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Predictive capability of THM models for drinking
water treatment and distributiont
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Research and practice suggest markers of drinking water quality such as trihalomethanes (THMs), can
change during treatment and distribution, potentially elevating health risk of end users. Models have been
developed to predict THM formation at drinking water treatment plants (DWTP), in drinking water
distribution systems (DWDS), and to a lesser extent, building premise plumbing (PP). The goal of this
research was to evaluate the performance of published THM models and their development methodology,
with the purpose of improving future THM model development. Water quality variable data were collected
from literature and used as inputs for collected models. Mean and variance of model prediction values
were used to measure THM model performance compared to THM data trends from literature. The
research found differences in model formulation, water quality variable selection, and model development
practices, despite evaluated models being statistical in nature. These differences lead to substantial
inconsistencies in model output behavior. Diversity of data used for model development was found to be
the most important factor for generalizable model prediction capabilities. Following these findings, a new
framework was proposed to encourage novel strategies, data sharing, and collaboration among
researchers and practitioners to improve THM model development, application, and performance. Potential
use of machine learning techniques for future model development was also discussed based on findings.

The potential health risks of disinfection byproducts (DBPs) are a primary concern within the scope of drinking water treatment and distribution.
Regulated DBPs including trihalomethanes (THMs) are of particular importance due to regulatory and carcinogenicity concerns. It has been demonstrated

that THM concentrations can increase during drinking water distribution, and ultimately cause increased health risk to end users. This problem may be
enhanced in green buildings as lower water use leads to greater stagnation, an increased THM formation. THM models have been useful for predicting
changes in THM concentrations during water treatment and distribution, however there has been limited development for premise plumbing application

due to greater challenges imposed by differences in physiochemical phenomena influencing THM formation. Further, THM model development for the
past 30 years has focused primarily on statistical models fitted for system specific data. This research evaluates the generalizability of recent regression
based THM models to identify useful strategies for future THM model development. Further, it offers a framework that promotes a more cohesive system

of data and model development reporting that aims to facilitate greater progress and support novel data-science based approaches to the challenges
introduced by premise plumbing systems in particular. Accurate prediction of THM formation in premise plumbing will allow us to promote sustainable
water management practices while also considering the associated health implications.

1. Introduction

trihalomethanes (THMs), increasing risk to consumers. The
regulation of THMs by the USEPA underlines the significance

Ensuring drinking water quality is crucial for maintaining
public health. Disinfection of drinking water is an important
step of drinking water treatment that ensures inactivation of
pathogens. However, disinfectants such as chlorine (Cl,), can
form carcinogenic disinfection byproducts (DBP), such as
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of maintaining safe THM concentrations in drinking water
distribution systems (DWDS) for public health. There is an
expanding body of research that demonstrates changes in
residual Cl, and increases in THMs can occur during the
treatment and distribution of drinking water."”” Recent
innovations in building design that promote water efficiency
may also contribute to degraded drinking water quality.®
When not appropriately accounted for, lower water use in
“green” buildings can create increased water stagnation
times, leading to lower chlorine concentration and higher
disinfection byproduct formation.*”” Understanding how
THMs change at each point during water treatment and
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distribution is vital for maintaining public health. Although
in situ water quality sensing capabilities are available, it is
often too costly or not possible to measure certain water
quality variables, such as THMs, in real-time. Model-based
estimation of water quality variables may be a solution to the
feasibility challenges faced by drinking water treatment
plants (DWTP), DWDS, and building plumbing especially
when combined with real-time sensor data.

Numerous models have been developed with the objective
of predicting THM based on water quality variables attributed
to their formation. Model development is referred to as the
methodology used to generate models based on research
goals, and generated models are referred to as the final
published model or models of a study. Most models have
been statistical in formulation where data is used to fit
independent explanatory variables (water quality variables),
to dependent variables (i.e., THM), based on correlations in
the data. Data used for fitting the models is referred to as
training data in this research, and data used for model
validation is referred to as test data. Replicative validation is
the practice of evaluating model accuracy with training data,
while predictive validation is the practice of evaluating model
accuracy with data not used for model development. Model
evaluation is referred to as the process of measuring the
outputs of a model compared to an expected output.
Generalizability is the ability of a model to produce a
reasonable output given new or unseen data from the same
type of application (e.g., DWDS model given new or unseen
DWDS data). Generalizable models in this context would
predict similar THM concentrations for different systems
within the same application, given the appropriate water
quality variable data. A considerable body of research has
been conducted in the past 30 years dedicated to DBP water
quality modeling at drinking water treatment plants (DWTP),
and within DWDS.®° However, there has been limited model
development for prediction of THM in building premise
plumbing (PP). Studies suggest that THM and other water
quality variables (e.g., Cl,, UV,54, and cATP), can change
significantly from DWDS to PP.'®™® Therefore, PP models
were considered in this study despite the lack of models
within literature.

