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Active Surface Flows Accelerate the Coarsening of Lipid Membrane Domains
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Phase separation of multicomponent lipid membranes is characterized by the nucleation and coarsening
of circular membrane domains that grow slowly in time as ∼t1=3, following classical theories of coalescence
and Ostwald ripening. In this Letter, we study the coarsening kinetics of phase-separating lipid membranes
subjected to nonequilibrium forces and flows transmitted by motor-driven gliding actin filaments. We
experimentally observe that the activity-induced surface flows trigger rapid coarsening of noncircular
membrane domains that grow as ∼t2=3, a 2x acceleration in the growth exponent compared to passive
coalescence and Ostwald ripening. We analyze these results by developing analytical theories based on the
Smoluchowski coagulation model and the phase field model to predict the domain growth in the presence
of active flows. Our Letter demonstrates that active matter forces may be used to control the growth and
morphology of membrane domains driven out of equilibrium.
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The dynamic interplay between nonequilibrium forces
and membrane surfaces plays an essential role in many
physical processes in living systems. For example, molecu-
lar motors and the cytoskeleton inside living cells generate
active forces on the cell membrane, allowing cells to bend,
flow, and stretch the cell surface [1,2]. Reconstituted
multicomponent lipid membranes can also phase separate
into macroscopic domains along the membrane [3]. While
the nucleation and coarsening kinetics of lipid membrane
domains at thermodynamic equilibrium is well established
[4–8], we have little understanding of how membrane
domains grow when subjected to nonequilibrium forces
and flows, such as those that might be generated by the
actin cytoskeleton.
In this Letter, we experimentally and theoretically study

the effect of internally driven 2D active flows on the rate of
domain coarsening in phase-separated lipid bilayers. In the
absence of active flows [Fig. 1(a), Supplemental Material
[9], Video S1], the lipids form circular mesoscopic domains
that grow slowly with time, consistent with prior work on
giant vesicles [7]. We find that actin and myosin create
internally driven surface flows, which couple with domains
[Fig. 1(b)] and drive coarsening and growth according to
much faster dynamics than passive systems. In passive
systems, the scaling exponent of α ¼ 1=3 is well estab-
lished for domains of size a that grow with time t according
to a ∼ tα, for both coalescence and Ostwald ripening
mechanisms [4,5,7,10,11].
Previously, it has been shown that linear, externally

imposed flows can deform domains and accelerate coars-
ening [12–14]. Here we describe a system in which surface-
adsorbed active matter, in the form of an actomyosin cortex,
internally drives lipid flows, which lead to rapid domain
growth. Using Cahn-Hilliard simulations, we show that the
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FIG. 1. (a) Planar lipid bilayers phase-separate into Lo and
liquid-disordered Ld phases. (b) In this Letter, we study the
growth of lipid domains of size a under 2D flows generated by
internal “active” forcing. (c) Left: in our experiments, actin is
bound to the Ld phase, avoiding the Lo phase. Right: actomyosin
contraction internally drives lipid membrane flows. (d) Time-
lapse images of actin (magenta) contraction with vectors calcu-
lated from particle image velocimetry overlaid (top), and Lo lipid
domains growing in time (green, bottom). Scale bar is 5 μm.
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in-plane flows created by actin increase α by more than a
factor of 2 at moderate Péclet numbers of 10−3–10−2. We
compare these results to analytical theory and simulations
describing domain growth under simple shear flow, finding
that the behavior of flow-based mechanisms is consistent
with the experimental results for actin-driven coarsening.
Experiments.—A planar lipid bilayer is deposited on a

cushioned glass coverslip, treated with polymer and pro-
teins to prevent kinetic arrest of domains due to friction
with rough substrates (see Supplemental Material for
detailed methods [9]). Briefly, silica coverslips are treated
with chlorotrimethylsilane before heavy meromyosin and
polylysine-grafted polyethylene glycol are adsorbed to
the surface. Giant unilamellar vesicles (GUVs) are formed
at 50 °C with 45% dioleoylphosphatidylcholine, 35%
dipalmitoylphosphatidylcholine, 15% cholesterol, and
5% dioleoyl-3-trimethylammonium propane (DOTAP)
using established electroformation methods [15] and then
allowed to rupture on the treated coverslip, creating a
planar bilayer. At room temperature, this lipid composition
phase separates into a continuous liquid-disordered (Ld)
phase containing dispersed liquid-ordered (Lo) domains
[Fig. 1(a)] [3]. Small amounts of lipid dyes are added to
each phase for fluorescence imaging [16].
Bilayers are heated to 37 °C and decorated with fila-

mentous actin (F-actin) [17], a negatively charged cytoske-
letal protein, which adsorbs to the bilayer via electrostatic
attraction to positively charged DOTAP enriched in the Ld
phase [Fig. 1(c), left] [18]. Myosin II motor proteins [19,20]
are added in a rigor (ATP-free) state, causing them to
cross-link actin but not apply any contractile force
[Fig. 1(c), right]. Upon quenching the system to room
temperature, the Lo domains reform and actin is sequestered
into the Ld phase [Figs. 1(c) and 1(d)]. Unlike the circular
domains in Fig. 1(a), the domains in Fig. 1(d) initially adopt
a morphology characterized by sharp corners and elongated
edges, as they have low line tension and are forced to
conform to actin bundles [21,22]. These actin-constrained
domains reach a steady size and do not appreciably grow
over tens of minutes.
Upon introducing ATP, we observe rapid actomyosin

contraction, along with simultaneous elongation and
growth of lipid domains [Fig. 1(d), Supplemental
Material [9], Video S2]. The most dramatic contraction
is often very short-lived (< 5 s) as the actin forms con-
tractile clusters and generates surface flows that rapidly
coarsen the Lo domains. Figure 1(d) (top) shows the actin
flow field generated by particle image velocimetry (PIV)
and confirms that in-plane actin flows are directed toward
an apparent sink in the upper right quadrant of the image.
We threshold time-lapse images of the domains and track

the area-to-perimeter ratio of the resulting binary images as
a metric for characteristic domain size aðtÞ, consistent with
prior experimental work on lipid domain growth [7]. This
definition of the characteristic domain size is consistent

with the alternative definition based on the first mo-
ment of the static structure factor, aðtÞ ∼ ðR kSðk; tÞdk=R
Sðk; tÞdkÞ−1, where k is the wave vector (see

