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Predictive capability of THM models for drinking
water treatment and distribution†

Derek Hogue, *a Pitu B. Mirchandanib and Treavor H. Boyer*a

Research and practice suggest markers of drinking water quality such as trihalomethanes (THMs), can

change during treatment and distribution, potentially elevating health risk of end users. Models have been

developed to predict THM formation at drinking water treatment plants (DWTP), in drinking water

distribution systems (DWDS), and to a lesser extent, building premise plumbing (PP). The goal of this

research was to evaluate the performance of published THM models and their development methodology,

with the purpose of improving future THM model development. Water quality variable data were collected

from literature and used as inputs for collected models. Mean and variance of model prediction values

were used to measure THM model performance compared to THM data trends from literature. The

research found differences in model formulation, water quality variable selection, and model development

practices, despite evaluated models being statistical in nature. These differences lead to substantial

inconsistencies in model output behavior. Diversity of data used for model development was found to be

the most important factor for generalizable model prediction capabilities. Following these findings, a new

framework was proposed to encourage novel strategies, data sharing, and collaboration among

researchers and practitioners to improve THM model development, application, and performance. Potential

use of machine learning techniques for future model development was also discussed based on findings.

1. Introduction

Ensuring drinking water quality is crucial for maintaining

public health. Disinfection of drinking water is an important

step of drinking water treatment that ensures inactivation of

pathogens. However, disinfectants such as chlorine (Cl2), can

form carcinogenic disinfection byproducts (DBP), such as

trihalomethanes (THMs), increasing risk to consumers. The

regulation of THMs by the USEPA underlines the significance

of maintaining safe THM concentrations in drinking water

distribution systems (DWDS) for public health. There is an

expanding body of research that demonstrates changes in

residual Cl2 and increases in THMs can occur during the

treatment and distribution of drinking water.1,2 Recent

innovations in building design that promote water efficiency

may also contribute to degraded drinking water quality.3

When not appropriately accounted for, lower water use in

“green” buildings can create increased water stagnation

times, leading to lower chlorine concentration and higher

disinfection byproduct formation.4–7 Understanding how

THMs change at each point during water treatment and
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Water impact

The potential health risks of disinfection byproducts (DBPs) are a primary concern within the scope of drinking water treatment and distribution.

Regulated DBPs including trihalomethanes (THMs) are of particular importance due to regulatory and carcinogenicity concerns. It has been demonstrated

that THM concentrations can increase during drinking water distribution, and ultimately cause increased health risk to end users. This problem may be

enhanced in green buildings as lower water use leads to greater stagnation, an increased THM formation. THM models have been useful for predicting

changes in THM concentrations during water treatment and distribution, however there has been limited development for premise plumbing application

due to greater challenges imposed by differences in physiochemical phenomena influencing THM formation. Further, THM model development for the

past 30 years has focused primarily on statistical models fitted for system specific data. This research evaluates the generalizability of recent regression

based THM models to identify useful strategies for future THM model development. Further, it offers a framework that promotes a more cohesive system

of data and model development reporting that aims to facilitate greater progress and support novel data-science based approaches to the challenges

introduced by premise plumbing systems in particular. Accurate prediction of THM formation in premise plumbing will allow us to promote sustainable

water management practices while also considering the associated health implications.
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distribution is vital for maintaining public health. Although

in situ water quality sensing capabilities are available, it is

often too costly or not possible to measure certain water

quality variables, such as THMs, in real-time. Model-based

estimation of water quality variables may be a solution to the

feasibility challenges faced by drinking water treatment

plants (DWTP), DWDS, and building plumbing especially

when combined with real-time sensor data.

Numerous models have been developed with the objective

of predicting THM based on water quality variables attributed

to their formation. Model development is referred to as the

methodology used to generate models based on research

goals, and generated models are referred to as the final

published model or models of a study. Most models have

been statistical in formulation where data is used to fit

independent explanatory variables (water quality variables),

to dependent variables (i.e., THM), based on correlations in

the data. Data used for fitting the models is referred to as

training data in this research, and data used for model

validation is referred to as test data. Replicative validation is

the practice of evaluating model accuracy with training data,

while predictive validation is the practice of evaluating model

accuracy with data not used for model development. Model

evaluation is referred to as the process of measuring the

outputs of a model compared to an expected output.

Generalizability is the ability of a model to produce a

reasonable output given new or unseen data from the same

type of application (e.g., DWDS model given new or unseen

DWDS data). Generalizable models in this context would

predict similar THM concentrations for different systems

within the same application, given the appropriate water

quality variable data. A considerable body of research has

been conducted in the past 30 years dedicated to DBP water

quality modeling at drinking water treatment plants (DWTP),

and within DWDS.8,9 However, there has been limited model

development for prediction of THM in building premise

plumbing (PP). Studies suggest that THM and other water

quality variables (e.g., Cl2, UV254, and cATP), can change

significantly from DWDS to PP.10–13 Therefore, PP models

were considered in this study despite the lack of models

within literature.

