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ABSTRACT In order to meet mobile cellular users’ ever-increasing data demands, today’s 4G and 5G
wireless networks are designed mainly with the goal of maximizing spectral efficiency. While they have made
progress in this regard, controlling the carbon footprint and operational costs of such networks remains a
long-standing problem among network designers. This paper takes a long view on this problem, envisioning a
NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather
and synthesize insights on power consumption, computational throughput and latency, spectral efficiency,
operational cost, and feasibility timelines surrounding quantum annealing technology. Armed with these data,
we project the quantitative performance targets future quantum annealing hardware must meet in order to
provide a computational and power advantage over CMOS hardware, while matching its whole-network
spectral efficiency. Our quantitative analysis predicts that with 82.32 µs problem latency and 2.68M qubits,
quantum annealing will achieve a spectral efficiency equal to CMOS while reducing power consumption by
41 kW (45% lower) in a Large MIMO base station with 400 MHz bandwidth and 64 antennas, and a 160 kW
power reduction (55% lower) using 8.04M qubits in a CRAN setting with three Large MIMO base stations.

INDEX TERMS Quantum annealing, quantum computing, radio access networks, wireless communication

I. INTRODUCTION

Radio Access Networks (RANs) are experiencing unprece-
dented growth in traffic at base stations due to increased
subscriber numbers and their higher quality of service require-
ments [1]. To meet the resulting demand, 5G and NextG RANs
are expected to deploy sophisticated techniques such as cell
densification, multiple-input multiple-output communication,
and millimeter-wave communication [2]. But this significantly
increases the power and cost required to operate RANs backed
by complementary metal oxide semiconductor (CMOS)-
based processing. While general energy-saving strategies
such as sleep mode [3] and network planning [4] can be
used to decrease RAN’s power consumption to a point, the
fundamental problem of power requirements scaling with the
exponentially increasing computational requirements of the
RAN persists. Previously (ca. 2010), this problem had not
limited innovation in the design of RANs, due to a rapid
pace of improvement in CMOS’s computational efficiency–
which has typically followed Dennard scaling [5]–[7] for
power consumption. Unfortunately however, today, such
improvements are becoming increasingly difficult to maintain,
due to transistor sizes approaching atomic limits, and issues

such as leakage current control and thermal runaway [8]. As a
result, CMOS operational clock speeds have reached a plateau
and Moore’s Law scaling has come to an end (ca. 2025–2030)
[9]–[11]. This therefore calls into question the prospects of
CMOS to handle NextG cellular demand in terms of both
energy and spectral efficiency. While unanticipated advances
in CMOS may allow it to handle this demand, this paper
makes the case for the possible future feasibility and potential
power advantage of quantum annealing, a candidate quantum
technology, over CMOS, in certain RAN operation scenarios.

Recently quantum computers previously only hypothesized
have been commercialized [12]–[14], and are now available
for use by researchers. The current and near-term quantum
technology can be broadly classified into digital gate-model
and analog annealing-model architectures [15]–[18]. Gate-
model devices are fully general purpose computers, using
programmable logic gates acting on qubits, whereas annealing-
model devices are specialized computers, offering a means to
search an optimization problem for its lowest energy configu-
rations in a high-dimensional energy landscape [18]. While
gate-model devices of size relevant to practical applications
are not yet generally available [19], today’s annealing-model
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Figure 1: Our envisioned scenario in a Centralized RAN
context, where quantum processing units handle heavyweight
baseband computational tasks and CMOS units undertake
lightweight control plane processing.

devices with about 5,000 qubits enable us to commence
empirical studies at realistic scales [16]. In particular there are
several published proof-of-principle studies of using quantum
annealing to solve computational problems in communications
networks [20]–[31]. Therefore we conduct this study from the
perspective of annealing-model devices.

Here we present the first extensive analysis on power
consumption and quantum annealing (QA) architecture to
make the case for the future feasibility of quantum processing
based RANs. We seek to quantitatively analyze whether
in the coming years and decades, mobile operators might
rationally invest in the RAN’s capital expenditure (CapEx) by
purchasing quantum hardware of high cost, in a bid to lower
its operational expenditure (OpEx) and hence the Total Cost
of Ownership (CapEx + OpEx). The OpEx cost reduction
would result from the reduced power consumption of the
RAN, due to higher computational efficiency of quantum
processing over CMOS processing for certain heavyweight
baseband computational tasks. Unlike CMOS devices, the
power consumption of quantum devices is dominated by their
refrigeration unit rather than the computation at hand [32]–
[34], implying that the increasing computational demand in
RANs will have negligible impact on power consumption.
Note that nothing which we propose with quantum annealing
here is fundamentally out of the reach of classical computation.
The potential advantages of QA for RAN applications are
purely economic (i.e., the lower cost of operation resulting
from the lower power consumption). Figure 1 depicts our
envisioned scenario, where quantum processing units (QPUs)
co-exist with CMOS processing units (CPUs) at Centralized
RAN (CRAN) Baseband Units (BBUs). QPUs will then be
used for the BBU’s heavy baseband processing, whereas CPUs
will handle the network’s lightweight processing such as
the control plane (e.g., resource allocation), and pre-/post-
processing the QPU-specific computation.

While recent successful point-solutions that apply QA to a
variety of wireless applications [20]–[31] serve as our moti-
vation, previous work stops short of a holistic power and cost
comparison between QA and CMOS. Despite QA’s benefits

demonstrated by these prior works in their respective point
settings, a reasoning of how these results will factor into the
overall computational performance and power requirements
of the base station and CRAN remains lacking. Therefore,
here we investigate these issues head-on, to make an end-to-
end case that QA will likely offer benefits over CMOS for
handling BBU processing, and to make time predictions on
when these benefits might be realized. Specifically, we present
informed answers to the following questions:

Question 1: How many qubits are required to realize a
base station or CRAN BBU processing require-
ments? (Answer: cf. §V, §VII)

Question 2: Given sufficient number of qubits, how much
power and cost does QA save over CMOS?
(Answer: cf. §VI)

Question 3: At what year might these qubit numbers become
feasible, based on the current industry trends?
(Answer: cf.-§VII)

Question 4: How does QA processing latency and solution
accuracy impact the qubit requirement and
power/cost benefits? (Answer: cf. §III, §V, §VI)

Question 5: In what wireless network scenarios QA will
provide power/cost advantage over CMOS?
(Answer: cf. §VI, VII)

In order to answer the above questions, several key per-
formance indicators need to be analyzed, quantified, and
evaluated, most notably the computational throughput and
latency (§III), the power consumption of the entire system
and resulting spectral efficiency (bits per second per Hertz
of frequency spectrum) and operational cost (§VI). We first
describe the factors that influence processing latency and
throughput on current QA devices and then, by assessing
recent developments in the area, project what computational
throughput and latency future QA devices can achieve (§III).
We analyze cost by evaluating the power consumption of
QA and CMOS-based processing at equal spectral efficiency
targets (§VI). Our analysis reveals that a three-way inter-
play between latency, power consumption, and qubit count
available in the QA hardware determines whether QA can
benefit over CMOS. In particular, latency influences spectral
efficiency, power consumption influences energy efficiency,
and the number of qubits influences both. Based on these
insights, we determine properties that QA hardware must
meet in order to provide an advantage over CMOS in terms of
energy, cost, and spectral efficiency in wireless networks.

