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Abstract

This study introduces a phase-field model designed to simulate the interaction and aggregation of multicellular systems
under flow conditions within a bounded spatial domain. The model incorporates a multi-dimensional Lennard-Jones potential
to account for short-range repulsion and adhesive bonding between cells. To solve the governing equations while preserving
energy law, a second-order accurate €Y finite element method is employed. The validity of the model is established through
numerical tests, and experimental data from cell stretch tests is utilized for model calibration and validation. Additionally, the
study investigates the impact of varying adhesion properties in red blood cells. Overall, this work presents a thermodynamically
consistent and computationally efficient framework for simulating cell-cell and cell-wall interactions under flow conditions.
© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

One major type of biological cell-cell interaction is characterized by the direct interactions between cell
membranes. These interactions can be purely mechanical or involve cell adhesion molecules (CAM) exposed on
cell membranes [1,2]. Two major factors that dominate such interactions are: (i) finite size effects that drive short-
range repulsion (pushing) between cells to prevent them from overlapping; and (ii) adhesion (attraction) due to the
formation of adhesive bonds with CAM on adjacent cell membranes [1,2]. Cell-cell interaction is an important
subject for understanding hemodynamics because structural interactions at the cellular level unambiguously appear
in a broad spectrum of blood flow-related problems ranging from red blood cells (RBCs) distribution [3] in the blood
vessel, the growth of blood clot [4], blood cell aggregation [5], sickle cell disease [6], tumor cell dynamics [7] and
diabetes [2]. It is known that the RBCs aggregate to form rouleaux structure due to the adhesion forces between
RBCs [8,9]. Also, the interaction between blood cells and blood vessel wall is a critical initial step in responding
to different diseases, such as pathological inflammation and thrombosis [10-12].
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Over the past decades, a large number of mathematical models are proposed to study cell-cell interaction. In
particular, some of these models are devoted to studying the plasma membranes interaction using vesicles which
largely preserve the plasma membrane lipidome and proteome [13,14]. Within the framework of sharp interface
description in which interfaces separating different components of matter are idealized as hypersurfaces with zero
thickness, there are a number of studies focusing on modeling cell-cell and cell-blood-vessel interactions under
blood flow conditions. Following the seminal work of Peskin [15,16], the immersed boundary method is used to
develop a model for platelet aggregation [17]. Cell-wall interaction model [7] is introduced to simulate the adhesion
and deformation of tumor cells at the vessel wall. Local and non-local models [18] are described to investigate the
invasion and growth of tumor cells. RBC or vesicle aggregation is studied in [8,19-21]. Multi-scale models are
introduced in [22,23] in which dissipative particle dynamics (DPD) is used in [22] to establish a blood cell in
flow model, and a stochastic cellular potts model (CPM) is introduced in [23] for studying blood clot growth. To
account for cell—cell or cell-substrate adhesion, a Lennard-Jones type potential [24-26] is introduced as a one-
dimensional function of the distance between the points on different cell membranes and substrates. The potential
is a combination of a repulsive part and an attractive part which shows repulsion when cells get too close to each
other, and shows attraction when the distance between cells increases. This potential in combination with the DPD
method, is utilized to study cell deformation and doublet suspension [25].

The diffuse interface method, also commonly known as the phase-field approach [27] is another popular method
to model cell—cell interaction and aggregation. The diffuse interface model replaces the sharp interface description
with a thin transition region (diffuse layer) in which microscopic mixing of the macroscopically distinct components
of matter is permitted. The phase-field approach has two main advantages. First, it is easy to implement for tracking
interfaces in problems that evolve large deformation or topological change of the interfaces; second, phase-field
models derived from the energy dissipation law can be made thermodynamically consistent. This makes designing
energy-stable numerical schemes that benefit the long time numerical simulation possible [27-30].

The first goal of this paper is to derive a thermodynamically consistent phase-field model for motion, interaction
and aggregation of cells or vesicles under flow conditions in a closed spatial domain using an energy variational
method. [31-34]. By treating the cell membrane as a diffuse interface, several phase-field vesicles or cells interaction
models have been reported recently. Marth et al. [14] proposed a phase-field model for RBCs and white blood cell
interactions by using a Gaussian potential for short-range repulsion. [35] introduced an adhesion potential based
on the distance to the substrate in the phase-field framework. Gu et al. [36] proposed a potential by using two
independent phase-field functions, one simulating the deformation and adhesion process of the vesicle and the other
simulating the fixed substrate. Later on, an adhesion potential using a phase-field formulation [37] is constructed to
take vesicle—substrate adhesion into account. However, as previously mentioned, cells can exhibit both adhesive and
repulsive behaviors simultaneously. This phenomenon is particularly evident during embryonic development, where
cells must adhere to one another to form tissues and organs, while also repelling neighboring cells to establish proper
boundaries and patterns. This intricate interplay between adhesion and repulsion is crucial for processes such as
tissue morphogenesis, cell sorting, and organ formation. The coexistence of adhesion and repulsion enables cells to
dynamically interact with their environment, regulate cell-cell contacts, and maintain tissue organization throughout
various biological processes. It is important for the model to consistently consider this aspect. In order to achieve
this goal, several studies have proposed models that incorporate both adhesion and repulsion. For instance, [38—40],
have explored the physical and mechanical aspects of cell interactions, considering the simultaneous presence of
adhesion and repulsion forces. These studies provide valuable insights into understanding the complex dynamics
and behaviors exhibited by cells when both adhesive and repulsive mechanisms are at play. While the adhesion
is modeled as a function of the gradient of two phases; the repulsion is modeled as a function of two phases,
respectively. However, the adhesion potential in [36-38] and the repulsion potential in [38,39] are global which
means the forces exist even when two vesicles are far away from each other. Although the model described in [40]
ensured that the effects of all interaction potentials are local, its adhesion term involves high-order derivatives which
limit the utilization of some well-developed numerical schemes such as C finite element schemes.

Motivated by previous works, one novel aspect of the work proposed in this paper is the introduction of a
multi-dimensional Lennard-Jones (LJ) type potential within the framework of the phase-field approach for modeling
the multiple cell—cell, cell-wall interactions. This new multi-dimensional LJ potential does not involve high-order
derivatives, which makes it easier to design a new C 0 finite element scheme in numerical simulation. To the best
of the authors’ knowledge, this is the first time that both the short-range repulsion by cell finite size effects and

2



L. Shen, P. Lin, Z. Xu et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116257

cell—cell, cell-wall adhesion by CAM are taken into consideration consistently in the phase-field framework, and
are implemented using a C° finite element method. All current phase-field models mainly focus on cell adhesion.
Here, our idea of the multi-dimensional LJ type potential enables us to resolve these aforementioned two factors
dominating cell—cell, cell-wall interaction in a consistent and simple manner.

