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Abstract—Distributed Denial-of-Service (DDoS) attacks ex-
haust resources, leaving a server unavailable to legitimate clients.
The Domain Name System (DNS) is a frequent target of DDoS
attacks. Since DNS is a critical infrastructure service, protecting
it from DoS is imperative. Many prior approaches have focused
on specific filters or anti-spoofing techniques to protect generic
services. DNS root nameservers are more challenging to protect,
since they use fixed IP addresses, serve very diverse clients and
requests, receive predominantly UDP traffic that can be spoofed,
and must guarantee high quality of service. In this paper we
propose a layered DDoS defense for DNS root nameservers. Our
defense uses a library of defensive filters, which can be optimized
for different attack types, with different levels of selectivity. We
further propose a method that automatically and continuously
evaluates and selects the best combination of filters throughout
the attack. We show that this layered defense approach provides
exceptional protection against all attack types using traces of ten
real attacks from a DNS root nameserver. Our automated system
can select the best defense within seconds and quickly reduces
traffic to the server within a manageable range, while keeping
collateral damage lower than 2%. We can handle millions of
filtering rules without noticeable operational overhead.

I. INTRODUCTION

Distributed-Denial-of-Service (DDoS) attacks remain a se-

rious problem [5], [34], [49], [16], in spite of decades of

research and commercial efforts to curb them. Ongoing Covid-

19 pandemic and increased reliance of our society on network

services, have further increased opportunities for DDoS at-

tacks. According to the security company F5 Labs, between

January 2020 and March 2021, DDoS attacks have increased

by 55% [13]. While some large-volume DDoS attacks make

front page news (for example, the 1.35 Tb/s [35] attack on

Github in Feb. 2018, or 2021 17.2 M requests per second

attack, detected by CloudFlare [57]), many more attacks occur

daily and disrupt operations of thousands of targets [47], [4].

This paper focuses on protecting the Domain Name System

(DNS) root servers against DDoS attacks. The root-DNS

service is a high-profile, critical service, and it has been subject

to repeated DDoS attacks in the past [51], [1], [2], [31], [42].

In addition, because the DNS root “bootstraps” DNS, it is

served on specific IP addresses that cannot be easily modified,

thus precluding use of many traditional DDoS defenses that

redirect traffic to clouds to distribute load [11].

There are many types of DDoS attacks. Some attacks

are conceptually easy to mitigate with firewalls, assuming

upstream capacity is sufficient, such as volumetric attacks

using junk traffic. Others, such as exploit-based attacks, re-

main pernicious, but automated patching and safer coding

practices offer promise. Most challenging are attacks using

legitimate-seeming application traffic, since a flash-crowd at-

tack from millions of compromised hosts (also known as

layer-7 or application-layer attacks) can resemble a legitimate

flash crowd, when many legitimate clients access popular

content. At DNS root servers, flash crowd attacks would

generate excessive DNS queries. Because legitimate clients

also generate DNS queries, it is challenging to filter out attack

traffic. We focus on mitigation of flash-crowd attacks on DNS

root servers.

In flash-crowd attacks, attack traffic often appears iden-

tical in content to legitimate traffic. Approaches to handle

flash-crowd attacks thus focus on withstanding the attack

using cloud-based services [14], [37], [32], [40]. Other ap-

proaches aim to separate legitimate from attack clients, e.g.,

via CAPTCHAs [36], or by using models of typical client

behavior [39], [45]. These defenses work poorly for DNS root

servers. First, the DNS root operates at small number of fixed

IP addresses that cannot be easily changed. This restriction

precludes use of traditional defenses that redirect traffic to

clouds [11]. Second, DNS traffic to roots is generated by

recursive resolvers. Since there is neither direct interaction

with a human nor a web-based user interface, CAPTCHAs

cannot be interposed. Third, aggressive client identification

requires modeling a typical legitimate client. Building a typical

client model at roots is challenging, because client request

rates vary by five orders of magnitude, from a few queries per

day to thousands of queries per second. A model that spans

all types of clients can be too permissive, while a model that

captures a majority of clients may drop legitimate traffic from

large senders. Since most DNS traffic is currently UDP-based,

spoofing also is a challenge and spoofers can masquerade as

legitimate clients.

In this paper we propose a multi-layer approach to DNS root

server defense against DDoS attacks, called DDiDD – DDoS

Defense in Depth for DNS. Our first contribution is to propose

an automated approach to select the best combination of filters

for a given attack. Selecting from a library of possible filters is

important, since different filters are effective against different

attacks, and each filter has a different false positive rate, and

different operational cost, which precludes its continuous use.

DDiDD selects the best combination of filters quickly (within

3 s) and continuously re-evaluates filtering effectiveness. When

attack traffic changes (e.g., in case of polymorphic attacks),

DDiDD quickly detects decrease in the filtering effectiveness

and re-selects a new, better combination, thereby adjusting to

dynamic attacks.



Our second contribution is to propose a novel wild client

filter for DNS. We provide the first open description and evalu-

ation of a filter that models per-client behavior for DNS clients.

Client modeling is widely used to protect web servers [46]

where a single model for a “typical” web client suffices. DNS

shows a huge range of rates (over 5 orders of magnitude)

across clients, so any model that captures this entire range will

be too permissive. Instead, we model each client separately

during pre-attack periods, and identify as attackers the clients

that become more aggressive during attacks. In deployment

we combine this filter with anti-spoofing filters to establish

trust in client identities.