Supplemental Material [9]). We fit the resulting data to
the equation aðtÞ ¼ ðAtþ BÞα before rescaling the time to
give the form a ∼ tα (see Supplemental Material). Figure 2
shows the growth of aðtÞ over time for five independent
experiments with actomyosin activity (black open sym-
bols). We find growth exponents range from α ¼ 0.59 to
0.74 for these domains under internally driven, active
surface flows.
We measure the active coarsening rate across five

different membrane compositions and actin densities, with-
out observing a strong correlation between coarsening rate
and composition (Supplemental Material [9], Fig. S1) or
actin density (Fig. S2 [9]) over the range tested. We per-
form an additional control experiment in which we quench
the bilayer and add ATP simultaneously; we observe the
passive scaling of α ¼ 1=3 at early times when the Lo
domains are small compared to the actin mesh size

FIG. 2. Lo lipid domain size aðtÞ is plotted as a function of time
t for experiments (black) and Cahn-Hilliard numerical calcula-
tions (green), with growth exponents α presented for each: a ∼ tα.
Closed symbols represent passive domain growth in the absence
of flow, with circles and triangles representing three independent
passive experiments. Passive domains grow as α ¼ 1=3 (dashed
black line), consistent with classical theories on coalescence and
Ostwald ripening. Open symbols represent active domain growth
in the presence of 2D flow, either imposed experimentally via
actomyosin contraction or incorporated theoretically using par-
ticle image velocimetry from experiments [Fig. 1(d)]. Five
independent active experiments are presented, along with sim-
ulations using three different Péclet numbers (Pe). Each dataset is
rescaled by a different factor a0 to capture the power law scaling
exponents.
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(≈1 μm), while at later times, larger domains are driven to
grow more rapidly (Fig. S3 [9]).

We compare these active data to control experiments in
which lipid bilayers without actin are heated above the
miscibility temperature and then allowed to cool so that the
domains can reform and coarsen (Supplemental Material
[9], Video S1). Figure 2 (black closed symbols) shows that
passive membranes recover the scaling of α ¼ 1=3, which
applies to both coalescence and evaporation-condensation
mechanisms of coarsening and has been well established
for membrane domains in both experimental and theoretical
work [4,5,7,10] (see Supplemental Material for derivation).
We perform these passive experiments with five different
lipid compositions, including critical mixtures, obtaining
scaling results consistent with those of Stanich et al. on
GUVs (Supplemental Material [9], Figs. S1 and S4) [7]. We
hypothesize that actin contraction generates in-plane forces
in the membrane, which drive the lipid domains to grow at
an accelerated rate.
Theory.—To evaluate our hypothesis that active con-

vection can accelerate domain coarsening, we use a Cahn-
Hilliard model to evolve a phase-separating 2D system
under surface flows. We evolve a concentration order
parameter ϕðx; tÞ using the Cahn-Hilliard equation [23],
which is commonly used to study coarsening in binary
mixtures [24–27]. The Cahn-Hilliard model predicts the
passive growth exponent α ¼ 1=3 (Fig. 2, green closed
circles and Supplemental Material [9], Video S3), which is
consistent with prior work on Ostwald ripening in the
absence of flow [4,28] (see Supplemental Material).
To analyze the effect of 2D active flows on domain

coarsening, we present the following nondimensional
Cahn-Hilliard equation in Fourier space:

dϕk

dt
þ PeFfv ·∇ϕg ¼ −k2F

�
δf
δϕ

�
− k4ϕk; ð1Þ

where ϕk is the Fourier transform of ϕðx; tÞ, k is the wave
vector, v is the nondimensional convective surface velocity
generated by the actin filaments, the Péclet number
Pe≡ γ̇κ=M, γ̇ is the rate of strain, M is lipid mobility,
and κ is a surface tension parameter. We model the bulk free
energy, f½ϕðx; tÞ� ¼ ϕ4=4 − ϕ2=2, a double-well potential
where the concentration of pure phases is ϕ ¼ �1. We add
a convective term v ·∇ϕ to impose surface flows on
the phase-separating system, testing the effect of our
hypothesized actin-induced surface convection on domain
coarsening. We use this model to obtain a mechanistic
understanding of how active convection impacts the
kinetics of domain growth. Hydrodynamic effects of the
fluid and the bulk Ld phase may also be included, but we
omit them here because surface tension (or line tension)
driven flows that cause accelerated coarsening mechanisms
are only significant for near-critical point quenches where

the minority phase is elongated and/or interconnected
[11,29].
We numerically solve the Cahn-Hilliard model using

pseudospectral methods with periodic boundary condi-
tions, starting from an initial state ϕ0 with uniform noise.
To avoid any boundary artifacts, we restricted our analysis
to the interior of the simulation box (see Supplemental
Material [9], Fig. S6). To corroborate our experimental
results, we impose the surface flow field obtained by PIV
analysis of actin [Fig. 1(d), white arrows]. We fix Cahn-
Hilliard parameters M and κ based on the pixel resolution
of the camera, while varying Pe to evaluate the effect of
active flows on growth rate (Supplemental Material [9],
Video S4). Figure 2 (green symbols) shows that domains
coarsen rapidly for the strongest flows (α ¼ 0.93 for
Pe ¼ 10−2), while weaker flows effectively act as noise
and recover passive scaling (α ¼ 0.34 for Pe ¼ 10−4). The
experimentally derived scaling exponents of α ¼ 0.59–0.74
lie between those for Pe ¼ 10−4 and Pe ¼ 5 × 10−3 in the
numerical solutions. These results are consistent with an
estimate of the molecular Péclet number based on lite-
rature values, ≈10−4–10−3, using ≈1 nm lipids with dif-
fusivity 1–10 μm2=s under surface flows with velocity
≈1 μm=s [30,31].
In addition to the Ostwald ripening mechanism in the

Cahn-Hilliard model, we note that a different model of
phase coarsening based on the Smoluchowski coagulation
model predicts a α ¼ 2=3 growth for domains subjected to
weak shear flows. The Smoluchowski coagulation model is
commonly used to predict Brownian flocculation of col-
loids [32] and diffusion-reaction dynamics of macromole-
cules [33] and is conceptually distinct from the molecular
mechanisms driving coarsening in the Cahn-Hilliard equa-
tion. In the Smoluchowski perspective, the lipid domains
are modeled as macroscopic colloids of fixed size that
merge upon contact (i.e., dimerize via an infinitely fast
chemical reaction upon contact) [11]. Thus, although they
both predict α ¼ 1=3 passive scaling, the Smoluchowski
model assumes domain growth via coalescence as opposed
to Ostwald ripening [8,34].
To obtain the enhanced scaling in shear flow under the

Smoluchowski perspective, we consider the conservation
of the number density n of singlet domains,

dn
dt

þ J ¼ 0; ð2Þ

where J is a sink that captures the merging of singlet
domains to dimerized domains,