The energy variational method [31,32] ensures that energy dissipation law [41,42] is satisfied. This leads to the
thermodynamical consistency of the model. All the physics that ones are interested in are taken into consideration
through definitions of the energy functional and the dissipation functional, together with the kinematic relations
(assumptions) of the dynamic evolution of model state variables.

Numerically simulating these aforementioned phase-field models is challenging. Finite difference method [43],
finite element method [35,44-46] and spectral methods [37,47] are proposed with different applications. Despite
the fact that most phase-field models follow the energy dissipation law at the continuous level, there have been
few works on developing energy-stable numerical schemes for these vesicle or cell models. A decoupled energy-
stable scheme [48] is proposed for an Allen Cahn—Navier Stokes (AC-NS) model by introducing an intermediate
velocity. An unconditionally energy-stable numerical scheme [44] is introduced for a Cahn Hilliard—Navier Stokes
(CH-NS) system. However, there is still room for improving these schemes. E.g., the local inextensibility of the
cell membrane is not considered. The discrete energy of numerical solutions computed by these schemes decays in
a manner different from the energy dissipation law at the continuous level.

The second goal of this paper is to propose an energy-law-preserving finite element scheme for solving model
governing equations, the CH-NS system with the AC general Navier boundary condition (GNBC) following the
idea introduced by Shen et al. [32]. There are a few typical energy-law-preserving methods such as midpoint type
of schemes (See, e.g. [31,49]), IEQ (See e.g. [50,51]) and SAV See e.g. [50,52]. We shall use a midpoint type of
scheme in this paper following [32]. The proposed scheme exactly preserves a discrete counterpart of the energy
dissipation property of the continuum model by discretizing the nonlinear term in a specific way. We apply our
model to simulate multiple cells and vesicles interacting with each other and the substrate under flow conditions
in silico, such as RBCs passing a branched blood vessel. We also note that although this scheme is designed for
solving the model equations, it can be easily adapted to other CH-NS systems.

The rest of the paper is organized as follows. In Section 2, the thermodynamically consistent model considering
cell-cell and cell-wall interaction is derived, and the energy dissipation law of the model is given. In Section 3,
an energy-law-preserving scheme is proposed to solve the obtained system. Section 4 is used to present the results
of numerical simulations and compare them with the data collected in laboratory experiments. The conclusion is
drawn in Section 5.

2. Model derivation

Derivation of the model in this paper is based on the energy dissipation law which holds ubiquitously in physical
and biophysical systems involving irreversible processes [53—57]. This law states that for an isothermal and closed
system the rate of change of the energy of the system is equal to the dissipation of the energy as follows:

d total
o E=_—-A<0, (1)
where E©% is the total energy of the system, which is the sum of the kinetic energy K and the Helmholtz free
energy J of the system. A is the rate of energy dissipation, which in fact is the entropy production. Eq. (1) can be
easily derived via the combination of the First and Second Laws of Thermodynamics.

The choices of the total energy functional and the dissipation functional, together with the kinematic (transport)
assumptions of the state variables employed in the system, determine all the physical and mechanical considerations
of the problem [58].

2.1. Multi-cell interaction system

Energy variational method [31] is adopted for model derivation to ensure the thermodynamics consistency (1)
of the derived model. We refer the readers to [31,32,59] for detailed discussions of this method.

Fig. 1 is a schematic illustration showing the setup of the model. Let the problem domain be {2, and its wall
boundary be df2,. For a multi-cellular flow system, the dynamic evolution of the ith cell (or vesicle) under flow
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Fig. 1. A schematic showing the model setup. Phase-field functions are used to represent the domain wall boundary and the cell interface,
respectively. Values of the phase-field functions are indicated by the color bar.

conditions within {2 is tracked by the phase-field function ¢;(x, r). Notice that ¢;(x,t) € [—1, 1] with ¢; = 1 for
intracellular space and ¢; = —1 for extracellular space. The membrane of the cell is identified by ¢;(x, ) = 0. We
also introduce a phase-field function ¢,,(x) € [—1, 1] to represent the wall boundary of the domain as shown in
Fig. 1. This is for considering cell-wall interaction described below.

Remark 2.1. In the case of Fig. 1, the wall effect is considered as a force inside the domain instead of a condition
on the boundary. In this particular simulation, the cell is not supposed to contact the wall when moving in the
domain which is consistent with the physical fact that the cell would not merge together with the wall. One thing
that needs to be emphasized is that adding such an extra term does not conflict with the GNBC. So in the following
derivation of the governing equation, we still keep GNBC in the boundary condition.

We assume that the dynamical evolution of the phase-field function ¢; is a generalized gradient flow, see Eq. (2a).
We also utilize the laws of conservation for describing the dynamics of the linear momentum and the total mass of
the system, see Eqgs. (2b)—(2c). The cell membrane (interface) is assumed to be inextensible. The equation for local
inextensibility of the interface is given by Eq. (2d).

99

Ju
P (5 + (u- V)u) =V.0,+Fg4 0, 6y > o)
A, (2¢)
(P; : Vu)s; = 0. o

Here p is the averaged density of the system. In this work, p is assumed to be a constant. u is the macroscopic
velocity of the system, and o, is the system’s visco-elastic stress yet to be specified.

The unidentified flux q4, in Eq. (2a) will be determined by postulating that ¢; is driven by gradients in the
chemical potential. This leads to the Cahn—Hilliard equation which ensures the conservation of the volume of a
cell during its dynamic evolution. Fg, 4, 4, in Eq. (2b) is the body force induced by cell-fluid interaction and is
yet to be specified as well.

It has been reported that the cell membrane can be stretched by only 2%—4% before rupturing [60,61]. This
membrane property is referred to as the local inextensibility of the membrane [32,62]. Eq. (2d) is the diffuse interface

1

approximation of the local inextensibility of the membrane of the ith cell . §; = §y2|V¢i|2 is the surface delta

function with the diffuse interface thickness y. P; is the projection operator, and is defined to be (I —n; ,, @ n; ;).

n, = % is the unit outward normal vector of the interface when it is defined as an implicit surface by the

phase-field 'function. This equation is equivalent to

P;:Va=0

in the case of sharp interface description of the model problem. In the phase-field framework, P; : Vu = 0 is

extended to the whole domain by multiplying the scalar function §; [31] for the convenience of computation.
Following the idea introduced in [32,62], here we add a relaxation term EyZV . (c/)iZV)»i) in Eq. (2d) where £ is a

parameter independent of y, and A; is a function that measures the interface “pressure” induced by the inextensibility
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of the membrane of the ith cell. Thus Eq. (2d) is revised to be:
(P; - VW, +§y*V - (¢ Vi) = 0 3)

Egs. (2a)—(2c) and (3) together constitute the governing equations of the model.
The wall boundary conditions on the top and bottom of the domain, denoted by 92, are given as follows:

u-n=0,
Tk:f‘[k s
St u-Vrgi=Jr “
V)Ll--n=0,
qg, - n=0.