Our final contribution is to perform evaluation of each

candidate filter, including our wild resolver filter and six other

filters proposed in prior work [43], [52], [23], [33]. While

prior work quantified performance of some individual filters

for general DDoS attacks [52], [23], [33], and other work

qualitatively described commercial deployments (such as Aka-

mai’s [43]), we are the first to evaluate each filter quantitatively

against real DDoS attacks on a DNS root. We are also the

first to propose and evaluate a dynamic multi-filter system

for protection of DNS roots against DDoS. Our evaluation

uses real-world attacks and normal traffic taken over 6 years

from B-root, as well as an adversarial, polymorphic attack

we have synthesized. Our evaluation confirms that no single

filter outperforms the others, but together they provide a stable

defense against different attack types converging in 3 s or

less, with low collateral damage (at most 2%). Our analysis

provides evidence for the DNS operators about the importance

of having an automated system, and it provides insights about

individual filter performance against different types of attacks.

We focus our work on the DNS root server system to meet

its unique challenges, but our results also apply to other self-

hosted, authoritative DNS servers.

We release the DDoS datasets and our DDIDD tool that we

use in this paper [3], [50].

II. BACKGROUND: DNS AND DDOS

The Domain Name System (DNS) is critical Internet in-

frastructure that maps between human-readable names and

resources such as IP addresses. DNS names are hierarchical,

with the root, top-level domains (TLDs), like .com and

.uk, and subdomains, like example.com. This hierarchy is

distributed across many authoritative nameservers (“authorita-

tives” for short). Users usually do not directly query the DNS,

but instead use recursive resolvers (“recursives” for short) that

resolve names on their behalf. Each recursive usually provides

service for many users, caching responses to speed access.

For resilience, root zone is served by 13 identifiers, each

at a unique, anycasted IPv4 and IPv6 address, served by

multiple authoritative servers at multiple geographical points

of presence (PoPs). Three aspects make the authoritatives for

the DNS root challenging to defend from flash-crowd DDoS

attacks. First, most DNS queries use connectionless UDP (not

TCP), so it is trivial for an attacker to spoof source IP ad-

dresses, making defenses that model client behavior unreliable.

Second, root authoritative servers see a huge range of query

rates from different recursives—over five orders of magnitude,

and huge query content diversity. This variation makes it

impossible to produce a single, tight model for a “typical

recursive behavior”. Third, the DNS root is used to bootstrap

the DNS system, and so it operates at fixed IP addresses.

Although resolvers refresh this list on startup [26], the list is

expected to be mostly static. Deploying new root servers takes

months of careful planning. Thus defenses typically used by

Content Delivery Networks (CDNs) to shift traffic to different

servers (such as [11]) cannot be used to protect DNS root.

Because of its visibility and defensive challenges, the DNS

root has been the target of several DDoS attacks. During large,

volumetric attacks in 2002 [9], 2007 [21], and 2015 [31],

several of the 13 root identifiers showed service degradation

(we show other events in §V). Although caching of root

contents at recursives reduces the end-user impact of these

attacks [30], [27], DNS outages at CDNs have impacted

prominent user-facing services [47]. Effective DDoS defense

for the DNS root is thus necessary.

III. RELATED WORK

DDoS attacks have been a problem for more than two

decades, and many research and commercial defenses have

been proposed. This section reviews only those solutions that

are closely related to our approaches and to protecting DNS

servers against DDoS.

A. Flash-Crowd DDoS Defenses

CAPTCHAs [8], [25] are a popular defense against flash-

crowd attacks. They can be used together with other indicators

of human user presence, to differentiate between humans and

bots. However, DNS queries come from recursives, not directly

from human users, so there is no opportunity for a CAPTCHAs

intervention. FRADE [46] is a flash-crowd DDoS defense,

which builds models of how human users interact with a

Web server, including query rates and query content, and

uses them to detect bot-generated traffic. FRADE models a

typical client’s behavior. While this works for Web servers,

which are browsed by humans, request rates and contents of

DNS recursives vary widely. FRADE thus cannot protect DNS

servers against DDoS.

Creating an allow-list of known-good clients is suggested in

several studies and RFCs [12], [56], [38], [18], [29] for general

protection from unwanted traffic. However, the approaches

to create a list of known-good recursives for DNS roots

have not been described nor evaluated. We evaluate this idea

in this paper under the name “unknown recursive filter,” in

conjunction with hop-count filtering [23], and show that it

works well to filter out spoofed attack traffic, but cannot handle

attacks that do not use IP spoofing.

Many companies provide DDoS solutions, which may

combine signature-based filtering, rate limiting, and traffic

distribution using cloud resources and anycast. Such solu-

tions are offered by Akamai [43], [19], Verizon [10], and

Cloudflare [55], [17], for example. Since these solutions are

proprietary, we cannot compare against them directly. In



addition, they often collect traffic with DNS-based redirection

or route announcement (friendly hijacking). Neither of these

redirections are possible for root DNS service, which must

operate at a fixed IP address, and cannot easily be re-routed.