The performance of THM models developed for one

application and applied to another application (e.g., DWTP

data applied to DWDS model), are not known since there are

considerable differences in system conditions.4 Further, THM

models generated since 2010 have been primarily statistical

in formulation,8 where formulation refers to the

mathematical basis of the model. Although statistical models

are useful tools, they may not provide widespread

applicability to different systems due to the application

specific nature of their development. A preliminary review of

recent THM models found that research was inconsistent

with explanatory variable usage, data preparation, statistical

analysis, and validation of the models. More broadly, there

was a limited accessibility to the data and methods used for

model development. Easily accessible data not only provides

transparency, but also provides the opportunity to develop

and employ more generally applicable models through the

use of more diverse data sets. For accurate prediction within

real drinking water systems, water age, flow conditions, and

seasonal variations in water quality variables are important

considerations; however, many models do not consider these

factors. There is a need for investigation and understanding

of water quality modeling practices which may benefit future

THM model development.

The goal of the research was to evaluate existing THM

models to understand how model development (i.e., variable

selection, statistical assessment, data collection) impacted

prediction capability and generalizable application of the

models. The desired outcome was to inform and advance

future THM model development. The specific objectives were

to: (1) compile models developed for THM prediction in

DWTP, DWDS, and PP systems, (2) compile data from

literature of common water quality variables used in THM

models for various conditions, (3) apply the water quality

variables to the collected models and quantitatively evaluate

performance, (4) identify characteristics that impact variance

of model outputs, and (5) make recommendations for future

model development.

2. Research approach
2.1 THM models

A literature review of THM models was conducted using

Scopus and Google Scholar.14–25 Search results were restricted

to include articles with titles or abstracts containing the

keywords “THM”/“trihalomethanes”, “model”, and “water”.

Results were restricted to include at least one secondary

term, such as; “DBP”, “chlorine”, “treatment plant”,

“distribution system”, or “premise plumbing” to be included

within the scope of the search. Using both inclusion criteria

narrowed the search to more relevant articles. All searches

were limited to papers published after 2009 to focus on most

recent advances in model development not covered by prior

studies.8,9 Studies with models developed for natural waters

with high NOM, alkalinity concentrations (Alk), or other

characteristics not commonly found in drinking water

systems were not included. Mechanistic models that included

unique or system specific parameters were excluded from

this study. Multiple models were selected from the same

publication if there were significant differences in modeling

approach, formulation, and/or application. Fourteen models

were found that fit the search criteria. Models were divided

into three categories based on their intended application:

DWTP, DWDS, or PP.

2.2 Water quality variable data

Water quality variable data were compiled through a

literature review in Scopus.18,19,23,26–39 Search results were

restricted to articles with titles or abstracts containing

combinations of the words “trihalomethanes”, “drinking

water”, and/or “model”. Searches were further classified

Environmental Science: Water Research & TechnologyPaper
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based on the inclusion of “treatment plant”, “distribution

system”, “distribution network”, “building plumbing”, or

“premise plumbing”. Data inclusion was limited to articles

with reported number of samples (n), mean, and standard

deviation (SD) values. Exceptions were made in the case of

limited available data for a particular water quality variable,

reported ranges were used by assuming SD = (max − min)/6.

There was no restriction on the year of publication for water

quality variable data. Data were categorized based on

application: DWTP or DWDS. There was insufficient data in

literature to create a complete set of water quality variable

conditions for PP application.

The data were compiled in RStudio by combining normal

distributions of each data entry using the rnorm() function.

The data were cleaned to remove improbable extrema (e.g.,

pH values were limited to values between 6.5 and 8.5, and

negative concentration values were removed). The

fitdistrplus package was used to determine the best fitting

distribution for each set of water quality variable data, and

corresponding distribution parameters. The descdist()

function was used to produce Cullen and Fey plots for the

water quality variable data. The plots aided in choosing

distributions that provided the best fit of the water quality

variable data. Distribution parameters for the associated

distributions were determined using the fitdist() function

using the maximum likelihood estimate. The function

rtrunc() was used to produce Monte Carlo (MC) simulated

data sets of size n = 100 000 based on the appropriate

distribution type and associated parameters for each water

quality variable data set. Simulated water quality variable

data were analyzed using descriptive statistics including

mean, SD, 90% confidence interval (CI), and coefficient of

variation (CV), which was calculated as SD/mean.

2.3 Model evaluation

Fig. 1 illustrates the research approach outlined in this

section. Model evaluation was conducted using the simulated

water quality variable data sets as inputs for the 14 THM

models. Data sets for both applications were applied to all

models for unbiased comparison of model performance.

From the MC simulation, each water quality variable

consisted of n random values from the respective distribution

described in section 2.2. Since the simulated water quality

variable data sets were used as inputs for the models, and

the resulting model outputs were data sets of equal size (n =

100 000). Descriptive statistics of model output data were

presented, including mean predicted THM, SD, ratios of

mean predicted THM concentration/mean THM

concentration from collected data (THMp/THMm), and CV.