On the boundary 9f2,, an Allen—Cahn (4); type boundary condition is employed for ¢;. Vo = V —n(n - V)
is the surface gradient operator, and u;, = u — (u - n)n is the fluid slip velocity with respect to the wall where
T;,i = 1,2 are the tangential directions of the wall surface. n is the unit outward normal vector of the wall. f7,
is the slip velocity of the fluid on the wall along the z; direction. Jr represents the Allen—Cahn type of relaxation
on the wall by using the phase-field method and is yet to be identified. We note that these boundary conditions are
also used in [31,63].

The total energy functional E;,,; of the multi-cellular system is assumed to be the sum of the kinetic energy
Ein in the macroscale, elastic energy E..; of the cell membranes, cell-cell interaction energy E;,, and cell-wall
adhesion energy E,, in the microscale. Therefore

Etozal = Ekin + Ecell + Eint + Ew
—— —_—
Macroscale Microscale

=/< p|u|>dx+Z/

+ Hdx + /w,-d. 5
/Q x;ﬂf(cb)s (5)

N Ms (8@ (1)) =S(¢i (r=0))>
S(¢i(1=0))
globally conserving surface areas of the cells. Kp is the bendlng modulus of the membrane, and y is the thickness

of the diffuse interface representation of the cell membrane. The membrane elastic energy density is given by

XN: ¢ (S(gi(1)) — S(¢hi(t = 0)))°
o S(¢i(t = 0))

The E..; consists of an elastic energy Zl , f Py for

‘ dx and a penalty ) ;_,

G
fl) = 50 = = —y2A¢; + (¢F — i , (©6)
with
2vi2 1— 2y2
Gl = V1V LU= -

2 4

The function S(¢;) = |, o %dx is used to measure the surface area of the cell [29,31,62]. M; is the penalty
constant.

The term H denotes the interaction energy density induced by the interaction of cells. There are many different
previous works to define interaction potential H. See [37,46,64].

Here we begin with considering mechanical interaction between two cells identified by phase-field functions ¢;
and ¢,, respectively. Recall that ¢; = 1 represents the intracellular space, and ¢; = —1 represents the extracellular
space of the ith cell, respectively. Whether there exists mechanical interaction between the two cells can be
determined by measuring the overlap (i.e., occupying the same physical space) of the intracellular spaces of these
two cells. To account for adhesion and repulsion between ¢; and ¢,, we propose the following multi-dimensional
Lennard-Jones type interaction energy density

Hiy = Q1(¢1 + D2 + 1)* — 027 — (g5 — 1)* . (8)

The first term in Eq. (8) accounts for the repulsion and achieves the maximum when two cells overlap at a spatial
location x, i.e., ¢1(x) = ¢,(x) = 1. The second term represents the adhesion, and is nonzero only when the diffuse
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Fig. 2. Interaction energy with respect to ¢; and ¢, at a space point. The energy status of different overlapping condition of the cell phase
at the point are pointed out as well. (Q; = 50, Q> = 400.).

layers representing the membranes of the two cells overlap, i.e., at the location of overlap x, —1 < ¢;(x) < 1 and
—1 < ¢a(x) < 1. This is used to mimic the adhesive interaction mediated by forming adhesive bonds with CAM
on adjacent cell membranes, or via forming binding bonds between CAM and cell-extracellular matrix. In the real
world, the formation and dissociation of the bonds are stochastic in nature and depend on the concentrations of
agonists [2,65]. Here we let the Q; and Q; be constants for simplicity. We note that the formation and dissociation
of binding bonds occur on an order of micro-second time scale. And our model concerns the dynamics of cells on
a second order time scale. Thus it is reasonable to neglect the stochastic effects of CAM binding.

Fig. 2 plots the energy landscape of the interaction potential at a spatial point due to the presence of the phases
¢1 and ¢,. The energy is equal to 0 when these two phases do not touch or overlap i.e., ¢;(X) = ¢r(x) = —1.
When they start to overlap, the energy first decreases, which means that the attraction force between these two
phases dominates. Then the energy increases, which indicates the repulsive force dominates. This prevents the two
phases from occupying the same physical space. So the interacting potential energy behaves conceptually similar
to a Lennard-Jones potential. We remark that in [36] a potential of the form (¢>f — 1)2(¢§ — 1) is used, where only
attractive force is included.

Generalization of H), for the multiple cell interactions leads to the following interaction energy density definition:

N N
H=Y"Y"H; =Y >"[0i1¢ + D*¢; + D’ — 02(¢? — D¢} — ] ©)
i=1 i<j i=1 i<j
Notice that Eq. (9) is consistent with [40] when the system reaches thermodynamic equilibrium. This also proves
the feasibility of our model. Following the above interaction potential definition, the cell-wall interaction energy
density is defined by setting ¢, = ¢,, in Eq. (8),

Fu(@) = Qu, (¢ + D (¢ + 1)* = Qu, (@7 — DX (97 — 1), (10)

where Q,,, is repulsive energy density coefficient and Q,,, is adhesion energy density coefficient. Notice that the
cell-wall energy E,, is defined on the bulk region of the domain, and is not on the boundary. f,, is non-zero only
when the two phases ¢; and ¢,, overlap. This can be interpreted as that the attraction force is present only when
the cell makes contact with (or is close enough to) the wall, and the binding bond is formed.