The performance of THM models developed for one
application and applied to another application (e.g., DWTP
data applied to DWDS model), are not known since there are
considerable differences in system conditions.* Further, THM
models generated since 2010 have been primarily statistical
in formulation,! where formulation refers to the
mathematical basis of the model. Although statistical models
are useful tools, they may not provide widespread
applicability to different systems due to the application
specific nature of their development. A preliminary review of
recent THM models found that research was inconsistent
with explanatory variable usage, data preparation, statistical
analysis, and validation of the models. More broadly, there
was a limited accessibility to the data and methods used for
model development. Easily accessible data not only provides
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transparency, but also provides the opportunity to develop
and employ more generally applicable models through the
use of more diverse data sets. For accurate prediction within
real drinking water systems, water age, flow conditions, and
seasonal variations in water quality variables are important
considerations; however, many models do not consider these
factors. There is a need for investigation and understanding
of water quality modeling practices which may benefit future
THM model development.

The goal of the research was to evaluate existing THM
models to understand how model development (i.e., variable
selection, statistical assessment, data collection) impacted
prediction capability and generalizable application of the
models. The desired outcome was to inform and advance
future THM model development. The specific objectives were
to: (1) compile models developed for THM prediction in
DWTP, DWDS, and PP systems, (2) compile data from
literature of common water quality variables used in THM
models for various conditions, (3) apply the water quality
variables to the collected models and quantitatively evaluate
performance, (4) identify characteristics that impact variance
of model outputs, and (5) make recommendations for future
model development.

2. Research approach
2.1 THM models

A literature review of THM models was conducted using
Scopus and Google Scholar.'*? Search results were restricted
to include articles with titles or abstracts containing the
keywords “THM”/“trihalomethanes”, “model”, and “water”.
Results were restricted to include at least one secondary
term, such as; “DBP”, “chlorine”, “treatment plant”,
“distribution system”, or “premise plumbing” to be included
within the scope of the search. Using both inclusion criteria
narrowed the search to more relevant articles. All searches
were limited to papers published after 2009 to focus on most
recent advances in model development not covered by prior
studies.®® Studies with models developed for natural waters
with high NOM, alkalinity concentrations (Alk), or other
characteristics not commonly found in drinking water
systems were not included. Mechanistic models that included
unique or system specific parameters were excluded from
this study. Multiple models were selected from the same
publication if there were significant differences in modeling
approach, formulation, and/or application. Fourteen models
were found that fit the search criteria. Models were divided
into three categories based on their intended application:
DWTP, DWDS, or PP.

2.2 Water quality variable data

Water quality variable data were compiled through a
literature review in Scopus.'®'??326739 gearch results were
restricted to articles with titles or abstracts containing
combinations of the words “trihalomethanes”, “drinking
water”, and/or “model”. Searches were further classified

This journal is © The Royal Society of Chemistry 2023
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based on the inclusion of “treatment plant”, “distribution
system”, “distribution network”, “building plumbing”, or
“premise plumbing”. Data inclusion was limited to articles
with reported number of samples (n), mean, and standard
deviation (SD) values. Exceptions were made in the case of
limited available data for a particular water quality variable,
reported ranges were used by assuming SD = (max — min)/6.
There was no restriction on the year of publication for water
quality variable data. Data were -categorized based on
application: DWTP or DWDS. There was insufficient data in
literature to create a complete set of water quality variable
conditions for PP application.

The data were compiled in RStudio by combining normal
distributions of each data entry using the rnorm() function.
The data were cleaned to remove improbable extrema (e.g.,
pH values were limited to values between 6.5 and 8.5, and
negative concentration values were removed). The
fitdistrplus package was used to determine the best fitting
distribution for each set of water quality variable data, and
corresponding  distribution parameters. The descdist()
function was used to produce Cullen and Fey plots for the
water quality variable data. The plots aided in choosing
distributions that provided the best fit of the water quality
variable data. Distribution parameters for the associated
distributions were determined using the fitdist() function
using the maximum likelihood estimate. The function
rtrunc() was used to produce Monte Carlo (MC) simulated
data sets of size n = 100000 based on the appropriate
distribution type and associated parameters for each water
quality variable data set. Simulated water quality variable
data were analyzed using descriptive statistics including
mean, SD, 90% confidence interval (CI), and coefficient of
variation (CV), which was calculated as SD/mean.

Simulated WQV distributions
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2.3 Model evaluation

Fig. 1 illustrates the research approach outlined in this
section. Model evaluation was conducted using the simulated
water quality variable data sets as inputs for the 14 THM
models. Data sets for both applications were applied to all
models for unbiased comparison of model performance.
From the MC simulation, each water quality variable
consisted of n random values from the respective distribution
described in section 2.2. Since the simulated water quality
variable data sets were used as inputs for the models, and
the resulting model outputs were data sets of equal size (n =
100 000). Descriptive statistics of model output data were
presented, including mean predicted THM, SD, ratios of
mean predicted  THM concentration/mean ~ THM
concentration from collected data (THM,/THM,,), and CV.
Mean, variance, and skewness of model outputs were
compared to mean, variance, and skewness of THM data to
quantitatively = rank model performance. Graphical
representations for the model output data were produced to
visually compare to the distribution of THM data from the
literature. In addition to quantitative evaluation of model
outputs, qualitative comparisons were made to better
understand impactful aspects of model development.