Table 1 summarizes our results, showing that for 200 and
400 MHz bandwidths, respectively, with 1.34M and 2.68M
qubits, we predict that QA processing will achieve spectral
efficiency equal to today’s 14 nm CMOS processing, while
reducing power consumption by 8 kW (16% lower) and
41 kW (45% lower) in representative 5G/NextG base station
scenarios. In a CRAN setting with three base stations of 200
and 400 MHz bandwidths, QA processing with 4.02M and
8.04M qubits, respectively, reduces power consumption by
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Table 1: QA qubit count requirements to achieve equal spectral
efficiency to CMOS, and power consumption of CMOS and
QA.1 Shaded cells indicate the lesser power of CMOS vs. QA.

B/W
Qubits Power Consumption

BS CRAN BS (kW) CRAN (MW)
CMOS QA CMOS QA

50 MHz 335K 1.00M 19.3 36 0.079 0.081
100 669K 2.00M 29.4 37.9 0.11 0.09
200 1.34M 4.02M 49.5 41.6 0.17 0.10
400 2.68M 8.04M 89.9 49 0.29 0.13

70 kW (41% lower) and 160 kW (55% lower), while achieving
equal spectral efficiency to CMOS.

Our further evaluations compare QA against future 1.5 nm
CMOS, which is expected to be the silicon technology at the
end of Moore’s Law scaling [9]–[11]. In a CRAN setting with
three 400 MHz bandwidth 64-antenna base stations, QA with
8M qubits will reduce power consumption by 23.6 kW (21%
lower) while achieving equal spectral efficiency to CMOS.

A projected QA feasibility timeline is reported in Figure 14,
describing year-by-year milestones on the application of QA
for wireless networks (see §VII). Our analysis shows that with
QA qubit connectivity matching the problem connectivity
(see §V) and qubits growing 2.65× every three years (the
2017–2020 trend), a power/cost benefit of QA over CMOS is
a predicted 11–14 years (ca. 2034–2037) away, whereas the
feasibility in processing for a small base station with 10 MHz
bandwidth and 32 antennas is a predicted three years away.

Overall, our quantitative results show that QA will offer
power/cost benefits over CMOS in certain wireless network
scenarios, once QA hardware scales to at least 537K qubits
(§VII) while reducing problem processing time to tens of
microseconds, which we argue is feasible within our projected
timelines. Scaling of QA processors hold challenges related
to engineering, control, and operation of hardware resources,
which designers continue to investigate [35], [36]. Recent
work demonstrates large-scale qubit control techniques, show-
ing that control of million qubit-scale quantum hardware is
already at this point in time a realistic prospect [37].

II. BACKGROUND
In this section, we provide background on 5G/NextG wireless
architecture (§II-A) and Quantum Annealing (§II-B).

A. MASSIVE/LARGE MIMO NEXTG ARCHITECTURE
Today’s wireless industry is facing significant challenges in
handling mobile cellular traffic at base stations (BSs) due to
sharp rises in user counts and their network usage. To meet the
resulting demand, the baseband unit (BBU) processing (i.e.,
digital processing) from many BSs is being aggregated into
centralized locations, a concept referred to as a Centralized

1System parameters correspond to 64-antennas, 64-QAM modulation, 0.5
coding rate, Large MIMO, and 100% time and frequency duty cycles. CRAN
handles three base stations. QA problem processing latency is 82.32 µs
(cf. §III). B/W is the network bandwidth.

Radio Access Network or CRAN [38], [39]. This has two
immediate advantages: first, compute resources previously
dedicated to each BS can be statistically multiplexed among
many BSs, saving energy and reducing cost, and second, joint
computational processing over the signals to or from many
BSs is simplified, since each BS’s processing occurs on either
exactly the same physical servers, or physical servers in close
network proximity. Despite these advantages, however, CRAN
BBUs need to process heavy computational loads within a
threshold turnaround time, imposing additional latency and
bandwidth requirements on the interconnect between BSs and
the centralized BBU.

In 5G and NextG CRAN networks, BSs are envisioned with
Multiple-Input Multiple-Output (MIMO) communication, a
spatial multiplexing technique typically implemented using
multiple antennas at the BS. MIMO communication is a
key requirement to enable high spectral efficiency networks
envisioned in 5G and NextG [40]–[42]. The status quo
implementation, called Massive MIMO, uses a number of
antennas (typically 4 or 8 in 5G) for capturing the same user
signal, and so to support more users simultaneously, Massive
MIMO demands significantly more antennas at the BS [41].
To address this problem, NextG Large MIMO techniques
are underway, which use one antenna for the same task,
increasing the number of simultaneous users, thus maximizing
the wireless network’s spectral efficiency [43].

Typical real-world BS and CRAN implementations in-
volves performance sacrifices which arise due to the strict
timing deadline (0.5–1 ms in 5G) by which wireless signals
must turnaround. Most notably, this includes the use of
linear/low-complexity algorithms, reduced bit precision, and
limiting the count of iterative procedures, which all sacrifice
spectral efficiency. While Maximum-Likelihood (ML) meth-
ods are known to provide optimal performance by maximizing
spectral efficiency, they are of exponential computational
complexity and so challenging to realize on CMOS hardware.
Recent prior work in this area has shown QA to be a promising
alternative to CMOS in this regard, realizing ML methods on
the order of hundreds of microseconds (excluding overheads)
[20], [22], [23]. In our evaluations, we compare the cost/power
of QA and CMOS in both Massive and Large MIMO BS and
CRAN networks with non-linear MIMO settings (see §VI).

B. QUANTUM ANNEALING
Quantum Annealing is an optimization-based approach that
aims to find the lowest energy spin configuration (i.e., solution)
of an Ising model described by the time-dependent energy
functional (Hamiltonian):

H(s) = −Γ(s)HI + L(s)HP (1)

where HI is the initial Hamiltonian, HP is the (input) problem
Hamiltonian, s (∈ [0, 1]) is a non-decreasing function of time
called an annealing schedule, Γ(s) and L(s) are energy scaling
functions of the transverse and longitudinal fields in the
annealer respectively. Essentially, Γ(s) guides the probability
of quantum tunneling during the annealing process, and L(s)
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Figure 2: Unit cell structures of (a) Chimera and (b) Pegasus
QA graphs. Nodes are qubits, and edges are couplers.

guides the probability of finding the ground state of the input
problem Hamiltonian HP [16]. The QA hardware is a network
of locally interacting radio-frequency superconducting qubits,
organized in groups of unit cells. Fig. 2 shows the unit cell
structures of recent (Chimera) and state-of-the-art (Pegasus)
QA devices. The nodes and edges in the figure are qubits and
couplers respectively [20].

The process of optimizing a problem in the QA is called
annealing. Starting with a high transverse field (i.e., Γ(0) >>
L(0) ≈ 0), QA initializes the qubits in a pre-known ground
state of the initial Hamiltonian HI , then gradually interpolates
this Hamiltonian over time—decreasing Γ(s) and increasing
L(s)—by adiabatically introducing quantum fluctuations in
a low-temperature environment, until the transverse field
diminishes (i.e., L(1) ≫ Γ(1) ≈ 0). This time-dependent
interpolation of the Hamiltonian is essentially the quantum
annealing algorithm. The Adiabatic Theorem then ensures that
by interpolating the Hamiltonian slowly2 enough, the system
remains in the ground state of the interpolating Hamiltonian
[45]. Thus during the annealing process, the system ideally
stays in a local minimum and probabilistically reaches the
global minimum of the problem Hamiltonian HP at its
conclusion [16]. The initial and problem Hamiltonians take
the form HI =

∑
i σ

x
i and HP =

∑
i hiσ

z
i +

∑
i<j Jijσ

z
i σ

z
j ,

where σx,z
i are the Pauli spin operators acting on the ith qubit,

hi and Jij are the optimization problem inputs (coefficients)
that the user supplies [16].
Input Problem Forms. QAs optimize Ising model problems,
whose problem format matches the above problem Hamilto-
nian: E =