With the total energy of the system given, the chemical potential p; for each phase ¢; is calculated as follows

_ S(Ecell + Eint + Ew)

Ki = 50;
K Mv S i) S ) aH 8 w (@i
= %g(¢i)+ : 260) — 2910) fol$i)

gy 2 @) 11
Séo 9 50 T e, (b

where g(¢;) = —y>Af(#) + Gd7 — D f ().
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The dissipation functional of the system consists of the dissipation introduced by fluid viscosity, friction near
the wall, and interfacial mixing due to the diffuse interface representation [32]:

N
1
A :/ 20D, [2dx + :/ — \go Pdx + | BoluglPds
Q ! —Jo My ¢ P P

+ Z( / el s + /| 5|y¢,~wi|2ds) , (12)

where D, = w, n is the viscosity of the fluid, B, is the fluid—wall friction coefficient, My and « are the
mobility of the phases on the bulk and the boundary of the domain. We note that in general, the viscosity 1 could
be a function of all phase-field phases n = n(¢w, ¢1, - -, Pn)-

The specific expressions of the flux and stress functions in the kinematic Egs. (2a)—(2c¢), (3) and (4) are obtained
by taking the time derivative of the total energy functional and comparing with the defined dissipation functional.
The time derivative of the total energy goes:

dEmlul_dE —I—dE —I—dE
dt _dl kin dt cell dt w

=L+L+15. 13)

Taking the time derivative of Ey;,, together with the conservation law of momentum (2b), incompressibility of the
fluid (2¢) and local inextensibility of the membrane (3) yields

2
I|=— pluldx
dt 2
/1||2d+/dud+/V()||2d
= —— | X — - uax u)——dax
29 o P

=/(V-an)~udx+f F~udx+Z/ A6 P; 1 Vudx
2 2 /e
N
+ Z/ EyzkiV-(¢i2VAi)dx—/ pl : Vudx
i=1 7 2
N
—/((o,,+p1):Vu)dx+/ F-udx—Z/ V- (L:8;P;) - udx
2 X

N
- 2/ £y2p2 (Vi) dx +/ (o, + ZA 8P -m)-udS , (14)
i=1 7% i=1
where the slip boundary condition is used. Here the pressure p is a Lagrangian multiplier and is introduced to
ensure the incompressibility of the fluid.
Taking the time derivative of E,,; together with the transport assumption of each field-phase phase representing
cells (2a) yields

d M, (S() — S@i0)
Z s +_/Hd +Zdr 2 S(¢zo)

N
fi bi @i 8H8¢z
Z?( A( >+(3¢—1) )d +f aqz -, dx

i=1

s (S(i) = S(¢i0))°
S(di.0)

+

d
— dt

1

_/i
v
N
AB

0H M, S(¢i) — S(¢io) 09 .
—V2Afi +(3 Dfi+— TP l>
v Afi+ (3¢ - )f+8¢,+ ” S@ro) f(@

M=

3

S~
>

i=1
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-/ A—Biﬁiw,mdwf b 5, 1 20,
a2, ¥ T ot 0w Y o ot
N
S() — S(pio) . . 9
+ M, 2O = 2i0) o 00y
2 222 TR T

o / kg , 0
i——dx + — fi—=@upi)ds + M
/M t 92 Vfaf ¢ 92 S(¢i0)

N ks 0,
= Z (—/ q¢; - Viidx —f uiw - Veidx +/ 20, fi——ds
, ; )0 o1

Y
S(¢i) — Swiﬁ)yé),,d),-%ds) ’

S(¢i) — Sw"ﬁ)yé),,@%ds)

+ M

15
92 S(¢i0) (1>

where the Allan-Cahn boundary condition (4); for each phase is used.

Computing %Ew yields

S 0fu(9) 0
I3 =Z(/m i, st> : (16)

By combining Egs. (14), (15) and (16), we have:

d

N N
EEmmz = —/ (o, +pD): Vuydx + / (F— Zﬂivcbi - ZV < (A6 Py)) - udx
2 2 i=1 i=1

N N
-> / G, - Viuidx + Y / £y’ (Vr) dx (17)
i=1 ¢ iz /2
N N N
[ ot o an Py = S LV wds + 3 [ Lidds
392 i=1 i=I i=1 5%

.~ Kp S(é:) — S(¢i0)
h L[ = _an i Ms—7 8n i
where fi + S@ro) Y 0,0

0
The energy dissipation law (1) is employed to close the system. In more details, we equal Eq. (17) with the
negative of the energy dissipation functional defined in Eq. (12) to ensure the energy dissipation law (1) is satisfied.
This gives rise to the following definitions of the flux and stress functions in the kinematic relations (2a)—(2c), (3)
and (4).

o,=2nD, —pl, in 2,

Gp; = My; Vi in 2,

F=Y" (Ve + V- (18P . in 2, (18)
Jr, = —K;ill:,' , on 3{2, ,

g, =B (= (o) + Y0 M&P) T+ Y Lide,d) . j=1.2, ond, .

The viscosity, length, velocity, time, bulk, and boundary chemical potentials in the equations are scaled by
their corresponding characteristic values ng, L, U, %, % and noU, respectively. Write Qy,, Qu,, Q1, Q2 into
004w, > Qoquw,-Qoq1, Qoq2, where Qg is the character energy density. To this end, the proposed diffuse interface
model for describing the cell-wall, cell-cell interaction, and aggregation in dimensionless form is composed of the
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following equations:
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Re(® + (- V)W) + VP =V -2nD)+ Y, iV + 3, V- (A Pi) ., in 2,
V-u=0, in (2,
a¢’+u V¢ = —MAu; , in 2,
. —KBg(¢l)+/\/l <s<¢,s)(¢s(<)<§>, 0 £ +0‘a¢ +a6fw(¢, 7 in 02, (19)
fi=—eAgi + Y20 gen) = —Aﬁ + 5G¢7 - in 2,
8¢;(Pi : Vu) +§82V (p?VA) = in {2,
with the boundary conditions
ki + Lg) =0, on 32, ,
L@ = kpdn f (@) + €M, 52005, on 942, .
— Uy =1 2nDy + Y A8 Py on — Y L)y, i = 1,2, on df2, , (20)
fi=0, on df2, ,
A =0,0,u; =0, on 42, ,
1
where S(¢;) = f §|v¢,-|2 + Zapf — 1)’dx and §, = 1€*|V;|*.
Q
The dimensionless constants appeared in Egs. (19)—(20) are given by € %, Re = pOnZL = %,
_ _k _ _ _ 9 _ M
ke = 20 k= noL’l B 9= g0 Ms = 50
3. Energy-law-preserving scheme
We define the Sobolev spaces as follows [31,66]
Wl 3 (Wl 3)2
Wit =iy
}Vs = (W
1,3
2(‘9)_{ _()"17)\'27‘ )\'N)T}
W3 (2) = {u= (uy,u,)" € W3u-n=0, onan,} .
W) = { = (1. o ) €W —1<¢ <1,i=12.... N, in Q} ,
W%]’;(-Q) { (MI,M27--~/LN)TEW}I\;3|3’1Mi=0’i:1’2""’N’ on a.Qw} s
W}f(m:{ = (i fooee s ) €W fi=0,i=1,2,....N, on a(zw} ,
3
Wy = W) x W) x W (2) x W2 (2) x Wh3(02) x W)
| 1
and let || - || = (fQ 2dx)2 and || - |l = (fmw | - |2ds)z denote the L? norm defined in the domain and on the

domain boundary respectively.