3. Results and discussion
3.1 THM models

Of the 14 THM models compiled from the literature review,
8 were developed for DWTP application, 5 were developed
for DWDS application, and 1 was developed for PP
application. Table 1 shows model development information.
The models were developed using some type of correlation
test followed by a multiple linear regression method to

Model output distributions
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-

Fig. 1 Simplified schematic of research methodology for evaluating THM model performance. Curves represent probability density functions (pdf),
for water quality variables (x;), and predicted THM model output pdf (THM,), for corresponding models (f;).

This journal is © The Royal Society of Chemistry 2023
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Table 1 Development methodology of the evaluated THM models for DWTP, DWDS, and PP application. NA is used where replicative validation only

was performed

Application Model # Source/year Parameter estimation

Training/test% Validation method  Sensitivity analysis

DWTP 1 Hong et al., Stepwise multi linear regression NA Replicative with Not conducted
2016 (ref. 14) independent sample
t-test
2 Kumari and Gupta, Multi linear regression, Pearson Not discussed Predictive with test ~ Not conducted
2015 (ref. 15) correlation data
3 Kumari and Gupta, = Multi linear regression, Pearson Not discussed Predictive with test ~ Not conducted
2015 (ref. 15) correlation data
4 Roth and Cornwell, Multi linear regression, Pearson NA Replicative, and Not conducted
2018 (ref. 16) correlation residual analysis
5 Shahi et al., 2020 Multi linear regression, Pearson Not discussed Predictive with test ~ Not conducted
(ref. 17) correlation and independent
data
6 Godo-Pla et al., Multi linear regression with outlier 80/20 Predictive with test ~ Differential based
2021 (ref. 18) detection data sensitivity analysis
7 Dominguez-Tello Multi linear regression, Pearson Not discussed Predictive, test and  Not conducted
et al., 2017 (ref. 19)  correlation independent data
8 Chen and Multi non-linear regression, MSE NA Replicative, RMSE Independent
Westerhoff, 2010 correlation variable sensitivity
(ref. 20) analysis
DWDS 9 Wert et al., Linear correlation NA Predictive with Independent
2012 (ref. 21) independent data variable sensitivity
analysis
10 Cong et al., Empirical parameter estimates based NA Replicative, RMSE Not conducted
2012 (ref. 22) on experimental data
11 Osorio et al., Multi linear regression, bivariate NA Replicative, RMSE Not conducted
2011 (ref. 23) correlation, and one-way ANOVA test
12 Tsitsifli and K-S test, Pearson correlation NA Replicative, one-way Not conducted
Kanakoudis, 2020 estimate for multi linear regression ANOVA test
(ref. 25)
13 Dominguez-Tello Multi linear regression, Pearson Not discussed Predictive, test and ~ Not conducted
et al., 2017 (ref. 19)  correlation independent data
PP 14 Chowdhury et al., Significant factors analysis via 65/35 Predictive with test ~ Not conducted
2011 (ref. 24) numerical and graphical techniques data

determine statistical coefficients, with the exception of
models 9, 10, and 14. Only two of the eight models that
conducted replicative validation discussed the training/test
data split. Only three of the models conducted sensitivity
analyses, and only model 6 development considered and
removed outlier data.

Table 2 shows the model formulation, number of data,
and data source. The number of water quality variables
utilized ranged from 2 to 7 and the number of data used
to fit the models ranged from 35 to 893. Predictive
validation was conducted on 8 of the 14 models, while
replicative validation was conducted on the remaining
models (i.e., goodness of fit was measured with training
data only). Data from full-scale drinking water systems were
used for development for 11 of the models, while the other
3 models were developed with bench-scale experimental
data.

The distribution of models developed for the different
applications investigated in this research highlighted the
disparity between predictive THM models for PP
application compared to DWTP and DWDS application.
DWTP models are important for evaluating process
selection and performance, and ensuring regulatory
requirements are met, however they may not capture the

2748 | Environ. Sci.. Water Res. Technol.,, 2023, 9, 2745-2759

true concentration of THM at the tap. DWDS models
bridge the gap between DWTP and PP systems, but may
not capture the significant changes in THM concentration
within buildings.® Other THM models exist outside of the
one used in this research; however they tend to be
mechanistic in nature.””** Mechanistic models require
system-specific parameters for accurate prediction and may
not capture the impact of omitted water quality variables
on THM formation. For example, reaction rate coefficients
have been used in some models to relate changes in
water  quality variable  concentrations to THM
formation.”>*®  Differences in  physicochemical and
biological characteristics between systems would affect the
relative impact of water quality variables on THM
formation, as well as the values of their reaction
coefficients. For these reasons, mechanistic models may
not be as useful for predicting water quality behavior in
different systems. The difference in number of models
developed for PP compared to other applications shows
that disproportionate effort has gone toward developing
THM models for DWTP and DWDS. To aid in future
development of THM models, the collected models were
analyzed for attributes that contributed to their predictive
capabilities.

