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ABSTRACT 

The atomic force microscope (AFM)-based nanomachining has the potential for highly customized nanofabrication due to 
its low cost and tunability. However, the low productivity and issues related to the quality assurance for AFM-based 
nanomachining impede it from large-scale production due to the extensive experimental study for turning process 
parameters with time-consuming offline characterizations. This work reports an analytic approach to capturing the AE 
spectral frequency responses from the nanopatterning process using vibration-assisted AFM-based nanomachining. The 
experimental case study suggests the presented approach allows characterizations of subtle variations on the AE frequency 
responses during the nanomachining processes (with overall 93% accuracy), which opens up the chance to explain the 
variations of the nano-dynamics using the senor-based monitoring approach for vibration-assisted AFM-based 
nanomachining. 
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1. INTRODUCTION
Nanofabrication gains attraction among researchers and industry in bio-production, nanolithography, and 

semiconductor sectors [1]–[3]. The atomic force microscope (AFM) based nanomachining process has excellent tunability 
for customized nanopatterning with low lost setup and high-quality finishes [4] for various methods of performing 
nanofabrication [5]–[8]. During the AFM-based nanomachining process, the issues on the quality integrity are critical due 
to the influence of the uncertainty of the tool-tip and surface geometry variations during the process: the tool-tip radius, 
system vibrations, and the material microstructures are within the same order of magnitude; any variations during the 
process will create the changes on the material removals and therefore influence the achieved surface integrity. The 
characterizations of nanomachined products require offline measurement and inspections; particularly, the visualization 
of the achieved surface finish is difficult as the geometry of the surface finish is within the nanoscale, where the optical 
measurement tools lose their capability under such a dimension. The achieved surface characteristics can only be measured 
by the AFM setup itself [9], which is offline and consequently cannot provide instantaneous feedback of the surface quality 
during the machining. As a result, this brings up the productivity and product reliability issues that impede the current 
production of AFM-based nanomachining from wide applications [10]. Therefore, it is necessary to provide an in-process 
monitoring approach to capture subtle changes during the process to reduce the extensive characterization phase and allow 
real-time diagnosis and timely intervention for quality assurance.  

This work extends from the previously presented in-process sensor-based monitoring scheme on nanomachining [11]. 
It explores the capability of capturing subtle anomalies/variations of the nanomachining process using the presented setup. 
The established sensor setup applies the acoustic emission (AE) sensor, which gathers the transient elastic waves generated 
from the energy releases during the material removals [12]. The ensemble tree regression (ETR) model is proposed to 
capture the frequency components variations of AE responses. The results suggest that the currently employed ensemble 
learning-based regression model can accurately capture the variations of AE frequency responses related to subtle changes 
in the nanomachining. The experimental case study shows improvements compared to previous results on predicting the 
surface profile. The remainder of this paper is organized as follows: Sec. 2 presents the experiment setup and collected 
data for the vibration-assisted AFM-based nanomachining process. The employed ensemble learning-based approach that 
captures the variations of the machining process via the AE sensor-based monitoring scheme is reported in Sec. 3. Sec. 4 
presents the results of the experimental case study followed by discussions. Sec. 5 concludes this paper.  
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2. EXPERIMENTS AND DATA DESCRIPTION
2.1 Experimental setup 

The nanomachining experiments were conducted on a customized vibration-assisted AFM-based nanomachining 
platform (see Figure 1). The AFM system is from Park systems Corporation (XE7, Park Systems). The nano-vibrator stage 
with two piezoelectric actuators is installed on the bottom of the sample holder aluminum pillar (see Figure 1) to allow the 
system vibrations in xy-plane for nanopatterning. The vibrations of the nano-vibrator stage are generated by a signal 
generator (USB-6259, National Instruments) and two signal amplifiers (PX200 from PiezoDrive) through the piezoelectric 
actuators with the intrinsic frequency of 2 kHz on the sample plate. The polymethyl methacrylate (PMMA) samples are 
mounted on the sample holder, and processed by the AFM probe (DLC190). During the machining, the AE sensor (s9225 
from Physical Acoustics) is installed in the systems and gathers the information at a sampling rate of 500 kHz using the 
data acquisition systems (DAQ) from National instruments (NI-USB-6259).  