J ¼ −
Dc

a
n2

I
r¼2a

n · ðPecv −∇r ln gþ∇rVÞg dl: ð3Þ

The sink depends on the contact integral over the arc length
dl of the normalized pair distribution of domains gðr; PecÞ,
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nondimensional velocity field v, unit normal to the domain
surface n, nondimensional pair potential V, gradient
operator relative to the center of a domain ∇r, and
Péclet number based upon treating the domains as colloids
Pec ≡ γ̇a2=Dc (with domain diffusivity Dc). Assuming that
the pair distribution quickly reaches a steady state at all
times compared to the decay of the singlet density
(quasistatic approximation), we solve for gðr; PecÞ with
boundary conditions g ¼ 0 at contact and g ¼ 1 far away.
The g ¼ 0 condition at contact assumes an instantaneously
fast merging of two singlet domains, although a finite
reaction time is also straightforward to implement.
Hydrodynamic interactions between the domains may also
be included in the pair distribution problem, but we omit
them here because lubrication flows can generally only
slow down the collision rates between membrane
domains [11,35].
Equations (2) and (3) show that the singlet density

decreases by a second-order reaction, J ¼ keffn2, where
keff is interpreted as the transport-limited effective reaction
rate constant. Assuming the domains are circular with no
bulk interaction (V ¼ 0), subjected to a simple shear flow, a
perturbation analysis at small Pec gives

keff ¼ πkBT

8ηa ln
�

L
2a

��
1þ CPec1=2

�
; ð4Þ

with bulk solvent viscosity η, system size L, and a
numerical prefactor C (see Supplemental Material [9])
[32,36,37]. We have used the Saffman-Delbrück diffusivity
for large domains compared to the Saffman-Delbrück
length [38]; the membrane is embedded within a bulk
3D fluid, and the quasi-2D geometry is critical for
obtaining the correct scaling [7,8,39]. For a constant
domain area fraction ϕA ¼ nπa2, Eqs. (2)–(4) yield a
domain growth scaling of aðtÞ ∼ t1=3 in the absence of
flow (Pec ¼ 0) and an enhancement in the presence of weak
shear flows aðtÞ ∼ t2=3. Therefore, both the coalescence-
based Smoluchowski model and the ripening-based Cahn-
Hilliard model predict a similar enhancement to the growth
of domains with active convection; both mechanisms are
present in the experiments.
Returning to the Cahn-Hilliard model [Eq. (1)], we also

considered simple toy models of the surface velocity to gain
a more mechanistic understanding of the effect of flows on
domain growth. We consider a general 2D linear flow
vðxÞ ¼ G · x, where G is a gradient tensor. We compute
Eq. (1) for shear and rotational flow fields and measure the
domain size and structure as a function of time. In shear
flow, we observed frequent domain merging and elongation
along the extensional axis of shear [Fig. 3(a), Supplemental
Material [9], Video S5]. Figure 3(c) shows that, as the static
structure factor evolves in time, the magnitudes of the peaks
grow as the peaks shift toward lower wave vectors.

Previous work shows that mechanical shear enhances
droplet coarsening at low Péclet numbers in both 2D and
3D systems, particularly along the extensional axis of shear
[12,14,40], which we also observe at long times
(Supplemental Material [9], Video S6). We hypothesize
that, with one fewer spatial degree of freedom than 3D
systems, our quasi-2D geometry enhances the effect of
flow-accelerated coarsening, as there is one fewer
unsheared mode of relaxation available to the domains.
Conversely, in rotational flow, the domains remain

approximately circular, similar to the passive case
[Fig. 3(b), Supplemental Material [9], Video S5]. In
Fig. 3(d), we compare the rate of domain growth for the
two linear flows, finding that at high Pe ¼ 10−2, shear flow
accelerates domain growth (α ¼ 0.73), while rotational
flow essentially recovers passive scaling (α ¼ 0.28). This
result is consistent with the physical intuition that rigid
body rotation about the center of the system should not alter
the frequency of collisions between domains. Our analysis
provides further physical insight into our experiments, as
any arbitrary linear flow may be constructed from linear
combinations of shear and rotational flow. For example,
extensional flow is a sum of shear flow and rotational flow,

FIG. 3. General linear flows modulate the growth and mor-
phology of phase-separating domains. Numerical solution snap-
shots of phase separation for Eq. (1) in (a) shear flow and
(b) rotational flow. Insets: evolution of the domains. (c) Static
structure factor for domains under shear flow. (d) Shear flow
increases the domain growth rate, whereas rotational flow
maintains the same scaling as passive Ostwald ripening,
≈t1=3. The parameters shown here correspond to ðM; κ; γ̇Þ ¼
ð1; 0.25; 0.04Þ, or Pe ¼ 10−2.
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has features that are similar to the flows observed in our
experiments, and also yields α ≈ 0.73 scaling.
Both the Smoluchowski and Cahn-Hilliard models pre-

dict a α ≈ 2=3 enhancement in simple shear flow, but no
enhancement in rotational flow. We note that coalescence is
an importantmechanism of growth in the experiments due to
the large colloidal Péclet number Pec ≡ γ̇a2=Dc ≈ 10, com-
pared to the molecular Péclet considered in the Cahn-
Hilliard model, Pe≡ γ̇κ=M ≈ 10−4–10−2.

While numerical solutions validate that 2D flows accel-
erate domain growth, we can obtain further mechanistic
insight by linearizing the Cahn-Hilliard equation and
obtaining an analytical approximation of α at early times.
Under simple shear flow, perturbation analysis at small Pe
yields aðtÞ ∼ t1=4 þ Pet5=4 þOðPe2Þ (see Supplemental
Material [9]). Note that the passive scaling obtained from
the linearized equation is t1=4, which is different from the
t1=3 scaling obtained from the numerical solution to the
fully nonlinear equation (1). This is consistent with prior
studies of the Cahn-Hilliard equation in the context of the
kinetics of Ostwald ripening [27]. The linearized form
captures domain growth at very early times, and nonlinear
terms are required to observe t1=3 passive scaling.
Nonetheless, even in the linearized form, this calculation
demonstrates that the leading-order effect of flows appears
atOðt5=4Þ, and any surface flows will accelerate the growth
scaling beyond the passive exponent. While not exact
solutions, these trends are consistent with our experimental
observations that surface flows can significantly accelerate
the kinetics of coarsening.
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SUPPLEMENTAL MATERIAL:
Active surface flows accelerate the coarsening of lipid membrane domains

Daniel P. Arnold,∗ Aakanksha Gubbala,∗ and Sho C. Takatori†

Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA

I. MOVIE DESCRIPTION

Movie S1: Passive domain coarsening is observed experimentally on a phase-separated lipid bilayer. A single-
phase planar lipid membrane was previously heated to ≈ 37◦C, and is shown here as it cools to room temperature.
Liquid-ordered domains (green) nucleate and coarsen as the membrane cools in the absence of flow.