∑
i hisi +

∑
i<j Jijsisj , where E is the energy of

the candidate solution, si is the ith solution variable which
can take on values in {−1,+1}, hi and Jij are called the bias
of si and the coupling strength between si and sj , respectively.
Ising form is equivalent to quadratic unconstrained binary op-
timization (QUBO) form, where solution variables take values
in {0, 1}. Biases represent individual preferences of qubits
to take on a particular classical value (−1 or +1), whereas
coupling strengths represent pairwise preferences (i.e., two
particular qubits should take on same/opposite values), in the
solution the machine outputs. Biases and coupling strengths
are specified to qubits and couplers, respectively, using a

2If the adiabatic evolution is infinitely slow, then the annealing algorithm
is guaranteed to find the global minimum of HP [44].
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programmable on-chip control circuitry [46], [47]. The QA
probabilistically returns the solution variable configuration
with the minimum energy E at its output [20].
Assumption 1— Ising Model formulation. To enable QA
computation, cellular baseband’s heavy processing tasks must
be formulated as Ising model problems. Recent prior work in
this area has formulated the most heavyweight tasks in the
baseband, such as frequency domain detection, forward error
correction, and precoding problems, into Ising models [20],
[21], [23], [30], [31], [48]. Further baseband tasks will either
admit Ising model formulations via binary representation of
continuous values [49] (we leave for future work), or are so
lightweight they require negligible power.

C. INPUT PROBLEM EMBEDDING
The process of mapping a given input problem onto the
physical QA hardware is called embedding. To understand
embedding, let us consider an example Ising problem:

E = h1s1+h2s2+h3s3+J12s1s2+J23s2s3+J13s1s3 (2)

The logical representation of Eq. 2 is depicted in Fig. 3(a),
where nodes and edges are qubits and couplers respectively.
The curved arrows are used to visualize the linear coefficients.
However, observe that a complete three-node qubit connectiv-
ity does not exist in the Chimera graph (cf. Fig. 2(a)). Hence
the standard approach is to map one of the logical problem
variables (e.g., q3) onto two physical qubits (e.g., q3a and
q3b) as Fig. 3(b) shows, such that the resulting connectivity
can be realized on the native QA hardware. To ensure proper
embedding: q3a and q3b must agree with each other. This is
achieved by enforcing the condition h3 = h3a + h3b, and
chaining these physical qubits with a strong ferromagnetic
coupling strength called JFerro (JF )—see dotted line in
Fig. 3(b). The physical Ising problem the QA optimizes for
the example in Eq. 2 is then:

E = h1q1 + h2q2 + h3aq3a + h3bq3b + J12q1q2+

J13q1q3a + J23q2q3b + JF q3aq3b
(3)

Since JF is finite, some parameter optimization may be
necessary [50], [51].
Assumption 2— Bespoke QA hardware. Qubit connec-
tivity significantly impacts performance, with sparse qubit
connectivity negatively affecting dense problem graphs due
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to problem mapping difficulties [20]. Recent advances in QA
have bolstered qubit connectivity—6 to 15 to 20 couplers
per qubit in the Chimera (2017), Pegasus (2020), and Zephyr
(ca. 2023-24) topologies respectively [52], [53]—and further
improvement efforts continue [54], [55], which will allow QA
hardware tailored to baseband processing problems within the
timescales of our predictions, resulting in a highly efficient
embedding process (see §V-B for a more detailed discussion).

III. QUANTUM PROCESSING PERFORMANCE
To characterize current and future QA performance, this
section analyzes processing time on QA devices, the client
of which sends quantum machine instructions (QMI) that
characterize an input problem computation to a QA QPU. The
QPU then responds with solution data. Fig. 4 depicts the entire
latency a QMI experiences from entering the QPU to the read-
out of the solution, which consists of programming (§III-A),
sampling (§III-B), and post-processing (§III-C) times.

A. PROGRAMMING TIME
As the QMI reaches the QPU, the QPU programs the QMI’s
input problem coefficients—biases and coupling strengths
(§II): room temperature electronics send raw signals into the
QA refrigeration unit to program the on-chip flux digital-
to-analog converters (Φ-DACs). The Φ-DACs then apply
external magnetic fields and magnetic couplings locally to
the qubits and couplers respectively. This process is called a
programming cycle, and in current technology it takes 4–40 µs,
dictated by the amount of programming data, bandwidth
of control lines, and the Φ-DAC addressing scheme [35],
[56]. During the programming cycle, the QPU dissipates
an amount of heat that increases the effective temperature
of the qubits. This is due to the movement of flux quanta3

in the inductive storage loops of Φ-DACs. Thus, a post-
programming thermalization time is required to cool the QPU,
ensure proper reset/initialization of qubits, and allow the QPU
to maintain a thermal equilibrium with the refrigeration unit
(≈20 mK). QA clients can specify thermalization times in
the range 0–10 ms with microsecond-level granularity. The
default value on D-Wave’s machine is a conservative one
millisecond [16].

3QA devices store coefficient information in the form of magnetic flux
quanta and it is transferred via single flux quantum (SFQ) voltage pulses [36].

Figure 5: Achievable programming times at various control
line bandwidths for a large-scale 10M qubit QA device. CPQ
is the number of programmed couplers per qubit.

1) Programming: Data and Bandwidth
An NQ qubit, NC coupler, and K-bit precision QA device
will program a worst-case Dprog = K · (NQ+NC) amount of
data. With an aggregate programming control line bandwidth
BWprog, this requires a worst-case Dprog/BWprog of data
programming time. If the NQ qubits are equally distributed
into Nchips number of independently controlled chips (physi-
cally located under the same refrigeration unit), all chips can
be programmed in parallel, scaling the data programming time
by a factor of 1/Nchips. Figure 5 reports these results, showing
achievable data programming times at various control line
bandwidths. To maintain today’s 40 µs data programming time
in a 10M qubit QA device, required aggregate programming
control line bandwidth is 33 GHz when 20 couplers per qubit
are programmed (typical for practical wireless applications).

2) Programming: Energy and Thermalization Time
The next step is QPU thermalization. QMI coefficients are
programmed by using six Φ-DACs per qubit and one Φ-DAC
per coupler [36]. Each Φ-DAC consists two inductor storage
loops with a pair of Josephson junctions each. The energy
dissipated on chip is on the order of Ic × Φ0 per single flux
quantum (SFQ) moved in an inductor storage loop, where
Ic is the Φ-DAC’s junction critical current and Φ0 is the
magnetic flux quantum.4 Therefore, the dissipated on-chip

4Φ0 = h/2e, where h is Planck’s constant and e is the electron charge.
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rents respectively when (·) couplers per qubit are programmed.

programming energy (Eprog) is given by:

Eprog = 4× (6NQ +NC)× Ic × ϕ0 ×NSFQ (4)

where NQ and NC are the number of qubits and couplers
being programmed, and NSFQ is the number of SFQs moving
into (or out of) inductor storage loops. The required program-
ming thermalization time (Ttherm) is then given by:

Ttherm = Eprog/PQPU (5)

where PQPU is the cooling power available at the 20 mK
QPU stage, which is typically 30 µW [57]. The supported bit-
precision on QA devices is currently up to five bits (four for
value, one for sign), and so for the worst-case reprogramming
scenario, this corresponds to 32 SFQs (−16 to +16) moving
into (or out of) all Φ-DAC inductor storage loops [36].
Figure 6 reports these results, showing that programming a
large-scale QA device with 10M qubits and 20 couplers per
qubit will dissipate only 42 pJ energy on chip, requiring a
thermalization time of 1.4 µs only.