Mean, variance, and skewness of model outputs were

compared to mean, variance, and skewness of THM data to

quantitatively rank model performance. Graphical

representations for the model output data were produced to

visually compare to the distribution of THM data from the

literature. In addition to quantitative evaluation of model

outputs, qualitative comparisons were made to better

understand impactful aspects of model development.

3. Results and discussion
3.1 THM models

Of the 14 THM models compiled from the literature review,

8 were developed for DWTP application, 5 were developed

for DWDS application, and 1 was developed for PP

application. Table 1 shows model development information.

The models were developed using some type of correlation

test followed by a multiple linear regression method to

Fig. 1 Simplified schematic of research methodology for evaluating THM model performance. Curves represent probability density functions (pdf),

for water quality variables (xi), and predicted THM model output pdf (THMi), for corresponding models (fi).
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determine statistical coefficients, with the exception of

models 9, 10, and 14. Only two of the eight models that

conducted replicative validation discussed the training/test

data split. Only three of the models conducted sensitivity

analyses, and only model 6 development considered and

removed outlier data.

Table 2 shows the model formulation, number of data,

and data source. The number of water quality variables

utilized ranged from 2 to 7 and the number of data used

to fit the models ranged from 35 to 893. Predictive

validation was conducted on 8 of the 14 models, while

replicative validation was conducted on the remaining

models (i.e., goodness of fit was measured with training

data only). Data from full-scale drinking water systems were

used for development for 11 of the models, while the other

3 models were developed with bench-scale experimental

data.

The distribution of models developed for the different

applications investigated in this research highlighted the

disparity between predictive THM models for PP

application compared to DWTP and DWDS application.

DWTP models are important for evaluating process

selection and performance, and ensuring regulatory

requirements are met, however they may not capture the

true concentration of THM at the tap. DWDS models

bridge the gap between DWTP and PP systems, but may

not capture the significant changes in THM concentration

within buildings.6 Other THM models exist outside of the

one used in this research; however they tend to be

mechanistic in nature.40–42 Mechanistic models require

system-specific parameters for accurate prediction and may

not capture the impact of omitted water quality variables

on THM formation. For example, reaction rate coefficients

have been used in some models to relate changes in

water quality variable concentrations to THM

formation.22,43 Differences in physicochemical and

biological characteristics between systems would affect the

relative impact of water quality variables on THM

formation, as well as the values of their reaction

coefficients. For these reasons, mechanistic models may

not be as useful for predicting water quality behavior in

different systems. The difference in number of models

developed for PP compared to other applications shows

that disproportionate effort has gone toward developing

THM models for DWTP and DWDS. To aid in future

development of THM models, the collected models were

analyzed for attributes that contributed to their predictive

capabilities.

Table 1 Development methodology of the evaluated THM models for DWTP, DWDS, and PP application. NA is used where replicative validation only

was performed

Application Model # Source/year Parameter estimation Training/test% Validation method Sensitivity analysis

DWTP 1 Hong et al.,
2016 (ref. 14)

Stepwise multi linear regression NA Replicative with
independent sample
t-test

Not conducted

2 Kumari and Gupta,
2015 (ref. 15)

Multi linear regression, Pearson
correlation

Not discussed Predictive with test
data

Not conducted

3 Kumari and Gupta,
2015 (ref. 15)

Multi linear regression, Pearson
correlation

Not discussed Predictive with test
data

Not conducted

4 Roth and Cornwell,
2018 (ref. 16)

Multi linear regression, Pearson
correlation

NA Replicative, and
residual analysis

Not conducted

5 Shahi et al., 2020
(ref. 17)

Multi linear regression, Pearson
correlation

Not discussed Predictive with test
and independent
data

Not conducted

6 Godo-Pla et al.,
2021 (ref. 18)

Multi linear regression with outlier
detection

80/20 Predictive with test
data

Differential based
sensitivity analysis

7 Domínguez-Tello
et al., 2017 (ref. 19)

Multi linear regression, Pearson
correlation

Not discussed Predictive, test and
independent data

Not conducted

8 Chen and
Westerhoff, 2010
(ref. 20)

Multi non-linear regression, MSE
correlation

NA Replicative, RMSE Independent
variable sensitivity
analysis

DWDS 9 Wert et al.,
2012 (ref. 21)

Linear correlation NA Predictive with
independent data

Independent
variable sensitivity
analysis

10 Cong et al.,
2012 (ref. 22)

Empirical parameter estimates based
on experimental data

NA Replicative, RMSE Not conducted

11 Osorio et al.,
2011 (ref. 23)

Multi linear regression, bivariate
correlation, and one-way ANOVA test

NA Replicative, RMSE Not conducted

12 Tsitsifli and
Kanakoudis, 2020
(ref. 25)

K–S test, Pearson correlation
estimate for multi linear regression

NA Replicative, one-way
ANOVA test

Not conducted

13 Domínguez-Tello
et al., 2017 (ref. 19)

Multi linear regression, Pearson
correlation

Not discussed Predictive, test and
independent data

Not conducted

PP 14 Chowdhury et al.,
2011 (ref. 24)