Theorem 3.1. If (&, F, U, A, P, u) € W, are smooth solutions of the above system (19)—(20), the following

energy law holds:

d

d
—gga:_gin gce gw
gy Sroral dt(k + Ecert + Ew)

1 ; _
= = (—ZIIn”anllz — MY IVIP =& llegi Vall> = > Idills, — Il “Zufuli) ,
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W2
Pdx +MZ(5(¢, — S(¢i0)) n

2ReS(¢i0)

where gtoml - gkln + gcell + gw: gkm = / |u| dx gcell - 2R

& de and &E,=% Zl/ fw(di)dx.
Re 0

Proof. Multiplying the first equation in Eq. (19) with u and integration by parts yield

1

d
ES""" = i_/ﬁznu)ﬂzdx+/39w(an.n).u,ds+zi:/!2uiv¢i - udx
_Zf AiaeiP,-:Vudeer (i8¢, P; -m) - u,ds}
i 2 i 982
1
= = {_fnzn|1),,|2dx—2i:fgx,-aéi73,~:Vudx—lslf lu,|%ds

2y

+Z /d ., L(¢,»)af¢-utds+z /Q mwi-udx} : (22)

where the slip boundary condition in Eq. (20) is applied.
Taking the inner product of the third equation in Eq. (19) with ﬁ and summing up with respect to i result in

Z/ %Mzdx—i- _Z/ u- V¢1l"l’zdx = —_MZ/ |V/'Lt de s (23)

where 9, u; = 0 is considered here.

Multiplying the fourth equation in Eq. (19) with L% and integration by parts give rise to

3¢,
Z f! 2 (24)

:é 4 { g g’%d s PR A ALl R Q%%d"}
= ;—‘sz f,-g(—A¢i+€—2<¢?—¢i>)dx—%Z/ma 522 as

G (M) S (Masag ) [, e s
+%Zﬂzaf§;?’)aaf’ w2 g

_d |fil? (S(@i) — S(@i0)
—E<Z/QW“>+ME<ZT<¢)> rear 2 J, s
o L) ¢
+R—e£ Hdx Z/ T

4 L) 36
= 4 Een+ E) /0 s

where the definitions of f(¢), g(¢) and the boundary conditions of ¢ and f are utilized.
Multiplying the last equations w1th - and integration by parts and sum up by i leads to

_ 5. P - _ 2 o
ReZ/Q(k,&,-P,).Vudx ReXi:/Qgrs PA(Va)dx =0 . 05)
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Finally, the energy dissipation law (21) is obtained by combining Egs. (22), (23), (24) and (25) considering the
boundary conditions in (20). O

In the rest of this section, we propose an energy-law-preserving, second-order accurate in both space and time

scheme for solving the model system (19)—(20).

3.1. Time-discrete primitive method

The mid-point method is utilized for the temporal discretization of Egs. (19)—(20). Let Ar denote the time step
size, )"t and ()" denote the values of the variables at times (n + 1)A¢ and nAt, respectively. The semi-discrete
in time scheme to solve Egs. (19)—(20) is as follows:

"+17u +(un+2 V)un+2 + vpn+2 _ lv (n (Vun+2 +(vun+2)T))
TR AL AL SR (x?“??fsﬂ) ,

V.ou'tr = 0,

Prtl_gn el n+d nti

L@t Vg T = —MA

nt (@)=, (26)
it = kng@ o) + M= @8 )

H' gy Fo@ )~ fu @)
+a¢n+l ¢n + ¢n+1 ¢n 4

n+l n+ n-+ n+

fi = —eAg, 2+§<(¢,» 12yt
1
8Py VUt £ ESV - (@A ) =0
with boundary conditions on 92, ,

onad L
K¢,‘+2 = _Li+2 s

n 1 n 1 n
L =KBanf,. T M - M g0

n+l
P =1 (' (V' +<Y“”+2>T>+Z,- A28 P) 27)
L e, =12,

ntl
=0,
3, x”*z 0,

with (-)’”% = M and P! = I —n, ® n, with n, ;z” and
n+i
F@H ¢ = —eAd] 7 + L@+ @ — D@ + ¢
n n n+l n n n n n+l
g<¢,-“,¢,->=<‘4ﬁ~ TS (@Y @ e e 1) ) ’
ntt ntd
H' =qi(¢f + 1Y, [(«»,- 2 +1>2} — @) =1, [((qu 2)2—1)2] : (28)
ntd ntd

HY = qu¢l + 1Y [(«pj*z + 1)2} — (@Y -1 Y [((qb,-“)z - 1)1 ,
Fo@") = qu, (@] + DX dw + 1? — qu, (@) — D((Pw)* — 1) .
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Thus we have

H''' — g

1 1

oIt —gr
1

ntd ntd
= T g Qi@ 1) [(d»,“ + 1)2] — (@] =17 ) [((@*2)2 - 1)1
i i J#I Ve

n+l n+l
— g 1Y [(qs,-“ + 1)2] +a(@)P -1 [(qb,-“)z - 1]
J#i J#i

=q@ e+ [(qu*é + 1)2]
J#i

— @] + ¢ + @ =D ) [((q&f“)z - 1?} (29)
J#

Similarly,

n+ly n
Pl 3P0 — i@ 1+ 2000+ 17

— Qup (@7 AP + () — 2)(¢2 — 1)? (30)

Su@ = fu (@ and H@™H-HGN

pYERm T for convenience in later derivation.
i i i i

We keep using the notations

Remark 3.1. Note that the discrete scheme solving the model system is a fully coupled nonlinear algorithm.
This may increase the cost of numerical simulation. Nevertheless, the energy-law-preserving scheme has to involve
solving a nonlinear system to the best of the authors’ efforts. Recent papers have introduced a number of linear

decoupled schemes like IEQ and SAV methods. These methods could be considered in further studies.