Movie S2: Actomyosin-driven flows accelerate lipid domain coarsening on an experimental planar bilayer. (Upper
left) Liquid-ordered domains (green) are initially arrested by actin, but rapidly change morphology and grow when
activity is triggered at t = 0. (Upper right) An actomyosin cortex adsorbed to the lipid membrane via electrostatic
attractions begins to contract when adenosine triphosphate (ATP) is introduced at t = 0. Actin is pulled inward
toward a central cluster as it contracts. This actin cluster appears to delaminate from the surface allowing domains
to coalesce in its wake. (Lower) Actin (magenta) and lipid domain (green) images are superimposed upon one another.

Movie S3: Numerical simulation of Cahn-Hilliard model for passive coarsening. The model parameters are (M ,
κ)=(1, 0.25).

Movie S4: Numerical simulations of Cahn-Hilliard model with experimentally obtained actin flow fields at Pe
= 10−2 (left), Pe = 5× 10−3 (center), and Pe = 10−4 (right). The model parameters are (M , κ)=(300, 16).

Movie S5: Numerical simulations of Cahn-Hilliard model with shear flow (left), and rotational flow (right). The
model parameters are (M , κ, γ̇)=(1, 0.25, 0.04), which correspond to Pe = 10−2.

Movie S6: Numerical simulations of Cahn-Hilliard model with shear flow, run for longer time than Movie S5
(left). At long times, domains clearly begin to elongate along the extensional axis of the shear flow. The model
parameters are (M , κ, γ̇)=(1, 0.25, 0.04), which correspond to Pe = 10−2.

In movies S3-6, the simulation timescale is non-dimensionalized by the characteristic time scale of the Cahn-Hilliard
model, tc = κ/M . The timestamps in movies S3 and S4 are scaled by 10 to match with the timescale of the experiments.

II. DETAILED EXPERIMENTAL METHODS

A. Buffers

Filamentous actin buffer (F-buffer) consists of 50 mM Tris (pH 7.5), 2 mM magnesium chloride, 0.5 mM adenosine
triphosphate (ATP), 0.2 mM calcium chloride, 25 mM potassium chloride, and 1 mM dithiothreitol (DTT). DTT was
added to all buffers immediately before use to preserve its reactivity.

Assay buffer (A-buffer) consists of 25 mM imidazole (pH 7.4), 4 mM magnesium chloride, 1 mM (ethylene glycol-
bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid) (EGTA), 25 mM potassium chloride, and 1 mM DTT.

Globular actin buffer (G-buffer) consists of 2 mM Tris (pH 8.0), 0.2 mM calcium chloride, 0.5 mM DTT, 1 mM
sodium azide, and 0.2 mM ATP.

B. Actin and myosin preparation

Rabbit skeletal muscle actin was purified from muscle acetone powder (Pel-Freez, catalog no: 41995-2, Lot 16743)
using standard methods [1, 2]. No rabbits or other animals were directly involved in this study. Actin was stored as

∗ These authors contributed equally to this work † stakatori@ucsb.edu
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depolymerized globular actin (G-actin) at -80°C in G-buffer with 6% sucrose until use.

Actin was labeled with fluorescent Alexa Fluor 555 NHS Ester (Succinimidyl Ester) (Invitrogen catalog no: A20009)
for microscopic visualization. G-actin was reacted with NHS-Alexa Fluor 555 in HEPES buffer at room temperature
for 30 minutes. 2x-concentrated F-buffer was then added to the G-actin, quenching the NHS reaction and causing
G-actin to polymerize to F-actin. F-actin polymerization proceeded for 30 minutes at room temperature, and then
overnight at 4°C. Labeled F-actin was centrifuged at 142,000 × g for 30 minutes, and the pellet collected. Unreacted
dye and defective G-actin monomers and oligomers that were unable to polymerize were discarded in the supernatant.
Labeled F-actin was dissolved in G-buffer, and allowed to de-polymerize for three days at 4°C before freezing and
storing in 6% sucrose at -80°C.
Rabbit skeletal muscle myosin II and heavy meromyosin (HMM) were purified from rabbit skeletal muscle (Pel-Freez

Biologicals, Rogers, Arkansas) using standard methods [3]. Myosin II was frozen in 150 mM potassium phosphate
buffer (pH 7.5) with 6% sucrose and 10 mM EDTA at -80°C until use. HMM was frozen in 10 mM potassium
phosphate buffer (pH 7.0), 100 mM potassium chloride, 0.3 mM EGTA, 1 mM DTT, and 6% sucrose at -80°C until
use.

C. Giant unilamellar vesicle (GUV) preparation

Giant unilamellar vesicles (GUVs) were prepared using the established method electroformation [4]. Briefly,
lipids were mixed with the following composition: 44.7% 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, Avanti
catalog no: 850375P), 34.7% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Avanti catalog no: 850355C),
15% cholesterol (TCI Chemical, catalog no: C3624), 5% 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP,
Avanti catalog no: 890890P), 0.3% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene glycol)2000-N’-
carboxyfluorescein] (DSPE-PEG2k-FITC, Avanti catalog no: 810120C), and 0.3% ATTO 647-labeled 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine (ATTO 647-DOPE, ATTO-TEC catalog no: AD 647-161). Compositional variations
were achieved by sampling different vesicles within the diverse population that formed under these conditions. An
additional set of vesicles was formed using 52.7% DOPC, 24.7% DPPC, 8% DOTAP, 0.3% DSPE-PEG2k-FITC, and
0.3% ATTO 647-DOPE, to achieve the lowest area fraction sampled amongst the active samples. Lipids were spread
on an indium tin oxide (ITO)-coated microscope slide (Diamond Coatings, 8-12 Ohm slide) and dried under vacuum
for 30 minutes.

A 2 mm rubber gasket was sandwiched between the ITO-coated slide containing lipids and a clean ITO-coated
slide, and the interstitial space filled with 75 mM sucrose solution. A sinusoidal electric potential of amplitude 3V
(peak-to-peak) and frequency 10 Hz was applied to the chamber for two hours at 50 °C. After two hours, the frequency
was changed to 2 Hz for 30 minutes. The resulting GUVs were collected, stored at room temperature and used within
one day.