Significant factors analysis via
numerical and graphical techniques

65/35 Predictive with test
data

Not conducted

Environmental Science: Water Research & TechnologyPaper
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Table 2 Collected THM models developed for DWTP, DWDS, and PP application. Test data refers to data separated from training data prior to parameter fitting, and independent data refers to data

from outside system(s)

Application
Model
# Source/year Model

#
WQV

#
data Data source

DWTP 1 Hong et al.,
2016 (ref. 14) THMs ¼ 10−2:534 DOCð Þ0:369 Brð Þ0:212 Cl2;d

DOC

� �0:400

Tð Þ0:662 pHð Þ2:364 RTð Þ0:305
6 243 Bench scale

experimental data

2 Kumari and Gupta,
2015 (ref. 15)

THM = −150.833 + 40.948(pH) + 6.153(T) − 13.876(Cl2,r) + 8.100(RT) + 6.221(TOC) + 292.308(UV254) 6 46 In situ DWTP and
DWDS data

3 Kumari and Gupta,
2015 (ref. 15)

THM = 33.436(pH)0.062(T)0.069(Cl2,r)
−0.048(RT)0.018(TOC)0.079(UV254)

0.045 6 46 In situ DWTP and
DWDS data

4 Roth and Cornwell,
2018 (ref. 16)

THM = 101.2146(Cl2,d)
0.3897(RT)0.3142(UV254)

0.1381 3 66 Bench scale
experimental data

5 Shahi et al.,
2020 (ref. 17)

THM = 85.928 − 5.2 × 10−4(UV254 × DOC × log(Cl2,d))
2
− 6.2 × 10−2(Br + 2) + 1.66 × 10−5(Cl2,r)

2 + 3.87 ×

10−6(Cl2,post)
2
− 10.25(pH) + 7 × 10−3(T)2 + 8.42 × 10−5(UV254 × (T)2 × RT × Cl2,d)

7 120 In situ DWTP data

6 Godo-Pla et al.,
2021 (ref. 18)

THM = 6.18(UV254 + 1)3.64(TOC)0.462(Cl2,d)
0.420(Br + 1)0.471(T)0.169(pH)0.048(RT)0.298 7 573 In situ DWTP and

DWDS data
7 Domínguez-Tello

et al., 2017 (ref. 19)
THM = 165 − 21.3(pH) + 0.232(Br) + 5.84(Cl2,d × RT × T × UV254) 6 198 In situ DWTP and

DWDS data
8 Chen and Westerhoff,

2010 (ref. 20)
THMFP = 1147(UV254)

0.83(Br + 1)0.27 2 210 In situ WTP data

DWDS 9 Wert et al., 2012
(ref. 21)

THM = 0.035(TOC)1.098(Cl2)
0.152(T)0.609(pH)1.601(RT)0.263 5 172 In situ DWTP data

10 Cong et al.,
2012 (ref. 22)

THM ¼ 11:1 TOCð Þ þ 20:06ð Þ − 11:1 TOCð Þ þ 20:06ð Þ −THM0ð Þ

× exp k0C0

7:5 × 107 0:7 TOCð Þ − 2:2 C0ð Þð Þ × exp −
6500
Tð Þ × exp −7:5 × 107 0:7 TOCð Þ − 2:2 C0ð Þð Þ × exp −

6500
T

� �

RTð Þ
� �

− 1
� �

� �

5 49 Bench scale
experimental data

11 Osorio et al.,
2011 (ref. 23)

ffiffiffiffiffiffiffiffiffiffiffi

THM
p

¼ −28:826þ 1:583 TOCð Þ þ 2:713 log condð Þð Þ − 1:307 log bicarbð Þð Þ þ 3:744 Cl2ð Þ þ 2:427 pHð Þ þ 0:102 Tð Þ 6 893 In situ DWDS
data

12 Tsitsifli and
Kanakoudis, 2020
(ref. 25)

log(THM) = −3.84 + 0.633(pH) − 0.1056(TOC)−2 2 35 In situ DWDS
data

13 Domínguez-Tello
et al., 2017 (ref. 19)

TTHM = 14.9 + 1.01(TTHMEf) + 0.20(pHDS) − 0.104(Cl2,d × RT × T × UV254) 5 280 In situ DWTP and
DWDS data

PP 14 Chowdhury et al.,
2011 (ref. 24)

THMPP = 21.4 + 36.9(Cl2) + 0.986(THMDS) + 0.59(TOC) − 1.83(T) − 1.21((TOC − 4.1)(T − 18.7)) 4 350 In situ PP data
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Model development techniques were inconsistent

between studies, and generally lacked the execution of

important considerations such as outlier data calculation

and sensitivity analyses. Outlier data may skew model

correlation parameters leading to less accurate prediction

capabilities. Sensitivity analyses are important for

understanding bias of model outputs. The parameter

estimation methods were mainly based on Pearson

correlation tests, with the exception of models 1, 6, 11, 12,

and 14, which used more comprehensive parameter

estimation techniques. There were no clear trends in model

performance based on model development methodologies.

