:

Gini(n) =1 — Z p? (2)

c
P. = n./n represents the fraction of the n. samples from the
class Cut = {Cutl, Cut2, Cut3, Cut4, Cut5, Cut_non} (c €
Cutl, Cut?2, Cut3, Cut4, Cut5, Cut,,,) of the total n sample at
node 7.

The decrease A Gini which results from splitting and
sending the samples to sub-nodes n; and 7, (with respective
sample fractions p; = n;/n and p, = n,./n). The function can
be written as:

AGini(n) = Gini(n) — p,Gini(n,) — p,Gini(n,) 3)

In an exhaustive search over all variables X; at the nodes and
over all possible thresholds x; obtains a pair {X;, x;}, which
leads to a maximal AGini value. The decrease in Gini impurity
is accumulated for all nodes 7 in all trees D in the forest,
individually for all variables Fj:

lani(X) = ) )" AGini(y ) (1,D) @)
D 7

The I;;; can suggest how often a feature is selected for a
split, which can be regarded as criteria to evaluate the
importance of the features.

The classification results of the random forest model are
shown in Figure. 7, and important values’ scores for the
features are shown in Figure. 8.

Cuts

Cut4

Cut3

True Class

Cut2

Cut1 29

Non-Cut 28

Cuts Cut4 Cut3 Cut2 Cutl  Non-Cut
Predicted Class

Figure 7. The classifications using the temporal spectral features on
characterizations of different cutting conditions.
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Figure 8. Scores of frequency domain information on distinguishing different
nanomachining condition.

In Figure. 7, the classification result shows that random
forest method can perfectly classify the cut’s depth with the
temporal-spectral feature of AE signal, and Figure. 8. can
illustrate that the frequency bands around 50kHz and 150kHz
have significant contributions to the classification problem.
Based on the classification results and features’ score, several
temporal-frequency features have significant contributions to
the cuts’ depth recognition.

To reduce the calculation time and cost, the features’ scores
are ranked from top to bottom and only some top features are
selected for the classification model. After multiple model
fitting tests, top twenty features (frequency bands) can
successfully classify the depths of the cut, which means that the
top twenty frequency bands have enough information for the
cutting depths’ prediction.

Therefore, the cut depth prediction model will only pick the
top twenty important frequency band  features
{F',F*2, .. F'2°} as the independent variables. The top
twenty frequencies for each cut will be extracted from their
spectrogram matrix separately, and the twenty frequency bands
will be regarded as twenty predictors in the multivariate linear
regression. The predictors (using the top twenty most
significant spectral features) can be represented as P; =
[Fih Fih, . FPMT,h =1,2,3...,20.

Multivariate linear regression can solve the prediction
problem with multiple independent variables. The prediction
formulation can be expressed as:

Y= a+ Bix; + Boxy + -+ Buxy (5)
Y is the response value, the x; to x, are the n distinct
independent variables, the [; to B, are the regression
coefficients, the a is the value of Y when all the predictors
equal zero. To fit the prediction model, the top twenty
frequency bands of each cut are treated as twenty predictor
variables, and the depth coordinates for each cut are matched
to the response of the model. The model can be represented as:
[C, Cipy s Gy, 1T = @+ B1Py + BoPy + -+ + BagPoy (6)

After model training, the cut’s temporal-frequency feature
of the AE signal will be used to predict the cut’s depth. All
frequency features of the five cuts will be separated into 80%
training data and 20% testing data, and the R squared and
RMSE (root-mean-square deviation) methods will be used to
evaluate the stability of the model. In addition, the original
depth’s coordinates and predicted depth’s coordinates will also
be compared and discussed in the next part.

4. Results and Discussions

To validate the prediction method for estimating surface
profile in nanoscale, the five cuts’ depths are extracted from the
trenches’ surface profiles, and the corresponding top twenty
important frequency features for each cut are selected as the
predictors for the multivariate linear regression. The original
depth and predicted depth of the training model and testing
model are shown in Figure. 9, the black line (¥i4in) represents
the original depth line and the red line represents the predicted
line (Piain), The green line (Yes) is the original depth line and
the blue one (Pry ) is the predicted results for the testing data.

5 T T T T T T

Ym:m
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Z{nm)

-20

25 i i M M M M i
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Data Points

~test]

25 M M i M A M A i A

20 40 80 80 100 120 140 180 180

Data Points

Figure 9. The prediction results using the presented analytic approach with a)
training and b) testing datasets: a) The ground truth is plotted in black and the
predicted values are portraited in red lines; b) The ground truth of the testing
set is depicted in green and the predicted values are shown in blue lines.