B. Spoofed Traffic Filtering

Several filters to remove spoofed traffic have been proposed:

hop-count filtering [52], [23], [33], route traceback [44],

route-based filtering [15], path identifier [54], unknown client

filtering [56], [38], and client legitimacy based on network,

transport and application layer information [48]. Of these ap-

proaches, only hop-count filtering and unknown client filtering

can be deployed on or close to the target, and thus show

promise for protection of DNS root servers. In hop-count

filtering, the filter learns which IP TTL values are used in

packets from a given source IP address, and uses this to filter

out spoofed packets. The original approach [52] advocates

for storing one expected hop-count per source. Mukaddam et

al. show that recording a list of possible hop-counts improves

the precision of TTL filters [33]. These studies are performed

on 10–20 years old traceroute measurements, and they assume

reliable inference of TTL filters from established TCP connec-

tions. Both Internet topology and application dynamics have

since evolved, and DNS traffic is predominantly UDP. Our

paper fills this gap, by evaluating hop-count filtering against

DDoS with real attack and legitimate traffic, spanning six years

and ten attack events.

C. DDoS on DNS

BIND pioneered Response Rate Limiting (RRL) to avoid

excessive replies [22] and conserve outgoing network capacity

during a volumetric query DDoS. RRL addresses a few

misbehaving clients and outgoing amplification attacks, but

it does not address well-distributed, volumetric attacks from

large botnets.

Akamai uses sophisticated scoring and priority queuing to

protect their authoritative DNS servers from floods [19], [43].

Akamai scores queries with the source’s expected rate, if the

resolver participated in prior attacks, the source’s NXDomain

fraction, query similarity from that source, and an evaluation

of TTL consistency. While two of these scoring approaches

are similar to our unknown resolver and wild resolver filters,

there are three major differences. First, Akamai provides

no quantitative data about how various scoring approaches

perform against real attack events. We contribute a careful

quantitative evaluation of how well different filters work

against playback of real attacks. Second, we propose a specific

mechanism to select filter combinations, and reevaluate them

when necessary. Akamai’s approach uses all filters at once

to calculate each query score, and Schomp et al. [43] do not

describe how the filters interact. Finally, key parts of Akamai’s

scoring system run inline with processing, requiring high-

speed packet handling. Our approach operates in parallel with

packet processing, evaluating resolvers to identify potential

attackers (or known-good resolvers), simplifying deployment,

particularly for lower-end hardware.

Prior work has studied real DDoS events, inferring opera-

tor responses using anycast, and suggesting possible anycast

options in DNS roots [31]. Recent work has taken this idea

further, suggesting that a network playbook can pre-evaluate

routing options to shift traffic across anycast sites [40]. Our

work complements this line of research, by studying how

filters can reduce load at each anycast site.

Finally, several groups have suggested fully distributing the

root to all recursives [20], [6], [28]. Such wide replication

would greatly reduce the threat of DDoS on the root, but not

on other DNS authoritative servers. As a result, on-site defense

is still necessary to mitigate DDoS attacks on DNS.

IV. DDiDD DESIGN

Our goal is to design an automated system, which contin-

uously evaluates suitability of multiple filters to handle an

ongoing DDoS attack on a DNS root server. Our system

needs to quickly select the best filter or the combination of

filters, reasoning about the projected impact on the attack,

the collateral damage from the filter on legitimate recursives’

traffic and the operational cost. The system should also be able

to adjust its selection as attack changes. Finally, individual

filters need to be configured to achieve optimal performance –

high effectiveness against attacks they are designed to handle

and low collateral damage.

DNS root may also experience a legitimate flash crowd,

e.g., when many clients access some popular online content.

Due to caching, queries for existing TLDs should not create

flash crowd effect, but queries for non-existing TLDs may,

since their replies are not cached. DDiDD will only activate

when excessive queries overwhelm server resources. Unless

the server can quickly draft more resources (e.g., through

anycast) some queries have to be dropped. Without DDiDD,

random legitimate queries would be dropped. DDiDD (§V)

mostly drops queries from sources causing the legitimate flash

crowd.

A. Threat Model

We assume that an attacker’s goal is to exhaust some key

resource at a target by sending legitimate-like requests to the

server. Current authoritative servers (including root) do not

store state between requests, so the attacker can target CPU

resources, incoming bandwidth or outgoing bandwidth. In all

cases, the attacker generates more requests than the server can

process per second. The attacker may spoof these requests, or

they may compromise new or rent existing bots and send non-

spoofed requests.

A spoofing attacker may spoof at random, or they may

choose specific IP addresses to spoof. In some cases, the

attacker may choose to spoof addresses of existing, legitimate

recursives.

A non-spoofing attacker compromises or rents bots to use

in the attack. Drafting new bots carries non-negligible cost for

the attacker.

The features of attack requests depend on the resource

that the attack targets. If the targeted resource is CPU, the

attacker may generate many requests per second. If the target is



incoming bandwidth, the attacker may generate large requests

to quickly consume the bandwidth. In both of these cases, the

content of the requests is not important, just their rate and

size. Finally, if the target is outgoing bandwidth, the attacker

may generate requests that maximize the size of replies, using

the ANY query type.

Some attacks are polymorphic – they change their features

during the attack event. Any attack features may change: how

spoofing is done, which sources generate attacks, and the

content of attack requests.

A naive attacker does not have knowledge about DDiDD

and is focused only on overwhelming the target server. A

sophisticated attacker may obtain information about types and

parameters of the filters that our defense uses, and they may

try to adjust their attack to bypass the defense, or to trick the

defense into filtering a legitimate recursive’s traffic.