Further, the differences between methodologies of the

models highlights the inconsistencies between model

development and reporting.

Water quality variable selection was different for each

of the models due to differences in model development. A

summary of water quality variable usage for each model is

presented in Table 3. Each study used a correlation test

to determine which water quality variables were significant

predictors for THM formation. The differences between

models highlight the relative differences in phenomena

affecting THM formation in different applications. The

amount of data used for model training and validation

also varied between models. For the studies that did not

explicitly declare number of data, best estimates were

used based on number of data points on graphs or

sampling protocol descriptions. Both the amount of data

and the diversity of data are important considerations for

regression fitting since they can impact model accuracy

and prediction capabilities under different conditions.

Predictive validation is important for understanding the

prediction accuracy of the model under conditions outside

of the training data range. Water quality variable

selection, amount of training data, data diversity, and

model validation are further discussed in later sections.

Overall, the differences in model development emphasize

the lack of consistency with model approach.

Recommendations are provided in section 4.

3.2 Water quality variable data

Descriptive statistics for water quality variable data from the

MC simulation can be seen in Table 4a and b. The CV values

for water quality variables were within 10% of each other for

DWTP and DWDS data sets with the exception of chlorine

residual (Cl2,r), pH, and dissolved organic carbon (DOC).

Most of the water quality variable data was taken from

multiple sources; however, DWTP DOC, residence time (RT),

and alkalinity (Alk), and DWDS DOC, and bicarbonate

Table 3 WQV use among THM models

Application Model # Cl2,d Cl2,r Br pH Temp DOC TOC RT UV254 cond Alk bicarb THM

DWTP 1 x x x x x x
2 x x x x x x
3 x x x x x x
4 x x x
5 x x x x x x x x
6 x x x x x x x
7 x x x x x x
8 x x

DWDS 9 x x x x x
10 x x x x x
11 x x x x x x
12 x x
13 x x x x x

PP 14 x x x x
Total 5 8 5 10 11 1 9 9 8 1 0 1 3

Table 4 Descriptive statistics for DWTP WQV data, and DWDS WQV data

gathered from literature review. Cl2,r and Cl2,d are chlorine residual and

chlorine dose, respectively. Br is bromide ion concentration, T is

temperature, DOC is dissolved organic carbon, TOC is total organic

carbon, RT is residence time, UV254 is ultraviolet absorbance at 254 nm

wavelength, Alk is alkalinity, cond is conductivity, and THM it total

trihalomethanes

Variable Mean SD 5% 95% CV

DWTP
Cl2,d (mg L−1) 2.51 0.39 1.87 3.16 0.16
Cl2,r (mg L−1) 1.16 0.16 0.90 1.41 0.14
Br (mg L−1) 0.39 0.17 0.17 0.74 0.44
pH 7.56 0.22 7.19 7.92 0.03
T (°C) 15.45 4.71 7.66 23.25 0.30
DOC (mg L−1) 1.80 0.23 1.42 2.19 0.13
TOC (mg L−1) 1.71 0.78 0.69 3.18 0.46
RT (hours) 21.18 15.46 3.03 52.79 0.73
UV254 (1 cm−1) 0.03 0.03 0.01 0.09 1.00
Alk (mg L−1 CaCO3) 127.40 21.65 91.84 163.10 0.17
THM (μg L−1) 35.63 23.03 8.46 81.04 0.65
DWDS
cond (μS cm−1) 959.39 398.79 310.89 1643.28 0.42
Cl2,r (mg L−1) 0.76 0.38 0.17 1.44 0.50
Br (mg L−1) 0.31 0.15 0.07 0.56 0.48
pH 7.61 0.4 6.93 8.26 0.05
T (°C) 19.10 6.33 8.5 29.58 0.33
DOC (mg L−1) 0.62 0.31 0.13 1.16 0.50
TOC (mg L−1) 2.02 0.99 0.44 3.74 0.49
RT (hours) 37.45 30.76 4.29 99.46 0.82
UV254 (1 cm−1) 0.02 0.02 0.01 0.06 1.00
Bicarbonate (mg L−1 CaCO3) 204.53 78.19 76.39 334.99 0.38
THM (μg L−1) 36.97 23.1 9.19 82.19 0.62
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Fig. 2 Probability density functions (pdf), for raw WQV data (dashed line), and fitted distribution pdf (solid line), from MC simulation of a) DWTP

data, and b) DWDS data.
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(bicarb), were based on one data source due to limited data

available in the literature. Due to very limited PP data (i.e.,

only one study), DWDS data were used for PP model analysis.

Overall, there was a lack of consistency on data reporting

between studies. For example, data were reported as a range

of minimum and maximum values, confidence interval, or

mean and SD either with or without number of data points.