This journal is © The Royal Society of Chemistry 2023
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Table 2 Collected THM models developed for DWTP, DWDS, and PP application. Test data refers to data separated from training data prior to parameter fitting, and independent data refers to data
from outside system(s)
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Model # #
Application # Source/year Model WQV data Data source
0.400
P ey e a0 mocymn (S) e s e
2 Kumari and Gupta, THM = -150.833 + 40.948(pH) + 6.153(T) — 13.876(Cl, ;) + 8.100(RT) + 6.221(TOC) + 292.308(UV,5,) 6 46  In situ DWTP and
2015 (ref. 15) DWDS data
3 Kumari and Gupta, THM = 33.436(pH)"****(7)**°(Cl,,,) ***¥(RT)***¥(TOC)**7°(UV,5,)" % 6 46  In situ DWTP and
2015 (ref. 15) DWDS data
4 Roth and Cornwell, THM = 10"*"%(Cl,,4)***%7(RT)* 2 (UV,5,) " % 3 66 Bench scale
2018 (ref. 16) experimental data
5 Shahi et al., THM = 85.928 - 5.2 X 10 *(UV,54 X DOC x log(Cl, 4))* = 6.2 x 10 *(Br + 2) + 1.66 x 107°(Cl,,)* + 3.87 x 7 120 In situ DWTP data
2020 (ref. 17) 10™%(Cly, pose)” = 10.25(pH) + 7 x 107(T)* + 8.42 x 107°(UV,54 X (T)> X RT x Cl, 4)
6 Godo-Pla et al., THM = 6.18(UV,54 + 1)*°4(TOC)****(Cl,,q) > **°(Br + 1)°*71(1)**°(pH)* **¥(RT)*>** 7 573 In situ DWTP and
2021 (ref. 18) DWDS data
7 Dominguez-Tello THM = 165 — 21.3(pH) + 0.232(Br) + 5.84(Cly g X RT X T X UV,5,) 6 198 In situ DWTP and
et al., 2017 (ref. 19) DWDS data
8 Chen and Westerhoff, THMFP = 1147(UV,54)" % (Br + 1)>*’ 2 210 In situ WTP data
2010 (ref. 20)
DWDS 9 Wert et al., 2012 THM = 0.035(TOC)"*%(Cl,)****(7)***°(pH)"*°*(RT)"->¢* 5 172 In situ DWTP data
(ref. 21)
10 Cong et al., THM = (11.1(TOC) + 20.06) - ((11.1(TOC) + 20.06) - THM,) 5 49 Bench scale
2012 (ref. 22) o experimental data
X exp (7_5x107(0_7(TOC)f2_02(CO)>X () x (exp(~7.5%107(0.7(TOC) - 2.2(Cy)) x exp(~52) (RT)) ~ 1))
11 Osorio et al., VTHM = -28.826 + 1.583(TOC) + 2.713(log(cond)) - 1.307( log(bicarb)) + 3.744(Cl,) + 2.427(pH) + 0.102(T) 6 893 In situ DWDS
2011 (ref. 23) data
12 Tsitsifli and log(THM) = -3.84 + 0.633(pH) — 0.1056(TOC) > 2 35 In situ DWDS
Kanakoudis, 2020 data
(ref. 25)
13 Dominguez-Tello TTHM = 14.9 + 1.01(TTHMgg) + 0.20(pHps) — 0.104(Cl, g X RT x T X UV,54) 5 280 In situ DWTP and
et al., 2017 (ref. 19) DWDS data
PP 14 Chowdhury et al., THMpp = 21.4 + 36.9(Cl,) + 0.986(THMpg) + 0.59(TOC) — 1.83(7T) — 1.21((TOC - 4.1)(T - 18.7)) 4 350 In situ PP data

2011 (ref. 24)

ABOjoUYd9] @ Ydieasdy 191BAA :9DUSI0S |RIUSWUOIIAUT

Jaded

aUIUQ APIUY MBIA



Published on 23 August 2023. Downloaded by ASU Library on 10/2/2023 5:12:06 AM.

Paper

Model development techniques were inconsistent
between studies, and generally lacked the execution of
important considerations such as outlier data calculation
and sensitivity analyses. Outlier data may skew model
correlation parameters leading to less accurate prediction
capabilities.  Sensitivity —analyses are important for
understanding bias of model outputs. The parameter
estimation methods were mainly based on Pearson
correlation tests, with the exception of models 1, 6, 11, 12,
and 14, which used more comprehensive parameter
estimation techniques. There were no clear trends in model
performance based on model development methodologies.
Further, the differences between methodologies of the
models highlights the inconsistencies between model
development and reporting.