D. Surface preparation

Glass cover slips No. 1.5 (Fisher) were cleaned with piranha solution (3:1 sulfuric acid:hydrogen peroxide) for
five minutes and then washed with deionized water. The cover slips were then made hydrophobic via reaction
with trimethylchlorosilane (Sigma) vapors in a vacuum chamber, under house vacuum for ten minutes. A 6 mm
cylindrical polydimethylsiloxane (PDMS) chamber was attached to the cover slip surface to hold liquids. Cover slips
were incubated with 200 nM heavy meromyosin (HMM) for five minutes. After five minutes, 0.1 mg/mL polylysine-
grafted-PEG (PLL-g-PEG) was added and the HMM/PLL-g-PEG solution incubated for another five minutes. The
coverslip was then washed, first with A-buffer, and then with MilliQ water.

E. Assembling actomyosin cortex on a lipid bilayer

GUVs in MilliQ water were added to the cover slip chamber. The cover slip was heated to 37°C for at least 20
minutes, during which time GUVs ruptured on the treated surface. Unbound GUVs were then washed from the cover
slip with A-buffer. For experiments with activity, the cover slip was then incubated in 1 µM F-actin for 10 minutes
at 37 °C. F-actin spontaneously adsorbed to the liquid-ordered phase of lipid bilayer via electrostatic attraction to
DOTAP [5]. Unbound actin was washed from the cover slip with A-buffer. The cover slip with lipids and actin was
incubated in 500 nM Myosin II for ten minutes at 37°C before the unbound myosin II washed away with A-buffer.
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F. Microscope for all imaging experiments

All imaging was carried out on an inverted Nikon Ti2-Eclipse microscope (Nikon Instruments) using an oil-immersion
objective (Apo 100x, NA 1.45, oil). Lumencor SpectraX Multi-Line LED Light Source was used for excitation
(Lumencor, Inc). Fluorescent light was spectrally filtered with emission filters (432/36, 515/30, 595/31, and 680/42;
Semrock, IDEX Health and Science) and imaged on a Photometrics Prime 95 CMOS Camera (Teledyne Photometrics).
Microscope images were collected using MicroManager 1.4 software [6].

G. Imaging passive domain growth

Planar lipid membranes without actin were gently heated with a hair dryer until the domains melted, as confirmed
by fluorescence microscopy. The hair dryer was then withdrawn, and the bilayer imaged over time as it cooled and
the domains re-formed and grew.

H. Imaging active domain growth

Due to the temperature-sensitivity of the actin-membrane interactions, actomyosin cortex, and DMNPE-caged
ATP, active domain growth was tracked at room temperature. Thus, domains were tracked as they grew from a small
initial size, fixed by the actin network, to a larger size under the influence of actomyosin activity.

Photosensitive caged ATP (1µM DMNPE-caged ATP, Invitrogen catalog no: A1049) was added to planar lipid
membranes with actin and myosin before imaging. The sample was irradiated with a brief (<1 s) pulse of 404 nm
light, converting the caged ATP to usable ATP. Domains and actin were then imaged over time, as the actomyosin
contracted, and the domain size and morphology evolved.

I. Image analysis

Microscope images of lipid domains were thresholded in ImageJ and the area and perimeter of the resulting black
and white images calculated using MATLAB (MathWorks). Characteristic domain size a was taken to be the ratio
of area/perimeter. Domain size versus time was fitted to an equation of the form:

a = (At+B)
α

(1)

where the prefactor A is related to solvent viscosity, substrate friction, and domain area fraction; B is related to the
initial size at t = 0, a0 = Bα; and α is the growth rate exponent. For plots of domain size versus time in Fig. 2 of the
main text, time is shifted for each experimental realization, so that t = 0 corresponds to the point at which a = 0.
Thus, tplot = t+ B

A where t = 0 is the time at which imaging begins, and tplot = 0 is the time at which domains begin
to form.

III. THEORY OF DOMAIN GROWTH

In this section we discuss multiple theoretical approaches to predict the growth rate of lipid domains. We first
derive the domain growth rate via a Cahn-Hilliard field-based approach in which we describe the evolution of an
order parameter ϕ, as described by Lifshitz and Slyozov [7, 8]. This approach assumes that domains grow solely via
molecular transport, i.e. an evaporation/condensation of Ostwald ripening mechanism.

We then derive the rate of domain growth via a Smoluchowski agent-based approach, in which we treat the domains
as individual particles [9]. By treating particle coalescence as a severely transport-limited two-species reaction, we
show that domains grow at the same rate via coalescence, as they do via evaporation/condensation. Finally, by
applying a simple shear flow to this Smoluchowski-based description, we demonstrate that 2D flows can increase the
rate of domain coarsening.

A. Lifshitz-Slyozov Scaling

Consider a domain of radius a and concentration, ϕ = +1, surrounded by bulk concentration phase, ϕ = −1. The
interface has line tension σ. In the bulk phase, there is a fluctuation ε(r) because the concentration is not uniformly
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ϕ = −1 near r = a. Assume ϕ(r) = −1 + ε(r), ε ≪ 1, and the gradients of order parameter in the bulk phase is
negligible. The Cahn-Hilliard model now becomes ∂tε = 2∇2ε+O(ε2). Assuming that the fluctuations quickly reach
a steady state at all times compared to the growth of domains (quasi-static approximation), we get

∇2ε = 0 . (2)

The solution to Eq. 2 is given by

ε(r) = C1 ln(r) + C2 (3)

where C1 and C2 are integration constants. We use the boundary conditions ε(r = a) = σ/(2a) and ε(r = L) = 0
(where L is the box length) to solve for C1 and C2 in Eq. 3 to obtain.

ε(r) =
σ

2a

ln(r/L)

ln(a/L)
. (4)

The droplet radius grows according to da/dt. Performing a flux balance at the interface gives

j = −2∇ε|r=a = ∆ϕ
da

dt
(5)

where j is the surface flux and ∆ϕ = 2 is the difference in order parameter across the interface. Thus,

da

dt
= − σ

2a2 ln(a/L)
. (6)

Solving this first order differential equation yields

a3

9

[
1 + 3 ln

(
L

a

)]
=

σ

2
t+ C (7)

where C is an integration constant. In the late stages of coarsening, this constant is small compared to the first term
on the right-hand side. Further, as t → ∞, a → L. In this limit, we can write L/a = 1 + ϵ, where ϵ ≪ 1. Eq. 7
becomes

a3

9
[1 + 3 ln(1 + ϵ)] =

σ

2
t . (8)

The series expansion of the log term on the left-hand side is

ln(1 + ϵ) = ϵ+O(ϵ2) . (9)

By substituting Eq. 9 in Eq. 8, we get

a3

9
(1 + 3ϵ) =

σ

2
t . (10)

The leading order solution is

a3 =
9

2
σt . (11)

Thus, the domains grow as a(t) ∼ t1/3 in 2D for Ostwald ripening.