The prediction results are shown in Figure. 9. and Table 1.
To validate the effectiveness of the model, the R squared and
RMSE are introduced to evaluate the performance of the
model. R squared is a statistical measure of fit that indicates
how much variation of a dependent variable is explained by the
independent variables in a regression model. Therefore, the R
squared can suggest whether the temporal-frequency of AE
signal can reflect the depth feature of the cuts. RMSE is a used
measure of the differences between values predicted by a
model and the values observed, which values can prove the
accuracy of the model.

To test the stability of the model, the training and testing
data are randomly selected ten times without the proportion
change in the dataset, and the model is fitted ten times with
different training and testing data. The quartiles, variance and
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mean values of the ten models’ R squared and RMSE are
shown in Table 1.

As for the training phase, the prediction model obtained a
high R-squared value (see Table 1), which indicates that the
independent variable (frequency features of the AE signal) can
explain almost 92% variation of the cutting depths; the
prediction results as shown in Figure 9 b), where the blue line
is the predicted value and the green line is the ground truth of
the surface profile, suggest that the presented approach can
accurately predict the tendency of the surface profile, in terms
of the cutting depths. In addition, the RMSE achieves a mean
of 0.0161 based on ten computations, which verifies that the
approach is stable for inferencing the machined profiles based
on AE signals.

Table 1. Statistic description for R squared and RMSE for predicted model.

Ql Q2 Q3 Q4 Variance = Mean
R Squared  0.8974 0.9127 0.9371  0.9373 0.0002 0.9237
RMSE 0.0144 0.0150 0.0175 0.0184  0.0000 0.0161

Next, we show the capability of the presented approach on
creating a real-time cyber-twin of the surface profile. In Figure.
10, the real cuts’ depths line (¥) and their predicted depths line
(Yhat) are compared. The black dot line is the predicted results
and the red line is the original depths line.

Cutl
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Y{pm)
Cut3
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Cut4
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Z{nm)

-20

0.3 0.4 0.5 0.6 07 08 09 1 1.1
Y(um)

Figure 10. The results comparisons between the ground truth (surface profile
in the color map and the surface depth in the red line) and predicted depth
profile plotted in black dash line.

Based on the cutting depths figure, the predicted depths of
the training model and testing model can mostly depict the
variety and the tendency of the original cutting depths without
certain dramatic changes and machining errors. The R-squared
value and RMSE value suggest that the multivariate linear
regression can output stable predicted results with high

accuracy. Therefore, it is evidenced that the temporal-spectral
feature of the nanomachine process can be used to characterize
and predict the nanomachine surface morphology.

5. Conclusion

This paper presents an AE sensor-based monitoring
approach for in-process estimation of the surface profiles by
vibration-assisted AFM-based nanomachining. The main
contribution of this paper can be summarized as follows:

1. The AE sensor-based monitoring approach for the
nanofabrication process is discussed in this paper. Further
investigations suggest that the temporal-spectral features of AE
signals are highly related to recognize different machining
conditions in terms of cutting depths during the AFM-based
nanofabrication.

2. The random forest algorithm was applied to classify the
cut and non-cut nanofabrication conditions. Based on the
importance values generated by the random forest model, the
most significant AE spectral features that contribute to
distinguish different cutting conditions are selected as the
predictors for estimating the in-process surface morphology
using a multivariate linear regression model.

3. The experimental case study suggests that the selected
spectral features can predict the surface profile in terms of the
cutting depth, and the variations under different cutting forces
(within the range of nano-Newtons). The prediction model
achieves an R-squared value of more than 92% to accurately
estimate the surface profile at the nanoscale achieved by the
AFM-based nanofabrication.

In brief, the presented AE sensor-based monitoring
approach breaks the current limitation of characterization tools
at the nanoscale precision level. It hence opens up an
opportunity to allow real-time estimation of the machining
quality of AFM-based nanofabrication process.

In future, advanced approaches toward selection AE
characteristics will be incorporated to advance the prediction
accuracy for building the digital-twin of AFM-based
nanofabrication. The physical informed analytic model will be
further investigated to predict other surface profile quantifiers
such as the cutting width and the overall morphology with
complicated 2D/3D patterns.
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