DDiDD works well both against naive and against so-

phisticated attackers, and against spoofing and non-spoofing

attackers, due to its layered defense approach, and multiple

filters, as we show in our evaluation.

B. DDiDD Operation

To avoid any operational impact on a DNS root server,

DDiDD consumes packet captures, operating offline to get

required parameters, independently of the actual DNS server

software. DDiDD’s analysis detects an attack, selects a filter

or a combination of filters, then deploys filters via iptables

and ipset rules on the server. We consider six filters,

described in §IV-C, and implement four that perform well

with DNS root traffic: frequent query filter, unknown recursive,

wild recursive and hop-count filter. iptables work well

when number of rules is small (up to 2% delay increase for

5 rules) and matching is needed on query content. We use

iptables to implement the frequent query filter, for 1–5

frequent query names. ipset uses an indexed data structure

and provides efficient matching of thousands or even millions

of rules, without added delay. We use it when blocking

attack sources, identified by unknown recursive, wild recursive

and hop-count filters. iptables/ipset or their equivalents

are available on all modern operating systems, thus DDiDD

is highly deployable by any interested DNS root server. If

a root is anycast over multiple points-of-presence (PoPs),

DDiDD should be deployed at each PoP independently. No

synchronization or information exchange is required across

instances deployed at different PoPs.

DDiDD automatically selects filters to meet two goals. First,

we prefer filters that will remove most attack traffic with low

or zero collateral damage to legitimate queries. Second, we

aim to select filters quickly, because most DDoS attacks are

short [24]. We then revise our selection if attack changes, or

if we learn that another filter combination works better. This

decision process is fully automated. Further, DDiDD is flexible

and modular, allowing addition of new filters in the future.

Attack detection. DDiDD detects possible attacks by mon-

itoring the status of critical resources and recognizing when a

resource is overloaded. We use collectd to periodically collect

parameter meaning rec. values

LFQ num. queries for learning 10 K

fFQ freq. change threshold 0.3

LUR, LHC , LWR learn. period 2 h (20 m for WR)

UUR, UHC , UWR use period 2 h

wi, ..., wN . observ. windows 2
0, 21, ..., 28

tWR deviance threshold 0.5
TABLE I

FILTER PARAMETERS

status information from several resources (CPU, memory,

inbound and outbound network capacity). We identify possible

attacks when any resource exceeds a fraction of its maximum

capacity, which we denote as critical load.

We detect attack termination by monitoring the amount

of traffic blocked by the deployed filters. We declare the

attack over when the traffic blocked by DDiDD decreases

significantly, and the load on the server stays low as well,

for an extended period of time. More details are given in [41].

Filter priming and selection. All filters (e.g., frequent

query filter, unknown recursive, wild recursive filter, hop-

count filter) require information that must be learned continu-

ously, in absence of attacks. DDiDD continuously learns these

parameters from packet collection and uses them when the

corresponding filter is deployed. Some filters (e.g., frequent

query name) also require a short learning phase during an

attack. DDiDD triggers a short learning phase for these

filters when the attack is detected, and repeats it regularly to

update filter parameters. After the detection, DDiDD uses the

incoming traffic to select the filter parameters (for example,

finding the frequent query name to filter). For some filters like

unknown resolver filter, DDiDD uses known legitimate traffic

(we provide more details when we describe the filters).

During attack, each filter and some filter combinations are

continuously evaluated for potential deployment. We emulate

the effect of each filter or their combination on a sample

of captured packets. We estimate the success of each filter

based on acceptable query load at the server, calculated as the

server’s average query load times a small multiplicative factor

fACC . Because root servers operate well below their capacity,

this approach guarantees that query rates below the acceptable

load will also not exhaust the server’s CPU or bandwidth

resources, and will not trigger attack detection.

We also estimate collateral damage when the filter is param-

eterized using peace-time (non-attack) traffic. The collateral

damage depends on the legitimate traffic’s blend and we have

verified that it does not change sharply over time. Thus, we

can calculate it once and use this estimate for a long time

(e.g, months). Based on the estimated effectiveness of the

given filter or their combination, and their projected collateral

damage, new filters may be selected for deployment and

existing filters may be retired.

C. DDiDD Filters

In DDiDD we have implemented the following filters:

(FQ) frequent query name filter, (UR) unknown recursive

filter, (HC) hop-count filter and (WR) wild recursive filter.

In addition to these, we have also considered (RC) response-

code filter and (AR) aggressive recursive filter. Since these

two filters do not perform well on root server traffic, we do



not include them in DDiDD, but we evaluate them on our

dataset and summarize results in this section. We show our

recommended filter parameters in Table I. For each filter, we

measure the performance and operational cost.

Frequent query name filter (FQ). In our datasets many

attacks have queries that follow a given pattern, e.g., have a

common suffix. Thus, in practice it is useful to develop filters

that remove frequent queries during attack periods.

Approach: We use a simple algorithm to identify fre-

quent query names. We continuously observe LFQ queries

of incoming traffic and learn frequency of top-level domains,

subdomains and full queries. Under attack, we repeat the

calculation and look for segments (TLDs, subdomains or full

queries) whose frequency has increased more than a threshold

fFQ. These segments are candidates for frequent query names.