The exercise of collecting data from different studies was

valuable in determining variability and average conditions

for DWTP and DWDS water quality variables; however, the

results could have been improved from increased reporting,

and standardized reporting practices.

Probability density functions (PDF) for raw water quality

variable data and fitted distributions are presented graphically

in Fig. 2a and b. The aim was to produce distributions which

represented standard conditions in DWTP and DWDS while

also accounting for variability seen in real systems. Since data

were collected as n, mean, and SD, data sets with greater n had

greater bias in the shape of the raw data PDF, and subsequently

the descriptive statistics. This can be seen in Fig. 2a and b

where some raw water quality variable PDF have multimodal

distributions (e.g., Cl2,r, TDWDS). The modes correspond to

relatively large data sets with significant differences in mean

values. Another important consideration for water quality

variables in the investigated systems is interdependency.

Interdependency is when a change in one variable is correlated

to a change in another variable (e.g., Cl2 and THM are affected

by RT). Due to limited data availability, interdependency was

not a consideration for this work. Despite the differences in

data reporting and the resulting bias, the fitted distributions

accurately reproduced general trends of the raw data and were

consistent with trends found in literature.

3.3 Model performance

Descriptive statistics for model output data are presented

in Table 5a and b. Graphic presentation of DWTP and

DWDS model output PDF with their respective data sets

are shown in Fig. 3a and b. Mean, SD, and CV of the

model outputs were generally greater using DWDS data

compared to DWTP data. Since the WQV data was not

from a single source, comparison of model outputs was

made between collected THM data. For analysis, model

outputs were considered reasonable if the THMp/THMm

was between 0.5 to 2.0. Five of the models did not meet

this criterion when DWTP data were applied (models 2, 7,

8, 11, and 12), and five of the models did not meet this

criterion when DWDS data were applied (models 2, 5, 7,

11, and 12). The weighted sum of absolute difference

between mean, variance, and skewness (i.e., the first three

moments), between model output data and THM data for

both DWTP and DWDS was calculated for each model:

Table 5 Mean, sd, 90% CI, ratio of mean predicted THM value/mean THM value from literature, and coefficient of variation (CV), for each model using

a) DWTP data, and b) DWDS data generated from MC simulation

Application Model # Mean sd 5% 95% THMp/THMm CV

a)
DWTP 1 17.88 6.54 8.20 29.50 0.50 0.37

2 422.44 131.21 263.70 690.17 11.86 0.31
3 41.81 2.36 37.93 45.71 1.17 0.06
4 25.22 7.45 13.29 37.86 0.71 0.30
5 50.84 56.22 2.66 145.21 1.43 1.11
6 59.23 22.16 28.15 99.59 1.66 0.37
7 155.82 205.26 12.60 514.82 4.37 1.32
8 71.62 43.89 23.97 155.53 2.01 0.61

DWDS 9 17.97 11.13 5.32 39.43 0.50 0.62
10 39.03 8.83 27.66 55.75 1.10 0.23
11 96.54 42.96 34.94 173.91 2.71 0.44
12 8.02 3.05 3.97 13.45 0.23 0.38
13 51.95 22.63 25.05 96.11 1.46 0.44

PP 14 — — — — — —

b)
DWTP 1 24.66 10.18 10.22 43.30 0.67 0.41

2 583.50 253.90 301.43 1091.07 15.78 0.44
3 42.60 3.00 37.30 46.92 1.15 0.07
4 29.02 8.70 15.34 44.06 0.78 0.30
5 95.19 122.58 13.13 304.67 2.57 1.29
6 73.33 29.45 29.53 125.91 1.98 0.40
7 247.32 333.02 15.91 842.84 6.69 1.35
8 53.19 29.82 18.20 112.87 1.44 0.56

DWDS 9 26.84 17.72 4.06 60.57 0.73 0.66
10 42.63 11.08 24.91 61.85 1.15 0.26
11 91.11 53.81 18.91 191.35 2.46 0.59
12 9.61 6.25 1.91 22.28 0.26 0.65
13 51.99 22.63 25.09 96.07 1.41 0.44

PP 14 53.34 28.79 12.73 106.42 1.44 0.54
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Fig. 3 Probability density functions (pdf) for a) DWTP model outputs with DWTP WQV data, and b) DWDS and PP model outputs with DWDS WQV

data. The black lines represent distribution of THM data from literature.
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performance ¼
X

2

j¼1

X

3

i¼1

wi × momi;THM; j −momi;model

�

�

�

�

2
; where w

designates the assigned weight, i designates the moment, and

j designates the THM data (either DWDS or DWTP). The weights

were chosen as 1.0, 0.1, and 1.0 for the first, second, and third

moments, respectively. This performance value was used to

quantitatively compare performance of each model to a

reasonable estimate of what could be seen in practice. This

method was chosen because it allowed for comparison of data

shape and data distribution in addition to mean predicted

THM. Based on this evaluation, the best performing models

were models 6, 9, 13, and 14. These models demonstrated

reasonable mean predicted THM values as well as reasonable

variance and distribution shape compared to THM data, as seen

in Fig. 3a and b. Although the variance in THM was not directly

correlated to input variables, the goal of performance evaluation

in this manner was to provide a balanced comparison. To

understand why there were substantial differences between

model outputs, water quality variable selection, training data

variance, and model validation were compared.