After programming and thermalization, the next step re-
sets/initializes the qubits (cf. §II-B), during which each qubit
transitions from a higher energy state to an intended ground
state, generating spontaneous photon emissions, heating the
QPU. Reed et al. [59] demonstrate the suppression of these
emissions using Purcell filters, requiring 80 ns (120 ns) for
99% (99.9%) fidelity. Heretofore, an overall programming
time of 41.52 µs (data programming: 40 µs, thermalization:
1.4 µs, reset: 0.12µs) is considered for a large-scale 10M qubit
QA device, which is subject to the requirement of 33 GHz
aggregate control line bandwidth and Purcell filter integration.

B. SAMPLING TIME
The process of executing a QMI on a QA device is called
sampling, and the time taken for sampling is called the
sampling time. The sampling time is classified into three sub-
components: the anneal, readout, and readout delay times. A

single QMI consists of multiple samples of an input problem,
with each sample annealed and read out once, followed by a
readout delay (see Fig. 4). Sampling a QMI begins after the
QPU programming process.

1) Anneal

In this time interval, the QPU implements a QA algorithm
(§II-B) [16] to solve the input problem, where low-frequency
annealing lines control the annealing algorithm’s schedule.
The bandwidth of these control lines limits the minimum
annealing time, which is 0.5 µs today. Weber et al. [60]
propose the use of flexible print cables with a moderate
bandwidth (≈100 MHz) and high isolation (≈50 dB) for
annealing, which potentially decrease annealing time to tens
of nanoseconds. Further experiments have demonstrated that
large-scale QA devices can be operated under 40 ns anneal
time, enabling coherent quantum annealing regimes [61], [62].

2) Readout

After annealing, the spin configuration of qubits (i.e., the
solution) is read out by measuring the qubits’ persistent
current (Ip) direction. This readout information propagates
from the qubits to readout detectors located at the perimeter
of the QPU chip via flux bias lines. Each flux bias line is a
chain of electrical circuits called Quantum Flux Parametrons
(QFPs), which detect and amplify qubits’ Ip to improve the
readout signal-to-noise ratio. These QFP chains act like shift
registers, propagating the information from qubits to detectors
[63]. In current QA devices with NQ qubits, there are

√
NQ/2

flux bias lines, with each flux bias line responsible for reading
out
√
2NQ qubits. Further, each flux bias line reads out one

qubit at a time (i.e., time-division readout), thus a total of√
NQ/2 qubits are readout in parallel. Hence, the readout

time depends on the qubits’ physical locations, the bandwidth
of flux bias lines, and the signal integration time. For the
current status of technology, the readout time is 25–150 µs
per sample [16]. Nevertheless, recent research demonstrates
promising fast readout techniques, which we describe next.

Chen et al. [64] and Heinsoo et al. [65] describe frequency-
multiplex readout schemes that enable simultaneous readout
of multiple qubits within a flux bias line. While there is no
fundamental limit on the number of qubits read out simultane-
ously, a physical limit is imposed by the line width of qubits’
readout microresonators and the 4–8 GHz operating band
(6 GHz center frequency, 4 GHz bandwidth) of commercial
microwave transmission line components used in the readout
architecture [63]. Microresonators with quality factor Qr can
capture line widths up to 6/Qr GHz, thus enabling up to
4×Qr/6 qubits to be readout simultaneously. Table 2 reports
these results, showing that a Qr of 106 will enable up to
≈666 K qubit-parallel readout. This analysis assumes that
each microresonator can be fabricated at exactly its design fre-
quency, which is currently not the case. Further developments
in understanding the RF properties of microresonators will be
needed to achieve this multiplexing performance.
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Table 2: The table shows the number of qubits read out in
parallel by time-division (status quo) and frequency-multiplex
(projected) readout schemes at various choices of QPU sizes
and readout microresonator quality factors (Qr).

Qubits
Qubits readout in parallel

Time-division Frequency-multiplex

Qr = 103 [63] Qr = 106 [66]

512 16 512 512
2,048 32 ≈ 666 2,048
5,436 ≈ 52 ≈ 666 5,436
10 M ≈ 2,200 ≈ 666 ≈ 666K

In order to avoid sample-to-sample readout correlation,
microresonators reading out the current sample’s qubits must
ring down before reading the next sample’s qubits. McClure et
al. [67] achieve ring-down times on the order of hundreds of
nanoseconds by applying pulse sequences that rapidly extract
residual photons exiting the microresonators after readout.
Fast ring-down can also be achieved by switching off the
QFP (after the readout) coupled to a microresonator, and then
switching on a different QFP that couples the microresonator
to a lossy line. While QFP on-off switching takes hundreds of
nanoseconds [68], [69], it ensures high fidelity readout.

Recent work by Grover et al. [68] shows the application
of QFPs as isolators, achieving a readout fidelity of 98.6%
(99.6%) in 80 ns (1 µs) only. Work by Walter et al. [70]
describes a single-shot readout scheme requiring only 48 ns
(88 ns) to achieve a 98.25% (99.2%) readout fidelity. Their
designs are also compatible with multiplexed architectures and
earlier readout schemes, implying that by design integration
readout time reaches on the order of microseconds per sample.

3) Readout delay
After a sample’s anneal-readout process, a readout delay is
added (see Fig. 4). In this time interval, qubits are reset for
the next sample’s anneal. QA clients can specify times in the
range 0–10 ms, and the default value is a conservative one
millisecond. Nevertheless, about one microsecond is sufficient
for high fidelity qubit reset (§3.1) [59].

C. POSTPROCESSING TIME
This time interval is used for post-processing the solutions
returned by QA for improving the solution quality [71].
Multiple samples’ solutions are post-processed at once in
parallel with the current QMI’s annealer computation, whereas
the final batch of post-processing occurs in parallel with the
programming of next QMI. Thus, the post-processing time
does not factor into the overall processing time [56].

In summary, the projected programming time is 41.52 µs (data
programming: 40 µs, thermalization: 1.4 µs, reset: 0.12 µs),
anneal time is 40 ns/sample, readout time is one µs/sample,
and readout delay time is one µs/sample. For a target sample
count Ns, total QMI run time is 41.52 + 2.04Ns µs.

MIMO Antennas
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Feeder
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RU

RU

BBU
Baseband

Control

Transfer

DC-DC

Active Cooling (A/C)

Mains Supply (MS)

Base Station

Figure 7: A typical macrocell base station architecture.

IV. RAN POWER MODELS AND CELLULAR TARGETS
We now describe power modeling in RANs (§IV-A) and
computational complexity of cellular networks (§IV-B).

A. POWER MODELING
RAN power models account for power by splitting the
BS or CRAN functionality into the components and sub-
components shown in Figs. 1 and 7. This section details these
components and their associated power models. We follow
the developments by Desset et al. [72] and Ge et al. [73].

1) RAN Power Model
A RAN BS (see Fig. 7) is comprised of a baseband unit (BBU),
a radio unit (RU), power amplifiers (PAs), and a power system
(PS). The entire BS power consumption (PBS) is then:

PBS =
PBBU + PRU + PPA

(1− σA/C)(1− σMS)(1− σDC)
, (6)

where Pi is the ith BS component’s power consumption, and
σA/C(9%), σMS(7%), and σDC(6%) correspond to fractional
losses of Active Cooling (A/C), Mains Supply (MS), and
DC–DC conversions of the power system respectively [73].