Water quality variable selection was different for each
of the models due to differences in model development. A
summary of water quality variable usage for each model is
presented in Table 3. Each study used a correlation test
to determine which water quality variables were significant
predictors for THM formation. The differences between
models highlight the relative differences in phenomena
affecting THM formation in different applications. The
amount of data used for model training and validation
also varied between models. For the studies that did not
explicitly declare number of data, best estimates were
used based on number of data points on graphs or
sampling protocol descriptions. Both the amount of data
and the diversity of data are important considerations for
regression fitting since they can impact model accuracy
and prediction capabilities under different conditions.
Predictive validation is important for understanding the
prediction accuracy of the model under conditions outside
of the training data range. Water quality variable
selection, amount of training data, data diversity, and
model validation are further discussed in later sections.
Overall, the differences in model development emphasize
the lack of consistency with model approach.
Recommendations are provided in section 4.

Table 3 WQV use among THM models

View Article Online
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Table 4 Descriptive statistics for DWTP WQYV data, and DWDS WQYV data
gathered from literature review. Cl,, and Cl,4 are chlorine residual and
chlorine dose, respectively. Br is bromide ion concentration, T is
temperature, DOC is dissolved organic carbon, TOC is total organic
carbon, RT is residence time, UV,s4 is ultraviolet absorbance at 254 nm
wavelength, Alk is alkalinity, cond is conductivity, and THM it total
trinalomethanes

Variable Mean SD 5% 95% cv
DWTP

Clyq (mg LY 251 039  1.87 3.16 0.16
Cly, (mg L' 116 0.16  0.90 1.41 0.14
Br (mg LY 039 017  0.17 0.74 0.44
pH 7.56 0.22 7.19 7.92 0.03
T (°C) 15.45 4.71 7.66 23.25 0.30
DOC (mg L) 1.80  0.23  1.42 2.19 0.13
TOC (mg LY 171 0.78  0.69 3.18 0.46
RT (hours) 21.18 15.46 3.03 52.79 0.73
UVysy (1 em™) 0.03  0.03  0.01 0.09 1.00
Alk (mg L™ CaCO,) 127.40 21.65 91.84 163.10 0.17
THM (ug L) 35.63 23.03  8.46  81.04 0.65
DWDS

cond (uS em™) 959.39 398.79 310.89 1643.28 0.42
Cl,, (mg L) 0.76  0.38  0.17 1.44 0.50
Br (mg LY 031 015  0.07 0.56 0.48
pH 7.61 0.4 6.93 8.26 0.05
T (°C) 19.10 6.33 8.5 29.58 0.33
DOC (mg L) 0.62 031 0.3 1.16 0.50
TOC (mg LY 2.02  0.99 0.4 3.74 0.49
RT (hours) 37.45 30.76 4.29 99.46 0.82
UVasq (1 em™h) 0.02  0.02  0.01 0.06 1.00
Bicarbonate (mg L™ CaCO;) 204.53 78.19 76.39  334.99 0.38
THM (ug LY 36.97  23.1 9.19  82.19 0.62

3.2 Water quality variable data

Descriptive statistics for water quality variable data from the
MC simulation can be seen in Table 4a and b. The CV values
for water quality variables were within 10% of each other for
DWTP and DWDS data sets with the exception of chlorine
residual (Cl,,), pH, and dissolved organic carbon (DOC).
Most of the water quality variable data was taken from
multiple sources; however, DWTP DOC, residence time (RT),
and alkalinity (Alk), and DWDS DOC, and bicarbonate

Application Model # Clyq Cly, Br pH Temp DOC TOC RT UV,s4 cond Alk bicarb THM
DWTP 1 X X X X X

2 X X X X X X

3 X X X X X X

4 X X X

5 X X X X X X X X

6 X X X X X X X

7 X X X X X X

8 X X
DWDS 9 X X X X X

10 X X X X X

11 X X X X X X

12 X X

13 X X X X X
PP 14 X X X X

Total 5 8 5 10 11 9 9 8 1 0 1 3

2750 | Environ. Sci.: Water Res. Technol., 2023, 9, 2745-2759
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Fig. 2 Probability density functions (pdf), for raw WQV data (dashed line), and fitted distribution pdf (solid line), from MC simulation of a) DWTP

data, and b) DWDS data.

This journal is © The Royal Society of Chemistry 2023

Environ. Sci.: Water Res. Technol., 2023, 9, 2745-2759 | 2751



Published on 23 August 2023. Downloaded by ASU Library on 10/2/2023 5:12:06 AM.

Paper

View Article Online

Environmental Science: Water Research & Technology

Table 5 Mean, sd, 90% Cl, ratio of mean predicted THM value/mean THM value from literature, and coefficient of variation (CV), for each model using

a) DWTP data, and b) DWDS data generated from MC simulation

Application Model # Mean sd 5% 95% THM,/THM,,, Cv

a)

DWTP 1 17.88 6.54 8.20 29.50 0.50 0.37
2 422.44 131.21 263.70 690.17 11.86 0.31
3 41.81 2.36 37.93 45.71 1.17 0.06
4 25.22 7.45 13.29 37.86 0.71 0.30
5 50.84 56.22 2.66 145.21 1.43 1.11
6 59.23 22.16 28.15 99.59 1.66 0.37
7 155.82 205.26 12.60 514.82 4.37 1.32
8 71.62 43.89 23.97 155.53 2.01 0.61