Theorem 3.2. If (¢7, u!,u", P") are smooth solutions of the above system (26)—(27), the following energy law is
satisfied:

N N
Envtar = Eima = G+ D |t + Eniet + £ ) = €+ D [ B, + Elw + €0 ]

N N

At +1 +1 +1

= R—e(—2||(n")‘/2D’$ E= MY IV IR —E Y N edf Va1
i i

N
1 ntd i onth
==l L@ I, = I lei) , (31)

_ N . 1 2 _kplf? (S@H—S(;.0))
where &, = &y + 2 [52211,. + &l +5$,] with &gy = 0N Ecp = Shee + Ms ks + wH
and wazﬁ fi’fwdx.
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Proof. Multiplying the first equation in system (26) by Atz gives

/ l((u"“)2 — (u")?)dx +/ A2 - (2V) - w2 )dx
2 2 e}

A P”+%V " idx
" Re
At
= Vun+2 i (Vu"+2 + (Vu"+2)T)dx + — Z/ V¢I(l+1u?+ldx
" Re

nt nt
Z/ hibe, P! Vu”+2dx+—2/ @GPy Ul ds

982 w

At

o wrtr (vt + (Ve )T - mds
Re Jy0,

n+l n

Multlplylng the fourth equation in system (26) by ;¢i and integration by parts lead to

— Z / i TPt — pdx
e ; 7]
$i0)* = (S(g}) = Si0)?

_ ks L g2 M; (S@"H =S,
= ReXi: /Q S (A = (e + T

i n+l _ pgn i n+ly n
eZ /Q (H'™' — H'dx + Rez /Q ul@ ) — ful@)dx

Z/ 8 fn+2(¢n+1 ¢n)ds

2y

S ") —Sio
Re Z /BQ

Multiplying the third equation in system (26) by
1 mEY ol At f ntd il nt
- ; 4 — H d — . 2 n+2 .V : 2
Re E /Q wi (@ ¢i)dx + o~ E,. M (u )9;

A .
=_M t /(v QAT

n+2
L0 g g — gids

1()
n+=

2 vields

Multiplying the last equation in system (26) by

t n+l 1 t
= PP Vuttad ——E/ (o}
e 2 /Q(, P Vutrdy — : L@

wf*z dx =0 .

! and integration by parts then sum by i give

(32)

(33)

(34)

(35)

The discretized energy dissipation law (31) is obtained by combining Egs. (32)—(35) and organizing the terms

according to the boundary conditions L(¢;) as shown in (27). O

The spatial discretization using C° finite element is straight forward. Let (2 be the domain of interest with a
Lipschitz-continuous boundary 32. Let W," C W, be a finite element space with respect to the triangulation of

the domain (2. The fully discrete scheme of the system is to find

({¢ }n+l {U}n+1 {th}n-‘v-l7 {Ah}n+l, {Ph}n-H, {uh}n-H) e Wh,
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such that for any (Y1, -, Ny Xis -« s XN> Sl s N> Ol s Onns qns Vi) € W1, the following
scheme holds.

n+1_ g n n
fo <“h L @ vy Lvp +2)-vhdx

o OV (VU ¢ Vd
FX o el VO v = [ e 722 "Sine s Vidx
+fan 7o 01 [(Vu, %+(V +2)T)+Z )» “Plbie) - vadx

Jo (V- uh 7)Clhdx =0,
Jo ”i byl g g adx = — [, MV IV d |

Jomin x, wdx = [, (xB L@ + @)+ ol o, — l)f"+2

n+%
(S@; j 2)=S@in0) 1,/ il

v, SO SO 1 (g (g, — 2 +¢,~’fh))> Yindx
+) SO =S @ino) < ntk
n+x in )T i,h,0 n
+ fQ(Kvii.h 2 +M6615(¢—h0) ¢ 2) . in,hdx

Fw @Y= fu @) Fomn)
+fgaw pdx + [ +1—¢‘h Xindx

n+7
n+t (5@; , 2)=S@ino) ., o+l
- faﬂw (kB anfi,h T+ M;e . S@in) 8,,(15”1 : )Xi,hds s

Jo £ 2 tn = [0 eVaItT Vein+ [ M@ — Dyt gndx
_farz 53n¢?;r%§ihdx ,

S 8Pl VUL Oypddx — [ E(@, VALY - V Oy pdx

+ fy0, sez«¢ 20 ), dx =0 .

Newton’s iteration method is applied to solve the above nonlinear system. The unique solvability of 3.2 can be
proved by following the approach introduced in [32].

4. Numerical results

In this section, we first calibrate the model parameters and validate the model by comparing with the experimental
data on RBC deformation under different stretching forces. Then cell-wall interaction simulations are used to study
the effects of the cell-wall adhesion force and the local insensibility of cell membrane. The energy preservation of
the numerical scheme is also illustrated.

Rest of this section is devoted to studying the cell aggregation and RBC motion when passing bifurcated blood
vessel.

4.1. Convergence study

The temporal convergence rate of the scheme is tested here. The setting of this convergence study is shown in
Fig. 3. We place two cells next to each other initially. Due to the interaction potential H, motion and deformation
of the cells occur, and the system gradually evolves to the steady state in which the two cells no longer move and
deform.

The parameter values used for this simulation are chosen as follows: Re = 2 X 105, M=5,kg=2x 1072,
e=4x10"2, M; =0, o = 50, q1 = 2, g = 1. The non-slip boundary condition is used for convenience. We take
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02 04 06 08 1 12 14 Steady state
Initial state

Fig. 3. The initial and steady states of the temporal convergence test. Two cells are placed side by side with each other initially. As time
evolves, these two cells adhere to form an aggregate, and show deformation at the steady state.

Table 1

L? norm of the error and convergence rate for velocity u = (uy, uy), phase-field function ¢, at time ¢ = 3.24 x 10~* with both intercellular
and extracellular fluid viscosities being 1.

Time step Error(u,) Convergence Error(uy) Convergence Error(¢) Convergence
Ar (x1079) rate(uy) rate(uy) rate(¢)
10.125 5.81e—4 5.82e—4 1.75e-3
6.75 2.68e—4 1.90 2.68e—4 1.90 8.33e—4 1.83
4.5 1.16e—4 2.07 1.16e—4 2.07 3.76e—4 1.97
3 3.93e—-5 2.67 3.93e—5 2.68 1.33e—4 2.58
25000 Energy decay » o o Dissipation
100
24000
90 i
80 &
23000 B
% bk
5 22000 o 50 H
5 250 ft
21000 Z a0 it
30 | {1
20000 20 I,‘ll'.
10 ¥ A
19000 0 o R S S SRR
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Time Time

Fig. 4. Energy dissipation law. Left: The evolution of discrete energy. Right: Scheme energy-law-preserving. Blue solid line: the energy
change between each time step 8[”;(}, — &' ,1> Red dots: the dissipation RHS of Eq. (31) in each time step. The curves fit each other very
well, which means that the energy-law-preserving law holds well. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the solution computed using At =2 x 1075 as the reference solution. The convergence result is shown in Table 1.
Clearly, the discrete scheme is second-order accurate in time.