The BBU performs the processing associated with digi-
tal baseband (BB), and control and transfer systems. The
baseband includes computational tasks such as digital pre-
distortion (DPD), up/down sampling or filtering, OFDM-FFT
processing, frequency domain (FD) mapping/demapping and
equalization, and forward error correction (FEC). The control
system undertakes the platform control processing (PCP), and
the transfer system processes the eCPRI transport layer. The
total BBU power consumption (PBBU) is then [72], [73]:

PBBU = PDPD + PFilter + PFFT + PFDlin + PFDnl + PFEC

+ PPCP + PCPRI + PLeak, (7)

where Pi is the ith BBU task’s power consumption, and PLeak
is the leakage power resulted from the employed hardware in
processing these tasks. FD processing is split into two parts,
with linear and non-linear scaling over number of antennas
[72], [73]. The RU performs analog RF signal processing,
consisting of clock generation, low-noise and variable gain
amplification, IQ modulation, mixing, buffering, pre-driving,
and analog–digital conversions. RU power consumption (PRU)
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Table 3: Baseband unit’s computational complexity in Large MIMO base stations. Time and frequency duty cycles are at 100%,
modulation is 64-QAM, and coding rate is 0.5. Values are in Tera operations per second. See §IV for abbreviations.

BBU Reference 4G (B/W = 20 MHz) 5G (B/W = 200 MHz) 5G (B/W = 400 MHz)

Task NA = 1 NA = 2 NA = 4 NA = 8 NA = 32 NA = 64 NA = 128 NA = 32 NA = 64 NA = 128

DPD 0.160 0.320 0.640 1.280 51.2 102.4 204.8 102.4 204.8 409.6
Filter 0.400 0.800 1.600 3.200 128.0 256.0 512.0 256.0 512.0 1024.0
FFT 0.160 0.320 0.640 1.280 51.2 102.4 204.8 102.4 204.8 409.6
FDlin 0.090 0.180 0.360 0.720 28.8 57.6 115.2 57.6 115.2 230.4
FDnl 0.030 0.120 0.480 1.920 307.2 1228.8 4915.2 614.4 2457.6 9830.4
FEC 0.140 0.140 0.280 0.560 22.4 44.8 89.6 44.8 89.6 179.2
CPRI 0.720 0.720 1.440 2.880 115.2 230.4 460.8 230.4 460.8 921.6
PCP 0.400 0.800 1.600 3.200 12.8 25.6 51.2 12.8 25.6 51.2
Total 2.100 3.400 7.040 15.040 716.8 2,048.0 6,533.6 1,420.8 4,070.4 13,056.0

scales proportionally with number of transceiver chains, and
each chain consumes about 10.8 W power [72]. For macro-cell
BSs, each PA is typically consumes 102.6 W power [73].

2) CRAN Power Model
In the CRAN architecture, BS processing functionality is
amortized and shared, where Remote Radio Heads (RRHs)
perform analog RF signal processing and a BBU-pool per-
forms digital baseband computation (of many BSs) at a
centralized datacenter (see Fig. 1). Fronthaul (FH) links
connect RRHs with the centralized BBU-pool. To relax the
FH latency and bandwidth requirements, a part of baseband
computation is performed at RRH sites. Several such split
models have been proposed [74], [75]. We consider a split
where RRHs perform low Layer 1 baseband processing, such
as cyclic prefix removal and FFT-specific computation. The
power consumption of C-RAN (PC-RAN) is then:

PC-RAN = PBBU+PPSBBU +

NRRH∑
k=1

{
PRRHk

+PPSRRHk
+PFHk

}
,

(8)
where Pk is the kth CRAN component’s power consumption
and NRRH is the number of RRHs. Fronthaul power consump-
tion depends on the technology, and for fiber-based ethernet
or passive optical networks, it can be modeled by assuming a
set of parallel communication channels as [76], [77]:

PFHk
= ρkRFHk

, ρk = PFHk,max/CFHk
(9)

where ρk is a constant scaling factor, RFHk
and CFHk

represent
the traffic load and the capacity of the kth fronthaul link
respectively. For a link capacity of 500 Mbps, PFHk,max is
typically ca. 37 Watts [78].

B. CELLULAR COMPUTATIONAL COMPLEXITY
This section describes 4G/5G cellular computational targets
in estimated Tera operations per second (TOPS) the BBU
needs to process, and it depends on parameters such as the
bandwidth (B/W), modulation (M), coding rate (R), number of
antennas (NA), and time (dt) and frequency (df) domain duty
cycles. Prior work [72], [73] present these TOPS complexity
values for individual BBU tasks in a reference scenario (B/W

= 20 MHz, M = 6, R = 1, NA = 1, dt = df = 100%), which we
replicate in Table 3 as Reference. The scaling of these values
follow [72], [73]:

TOPStarget = TOPSref

∏
k

(
Xtarget

Xref

)sk

(10)

where X ∈
{

B/W, M, R, NA, dt, df
}

and k∈ [1,6] respectively.
The scaling exponents {s1, s2, s3, s4, s5, s6} are {1,0,0,1,1,0}
for DPD, Filter, and FFT, {1,0,0,1,1,1} for FDlin, {1,0,0,2,1,1}
for FDnl, {1,1,1,1,1,1} for CPRI and FEC, and {0,0,0,1,0,0}
for PCP. These exponents are determined based on the depen-
dence of BBU operation with the corresponding parameters
[72], [73]. Table 3 reports the TOPS complexity values for
representative 4G and 5G Large MIMO scenarios.

V. QA RESOURCE ESTIMATION
In this section, we estimate QA qubit count and their connec-
tivity requirements that meet the cellular computational targets
described above (§IV). While we exemplify this analysis from
today’s 4G/5G perspective, same ideas can be used to study
NextG systems as well.

A. QUBIT COUNT REQUIREMENT
To estimate qubit count, our approach considers the compu-
tational complexity of baseband tasks, their QUBO forms’
variable count, and run time on a QA device implementation.
In particular, we convert the target TOPS complexity values
(Table 3) into target problems per second (PPS), then estimate
the qubit count required to achieve this PPS by analyzing
QUBO forms of individual baseband computational tasks. We
formulate the qubit count requirement as:

NQ =
∑
k

NQ,k (11)

NQ,k = PPSk ×NQ,p,k × Tp,k (12)
PPSk = TOPSk/Operations per problem (13)

where NQ is the total number of qubits the QA requires for the
entire baseband processing, and NQ,k is the qubit requirement
for the kth baseband task. PPSk is the target problems per
second, NQ,p,k is the number of qubits per problem, and Tp,k
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is the run time per problem, of the kth baseband task. We next
demonstrate how to compute these values for FDnl and FEC
tasks with running examples.

The FDnl task corresponds to the MIMO detection problem
whose objective is to demodulate the received wireless data
into bits [79]. In a multi-user system with multiple antennas at
the BS, the optimal MIMO detection performance is obtained
by solving the QUBO objective function [23]:

argminx∈CNt×1∥y −Hx∥2 (14)

where y ∈ CNr×1 is received data, H ∈ CNr×Nt is wireless
channel, and x ∈ CNt×1 is transmitted data to be estimated.
Nt and Nr are the number of transmitters (users) and receivers
(antennas) in the system respectively. We observe that upon
expansion Eq. 14 becomes a quadratic minimization function,
if each entry in x is formulated as a linear function of variables.
The search is over all possible x, and the entries in x are
selected based on the employed modulation scheme. For
instance in BPSK modulation, we must search for values
in {±1} and so each entry in x takes the form 2q − 1, where
q is a binary variable. Such formulations exist for various
modulations (see [23] for details).