Segment frequency prior to the attack serves to estimate

collateral damage. We evaluated a range of values for LFQ

and fFQ. Shorter LFQ than 10,000 reduced mitigation delay,

but increased chances of mis-identification of frequent queries.

Similarly, lower fFQ than 0.3 lead to some collateral damage.

These values should be calibrated for each server.

Operational cost: We can filter frequent query names di-

rectly using iptables, or we can identify sources that send

frequent queries and block them using ipset. We denote

these two implementation approaches as FQt and FQs. The

FQt (iptables) implementation imposes added processing

delay, which greatly increases once we go past five filtering

rules, but it minimizes collateral damage. The FQs (ipset)

implementation adds no measurable delay, but it may create

collateral damage if spoofing is present, and thus must be

deployed together with anti-spoofing filters (UR and HC).

Unknown recursive filter (UR). An allow-list with IP

addresses of recursives present prior to the attack can be an

effective measure against random-spoofing attacks or those

that rent bots. This filter passes traffic from recursives on

allow-list to the server, and drops all other traffic.

Approach: An allow-list is built by processing incoming

traffic to the DNS root server over period LUR prior to an

attack event. The list is then ready to be used for some time

UUR, and after that it can be replaced by new list.

DDiDD builds allow-lists proactively at all times, observing

traffic over period LUR. We experimented with LUR ranging

from 10 minutes (capture 93% of traffic sources) to 6 hours

(capture 99% of traffic sources). We also tested values of UUR

of up to 1 day, and the allow-lists were very stable.

Operational cost: An allow-list can be implemented effi-

ciently using ipset, which adds no processing delay.

Hop count filter (HC). A hop-count filter builds the TTL-

table, containing source IP addresses, along with one or more

TTL values seen in the incoming traffic from each given

source. This kind of filter can be effective for attacks that spoof

IP addresses of existing recursives. The filter drops traffic from

sources that exist in the TTL-table, but whose TTL value does

not match the values in the table. All other traffic is forwarded.

Approach: We build the TTL-table by processing incoming

traffic to the DNS root server over period LHC . The list is

then ready to be used for some time UHC , and after that it

can be replaced by new list.

One could use hop counts [52], [33] or TTL values for

filtering. TTL values are better choice, since they have larger

value space, which improves filter effectiveness. DDiDD

builds its TTL-list by using each packet in the incoming

traffic to the server during the learning period. Such traffic

could be spoofed. Prior approaches [52], [33], [7] rely on

established TCP connections or they probe sources to reliably

learn TTL-table values. These approaches do not work for

DNS root servers, which serve mostly UDP traffic and whose

policy forbids generation of unsolicited traffic. Hop-count filter

parameter values have similar properties to known-recursive

parameter values.

Operational cost: We implement this filter efficiently by

adding a new ipset module to match on an IP address and

TTL value (or range).

Wild recursive filter (WR). While query rate of different

DNS recursives towards a DNS root server varies widely,

individual recursives’ behaviors are mostly consistent over

short time periods (e.g., several hours). We leverage this obser-

vation to build models of each individual recursive’s behavior.

The model for a given recursive, along with the recursive’s

IP address is stored in the rate-table. During an attack, we

identify those recursives that send more aggressively than

their rate-table predicts as wild recursives. Wild recursive filter

drops traffic from wild recursives, and it forwards all other

traffic.

Approach: A wild-recursive filter learns the rate of a DNS

recursive’s interaction with the DNS root server over multi-

ple time windows, w1, w2, w3, ..., wN , during learning period

LWR. For each window, the filter learns the mean and standard

deviation of the number of queries observed and stores them

in the rate-table. The rate-table can be used for some time

UWR, and after that it can be replaced by a new table.

When the attack is detected, the filter measures the current

query rates over the same windows. It then calculates the

difference between the current rate rcwi
in the window wi

and the rate expected by the model: meanwi
+3× stdwi

. We

then calculate a smoothed, normalized deviance score dt at

time t as: dt = (dt−1×0.5)+0.5×
∑

i

rcwi
−meanwi

−3∗stdwi

stdwi

.

Those recursives whose deviance score exceeds threshold tWR

will be identified as wild recursives.

We experimented with values for LWR between 10 minutes

and 6 hours. While performance was relatively stable, lower

values led to lower collateral damage, since they captured

recent traffic trends. We experimented with uniformly dis-

tributed and exponentially distributed (powers of two) win-

dow sizes. Exponentially distributed windows led to lower

mitigation delay, because they capture both aggressive and

stealthy attackers. We also experimented with 1–9 windows.