In Fig. 4 , the results demonstrate the energy-law-preserving property of the scheme. The left panel provides
evidence of energy decay over time. In the right panel, the blue solid line represents the energy change between
each time step 5,';’:;[ — &1 1> While the red dots correspond to the discrete dissipation (RHS of Eq. (31)). The plot
confirms that the change of the discrete energy agrees with the energy law in Eq. (31), indicating that the proposed
scheme is energy-law-preserving.

Remark 4.1. In this case, we set the coefficient M; to 0 in order to eliminate the possible effect on the convergence
order from the M, related global term. In addition, this term is added for the purpose of keeping the total surface
area constant. In the rest of the paper M is set to a nonzero value to preserve the surface area of the cell.
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Axial and transverse diameter in simulation
@  Experimental data

Diameter(x:m)

1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Streching Force (pN)

Fig. 5. Nonlinear elastic deformation of red blood cells. The curve represents the relationship between diameter and stretching force by
simulation. The diamonds on the curve represent the experimental data. In the experimental schematic diagram, the central phase represents
the cell, and the surrounding regions on both sides represent the optical tweezers. The force applied to the membrane remains constant while
the tweezers move. Equilibrium is reached when the membrane no longer extends under a specific stretching force. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Remark 4.2. Here we only present the results of the temporal convergence test. The spatial convergence rate is
also the second order, which is the same as that in [32]. The same C° finite element discretization is used in both
this paper and [32].

4.2. Benchmark: Red blood cell deformation under stretching force

Laboratory experiments have tested the non-linear elasticity and deformation of RBC [67] in which optical
tweezers are used to provide stretching force to the cells. We set up a numerical simulation mimicking RBC
deformation in the experiment. Here we take the top view of the cell, i.e., the circle shape, for 2D simulation.
See the inset of Fig. 5. In order to model the interaction between two optical tweezers and the RBC, ¢, in Eq. (9)
is replaced by new phases ¢, , ¢:w, to represent the two optical tweezers, respectively. The interaction energy thus
becomes

Hyy, = Quut($1 + 1@y + 1) — Quuo(@f — (@, — 17, i=1,2. (36)

The force of the optical tweezers applied on the RBC is calculated by the following equation:
0 Hyy,
F=[ —“V¢dx . (37)
o 09

Values of other parameters used here are as follows: Re =2x 1074, M =0.25,k3 =2x 1073,k =2x 10712, [, =
5% 1073, M, =2.

The curves of axial and transverse diameter versus stretching forces are shown in Fig. 5 together with the
experimental data (diamonds with bars) from [67]. The results show that our model fits the experimental data
very well.
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Fig. 6. The initial condition for the test case of cell-wall attraction.
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Fig. 7. The top three pictures show the deformation of a cell with local inextensibility of its membrane; while the bottom three pictures
show the deformation of a cell without the membrane local inextensibility at different times, respectively.

4.3. Cell-wall attraction

Cell-wall interaction under blood flow conditions plays important roles during blood clotting [12] and cancer cell
invasion [18]. Simulation results presented in this section are used to investigate the effects of cell membrane local
inextensibility and adhesion force on the cell-wall interaction. We first consider the effect of cell membrane local
inextensibility using a 2D setting that a round cell is initially placed at a location with a point-wise contact with the
wall boundary as shown in Fig. 6. The parameter values of this simulation are listed as follows: Re = 2x 10™*, M =
5x 107k =2%x102,e=2x 1073, M, =10%, k=4 x 107", [, =5 x 107%, a = 1000, g, = 2, qu, = 1.

Because of the cell-wall adhesion, the cell gradually develops a line that contacts with the wall. Snapshots of the
cells modeled with and without local inextensibility of their membranes at different times are shown in Fig. 7. We
can clearly see that these two cells exhibit different dynamics in terms of changes in their shapes during cell-wall
adhesion. As shown in Fig. 8, the local inextensibility constraint impedes the deformation of the cell. For the cell
modeled without the local inextensibility constraint, the cell membrane attached to the wall is allowed to be stretched
(red color in Fig. 8) as well as compressed (blue color in Fig. 8) to achieve the equilibrium faster. In contrast, the
membrane of the cell modeled without local inextensibility displays almost no extensile or contractile phenomenon
during the adhesion, which is consistent with experimental findings that lipid membrane is almost inextensible.
Fig. 9 shows that in both cases, the numerically computed energy of the two systems monotonously decays to the
same value. It is also worth noting that the numerical energy of the system in which the cell is modeled without
local inextensibility decays faster initially.

The effect of the strength of the adhesion force on the equilibrium profiles of the cells is illustrated in Fig. 10.
As expected, when the strength increases from 400 to 2500, the length of the cell-wall contact increases.

Competition between cell-wall adhesion and flow shear is studied in Fig. 11. Many important subjects of study
in biology involve this competition. E.g., free flowing platelets can adhere to inner surface of blood vessels when
endothelial cell (EC) is altered or extracellular matrix substrates are exposed. This is a critical initial step in
hemostasis and thrombosis. Recruitment of free flowing leukocytes to sites of inflammation is a key step in the
body’s innate immune response. This process is initiated by selectin-mediated leukocytes tethering and rolling
along the EC surface, followed by integrin-dependent firm adhesion, prior to leukocytes extravasation into the tissue
space [68]. Here we simulate two cells interacting with blood vessel wall under the shear flow condition. One cell
is with strong adhesion force, and the other is with weak adhesion force with the vessel wall. Our simulations show

17



L. Shen, P. Lin, Z. Xu et al. Computer Methods in Applied Mechanics and Engineering 415 (2023) 116257

o o o
08 09 1 14 12 08 09 1 11 12 08 09 1 11 12
=0.08 t=0.2 =2

Fig. 8. The top pictures show the values of surface divergence P; : Vu for the cell with membrane local inextensibility. The bottom pictures
show the surface divergence of the cell without membrane local inextensibility.
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Fig. 9. Total energy of the two system versus time.
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Fig. 10. Equilibrium of the cells at different strengths of the adhesion force. (Left: @ = 400; Middle: o = 1000; Right: o = 2500.).

that the cell with strong adhesion force is captured by the wall; while the cell with weak adhesion force is washed
away by the shear flow. These are consistent with experimental observations. Nevertheless, note that our model is
deterministic and uses a coarse-grained approach for modeling adhesion. This limits the capability of the model for
studying stochastic effects of those selectin- or integrin-mediated adhesion.