The impact of variable selection on prediction accuracy

for THM models was previously explored by Ged et al.8 The

research found that the most accurate THM models included

at least 5 of the 7 following water quality variables as

explanatory variables: DOC, UV254, bromide ion

concentration (Br,) pH, Cl2,d, RT, and T. These were the most

commonly used water quality variables among the models in

this study as shown in Table 3. However, the number and

type of water quality variables used by the models were found

to have no significant correlation with model output variance

for this work. It was also hypothesized that greater variance

in water quality variable data would lead to greater variance

in model output however, no trends between water quality

variable variance and model output variance were found. The

lack of correlation between model output variance and water

quality variable selection/number of water quality variables

demonstrates the differences in phenomena affecting THM

formation between systems. The correlation between water

quality variables and THM formation are system dependent

due to differences in water quality profiles, differences in

physical aspects of the systems including temperature, usage

patterns, and pipe geometry, and differences in biofilm and

subsequent effects.40,44,45 The differences in phenomena

affecting THM formation subsequently impact which water

quality variables are included in the models (i.e., which

variables are statistically significant during model

development), as well as the correlation coefficients for the

variables. As a result of the development methods and

statistical formulation of the models, the behavior between

input data and model output variance is unique to each

model. This demonstrates the lack of generalizable

applicability of statistical models.

Another important consideration is the vague nature of

many commonly used water quality variables. For instance,

TOC is an aggregate measurement for carbonaceous

constituents and is considered a crucial water quality variable

for THM prediction since organic carbon is one of the

reactants in the formation of THMs. Theoretically two

systems could have identical TOC concentrations, however

the carbonaceous species could be significantly different. It

has been demonstrated that differences in TOC

characteristics (e.g., humic acid vs. fulvic acid composition)

impact rate, and potential of THM formation.46,47 Similarly,

other water quality variables such as conductivity provide

somewhat ambiguous characterization of water chemistry.

Further, the previously discussed system specific differences

present in DWTP and DWDS are more pronounced in PP

systems due to stochastic flow conditions, higher surface area

to volume ratio, and differences in building design.5,48,49

Therefore, it can be concluded that statistically formulated

models will not have generalizable application for different

applications, or even different systems.

To understand the impact of training data on model

prediction capabilities, Table 6 was constructed which

provides reported data ranges used for model development

compared to 90% CI for the data used in this study for model

performance evaluation. Some of the studies had limited, or

no reporting for the training data. Reporting descriptive

statistics for model training data gives the reader a better

understanding for how the model was developed, and the

ranges which the model is expected to be most accurate. In

general, models with more diverse training data (i.e., larger

ranges between min and max), tended to achieve better

results for THMp/THMm and CV. However, unreported data

values and differences in water quality variable sensitivity

due to differences in correlation coefficients make it difficult

to compare some data.

The results of this research demonstrate that there are

significant differences in THM model development,

evaluation, and reporting among studies. This research

showed that comprehensive data was more important than

number of data for model performance when applied to

independent data. Similarly, models developed for highly

specific application may struggle to perform well outside

their training data ranges. THM models have been developed

in a relatively similar manner for the past 30 years.8,50

Statistical models provide value for utilities and consumers;

however, it has been demonstrated that they have many

drawbacks. With the advent of novel modeling techniques in

the area of machine learning, there is much to explore

outside of the realm of statistical models.

There have been a growing amount of research exploring

the use of ML based techniques for predicting THMs.51–57 Most

of the research uses some type of artificial neural network

(ANN) based model to develop non-linear relationships

between water quality variables and THM concentration. The

ML based approaches show promise by demonstrating lower

error compared to their multiple linear regression based model

counterparts.51,55,56 Additionally, Zhang et al., 2023

demonstrated that conducting a stepwise multiple linear

regression for selection of significant input variables prior to

Environmental Science: Water Research & TechnologyPaper
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ML model training allowed for more efficient training and

implementation of ML model.51 Efficient implementation of

ML models is particularly useful for real-time prediction of

THM. Conducting correlation tests can also provide more

detailed insight into the significant factors impacting THM

formation for specific systems. Other sensitivity analysis

techniques such as exclusion of variables, input variable

differential analysis, and model weight analysis can provide

insights into input variable importance even when correlation

test are not conducted prior to training.58,59 As software and

hardware capabilities continue to improve, ML techniques will

undoubtedly provide more accurate models for the prediction

of THMs. ML techniques also have the potential to generate

more generalizable models compared to regression models due

to their ability to develop higher order relationships between

water quality variables. This may be especially useful in PP

model applications since there are more factors influencing

THM formation such as water usage, pipe material, and

temperature, potentially leading to highly non-linear

relationships between water quality variables and THM

formation.6,12 It has been demonstrated that regression-based

models can reasonably predict THM for specific systems, but

further exploration of ML techniques for THM modeling seems

like the most promising avenue of exploration.