Higher number of windows had slightly higher collateral

damage, but they significantly improved filter effectiveness,

because they enabled us to identify sporadic attackers. Learned

models become quickly outdated so we set UWR = LWR. We



1:  select_candidates()
2:  deployed=deploy_single()

3:  if not deployed:
4:     deploy_combo()

1:  for F in filters:

2:     if F can reduce load to AL:
3:        candidates.append(F)

function select_candidates()

1: current_fp = 1, best = null  
2: for C in candidates:
3:    if C.fp < current_fp: 
4:       best = C 
5:       current_fp = C.fp
6: if best is not null:
7:    deployed.clear() 
8:    deployed.append(best)
9:    return true
    return false

function deploy_single()
1: tofilter = CL - AL; deployed.clear()
2: for T in ur, hcf, fq, wild:
3:     for C in candidates:
4:        if C.type not T:
5:           continue
6:        if C is effective: 
7:           deployed.append(C)
8:           tofilter -= C.filtered
9:           if tofilter <= 0 
                return

function deploy_combo()

function select_filters()

filters: array of all possible filters

candidates: array of filters that can be deployed

deployed: array of currently deployed filters

AL: acceptable load

CL: current load

10: 10:

Fig. 1. Pseudocode for filter selection

experimented with values for the threshold tWR from 0.1 to

16. Values higher than 0.5 minimized collateral damage.

Operational cost: This filter is implemented by processing

the traffic incoming to the DNS server offline. When the

attack starts, the filter identifies wild recursives and inserts

corresponding ipset rules to block their traffic.

Response code filter (RC). For some DNS servers, queries

with missing names are rare. For example, at Akamai only a

small fraction of legitimate queries result in NXDomain [43]

replies, while attackers often query for random query names.

We therefore considered a filter based on response codes that

discards NXDomain responses. Unfortunately, more than 60%

of root DNS traffic involves non-existing TLDs. Thus for root

DNS traffic, a response code filter will have large collateral

damage, and we do not currently include it in DDiDD.

Aggressive recursive filter (AR). This filter blocks the

aggressive clients during an attack, starting with the client

that sends the highest query rate and moving down. Filter

adds addresses to the block-list until the query load reduces

to acceptable levels. We evaluated this filter on our dataset.

It performs well when attacks use non-spoofed traffic, but its

performance is consistently worse than that of wild recursive

filter. We thus do not include it in DDiDD.

D. Filter Selection and Synchronization

In this section we discuss how filters are selected for

deployment and why their learning periods have to be syn-

chronized. Filter selection. Our goal was to design effective

filter selection process, which minimizes collateral damage to

legitimate traffic. Our pseudocode for filter selection is given

in Figure 1. At each time interval (e.g., one second), if the

current query load (CL) on the server (queries per second) is

higher than the acceptable load (AL), we first select candidate

filters. We continuously emulate operation of all filters, thus

we produce for each filter an estimate of the amount of queries

they would drop. Our candidate filters are those whose drop

estimates are positive. If among the candidate filters there

are any that could reduce the load to AL, we will select the

filter with the lowest estimated collateral damage (described

in §IV-B) and deploy only this filter (function deploy single).

If no such filters exist, we will consider combinations of

multiple filters (function deploy combo). Not all combinations

are valid, which greatly reduces complexity of this step. HC

filter must be deployed after an UR filter, since HC is pass-

through for addresses that do not exist in TTL-table. UR

filter removes queries that spoof unknown recursives, thus

guaranteeing that addresses of queries that pass will be present

in TTL-table. FQt could be deployed together with any other

FQ UR HCF WR

random queries spoof known IPs poison model

poison model

poison model
p1 p2 p3 p4

p5

Fig. 2. Swiss cheese model of defense

filter. FQs and WR filters must be deployed after UR and

HC, because they make per-source blocking decisions, and

require reliable source identities. Since both FQt and FQs filter

frequent query names, only one of them should be deployed.

FQt has zero collateral damage and is considered first. If

it cannot be supported operationally (there are more than

five query names, and thus there will be added processing

delay), FQs will be considered. In addition to considering

filters in a specific order for deployment, we only consider

filters that are effective – filter at least 5% of excess traffic

(function effective). Deployment is finalized as soon as the

filter combination can reduce the load below AL.

Filter synchronization. DDiDD may engage one or multi-

ple filters to mitigate an attack. When some filter combinations

are engaged, it is important that their learning periods match,

so that each filter has entries for the same recursives in

their table. Because we need a shorter learning period for

wild recursive filter, than for the unknown recursive and hop-

count filter, we learn parameters over 2 hours, and then keep

updating WR entries each 20 minutes to keep them as recent

as possible.

Sophisticated adversary. Each of the filters we consider

could be bypassed by a sophisticated adversary. We now dis-

cuss how their combination makes this challenging (Figure 2).

FQ filter could be bypassed by the attacker sending random

queries. UR filter could be bypassed by the attacker spoofing

existing (known) recursives. UR, HC and WR filters could

each be bypassed by poisoning the models during learning.

One way to counter poisoning attacks could be to learn over

longer time periods, from random traffic samples. While this

works for UR and HC, whose data is fairly stable, it would

greatly diminish effectiveness of WR filter, and it would

complicate filter synchronization. Our approach is to handle

poisoning attacks only at WR filter, and to rely on the Swiss

cheese defense model (Figure 2) to capture attackers that

bypass one filter layer, but can be stopped at the other. Thus

random queries may bypass FQ, but will be stopped at UR if

they are from new sources, or at HCF if they are spoofed. At

WR, queries sent by recursives at high rate (spoofed or not)

can be detected and dropped. This leaves poisoning attacks at



PoP date
start dur

ULQ DNS
FQ UR HC WR DDiDD F DDiDD P

(UTC) (sec) mon con cd con cd con cd con cd con cd con cd

LAX 2015-11-30 06:50 8,918* 98 100 100 0 99.1 1.8 0.3 1.4 0 5.5 99.1 0.4 99.3 1.7
LAX 2015-12-01 05:10 3,781* 100 100 98.7 0 99.1 0 0.6 0 0 0 99.3 0 99.4 0