4.4. Cell aggregation

Aggregation of RBCs is observed in experiment [3]. [69,70] report that there is RBC hyperaggregatability
phenomenon observed in Type 2 diabetes mellitus (T2DM) patients due to fibrinogen-dependent aggregation
dynamics [2]. The hyperaggregatablility enhances the formation of rouleau [3,8], and subsequently leads to ischemic
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Fig. 11. The top three picture shows the motion of the cell in strong adhesion case. The bottom three pictures shows the cell motion in
weak adhesion case.
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Fig. 12. Aggregating of four red blood cells. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

tissue [71]. In this section, we set up a simulation with four RBCs initially touching with each other at a small area
of cell membranes. The parameter values are chosen to mimic real RBC and keep the adhesion force in the same
range of tens to thousands of pN as reported in [2,9].

More specifically, the parameter values are: Re =2 x 1077, M =5x107* kp =4 x 102, k=4 x 10712 [, =
5x103 My, =103, 0 =3x%x10°,¢; =1,9, =0.5.

The evolution of this RBC system with time is shown in Fig. 12. From the result we can see that RBCs creep
together with respect to time under the attractive force, and form rouleaux. This is consistent with the experimental
result shown in [3,8].

The deformation of the RBCs at equilibrium is related to the value of the attractive force [8,19,24]. Fig. 13 shows
clusters of RBCs with moderate and strong attractive (or aggregation) forces. The parameter values for simulations
in Fig. 13 are as follows: Re =2 x 1074, M =5x 1074 k3 =2x 102,k =2x 107", [, =5 x 1073, M, = 10.

From Fig. 13, we can see that under strong aggregation force, obvious terminal hemispherical caps is shown
and the offset between each adjacent cell is smaller as well. This result is consistent with the experimental
observation [3].

In the following test, we place the RBCs in a Couette flow with flow shear rate being equal to 20s~! with the
same dimension as in [21]. Motions of the cells are shown in Fig. 14. Under shear flow, the rouleaux with strong
adhesion force still aggregate together; while the one with weak adhesion force is broken up by the shear flow. This
is consistent with the results reported in [21].

Now we simulate the motion of RBCs in branched vessels. Four RBCs are initially placed in the Y-shaped vessel.
The width of the main channel (in which the inflow boundary condition is specified) of the Y-shaped vessel and the
bottom branch of the vessel is set to be 1 x 1077 meters. The width of the top branch of the vessel is 0.7 x 10~/
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Fig. 13. Left: Strong aggregate = 15 x 10°, q; = 1, g» = 1. Right: moderate aggregate o« = 100,¢; = 1, ¢ = 1.
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Fig. 14. The top three figures shows the
moderate aggregation.

t=2

Fig. 15. Cells are set in a cluster initially under a moderate aggregating force with o = 25,y = 1, go = 1. The main channel width is 1
and the width of the two branches is 0.7. RBCs divide equally at the vessel bifurcation. The velocity field is indicated by the vector field.
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Fig. 16. Cells are set in a cluster initially under a moderate aggregating force with o = 25,¢; = 1, g2 = 1. The top branch is set to be 1
with the other stays 0.7. One of the cells is going into the branched vessel. The velocity field is shown as well.

meters, which is close to the size of a red blood cell. A pressure drop boundary condition is used to introduce a
shear flow in the vessel with a velocity around 5 x 10~ m/s, which is close to the blood flow in capillaries. Other
model parameter values in this simulation are as follows: Re = 2 x 04 M=5x10%kp =4 x 102,k =
4% 1071 [, =2=5x%x107% M, = 20.

The motion of the RBCs and the velocity field of the flow are shown in Figs. 15, 16 and 17, respectively. We first
simulate the motion of the RBC group with a moderate aggregation force when they pass a Y-shaped channel with
the same width of both branches as a baseline. The cells divide equally at the vessel bifurcation location. Then one
of the channels is widened and a non-equal deviation is observed (3 move upwards, 1 moves downward) due to the
lower resistance in the upper branch. Then, under the same geometric setup, a strong aggregation force is applied
to the cells. In this case, all RBCs go into the wider channel. The simulation result explains the experimental result
in [3], in which a great number of RBCs are observed to be absent in the branched vessel under a strong aggregate
case compared with moderate aggregate.

Remark 4.3. In Figs. 15, 16 and 17, the position and deformation of the cells and the distribution of the velocity
field are both critical information that needs to be visualized. Thus we draw the cells with contour curves and the
velocity field is marked with red arrows.

5. Conclusions

In this paper, we have presented a thermodynamically consistent phase-field model for simulating cell deforma-
tion and aggregation, incorporating a new multi-dimensional Lennard-Jones type interaction energy that accounts
for both repulsion and adhesion between cells and walls. The model’s mechanical properties, including bending,
surface area conservation, and local inextensibility, are modeled using different energy functionals.

We have proposed an efficient numerical scheme using C° finite element discretization in space and mid-point
temporal discretization, which preserves energy unconditionally. The model and its parameters were calibrated and
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4 4
t=1.2 t=1.6 t=2

Fig. 17. Cells are set in a cluster initially under a strong aggregating force with o = 1.5 x 103, g; = 1, g2 = 1. The set up is the same as
Fig. 16. None of the cells is going into the branched vessel. The velocity field is shown as well.

validated using experimental data on cell deformation under different stretch forces, and we have investigated the
effects of adhesion strength on cell-wall and cell—cell interaction. The model was also used to study the motion of
red blood cells near vessel bifurcations, which confirmed the role of hyperaggregability in inducing ischemic tissue
in Type 2 diabetes mellitus patients.

It is important to note that while the Lennard-Jones potential provides a useful approximation for intermolecular
interactions, cellular interactions are highly complex and involve a wide range of additional factors, such as specific
cell adhesion molecules, signaling pathways, and mechanical properties. The Lennard-Jones type potential serves as
a simplified representation to capture some aspects of cell interactions but may not fully capture the intricacies of
biological systems. Future work will focus on extending the model to account for reaction and mass transportation
on the membrane [72,73], as well as studying the effects of T2DM on cell deformability and oxygen transportation.
The model could also be combined with viscoelastic models [74—76] for vessels to simulate free-flowing red blood
cells in narrow deformable vessels using the wall phase-field label ¢,. Overall, this work offers a promising
framework for simulating cell—cell and cell-wall interactions in complex flow conditions, with potential applications
in biomedical engineering and pathology.
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