Figure 1. The customized AFM platform with equipped AE sensor and DAQ system with an exemplary AE sensor signal 
and the transformed temporal-spectral diagram showing the time-varying nature of the AE signals during the 
nanomachining process. 

2.2 Experiment data observations 

A set of experiments was conducted on the presented setup with different machining down forces (50, 150, 250, 350, 
and 450 𝑛𝑁𝑠) on machining a PMMA sample surface with a cutting length ~1 𝜇𝑚. Each experiment condition was 
repeated twice, and the information generated during the process, including the AE signals, downforce signals, and lateral 
signals were synchronously collected. Figure 2 illustrates the nanomachined surface of the PMMA sample under different 
cutting forces. It may be noticed that the depth of the machined surface profile is within 20 𝑛𝑚.  

Figure 2. The visualizations of the machined nanotrenches based on offline AFM characterizations from different views. In 
total, five trenches are machined based on different cutting forces (50, 150, 250, 350, and 450 𝑛𝑁𝑠).  
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3. DATA ANALYTICS AND RESULT DISCUSSIONS

Figure 3. The schematic diagram for the sensor-based monitoring scheme on tracking the nanomachining process: a) the 
synchronously gathered AE sensor signals capture the AE information during the machining of nano trench; b) the 
windowed FFT transformation generates the temporal-spectral features of AE signals, which is treated as the inputs for the 
ensemble learning based prediction model in c) to capture variations of the AE responses in real-time and estimate the 
surface profile in the nanoscale. 

The schematic diagram of the presented analytic approach is shown in Figure 3. During the nanomachining, the DAQ 
system collects the AE signals with synchronously gathered downforce information. The change of the downforce signals 
can be the indicator of the cutting initiation and thereby locate the AE signal segments during the nanomachining to the 
machined surface profile.  

The collected AE signal during the nanomachining process can be formulated as a time series {𝑥𝑡} with the time interval
Δ𝑡 = 1/𝐹𝑠, where 𝐹𝑠 is the sampling rate of the DAQ system. In this experimental setup, 𝐹𝑠 = 500kHz and Δ𝑡 = 1𝜇𝑠. 
The streaming data {𝑥𝑡} is then treated with the Fast Fourier Transformation (FFT) for generating temporal-spectral
features: given a sliding window with window size 𝑁  (the window length 𝑁 =5000, i.e., the time duration of 10 
milliseconds), the spectral components of the windowed signal {𝑥𝑡−𝑁+1, 𝑥𝑡−𝑁+2, … , 𝑥𝑡} can be formulated as

𝑋𝑘
(𝑡)

= ∑ 𝑥𝑛𝑒−
𝑖2𝜋𝑘𝑛

𝑁  𝑘 = 0, … , 𝑁 − 1 

𝑡

𝑛=𝑡−𝑁+1

(1) 

where 𝑥𝑛 is the temporal AE signal which can be represented as {𝑥𝑛 , 𝑛 = 𝑡 − 𝑁 + 1, 𝑡 − 𝑁 + 2, … 𝑡} in a sliding window,
the transformed frequency components is represented as 𝑿(𝑡) = [𝑋1

(𝑡)
, 𝑋2

(𝑡)
, … , 𝑋𝑁

(𝑡)
]

⊤
. Based on the sliding window, a

sequence of the spectral features 𝑹 = {𝑿(𝑡)} = [𝑿(𝑁), 𝑿(𝑁+𝑆), … , 𝑿(𝑀)] can be generated, where 𝑆 is the step of the sliding
window for 𝑡 = 𝑁 𝑡𝑜 𝑀. 𝑹 essentially the magnitudes of each Fourier transformed components for {𝒙𝑡}, which shapes the
spectrogram as suggested in Figure 3 b). 