There are certain applications that may benefit from the

use of a simple statistical model, however novel approaches

could provide improved insight into THM production

mechanisms, and more generally applicable models. Models

with greater applicability have the potential for far greater

impact on the improvement of human health than models

developed for a specific system. Further, data sharing and

collaboration could increase the pace of THM model

development. Many studies have attempted similar

approaches with varying levels of success. The exercise of

producing statistical models for THM in drinking waters has

been demonstrated, now it is time to explore new

approaches.

3.4 Limitations and future research

This research relied on assumptions that may not translate

in practice, such as independent behavior of water quality

variables, raw water quality variable data were representative

of most systems, and differences in model CV were directly

comparable. In practice, water quality variables are

dependent on each other in a complex manner that follows

general and system-specific trends. For example, RT impacts

formation of THM, and consumption of Cl2. The exact

relationship between the variables is system specific due to

water quality profiles varying by location. Further, the

physicochemical phenomena impacting the relationships is

different for different systems. In future work, a large enough

data set with proper characterization may allow for

consideration of the interdependence between the water

quality variables. The other major assumption was that each

model had directly comparable CV. This is a difficultT
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comparison to make since each model used different

combinations of water quality variables. For example,

model 12 only used two water quality variables, while

model 6 used seven water quality variables. Consideration

of these differences may be possible in the future if the

recommendations provided in section 4 are utilized. Even

with these limitations, this research was able to derive

meaningful lessons for future THM model development.

Moving forward, the work presented in this research

would benefit from collection and application of water

quality data from multiple applications and sources. This

would allow for more accurate characterization of the data

used, as well as better understanding of the

interdependence of water quality variables, how they differ

among location and application, how different models

respond, and more accurate comparison of model output

behaviors.

4. Proposed framework for THM
model development

The following framework is proposed for future

development of THM models to (1) promote clarity and

consistency with respect to data reporting and model

development methodology, (2) allow water quality from

different sources to be accessed and utilized, and (3)

improve THM prediction capabilities. These guidelines

would improve understanding of THM formation in all

applications discussed and are especially important for ML

based THM models.

For data reporting, it is proposed that the following be

included in the research:

1. High level description of data including geographic

region(s) of collection, sampling timeline, sampling

frequency, and any anomalies in the data;

2. Descriptive statistics of data used for model

development including amount of data collected,

mean, median, SD, and 90 or 95% CI, or equivalent;

3. Clear presentation and description of units for each

explanatory variable;

4. Inclusion of raw data in accessible form (e.g., .csv file or

github link);

5. Inclusion of any code used for data cleaning, sorting,

transformation, etc.;

6. Description of uncertainty with associated measuring

techniques.

For model development methodology and reporting, it is

proposed that the following be included in the research:

1. Detailed description of rationale behind model

development approach;

2. Description of novelty provided by model development;

3. Description of data usage during model development

(e.g., 60% used for fitting/training, 20% used for

testing, and 20% used for validation);

4. Inclusion of any code used for model development;

5. Inclusion of model validation predictive performance

through with test data and/or independent data.

With this framework, it is envisioned that future research

on THM modeling will serve not only a local purpose (e.g.,

municipality), but also a global purpose to advance the field

of water quality modeling. In particular, data sharing will

allow models to be trained and validated using more diverse

data sets, leading to more generalizable models. Modeling

THM formation within PP is more challenging than DWTP or

DWDS systems due to differences in physicochemical

conditions, biological conditions, and stochastic water usage

patterns. These differences may lead to different water

quality variables needing to be considered. For example, it

has been shown that copper pipes can catalyze THM

formation, while PEX pipes may leach organic carbon.60,61

With greater amount of data and better system

characterization, higher level evaluation of system-specific

characteristics could be evaluated. With these practices, it is

intended that a more cohesive, multi-disciplinary approach

will be encouraged, leading to greater progress in the field of

THM modeling. Additionally, larger data sets would facilitate

the exploration of machine learning based models to address

the problem of generalizable models. Machine learning

techniques have the capability of addressing the complex

mechanisms leading to THM in all systems discussed.

5. Conclusion

Key findings of this research were:

- There has been disproportionately limited THM model

development for PP application compared to DWTP

and DWDS application.

- Although most THM models are statistical in

formulation, there are inconsistencies with reporting of

data and model development methodologies between

THM studies.

- There were considerable differences between THM model

performance due to differences in model development

including intended application, water quality variable selection,

amount of, and diversity of data used for training.

- THM modeling approach has primarily been focused on

regression-based models for the past 30 years, however

ML based models demonstrate promise to increase the

accuracy and generalizability of THM models. To foster

more unified THM modeling efforts, a new framework

for model development was proposed to encourage novel

strategies, data sharing, and collaboration.
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