LAX 2016-06-25 22:18 2,436* 52 99 0 0 100 0.1 0 0 0 0 100 0.1 100 0.1

LAX 2017-02-21 06:40 6,992* 2 1 98.4 0 0.1 1.8 0.1 1.5 98.4 0 99 0 98.8 0

LAX 2017-03-06 04:43 19,835* 6 5 98.8 0 0 1.1 0 0.4 91.6 1.5 100 0 92.3 1.5
LAX 2017-04-25 09:54 10,414* 3 4 98.3 0 0 1.1 0 0.7 94.9 2 99.1 0 95.1 2
ARI 2019-09-07 06:45 80 0 5 0 0 93.3 0.6 0 0.8 0 0.1 93.7 0.6 93.1 0.6

LAX 2019-09-07 06:45 80 23 5 0 0 100 0.9 0 0.2 0 0.2 100 0.9 100 0.9

MIA 2019-09-07 06:45 80 8 5 0 0 100 0.6 0 0 0 0.4 100 0.6 100 0.6
SIN 2020-02-13 08:05 206 14 2 100 0 0 0.3 4.8 0 38.5 0.5 100 0 97.5 0.8
ARI 2020-10-24 02:55 445 67 7 0 0 100 1.3 0 0 0 0.8 100 1.3 100 1.3

ARI 2021-05-28 02:35 70 25 3 0 0 100 1.1 0 0 0 0.1 100 1.1 100 1.1

IAD 2021-05-28 02:35 70 63 3 0 0 100 0.4 0 0 2.7 0 100 0.5 100 0.5

LAX 2021-05-28 02:35 70 3 3 0 0 100 0.4 0 0 0 0 100 0.4 100 0.4
MIA 2021-05-28 02:35 70 2 3 0 0 100 1.5 0 0 0 0 100 1.7 100 1.7

SIN 2021-05-28 02:35 61 41 3 0 0 100 0 0 0 0 0 100 0 100 0
TABLE II

DDiDD PERFORMANCE: COMPARING LOAD CONTROL (CON) AND COLLATERAL DAMAGE (CD) FOR EACH POSSIBLE FILTER AND DDiDD AS A WHOLE.
WE HIGHLIGHT RESULTS WITHIN 1% OF THE BEST PERFORMANCE IN BOLD. FOR LONG ATTACKS (*) WE SIMULATE ONLY THE FIRST 600 SECONDS.

WR filter (thin red arrow at the top right of Figure 2), where

each bot poisons the rate model for itself by sending sporadic

traffic during learning, with high fluctuations. This can lead

the filter to model a large expected rate for the bot in each

window, due to large standard deviation. To address this attack,

we learn only when load on the server is low (avg + stdev).

This forces the attacker to engage their bots very sporadically,

which becomes an outlier and is excluded from the model.

V. EVALUATION

We use datasets containing real DNS root traffic and attacks

(§V-A) to calculate success metrics (§V-B) that characterize

DDiDD performance (§V-C).

A. Datasets

We use datasets collected at B-root, one of 13 root identi-

fiers. These datasets are publicly available [3] in both pcap and

text format. The operators of B-root identify attacks based on

unusual traffic rates and system load, as seen from operational

monitoring. Our evaluation uses ten diverse attack events

spanning six years (see Table II). During events in 2017 and

later B-root employed anycast network with multiple points-

of-presence (PoPs). Some attacks affected only one PoP (e.g.,

2020-02-13), while others targeted all PoPs (e.g., 2020-05-28).

We confirm that our selected events are DDoS attacks

based on DNSmon observations shown in the “DNSmon”

column Table II. DNSmon reports the fraction of responses

received by many (about 100) physically distributed probers,

which query each DNS root every 10 minutes. In Table II,

the first three attack events had a large impact, showing

99–100% of unanswered queries, as publicly reported [31],

[1], [2]. The other seven events had smaller impacts (1–7%

unanswered queries), because they were shorter (5 minutes and

less) and sent at a lower rate, and because B-root’s capacity

had increased. DNSmon reports reflect aggregate performance

across all PoPs, so the percentage of unanswered queries at

each PoP might be higher than measured by DNSmon. We

include traces from all the PoPs in our analysis, and simulate

running of DDiDD at each PoP. We use ground truth for attack

start and stop times to start and stop DDiDD’s simulation,

and use fACC = 2.5. During attacks, query rate at the

server increases more than 10-fold, so using fACC = 2.5 is

reasonable.

While attackers could generate any random traffic to port 53,

attacks in our dataset had unique content or traffic signatures,

which enabled us to establish ground truth during evaluation.

Attacks on 2015-11-30, 2015-12-01, 2017-02-21, 2017-03-06,

2017-04-25, and 2020-02-13 had used either several specific

queries or a random prefix with a common, specific, suffix.

Attack on 2016-06-25 was a TCP SYN flood. Attacks on 2019-

09-07 and 2020-10-24 and 2021-05-28 sent malformed UDP

traffic to port 53, which consumed resources at the server, but

did not parse into legitimate query format.

Ethical considerations. Our analysis is performed on

packet traces incoming to and outgoing from B-root. Both

source and destination IP addresses are anonymized using

Crypto-PAn [53], [58]. Packet payloads are not anonymized,

which allows us to establish ground truth in evaluation. After

ground truth is established, analysis is automated and we

report only aggregate results. These steps preserve resolver

privacy.