This paper reports an analytic model that captures the AE temporal-spectral features and relates them to the resultant 
material removed during the nanomachining. The cutting depths 𝒚𝑡’s are used as the responses in the prediction model
and the corresponding spectral features 𝑿(𝑡) for the prediction model. The ensemble tree regression model establishes the
relationship between surface profile feature 𝒚𝑡 and spectral features 𝑿(𝑡). The regression tree model [13] can be formulated
as follows:  

𝑓(𝑿(𝑡)) =  ∑ 𝛽𝑖 × 𝐼(𝑋𝑖
(𝑡)

∈ 𝒟𝑖)

𝔻

𝑖=1

(2) 

where 𝛽𝑖 is the coefficients for the predictors 𝑋𝑖
(𝑡), 𝐼(⋅) is the indicator function returning 1 if its argument is true and 0

otherwise. The disjoint partitions 𝒟𝑖’s follow the conditions such that ∪𝑖
𝔻 𝒟𝑖 = 𝒳 and ∩𝑖

𝔻 𝒟𝑖 = 𝜙, and 𝒳 is the space
given all the observations of 𝑿’s. Essentially, this approach partitions finite 𝔻 regions in the predictor space 𝒳  and 
estimates the coefficients 𝛽𝑖 therein for the prediction.

a) b) c)
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Figure 4. Prediction results using Ensemble Tree Regression (ETR): a) the training data set with the prediction results (red 
as the predicted values and the black line is the ground truth/ observations); b) the collection of the surface profile (cutting 
depth data) with the prediction results (blue line) vs. the ground truth of the testing set (in green). 

  
Figure 5. The result comparisons between the ground truth (surface profile in the color map and the surface depth in the red 
line) and predicted depth profile plotted in black dash line. 

To test the performance of the prediction model, the surface profiles extracted from five cuts are used as the responses 
for the prediction model, and the corresponding temporal-spectral features of the AE signals are used as the predictors for 
the ensemble tree regression model. All frequency features of the five cuts are separated into two groups —80% for training 
data and 20% for testing—and the R-squared and RMSE (root-mean-square deviation) metrics are used to evaluate the 
prediction performance. 

The ground truth of the profile depth and the predicted depths for the training and the testing data are shown in Figure 
4: the black line (𝑌𝑡𝑟𝑎𝑖𝑛) represents the ground truth of the cutting depths, and the red line depicts the predicted cutting 
depths (𝑃𝑡𝑟𝑎𝑖𝑛); the green line (𝑌𝑡𝑒𝑠𝑡) and the blue one (𝑃𝑡𝑒𝑠𝑡) are the ground truth and the predicted values for the testing 
data. It may be noticed that the ETR approach can properly capture the variations on the surface profile. Based on the 
observations from the surface morphology in Figure 2, these variations on the machined surface may be highly related to 
subtle changes during the nanomachining.  

As for both the training and testing phases, the prediction model obtained a high R-squared value, indicating that the 
AE frequency bands can explain around 93 % variation of the cutting depths (see Table 1). In addition, the RMSE achieves 
a mean of 0.0014 based on ten computations, which verifies that the approach is stable for inferencing the machined 
profiles based on AE signals. As suggested in Figures 4 a) and b), the predicted surface profile values (in red and blue, 
respectively) highly conform to the ground truth. In addition, we compare the prediction results with the ground truth for 
exemplary surface profiles (see Figure 5), where the red line is the predicted profile and the black line is the experimental 
observation. These suggest that the AE -sensor-based ETR prediction model can properly capture the variations during the 
machining and allows accurate prediction on the nanomachined surface profiles.  

Proc. of SPIE Vol. 12490  1249006-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 24 Oct 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Table 1. A summary of the prediction results in terms of R-squared and RMSE values. 

Q1 Q2 Q3 Q4 Variance Mean 

R-squared 0.9234 0.9304 0.9507 0.9573 0.0001 0.9396 

RMSE 0.0012 0.0013 0.0015 0.0016 0.0000 0.0014 

4. CONCLUSIONS
In this paper, an ensemble learning-based prediction approach is integrated with the AE sensor-based monitoring 

scheme to capture the temporal-spectral variations of AE signals during the nanomachining. Investigations suggest that 
the presented framework can estimate the surface profile in real time by discerning the subtle changes in the information 
contained in AE signals. In the future, the robustness of the presented approach needs to be investigated given high 
dimensional temporal-spectral features from AE signals. 
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