DWDS 9 17.97 11.13 5.32 39.43 0.50 0.62
10 39.03 8.83 27.66 55.75 1.10 0.23
11 96.54 42.96 34.94 173.91 2.71 0.44
12 8.02 3.05 3.97 13.45 0.23 0.38
13 51.95 22.63 25.05 96.11 1.46 0.44

PP 14 — — — — — —

b)

DWTP 1 24.66 10.18 10.22 43.30 0.67 0.41
2 583.50 253.90 301.43 1091.07 15.78 0.44
3 42.60 3.00 37.30 46.92 1.15 0.07
4 29.02 8.70 15.34 44.06 0.78 0.30
5 95.19 122.58 13.13 304.67 2.57 1.29
6 73.33 29.45 29.53 125.91 1.98 0.40
7 247.32 333.02 15.91 842.84 6.69 1.35
8 53.19 29.82 18.20 112.87 1.44 0.56

DWDS 9 26.84 17.72 4.06 60.57 0.73 0.66
10 42.63 11.08 24.91 61.85 1.15 0.26
11 91.11 53.81 18.91 191.35 2.46 0.59
12 9.61 6.25 1.91 22.28 0.26 0.65
13 51.99 22.63 25.09 96.07 1.41 0.44

PP 14 53.34 28.79 12.73 106.42 1.44 0.54

(bicarb), were based on one data source due to limited data
available in the literature. Due to very limited PP data (i.e.,
only one study), DWDS data were used for PP model analysis.
Overall, there was a lack of consistency on data reporting
between studies. For example, data were reported as a range
of minimum and maximum values, confidence interval, or
mean and SD either with or without number of data points.
The exercise of collecting data from different studies was
valuable in determining variability and average conditions
for DWTP and DWDS water quality variables; however, the
results could have been improved from increased reporting,
and standardized reporting practices.

Probability density functions (PDF) for raw water quality
variable data and fitted distributions are presented graphically
in Fig. 2a and b. The aim was to produce distributions which
represented standard conditions in DWTP and DWDS while
also accounting for variability seen in real systems. Since data
were collected as n, mean, and SD, data sets with greater n had
greater bias in the shape of the raw data PDF, and subsequently
the descriptive statistics. This can be seen in Fig. 2a and b
where some raw water quality variable PDF have multimodal
distributions (e.g., Cly,, Towps). The modes correspond to
relatively large data sets with significant differences in mean
values. Another important consideration for water quality
variables in the investigated systems is interdependency.
Interdependency is when a change in one variable is correlated

2752 | Environ. Sci.: Water Res. Technol,, 2023, 9, 2745-2759

to a change in another variable (e.g., Cl, and THM are affected
by RT). Due to limited data availability, interdependency was
not a consideration for this work. Despite the differences in
data reporting and the resulting bias, the fitted distributions
accurately reproduced general trends of the raw data and were
consistent with trends found in literature.

3.3 Model performance

Descriptive statistics for model output data are presented
in Table 5a and b. Graphic presentation of DWTP and
DWDS model output PDF with their respective data sets
are shown in Fig. 3a and b. Mean, SD, and CV of the
model outputs were generally greater using DWDS data
compared to DWTP data. Since the WQV data was not
from a single source, comparison of model outputs was
made between collected THM data. For analysis, model
outputs were considered reasonable if the THM,/THM,,
was between 0.5 to 2.0. Five of the models did not meet
this criterion when DWTP data were applied (models 2, 7,
8, 11, and 12), and five of the models did not meet this
criterion when DWDS data were applied (models 2, 5, 7,
11, and 12). The weighted sum of absolute difference
between mean, variance, and skewness (i.e., the first three
moments), between model output data and THM data for
both DWTP and DWDS was calculated for each model:

This journal is © The Royal Society of Chemistry 2023
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Fig. 3 Probability density functions (pdf) for a) DWTP model outputs with DWTP WQV data, and b) DWDS and PP model outputs with DWDS WQV

data. The black lines represent distribution of THM data from literature.
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2 3

Wi X |Mom; rrm,j ~ MOM; model
performance = E E ) , where w

J=1 i=1

designates the assigned weight, i designates the moment, and
J designates the THM data (either DWDS or DWTP). The weights
were chosen as 1.0, 0.1, and 1.0 for the first, second, and third
moments, respectively. This performance value was used to
quantitatively compare performance of each model to a
reasonable estimate of what could be seen in practice. This
method was chosen because it allowed for comparison of data
shape and data distribution in addition to mean predicted
THM. Based on this evaluation, the best performing models
were models 6, 9, 13, and 14. These models demonstrated
reasonable mean predicted THM values as well as reasonable
variance and distribution shape compared to THM data, as seen
in Fig. 3a and b. Although the variance in THM was not directly
correlated to input variables, the goal of performance evaluation
in this manner was to provide a balanced comparison. To
understand why there were substantial differences between
model outputs, water quality variable selection, training data
variance, and model validation were compared.