B. Smoluchowski Coalescence

Domain growth via coalescence can be described following Siggia [10] and the Smoluchowski coagulation model,
which is used to model the flocculation of colloids of a fixed size. Here we first adapt the Smoluchowski description of
colloid flocculation to calculate the growth rate of singlet domains in the absence of flow (passive). This approach has
been previously applied to lipid domain growth by Frolov et al. [11], and treats domains as particles of uniform size,
which merge infinitely quickly and irreversibly upon contact. We then apply a simple shear flow to the 2D system and
find the dependence of the domain growth rate on the colloidal Péclet number Pec, as described by Russel, Saville,
and Schowalter [9] for 3D colloidal aggregation.
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1. Passive domain growth in the absence of flow

To model the growth of 2D passive domains in the absence of flow, we consider two identical circular particles
(particles 1 and 2) of size a and colloidal scale diffusivity Dc. These particles represent singlet lipid domains. This
pair of particles has the pair distribution function g(r, t), which evolves according to the Smoluchowski equation (given
here in dimensional form):

∂g

∂t
+∇x · j1 +∇r · (j1 − j2) = 0 (12)

where ji denotes the flux of species i, ∇x is the gradient operator relative to the origin, and ∇r is the gradient operator
relative to the center of particle 1. Assuming spherical particles and spatial invariance, Eq. 12 becomes

∂g

∂t
+∇r · jrel = 0 (13)

where jrel = j1 − j2. We define jrel as

jrel = Ug −Dc

(
∇rg + g

∇rV

kBT

)
(14)

where U is bulk fluid velocity and V is the inter-particle potential. In the absence of flow, U = 0 and

jrel = −Dc

(
∇rg + g

∇rV

kBT

)
(15)

for all r ≥ 2a. Hydrodynamic interactions between the domains may also be included in the pair distribution problem,
but we omit them here because lubrication flows can generally only slow down the collision rates between membrane
domains [10, 12].

Integrating Eq. 13 over all space gives

∂n

∂t
+

ˆ
∇r · jrel dr = 0 (16)

where n is the number density of singlet domains, defined as n(t) =
´
g(r, t) dr. Applying the divergence theorem

converts the integral over all space in Eq. 16 into a line integral over the perimeter of domain 1:

ˆ
∇r · jrel dr =

˛
r=2a

n · jrel dℓ (17)

where n is the normal vector and dℓ is an integral over the perimeter at domain contact. Assuming a steady state
flux of domains at the surface of species 1 makes Eq. 17 equal to a constant

J =

˛
r=2a

n · jrel dℓ. (18)

Thus the number density of domains evolves in time according to

∂n

∂t
= −J . (19)

To find g(r) and thus ultimately solve for J , we solve Eq. 13, which reduces to

d

dr

[
r

(
dg

dr
+ g

d (V/kBT )

dr

)]
= 0 (20)

for a radially symmetric system at steady state, with a flux defined by Eq. 15. Applying the boundary conditions
g(r = 2a) = 0 and g(r = L) = n2 for a large, but finite system size L gives the solution

g(r) =
n2e−V/kBT

´ r
2a

eV/kBT

r dr´ L
2a

eV/kBT

r dr
. (21)
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Treating the domains as hard circles such that V (r ≥ 2a) = 0 gives

g(r ≥ 2a) =
ln

(
r
2a

)
ln

(
L
2a

)n2. (22)

Plugging Eq. 22, evaluated at the colloid surface r = 2a, into Eq. 15, and then substituting into Eq. 18, gives

J = 4πaDc
dg

dr

∣∣∣∣
r=2a

=
2πDcn

2

ln
(

L
2a

) . (23)

Substituting Eq. 23 into Eq. 19 and applying the diffusivity Dc = kBT
16ηa for 2D domains much larger than the

Saffman-Delbrück limit, a ≫ LSD [13], gives

dn

dt
= − πkBT

8ηa ln
(

L
2a

)n2 (24)

where and η is the 3D solvent viscosity.
Assuming a constant area fraction of domains, ϕA = πa2n, we rewrite Eq. 24 to describe the evolution of domain

size a:

da

dt
=

kBTϕA

16ηa2 ln
(

L
2a

) . (25)

For lipid domains of initial size a0 at t = 0, the solution to Eq. 24 is

1

9
a3

[
3 ln

(
L

2a

)
+ 1

]
− 1

9
a30

[
3 ln

(
L

2a0

)
+ 1

]
=

kBTϕA

16η
t. (26)

Considering only the evolution of domains at long times and applying the analysis described in the previous section,
Eq. 26 reduces to

1

9
a3

[
3 ln

(
1

2

)
+ 3ϵ+ 1

]
− 1

9
a30

[
3 ln

(
L

2a0

)
+ 1

]
=

kBTϕA

16η
t (27)

where L/a = 1 + ϵ such that ϵ ≪ 1 and ln
(

L
2a

)
= ln(1/2) + ϵ+O(ϵ2). Thus domains grow approximately as

a =
(
kt+ ba30

)1/3
(28)

where k = 9kBTϕA

16η(3 ln 1
2+3ϵ+1)

and b = 3 ln
(

L
2a0

)
+ 1.

Thus, domains that grow from a0 = 0, purely by coalescence, follow the scaling

a ∼ t1/3. (29)

2. Domain growth in simple shear flow

To evaluate the effect of flow on domain growth, we again solve the Smoluchowski equation (Eq. 13), but with
convective flux due to an imposed shear flow, U = γ̇rer, where γ̇ is the shear rate:

jrel = Ug −Dc

(
∇rg + g

∇rV

kBT

)
. (30)

In non-dimensional form, the Smoluchowski equation is

∂g

∂t
+ Pec∇r · rg −∇r ·

(
∇rg + g

∇rV

kBT

)
= 0. (31)

The colloidal Péclet number is Pec = γ̇a2/D, and is distinct from the Péclet number Pe used in the simulations, as its
characteristic length scale a and diffusivity D correspond to whole domains, and are not molecular (lipid) parameters.



7

To solve Eq. 31, we assume that g can be expanded in powers of Pec as g = n2(g0 + Pec g1 + O(Pec
2)) in the limit

Pec ≪ 1. The leading order term, g0, is the solution for the passive case, with boundary conditions g(r = 2a) = 0
and g(r = L) = n2.

g0 =
ln(r/2a)

ln(L/2a)
(32)

The steady-state behavior far away reveals that there is a boundary layer.