Solving a demodulation problem with Z users and Z an-
tennas via state-of-the-art sphere decoding algorithm requires
on average 80 (Z/64)2 million operations [80].5 Solving the
same problem using QA requires Nbps ×Z qubits, where Nbps
is the number of bits per symbol in the employed modulation
scheme (see [23]). Therefore, for a typical 5G scenario: Z = 64
and 64-QAM modulation (Nbps = 6), we note that PPSFDnl is
30.72M (i.e., 2457.6 TOPS/80M, see Table 3), NQ,p,FDnl is 384
qubits, and Tp,FDnl is 41.52 + 2.04Ns µs (§III). Substituting
these values in Eq. 12 shows that the 5G FDnl processing
requires 971K qubits with Ns = 20 samples.

The FEC task corresponds to the channel decoding problem
which aims to correct the bit errors that noise and interference
of the wireless channel inevitably introduce into the user
data. In our analysis, we consider Low Density Parity Check
(LDPC) codes employed in the 5G-NR traffic channel for
FEC evaluation [81]. An (M , N )-LDPC code is characterized
by a binary-valued parity check matrix [hij ]M×N , where
each row defines a check constraint and each column defines
which check constraint a bit participates in. In particular, an
entry hij = 1 indicates that jth bit participates in ith check
constraint. A check constraint is said to be satisfied when its
modulo two bit-sum is zero (i.e., zero checksum), and a suc-
cessful decoding occurs when all the check constraints of the
code are satisfied. The optimal LDPC decoding performance
is obtained by solving the QUBO objective function [20]:

argminq
{
W1

∑
∀c

Lsat(c) +W2

∑
∀j

∆j

}
(15)

where Lsat and ∆ are cost penalty functions, and W1 and
W2 are positive weights. The function Lsat(c) takes the form:

5A 64× 64 MIMO detection problem requires 80 million operations [80],
and it scales quadratic with number of antennas [72], [73].
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Figure 8: QA qubit requirement at various problem run times
to achieve spectral efficiency equal to CMOS processing, in a
5G scenario with 400 MHz BW and 64 antennas.

(f(q)− 2f(a))2, where f(q) is the sum of solution variables
participating in a check constraint c, and 2f(a) is a binary
encoding of even integers via ancillary variables. The function
∆j takes the form: (qj − Pr(qj = 1))2, computing the
distance of a decoding candidate to the received data, where
the probability Pr(qj = 1) can be computed based on the
received data for various modulations and channels [20]. The
global minimum of this QUBO is a successful decoding that
is most proximal to the received data (see [20] for details).

Solving an (M, N)-LDPC decoding problem via state-of-
the-art belief propagation algorithm requires N + 3w2

rM −
wrM + 2w2

cN + 4wcN operations per iteration [82],
where wr and wc are the average row and column
weights of the parity check matrix respectively. Solving
the same problem using QA requires N + Mt qubits,
where t = argminn∈Z{2n+1 − 2 ≥ wr − (wr mod 2)}—
see Ref. [20] for a full derivation. For the longest LDPC code
in 5G: M = 4224, N = 8448, wr = 8.64, wc = 20, we note
that PPSFEC is 600K (i.e., 89.6 TOPS/150M, see Table 3) for
typical 20 decoding iterations, NQ,p,FEC is 21,120 qubits, and
and Tp,FEC is 41.52 + 2.04Ns µs (§III). Substituting these
values in Eq. 12 shows that the 5G FEC processing requires
1.04M qubits with Ns = 20 samples.

FDnl and FEC tasks correspond to 75% of the 5G BBU’s
baseband computation load. For the remaining 25% load, we
project a proportionate qubit requirement. Fig. 8 shows the QA
qubit requirement to satisfy the 5G baseband computational
demand as a function of problem run time and sample count.
Looking at Eq. 12 and Fig. 8, we see that for a given
network operation scenario (i.e., fixed PPSk and NQ,p,k),
the problem run time (41.52 + 2.04Ns) and sample count
(Ns) scale linearly with qubit requirement to achieve spectral
efficiency equal to CMOS. In the figure, the sample count
indicates the required QA target fidelity in terms of error
performance—when Ns is 20, QA must reach ground state of
the input problem in 20 anneal trials. Hence, QA must meet
these run time–qubit count combinations to achieve spectral
efficiency equal to CMOS. While in Fig. 8 we demonstrate
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an example scenario, a similar methodology is applied to
estimate network-specific qubit requirements. Fig. 13 shows
this qubit requirement for various bandwidths and antenna
count choices (later described in §VII).

B. QUBIT CONNECTIVITY REQUIREMENT
To estimate qubit connectivity, we now analyze the native
problem connectivity of the QUBOs described above. In this
work, we consider future QA qubit connectivity to match the
problem connectivity, which is typically challenging to realize
for dense problems from a hardware perspective but will result
in a highly efficient embedding process. Nevertheless, we
describe promising methods that circumvent this issue.

From Eq. 14, we observe that the connectivity graph of the
FDnl task is a complete graph on Nbps × Z variables. For a
typical 5G scenario: Nbps = 6 and Z = 64, this corresponds
to a 384-qubit full connectivity, which is challenging to
realize on QA devices. Scaling to more users and higher
modulation schemes envisioned in NextG will increase this
qubit connectivity requirement even further, making it more
challenging from a hardware perspective. To address this con-
nectivity issue, hybrid QPU–CPU approaches that decompose
a large QUBO into a number of smaller sub-QUBOs realizable
on hardware may be necessary. Existing methods such as
that of qbsolv based on Glover’s algorithm provides such
a hybrid interface for generic problems, rendering it useful
in this regard [83]–[85]. Further decomposition approaches
tailored to the FDnl task also exist, which demonstrate that
decomposed sub-problems can be parallelized via warm state
initialization to obtain good performance [86]. While the size
of decomposed sub-problems can be chosen flexibly, we note
that such decomposition methods typically entail performance
loss due to reduced complexity. Quantifying this performance
loss for NextG problems requires an empirical evaluation on
future QAs—we leave this for future work. Nevertheless, this
loss is observed to be negligible for 5G problems [86].

Unlike the FDnl task, the connectivity graph of the FEC
task is highly sparse due to the inherent nature of LDPC
codes being low density codes. Each qubit in LDPC decoding
typically requires a different connectivity degree, which can
be precisely calculated as follows. Consider an LDPC code
with M rows and N columns in its parity check matrix, and
let rwi be its ith row’s weight (i.e., number of 1s in ith row).
Compute ti = argminn∈Z{2n+1− 2 ≥ rwi − (rwi mod 2)},
the number of ancillary qubits required for ith row. Then
the connectivity degree required for ti ancillary qubits is
rwi + ti − 1 for all i ∈ [1,M ]. Each ancillary qubit is
unique, and so the number of qubits whose connectivity
degree we have determined above is

∑
∀i ti. Alongside

ancillary qubits, the decoding requires N distinct solution
qubits whose connectivity degree is calculated next. To
compute jth solution qubit’s connectivity degree, construct
a submatrix of the parity check matrix by eliminating the
rows whose jth column entry is zero. Then compute Cj ,
the number of non-zero columns in this submatrix. The
connectivity degree required for the jth solution qubit is

then (
∑

∀i|hij=1 ti) + Cj − 1 for all j ∈ [1, N ], where hij is
the (i, j)th entry of parity check matrix. These connectivty
degrees are derived by analyzing the QUBO form given
in Eq. 15 (see Ref. [20]). For decoding the longest LDPC
code in 5G, QA needs 21,120 qubits, where {46%, 28%,
2%, 11%, 13%} of the qubits require {<=10, 11–30, 30–60,
60–100, >100} couplers per qubit respectively. The highest
connectivity degree is 205, and the average connectivity
degree is 34.28. While we present numbers for the longest
LDPC code, a similar methodology can be used to compute
connectivity degree requirement for smaller LDPC codes in
practice. Further, all the quadratic coefficients of the LDPC
QUBO function remain constant for a given a parity check
matrix (i.e., only linear coefficients change from problem
to problem), which eases the coupler programming process,
making it a favorable candidate for a tailored hardware design.