The impact of variable selection on prediction accuracy
for THM models was previously explored by Ged et al.® The
research found that the most accurate THM models included
at least 5 of the 7 following water quality variables as
explanatory  variables: DOC, UV,s,, bromide ion
concentration (Br,) pH, Cl, g, RT, and 7. These were the most
commonly used water quality variables among the models in
this study as shown in Table 3. However, the number and
type of water quality variables used by the models were found
to have no significant correlation with model output variance
for this work. It was also hypothesized that greater variance
in water quality variable data would lead to greater variance
in model output however, no trends between water quality
variable variance and model output variance were found. The
lack of correlation between model output variance and water
quality variable selection/number of water quality variables
demonstrates the differences in phenomena affecting THM
formation between systems. The correlation between water
quality variables and THM formation are system dependent
due to differences in water quality profiles, differences in
physical aspects of the systems including temperature, usage
patterns, and pipe geometry, and differences in biofilm and
subsequent effects.*”***> The differences in phenomena
affecting THM formation subsequently impact which water
quality variables are included in the models (ie., which
variables are statistically significant during model
development), as well as the correlation coefficients for the
variables. As a result of the development methods and
statistical formulation of the models, the behavior between
input data and model output variance is unique to each
model. This demonstrates the lack of generalizable
applicability of statistical models.

Another important consideration is the vague nature of
many commonly used water quality variables. For instance,
TOC is an aggregate measurement for carbonaceous

2754 | Environ. Sci.. Water Res. Technol., 2023, 9, 2745-2759
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constituents and is considered a crucial water quality variable
for THM prediction since organic carbon is one of the
reactants in the formation of THMs. Theoretically two
systems could have identical TOC concentrations, however
the carbonaceous species could be significantly different. It
has been demonstrated that differences in TOC
characteristics (e.g., humic acid vs. fulvic acid composition)
impact rate, and potential of THM formation.*®*” Similarly,
other water quality variables such as conductivity provide
somewhat ambiguous characterization of water chemistry.
Further, the previously discussed system specific differences
present in DWTP and DWDS are more pronounced in PP
systems due to stochastic flow conditions, higher surface area
to volume ratio, and differences in building design.”*%*
Therefore, it can be concluded that statistically formulated
models will not have generalizable application for different
applications, or even different systems.

To understand the impact of training data on model
prediction capabilities, Table 6 was constructed which
provides reported data ranges used for model development
compared to 90% CI for the data used in this study for model
performance evaluation. Some of the studies had limited, or
no reporting for the training data. Reporting descriptive
statistics for model training data gives the reader a better
understanding for how the model was developed, and the
ranges which the model is expected to be most accurate. In
general, models with more diverse training data (i.e., larger
ranges between min and max), tended to achieve better
results for THM,/THM,, and CV. However, unreported data
values and differences in water quality variable sensitivity
due to differences in correlation coefficients make it difficult
to compare some data.

The results of this research demonstrate that there are
significant differences in THM model development,
evaluation, and reporting among studies. This research
showed that comprehensive data was more important than
number of data for model performance when applied to
independent data. Similarly, models developed for highly
specific application may struggle to perform well outside
their training data ranges. THM models have been developed
in a relatively similar manner for the past 30 years.>*°
Statistical models provide value for utilities and consumers;
however, it has been demonstrated that they have many
drawbacks. With the advent of novel modeling techniques in
the area of machine learning, there is much to explore
outside of the realm of statistical models.

There have been a growing amount of research exploring
the use of ML based techniques for predicting THMs.>"” Most
of the research uses some type of artificial neural network
(ANN) based model to develop non-linear relationships
between water quality variables and THM concentration. The
ML based approaches show promise by demonstrating lower
error compared to their multiple linear regression based model
counterparts.”*>*®  Additionally, Zhang et al, 2023
demonstrated that conducting a stepwise multiple linear
regression for selection of significant input variables prior to

This journal is © The Royal Society of Chemistry 2023
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min-max
min-max
min-max

0.48-68.35
27.3-130.1

419.0-1141.0

0.31-39.5

7.3-8.9
0.020-0.176  6.73-7.75

0.16-0.80

12

0.017-0.076
0.019-0.14

19.7-30.0

10.6-26.6
11.0-28

2.97-6.31

13
14

65-496

1.2-12.6

7.00-8.02

0.39-2.34
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ML model training allowed for more efficient training and
implementation of ML model.>" Efficient implementation of
ML models is particularly useful for real-time prediction of
THM. Conducting correlation tests can also provide more
detailed insight into the significant factors impacting THM
formation for specific systems. Other sensitivity analysis
techniques such as exclusion of variables, input variable
differential analysis, and model weight analysis can provide
insights into input variable importance even when correlation
test are not conducted prior to training.”®*® As software and
hardware capabilities continue to improve, ML techniques will
undoubtedly provide more accurate models for the prediction
of THMs. ML techniques also have the potential to generate
more generalizable models compared to regression models due
to their ability to develop higher order relationships between
water quality variables. This may be especially useful in PP
model applications since there are more factors influencing
THM formation such as water usage, pipe material, and
temperature, potentially leading to highly non-linear
relationships between water quality variables and THM
formation.®'* It has been demonstrated that regression-based
models can reasonably predict THM for specific systems, but
further exploration of ML techniques for THM modeling seems
like the most promising avenue of exploration.