∇r ·
(
∇rg0 + g0

∇rV

kBT

)
1
r∼0

+Pec∇r ·
(
∇rg1 + g0

∇rV

kBT

)
= Pec∇r ·rg0

r
ln(r/2a)
ln(L/2a)

∼∞

+O(Pec
2) (33)

As r → ∞, convection dominates diffusion in the small Pec limit. By matching the order of both terms, we get
Pec r

2 ln(r/2a)/ ln(L/2a) ∼ 1. We argue that for large r and very small Pec such that L/a ≫ 1/
√
Pec, we can

approximate the balance as Pec r
2 ∼ 1. Thus, the boundary layer region is re-scaled as r ∼ Pec

−1/2.
After performing a singular perturbation analysis at the boundary layer [9, 14, 15], and asymptotically matching

with the solution at small r, we get an expression for the flux:

J =
πkBT

8ηa ln
(

L
2a

)n2

(
1 + CPec

1/2

)
(34)

The constant C is a numerical factor obtained after asymptotic matching. Substituting this in Eq. 19, and assuming
constant area fraction ϕA = nπa2, as in the previous section gives

da

dt
=

πkBT

8ηa2 ln
(

L
2a

) (1 + CPec
1/2). (35)

We approximate the log to be constant, using the same argument as in the previous sections: at long times, when
domain size is relatively large, ln L

2a = ln(1/2) + ln(1 + ϵ) = ln(1/2) + ϵ+O(ϵ2) where ϵ ≪ 1. Thus, we approximate
Eq. 36 as

da

dt
≈ m

a2
(1 + CPec

1/2). (36)

where m = πkBT
8η(ln 1

2+ϵ)
is a constant.

The Péclet number depends on a as Pec = γ̇a2/Dc = 16γ̇ηa3/(kBT ) for domains much larger than the Saffman-
Delbrück limit (see previous section). The solution to Eq. 36 is

2

3C2
1

[C1a
3/2 − ln(1 + C1a

3/2)] = C0 +mt . (37)

Here, C1 = C(16γ̇η/(kBT ))
1/2, and C0 = (2/3C2

1 )(C1a
3/2
0 − ln(1 + C1a

3/2
0 )). Note that the term C1a

3/2 has no

dimensions. When C1a
3/2 ≪ 1, we can expand ln(1 + C1a

3/2) as a power series:

2

3

[
a3

2
+O

(
(C1a

3/2)3
)]

= C0 +mt =⇒ a ∼ t1/3 . (38)

We see that passive growth dominates when C1a
3/2 is small. Similarly, when C1a

3/2 is large, we get

2

3

[
a3/2

C1
− ln(C1a

3/2)

C1
+O

(
(C1a

3/2)−1
)]

= C0 +mt =⇒ a ∼ t2/3 . (39)

The a3/2 term dominates the log terms in the expansion, so effectively, the domain size scales as t2/3 at long times.

3. Perturbation analysis for Cahn-Hilliard model with shear flow

The non-dimensional convective Cahn Hilliard equation is

∂ϕ

∂t
+ Pev · ∇ϕ = ∇2(ϕ3 − ϕ−∇2ϕ) . (40)
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Here, the characteristic length and time scales are
√
κ and κ/M respectively. We express shear velocity as v = G · x,

where G =
(
0 1
0 0

)
. This gives us an analytic form of the Fourier-transformed convective term.

F [v · ∇ϕ] = F
[
Gijxj

∂ϕ

∂xi

]
= −Gij

(
δijϕk + kj

∂ϕk

∂ki

)
(41)

We simplify further by linearizing the bulk free energy about the initial concentration ϕ0 to give ϕ3 − ϕ ≈ (3ϕ2
0 −

1)ϕ− 2ϕ3
0. Now, we have a linear equation in Fourier space.

dϕk

dt
− PeGij

(
δijϕk + kj

∂ϕk

∂ki

)
=

[
(1− 3ϕ2

0)k
2 − k4

]
ϕk (42)

At small Pe limit, we expand ϕk in powers of Pe as ϕk = ϕk0 + ϕk1Pe +O(Pe2). The leading order solution is

ϕk0(t) = ϕk(0) exp
[(
(1− 3ϕ2

0)k
2 − k4

)
t
]
. (43)

Using the O(1) solution, we solve the O(Pe) differential equation to obtain ϕk1.

ϕk1(t) = Peϕk(0) exp
[(
(1− 3ϕ2

0)k
2 − k4

)
t
]
× kxky((1− 3ϕ2

0)− 2k2)t2 (44)

The final expression for ϕk is

ϕk(t)

ϕk(0)
= exp

[(
(1− 3ϕ2

0)k
2 − k4

)
t
]
×
[
1 + Pe kxky

(
(1− 3ϕ2

0)− 2k2
)
t2
]
+O(Pe2) . (45)

We calculate domain size using the first moment of the static structure factor S(k) = ⟨ϕkϕ−k⟩, finding a(t) ∼
t1/4 + Pe t5/4 +O(Pe2).

IV. SIMULATION DETAILS

The Cahn-Hilliard model is solved numerically using pseudo-spectral methods. The evolution of the Fourier trans-
formed order parameter ϕk is

dϕk

dt
+ F [v · ∇ϕ] = −Mk2F

[
δf

δϕ

]
−Mκk4ϕk . (46)

This first-order differential equation is solved using forward difference. The higher order gradient terms (∇4) are
treated implicitly. The bulk free energy, δf/δϕ = ϕ3 − ϕ, and the convection term are non-linear so a 2/3 anti-alias
filter is applied to remove high-frequency noise.

The initial system configuration is ϕ = ϕavg+0.1×(white noise). For the main text figures, the average concentration
is ϕavg = 0.3. The system is a 5122 grid of length 32π. The time step is controlled with adaptive time stepping,

∆tnew = [tol/(ϕ(t; ∆t)−ϕ(t; ∆t/2))]1/5. Here, ϕ(t; ∆t) means using a time step ∆t to calculate ϕ(t), and the tolerance,
tol is 10−4.