VI. EVALUATION: POWER AND COST ANALYSIS
This section presents a holistic power and cost comparison
between QA and CMOS in cellular wireless networks. Our
methodology compares CMOS and QA processing at equal
spectral efficiency outcomes. We specify the same BBU
targets (Table 3) with CMOS and QA hardware, ensuring
equal bits processed per second per Hz per km2.

The power consumption of CMOS hardware depends on its
performance-per-watt efficiency and the amount of computa-
tion at hand. Technology scaling improves this efficiency from
generation to generation, inversely proportional to the square
of its transistors’ core supply voltage (Vdd) [87]. A 65 nm
CMOS device (Vdd = 1.1 V) has a 0.04 TOPS/Watt efficiency,
from which we compute the same for today’s 14 nm CMOS
(Vdd = 0.8 V) and future 1.5 nm CMOS (Vdd = 0.4 V), via V 2

dd

scaling, and they obtain a 0.076 and 0.3 TOPS/Watt efficiency
respectively [11], [72], [88]. Using this hardware efficiency
and the TOPS requirements of Table 3, we compute CMOS
hardware power consumption. Additional power results from
leakage currents in CMOS transistor channel, and this leakage
power is set to 30% of dynamic power [72].

Power consumption of D-Wave’s QA is ca. 25 kW, domi-
nated by its refrigeration unit (see Supplementary information–
[32]). Additional power draw due to the computation at hand
is negligible compared to QA refrigeration power, since the
QPU resources used for computation are thermally isolated
in a superconducting environment. This power requirement is
further not expected to significantly scale up with increased
qubit numbers [32], [34], due to the fairly constant power
consumption of pulse-tube dilution refrigerators which are
used to cool the QPU in practice [32], [57], [89]. More
general NISQ processors such as Google’s Sycamore (see
Supplementary information– [33]) and IBM’s Rochester [90]
also show a similar ca. 25 kW power consumption and a fairly
constant scaling with increased qubit numbers [34]. However,
to maintain this 25 kW power for the entire 5G baseband
processing, sufficient amount of qubits are required, all under
the same refrigeration unit (couplers do not require additional
space [35], [36]). This raises the question—how many qubits
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Figure 9: Power consumption of 14 nm CMOS processing in Large MIMO base stations. BBU bar plots are shown with its
sub-components (see legend, §4.1.1) in increasing order of power consumption from bottom to top. The percentages (rounded to
nearest integer) show the power contribution of that particular BS component (labeled on the axis) to the total BS power. The BS
power at NA={2, 4, 8, 32, 64, 128} is {0.35, 0.71, 1.43, 34.7, 89.9, 261.3} kW, in their respective scenarios.
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Figure 10: (a) Power consumption of 5G Large MIMO base stations where QA handles BBU’s baseband processing. The BS
power at NA = {32, 64, 128} is {37, 49, 73} kW respectively. (b) Power consumption of CMOS (290 kW) and QA (131 kW)
processing in C-RAN scenario with three 5G Large MIMO base stations. In both (a) and (b), BBU’s further computation (i.e.,
Control and Transfer systems) is processed by 14 nm CMOS. BBU bar plots are shown with its sub-components (see legend,
§4.1.1) in increasing order of power from bottom to top. The percentages correspond to components labeled on the axis.

are possible in a QA refrigeration unit?
To answer this question, we consider the physical size of

qubits in their unit cell packaging (a die) versus the available
space in the dilution refrigerator. The number of useful square
dies (Nd) of length Ld placed onto a wafer of radius Rw is
approximately [91]: Nd =

πR2
w

L2
d

− 1.16πRw

Ld
. A square die of

eight qubits requires 335×335 µm2 QPU chip area with Ld =
335 µm [36], and a dilution refrigerator’s experimental space
has a radius Rw = 250 mm [57]. Substituting these values in
the above equation gives Nd ≈ 1.75M, which implies ≈14
million qubits allowed in a refrigeration unit. Larger dilution
refrigerators such as IBM’s Goldeneye can accomodate at
least 6× qubits than a regular dilution refrigerator considered
above [92]. Since qubit count estimates for 5G (cf. §V, §VII)
are well below this allowed limit, QA power consumption is
25 kW for 5G baseband processing.

A. BS AND CRAN POWER COMPARISON
Applying the foregoing power analysis, Fig. 9 reports power
consumption results of 4G and 5G Large MIMO BSs where
one antenna at the BS serves one user. In Fig. 9(a), we see
that the power amplifier (PA) is the dominating component

of 4G BS power consumption, accounting for 57–58% of
the total BS power, as identified in several prior works [72],
[73], [77]. But, as the network scales to higher bandwidth and
antennas envisioned in 5G, the BBU becomes the dominant
power consuming component (see Fig. 9(b)), accounting for
69–74% of the total BS power. This quick escalation in
power from 0.35–1.43 kW in 4G to 34.7–261.3 kW in 5G is
mainly due to the non-linear FD processing (§IV-A), and the
increased network bandwidth consequence of millimeter-wave
communication. Fig. 10(a) reports the power consumption
results of 5G BS, where QA is used for BBU’s baseband
processing. In comparison to CMOS–Fig. 9(b), QA reduces
BS power by 41 kW and 188 kW in 64 and 128 antenna
systems. Fig. 10(b) shows power consumption in a CRAN
setting with three 64-antenna BSs, where the fronthaul is
allowed a 100 Gbps bandwidth. In comparison to CMOS, QA
processing reduces CRAN power by 159 kW (55% lower).

B. BASEBAND POWER COMPARISON

This section compares the power consumption of QA and
CMOS for the BBU’s baseband processing along a variety of
base station (Fig. 11) and CRAN (Fig. 12) operation scenarios.
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Figure 11: Base Station. Power consumption of BS baseband and its associated power system using 14 nm CMOS ((a), (b), (c))
and 1.5 nm CMOS ((d), (e), (f)) in various BS operation scenarios. The dotted horizontal line in the figures is the QA power
consumption of 25 kW. Figures (a) and (d) show power profile across MIMO degree (antennas per user), (b) and (e) show the
same by varying the number of antennas, and (c) and (f) show power consumption at various bandwidths in 5G Large MIMO
base stations. Points A–E show the smallest bandwidth at which QA benefits in power over CMOS.

1) Base Station

Across MIMO degree. MIMO degree (·) is the number of an-
tennas used to serve one user, where MIMO(8) and MIMO(4)
are the status quo 5G implementations and MIMO(1), referred
to as Large MIMO, is the ideal scenario that maximizes
spectral efficiency. Figures 11(a) and 11(d) report these results,
showing that with MIMO(8), both 14 and 1.5 nm CMOS
processing require lesser power than QA, at all bandwidths
and antenna counts. However, as we decrease the MIMO
degree to MIMO(1), we observe that QA achieves power
advantage over 14 nm CMOS (Fig. 11(a)) in 256-antenna
systems at all bandwidths and in 64-antenna systems at
200MHz and 400MHz bandwidths. QA processing at 100,
200, and 400 MHz bandwidth 5G BSs with 256 antennas
benefit in power over 1.5 nm CMOS (Fig. 11(d)).
Across antenna count. Figs. 11(b) and 11(e) compare power
consumption of BSs at various antenna count choices. In
32-antenna BSs at 200 and 400 MHz bandwidths, we note
that the power consumption of both 14 and 1.5 nm CMOS is
lesser than QA at all MIMO degrees. This is because when
the antenna count is low, the number of users supported at the
BS and their resulting computational demand is low, leading
to low CMOS power consumption. However, as we increase
the antenna counts we see a significant rise in CMOS power
consumption. In 256-antenna systems with 200 and 400 MHz

bandwidths, QA benefits in power over 14 nm CMOS at
MIMO degrees is 4, 2, and 1. In comparison to 1.5 nm CMOS,
the same systems benefit in power at MIMO degrees 2 and 1.
Across network bandwidth. From Figs. 11(c) and 11(f), we
see that the lowest bandwidth for which QA achieves power
advantage over 14 nm CMOS are 20 MHz bandwidth 256-
antenna (Point ‘A’), 50 MHz bandwidth 128-antenna (Point

‘B’), and 160 MHz bandwidth 64-antenna (Point ‘C’) systems.
In comparison to 1.5 nm CMOS, such points correspond to
60 MHz bandwidth 256-antenna (Point ‘D’), and 190 MHz
bandwidth 128-antenna (Point ‘E’) systems.