There are certain applications that may benefit from the
use of a simple statistical model, however novel approaches
could provide improved insight into THM production
mechanisms, and more generally applicable models. Models
with greater applicability have the potential for far greater
impact on the improvement of human health than models
developed for a specific system. Further, data sharing and
collaboration could increase the pace of THM model
development. Many studies have attempted similar
approaches with varying levels of success. The exercise of
producing statistical models for THM in drinking waters has
been demonstrated, now it is time to explore new
approaches.

3.4 Limitations and future research

This research relied on assumptions that may not translate
in practice, such as independent behavior of water quality
variables, raw water quality variable data were representative
of most systems, and differences in model CV were directly
comparable. In practice, water quality variables are
dependent on each other in a complex manner that follows
general and system-specific trends. For example, RT impacts
formation of THM, and consumption of Cl,. The exact
relationship between the variables is system specific due to
water quality profiles varying by location. Further, the
physicochemical phenomena impacting the relationships is
different for different systems. In future work, a large enough
data set with proper -characterization may allow for
consideration of the interdependence between the water
quality variables. The other major assumption was that each
model had directly comparable CV. This is a difficult
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comparison to make since each model used different
combinations of water quality variables. For example,
model 12 only used two water quality variables, while
model 6 used seven water quality variables. Consideration
of these differences may be possible in the future if the
recommendations provided in section 4 are utilized. Even
with these limitations, this research was able to derive
meaningful lessons for future THM model development.
Moving forward, the work presented in this research
would benefit from collection and application of water
quality data from multiple applications and sources. This
would allow for more accurate characterization of the data
used, as well as Dbetter understanding of the
interdependence of water quality variables, how they differ
among location and application, how different models
respond, and more accurate comparison of model output
behaviors.

4. Proposed framework for THM
model development

The following framework is proposed for future
development of THM models to (1) promote clarity and
consistency with respect to data reporting and model
development methodology, (2) allow water quality from
different sources to be accessed and utilized, and (3)
improve THM prediction capabilities. These guidelines
would improve understanding of THM formation in all
applications discussed and are especially important for ML
based THM models.

For data reporting, it is proposed that the following be

included in the research:

1. High level description of data including geographic
region(s) of collection, sampling timeline, sampling
frequency, and any anomalies in the data;

2. Descriptive  statistics of data wused for model
development including amount of data collected,
mean, median, SD, and 90 or 95% CI, or equivalent;

3. Clear presentation and description of units for each
explanatory variable;

4. Inclusion of raw data in accessible form (e.g., .csv file or
github link);

5. Inclusion of any code used for data cleaning, sorting,
transformation, etc.;

6. Description of uncertainty with associated measuring
techniques.

For model development methodology and reporting, it is

proposed that the following be included in the research:

1. Detailed description of rationale behind model
development approach;

2. Description of novelty provided by model development;

3. Description of data usage during model development
(e.g., 60% used for fitting/training, 20% used for
testing, and 20% used for validation);

4. Inclusion of any code used for model development;

2756 | Environ. Sci.: Water Res. Technol., 2023, 9, 2745-2759
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5. Inclusion of model validation predictive performance

through with test data and/or independent data.

With this framework, it is envisioned that future research
on THM modeling will serve not only a local purpose (e.g.,
municipality), but also a global purpose to advance the field
of water quality modeling. In particular, data sharing will
allow models to be trained and validated using more diverse
data sets, leading to more generalizable models. Modeling
THM formation within PP is more challenging than DWTP or
DWDS systems due to differences in physicochemical
conditions, biological conditions, and stochastic water usage
patterns. These differences may lead to different water
quality variables needing to be considered. For example, it
has been shown that copper pipes can catalyze THM
formation, while PEX pipes may leach organic carbon.®®®
With greater amount of data and Dbetter system
characterization, higher level evaluation of system-specific
characteristics could be evaluated. With these practices, it is
intended that a more cohesive, multi-disciplinary approach
will be encouraged, leading to greater progress in the field of
THM modeling. Additionally, larger data sets would facilitate
the exploration of machine learning based models to address
the problem of generalizable models. Machine learning
techniques have the capability of addressing the complex
mechanisms leading to THM in all systems discussed.

5. Conclusion

Key findings of this research were:

- There has been disproportionately limited THM model
development for PP application compared to DWTP
and DWDS application.

- Although most THM models are
formulation, there are inconsistencies with reporting of
data and model development methodologies between
THM studies.

- There were considerable differences between THM model
performance due to differences in model development
including intended application, water quality variable selection,
amount of, and diversity of data used for training.

- THM modeling approach has primarily been focused on
regression-based models for the past 30 years, however
ML based models demonstrate promise to increase the
accuracy and generalizability of THM models. To foster
more unified THM modeling efforts, a new framework
for model development was proposed to encourage novel
strategies, data sharing, and collaboration.

statistical in
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