A. Metric for domain size

In the main text, the domain size is calculated using area/perimeter. There is an alternate metric based on the
structure factor of domains, S(k, t) = ⟨ϕk(t)ϕ−k(t)⟩, that also yields similar results. In this metric, the domain size is
the inverse of the first moment of the structure factor:

a(t) =

´ kcut

kmin
S(k, t)dk´ kcut

kmin
kS(k, t)dk

. (47)

Here kmin is the minimum non-zero wave-number, kcut = 2kmax is the cut-off wavelength, and kmax is the wave number
corresponding to the maximum value of the structure factor. Fig. S5 shows that using the area/perimeter ratio of
domains yields similar scaling for a(t) as the first moment of the static structure factor.
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V. SUPPLEMENTAL FIGURES

FIG. S1. The growth exponent of lipid domains α, defined according to the relation between domain size a and time t, a ∼ tα,
is plotted as a function of domain area fraction ϕA for both passive and active experiments. As passive systems were heated
and quenched to determine the growth rate, the passive area fractions presented are measured at the end of each quench. For
active systems, the area fractions are measured at the beginning of each image sequence, but are approximately constant as the
experimental system remains at room temperature. For both systems, there is little apparent correlation between area fraction
and growth rate. All lipid vesicles are prepared using 45% DOPC, 35% DPPC, 15% cholesterol, and 5% DOTAP, except for
the active experiment at ϕA = 0.21, for which the composition was 52% DOPC, 25% DPPC, 15% cholesterol, and 8% DOTAP.
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FIG. S2. Domain growth exponents α are plotted as a function of mean actin fluorescence intensities I, normalized by the
fluorescence intensity of the brightest sample Imax, for each actin-driven coalescence data set presented in Fig. 2. There may
be a correlation between actin density and growth rate of lipid domains. Images of actin at the moment ATP was introduced
are included for the samples with the lowest and highest actin densities. Scale bars are 5 µm.
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FIG. S3. Timing of actin-lipid interaction during bilayer quench dictates domain growth rate. (A) An actin-coated lipid bilayer
is heated until the domains melt, and then cooled to room temperature. ATP is introduced at t = 0, approximately the same
time at which domains began to nucleate and coarsen. Two neighboring, and partially overlapping, regions of interest are
sampled, and the domain growth analyzed. In the “slow” region (top two rows), actin is rapidly pulled into contractile centers
at the periphery of the image, with the most widespread activity qualitatively occurring between 0 and 15 s (second row,
magenta). Domains becomes resolvable at approximately 15 s (top row), after the most widespread activity has passed. In
contrast, in the “fast” region (bottom two rows), actin contracts toward the center of the images, sustaining widespread flows
throughout domain coarsening. Scale bars are 5 µm. (B) Domain growth is plotted as a function of time for both “fast” and
“slow” regions of the sample. The “slow” region approximates passive growth, wherein domain size a increases with time t as
a ∼ tα where α = 0.28 ≈ 1/3. In the “fast” region, sustained actin flows drive enhanced scaling α = 0.59. The time axis for
each data set is re-scaled by fitting data to an equation of the form a = (At+B)α with the plotted time related to the timescale
of experiment by tplot = tabsolute +B/A. Domain size a is re-scaled by initial domain size measured for each data set, a0.
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α = 0.53

α = 0.30

Early time
Late time

FIG. S4. Near-critical lipid bilayers phase-separate according to a spinodal decomposition mechanism. Domain size a, normal-
ized by the initial domain size a0 is plotted as a function of time t for a near-critical lipid bilayer undergoing passive growth
after a quench. Domain size was recorded for the first 40 seconds of an experiment (early time) and again for the following 40
seconds (late time). The time axis for each data set is re-scaled by fitting data to an equation of the form a = (At+B)α with
the plotted time related to the timescale of experiment by tplot = tabsolute + B/A. Thus the endpoint for the early time and
starting point for late time datasets are the same. Representative images are shown, with scale bars of 5 µm. At early times,
domains grow according to aα with α ≈ 1/2, before returning to α ≈ 1/3 at later times, consistent with prior measurements
on lipid bilayers by Stanich et al. [13]. Our active flows are always introduced at late times, and we thus compare active
experiments to the late-time behavior for these near-critical passive experiments.

FIG. S5. Comparison of area/perimeter and structure factor as metrics for domain size for passive coarsening. Domain growth
scales similarly regardless of the metric used to quantify domain size. The simulation parameters are (M , κ)=(1, 0.25).
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A. B. C.

FIG. S6. “Mass”, ⟨ϕ⟩(t) =
´
dxϕ(x, t) of the simulated phase field is plotted as a function of time t for (A) the flow field

derived from experiment with Pe=10−4, (B) rotational flow, and (C) shear flow. In simulations with flow, the mass is exactly
constant. In the experimental flow profile, the mass is approximately constant over the fitted range of time.



14

[1] J. A. Spudich and S. Watt, The Regulation of Rabbit Skeletal Muscle Contraction, Journal of Biological Chemistry 246,
4866 (1971).

[2] S. MacLean-Fletcher and T. D. Pollard, Identification of a factor in conventional muscle actin preparations which inhibits
actin filament self-association, Biochemical and Biophysical Research Communications 96, 18 (1980).

[3] S. S. Margossian and S. Lowey, Preparation of myosin and its subfragments from rabbit skeletal muscle, in Methods in
Enzymology , Vol. 85 (Elsevier, 1982) pp. 55–71.

[4] M. I. Angelova and D. S. Dimitrov, Liposome electroformation, Faraday Discussions of the Chemical Society 81, 303
(1986).

[5] C. F. E. Schroer, L. Baldauf, L. van Buren, T. A. Wassenaar, M. N. Melo, G. H. Koenderink, and S. J. Marrink, Charge-
dependent interactions of monomeric and filamentous actin with lipid bilayers, Proceedings of the National Academy of
Sciences 117, 5861 (2020).

[6] A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, Advanced methods of microscope
control using µManager software, Journal of Biological Methods 1, e10 (2014).

[7] I. Lifshitz and V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chem-
istry of Solids 19, 35 (1961).

[8] A. J. Bray and C. L. Emmott, Lifshitz-Slyozov Scaling For Late-Stage Coarsening With An Order-Parameter-Dependent
Mobility, Phys. Rev. B 52, R685 (1995).

[9] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989).
[10] E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Physical Review A 20, 595 (1979).
[11] V. Frolov, Y. Chizmadzhev, F. Cohen, and J. Zimmerberg, “Entropic Traps” in the Kinetics of Phase Separation in

Multicomponent Membranes Stabilize Nanodomains, Biophysical Journal 91, 189 (2006).
[12] N. Oppenheimer and H. A. Stone, Effect of Hydrodynamic Interactions on Reaction Rates in Membranes, Biophysical

Journal 113, 440 (2017).
[13] C. A. Stanich, A. R. Honerkamp-Smith, G. G. Putzel, C. S. Warth, A. K. Lamprecht, P. Mandal, E. Mann, T. A. D. Hua,

and S. L. Keller, Coarsening dynamics of domains in lipid membranes, Biophysical Journal 105, 444 (2013).
[14] L. G. Leal, Advanced Transport Phenomena (Cambridge University Press, Cambridge, 2007).
[15] W. M. Deen, Introduction to Chemical Engineering Fluid Mechanics , Cambridge Series in Chemical Engineering (Cam-

bridge University Press, 2016).