B. Metrics

Our goal is to reduce load on the DNS root server, by

filtering malicious traffic, to allow serving more legitimate

users when under duress. We therefore consider two success

metrics: (1) controlled load, the percent of time when server

load is at or below acceptable load due to defense’s actions,

ideally 100%; (2) collateral damage, the percent of legitimate

queries filtered, with an ideal of 0%.

C. DDiDD Performance

Table II shows DDiDD’s performance per each PoP affected

by a given attack. We show several defense configurations:

first, each filter by itself (FQ, UR, HC, or WR), then the full

DDiDD with all four filters and a partial DDiDD with only

UR, HC, and WR filters. Removing the FQ filter from the

partial DDiDD simulates a smart adversary, which randomizes

queries for each attack.

These experiments confirm that no single defense does well

in all attack cases. The FQ filter does very well in attacks



that use similar queries, but has no effect otherwise. The UR

filter performs well in many attacks. HC does not work well

by itself, but enhances other filters. Finally, WR does well in a

few attacks, where some recursives, which are present prior to

the attack, modify their behavior to become more aggressive.

This evaluation demonstrates that we need multiple filters to

handle all attack events.

We further show that the full DDiDD automatically chooses

the best filter or combination of filters for each attack, always

achieving 93% or higher controlled load and at most 1.7% col-

lateral damage. DDiDD selects the optimal filter combination

in 1–3 seconds.

Partial DDiDD’s performance (the right-most column)

shows how well it would handle an adversary that randomizes

queries. DDiDD controls load for most of the time (92.3%–

100%), with low collateral damage (2% or lower), with all

filters selected in 3 s or less.

We compare collateral damage of DDiDD with percentage

of legitimate queries at the affected PoP that fail to receive

a response during the original attack, without DDiDD. We

calculate this percentage from our datasets and show it in the

fifth column (ULQ) of Table II. This is an internal measure of

DoS impact and it can differ from the external measurements

by DNSmon, because of several reasons. First, DNSmon

averages measurements over 10 minutes and across all PoPs

for a given root, while our internal-DoS measure is per PoP

and it is averaged over the duration of the attack. For these

reasons DNSmon will often underestimate attack impact, as is

the case for many of our attacks. Second, if B-root’s incoming

bandwidth were overloaded, DNSmon could measure higher

loss rate than our internal-DoS measure. This is the case, for

example, for 2019-09-07 attack.

Full DDiDD’s and partial DDiDD’s collateral damage is

always lower than DNSmon (external) and ULQ (internal)

measures. Thus DDiDD improves legitimate traffic’s handling

during DoS attacks. DDiDD is also effective, reducing re-

source consumption by controlling server load, 93–100% of

time, after a short initial delay of 1–3 seconds.

Legitimate flash crowds. While three attacks in 2017

overloaded B-root, they involved a large number of recursives

involved (around 50 K per event), large difference in rates per

recursive, and did not spoof. Legitimate flash crowds would

show similar patterns. In 2017 events, DDiDD dropped only

traffic that was causing the overload event, and only as much

as to free server resources from overload.

Polymorphic attacks. In evaluation events DDiDD changes

defenses because the attacks change. During 2015-11-30 attack

there were periods where existing clients were spoofed with

incremental TTL values, traversing the entire TTL value space.

Partial DDiDD correctly switched from UR to UR+HC combo

to handle these cases. During 2020-02-13 attack, single UR,

HC and WR filters could not sufficiently reduce the load.

Partial DDiDD deployed all three filters, which managed to

reduce the load.

We demonstrate how DDiDD can nimbly adjust filter se-

lection by using an artificial polymorphic attack in Figure 3.
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Fig. 3. DDiDD evaluation for a synthetic polymorphic attack.

We create a synthetic attack by mixing legitimate traffic from

February 2017 with five synthetic attacks, which correspond

to p1–p5 labels in Figure 2: (p1) a random-spoofed attack with

a fixed query name, (p2) an attack with random query names,

(p3) same as (p2) but also spoofs only known recursives

using random TTL values, (p4) same as (p3) but spoofs with

correct TTL values, (p5) same as (p1) but 90% of queries

are random and 10% use a fixed query name. We find that

DDiDD quickly converges to the best single filter for each

attack strategy: FQt, UR, HC, WR and FQs, respectively.

Figure 3 shows passed and filtered legitimate and attack traffic

for our synthetic attack—overall controlled load was 99.1%,

collateral damage was 0.7%, and selection delay was 1–4 s.

VI. CONCLUSION

This paper provides the first in-depth design and evaluation

of an automated, layered approach to mitigate DDoS on DNS

root. Evaluated on ten real-world DDoS attacks on B-root,

DDiDD quickly selects the best filter or filter combination

from a library of filters, and deploys it automatically. DDiDD

reduces server load to acceptable levels within seconds, with

collateral damage under 2%. DDiDD is adaptive to the poly-

morphic attack events, which change attack pattern during an

ongoing attack event, and nimbly makes new filter selection

in up to 4 seconds. It further has low operational cost,

working offline to process incoming traffic at the server, and

producing filtering rules, which can be implemented at no

added processing delays using ipset. We release DDiDD

as open source.
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