2) CRAN

Massive MIMO. Fig. 12(a) compares power consumption of
1.5 nm CMOS against QA in a CRAN setting with 2–5 Mas-
sive MIMO(4) base stations. We see that even when CRAN
handles five 64-antenna base stations, power consumption of
1.5 nm CMOS is lesser than QA at all bandwidths. Whereas
a CRAN handling more than one 256-antenna 400 MHz
base stations benefits in power with QA over 1.5 nm CMOS.
Further, CRAN with at least four 256-antenna 200MHz base
stations requires lesser power with QA than 1.5 nm CMOS.
Large MIMO. Fig. 12(b) investigates how power consump-
tion of 1.5 nm CMOS compares with that of QA when CRAN
handles Large MIMO base stations, whose MIMO degree
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Figure 12: CRAN. Power consumption of CRAN baseband and its associated power system at various number of (a) Massive
and (b) Large MIMO base stations using 1.5nm CMOS. The dotted horizontal line is the 25 kW QA power consumption. (c)
CRAN OpEx electricity cost savings and carbon emission reduction (in metric kilotons) QA will achieve over 1.5 nm CMOS.
System parameters correspond to 400 MHz bandwidth 256-antenna base stations, and Massive MIMO degree is four.

is one. In a CRAN setting with 2–5 256-antenna BSs, QA
requires 1–2 orders of magnitude lesser power than 1.5 nm
CMOS. With at least two 400 MHz bandwidth and four 200
MHz bandwidth 64-antenna base stations, CRAN achieves a
power advantage with QA over 1.5 nm CMOS.
Cost and Carbon savings. In Fig. 12(c), we see the sum-
mary of OpEx cost savings and carbon emission reductions
associated with the respective power savings, computed by
considering an average $0.143 (USD) electricity price and
0.92 pounds of CO2 equivalent emitted per kWh [93], [94].
The figure reports the savings of QA against 1.5 nm CMOS in
a CRAN setting with 400 MHz bandwidth 256-antenna base
stations in Massive MIMO(4) and Large MIMO scenarios.
To provide a cost and carbon benefit over CMOS hardware,
assuming CMOS CapEx is negligible, future QAs’ CapEx
must be lower than the respective OpEx savings. For instance,
if QA was to be employed in a CRAN setting with five
Large MIMO base stations, a QA CapEx lower than 2.3M,
4.6M, 6.8M, 9.1M, and 11.4M USD will provide cost benefit
over 1.5nm CMOS in two, four, six, eight, and 10 years,
respectively. This would also reduce 6.7, 13.3, 20, 26.6, and
33.3 metric kilotons of carbon emissions, respectively in the
time frame of above years.

VII. QA FEASIBILITY TIMELINE
In this section, we present a projected QA feasibility timeline,
describing year-by-year milestones on the application of QA
to wireless networks, referring to Figs. 13 and 14. For this
analysis, we compute the QA qubit requirement to achieve
equal spectral efficiency to CMOS as described above (§V-A),
and then project the year by which these qubit numbers
become feasible in the QA hardware by extrapolating the
historical QA qubit growth trends into future.
Roadmap for feasibility. The processing of a base station
with 10-MHz bandwidth and 32 antennas requires 33K qubits
in the QA hardware for QA to achieve equal spectral efficiency
to CMOS, and this qubit requirement is projected to become
available by the year 2026 based on current industry trends

50 100 150 200
Bandwidth (in MHz)

103

104

105

106

107

Q
ub

it
R

eq
ui

re
m

en
t

A B C
D E

NA = 32
NA = 64

NA = 128
NA = 256

Figure 13: QA qubit requirement in wireless network scenar-
ios. Compare Points A–E with that of Figs. 11(c) and 11(f).

(Fig. 14). However, leveraging QA for such a system does not
provide power advantage in comparison to both 14 nm and
1.5 nm CMOS devices (see Figs. 11(c), 11(f)).

Roadmap for power dominance. From Figs. 11(c) and 11(f),
we note that Points A–E are the lowest bandwidths at each
antenna count for which QA achieves power advantage over
CMOS. Fig. 13 shows the number of qubits required in the
QA hardware to process these systems (Points A–E) with
equal spectral efficiency to CMOS. The figure shows that to
achieve a power dominance over 14 nm CMOS, at least 537K
qubits (Point ‘A’) are required in the QA hardware, and this
qubit requirement is projected to become available by the
year 2034 (Fig. 14). QA with at least 1.6M qubits benefit in
power over 1.5 nm CMOS, and such a QA is predicted to
become available by the year 2037 (Fig. 14). In summary, our
analyses show that power advantage of QA over CMOS is a
predicted 11–14 years away. Fig. 14 summarizes Fig. 13 in a
feasibility timeline, showing the years by which QA enables
these base station operation scenarios along with associated
power advantage/loss.
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Figure 14: Projected year-by-year timeline of a QA-based radio access network processing. Data points (▲) in the hatched area
(2011–2020) are the historical QA qubit counts. The 2023 data point (⋆) with 7,440 qubits corresponds to a next-generation
QA processor roadmap [53], [95]. The blue filled (dark shade) area is the projected QA qubit count, whose upper/lower
bounds are extrapolations of the best-case (2017–2020) and the worst-case (2020–2023) qubit growths respectively. Annotations
corresponding to further data points (■) show the base station scenarios their respective qubit counts will enable. The figure
shows that if future QA qubit count scales along this best-case trend, starting from the years 2034–2037, QA may be applicable
to practical wireless systems with power/cost benefits over CMOS hardware.

VIII. CONCLUSION
This paper makes the case for the future feasibility of QA
processing-based wireless networks from a cost/power per-
spective. Our extensive analysis of QA technology projects
quantitative targets that future QAs must meet in order
to provide benefits over CMOS in terms of performance,
power, and cost. Our results show that with QA hardware
advancements, a cost/power benefit of QA over CMOS is a
predicted 11–14 years away.

Furthermore, fundamental physical advances in the QA
technology itself, which we do not leverage in the projections
given in this paper, may offer further benefits, advantaging
our projected timelines. Examples of these advances include
faster annealing times (< 40 ns) and/or qubits with longer
coherence lifetimes (such as the qubits in IARPA’s QEO and
DARPA’s QAFS QA chips [96]) that enable coherent quantum
annealing regimes, benefiting future QA spectral efficiency
[61], [97]. While we acknowledge the practical feasibility of
QA processors to be at least tens of years away, this early study
informs NextG QA hardware design and wireless networks.

Limitations of this study. We stress that our analysis
assumes that QA devices will continue to advance according
to the current industry trends, and that any future technological
breakthrough or setback is not accounted for. In such an event,
our projections must be revised accordingly, nevertheless, the
methodology remains the same.
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