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The quest for ultrahigh-Q nanomechanical resonators has driven intense study of strain-induced
dissipation dilution, an effect whereby vibrations of a tensioned plate are effectively trapped in a lossless
potential. Here, we show for the first time that torsion modes of nanostructures can experience dissipation
dilution, yielding a new class of ultrahigh-Q nanomechanical resonators with broad applications to
quantum experiments and precision measurement. Specifically, we show that torsion modes of strained
nanoribbons have Q factors scaling as their width-to-thickness ratio squared (characteristic of “soft
clamping”), yielding Q factors as high as 10% and Q-frequency products as high as 10! Hz for devices
made of SizN,. Using an optical lever, we show that the rotation of one such nanoribbon can be resolved
with an imprecision 100 times smaller than the zero-point motion of its fundamental torsion mode, without
the use of a cavity or interferometric stability. We also show that a strained nanoribbon can be mass loaded
without changing its torsional Q. We use this strategy to engineer a chip-scale torsion pendulum with an
ultralow damping rate of 7 pHz and show how it can be used to sense micro-g fluctuations of the local
gravitational field. Our findings signal the potential for a new field of imaging-based quantum
optomechanics, demonstrate that the utility of strained nanomechanics extends beyond force microscopy

to inertial sensing, and hint that the landscape for dissipation dilution remains largely unexplored.

DOI: 10.1103/PhysRevX.13.011018

I. INTRODUCTION

Recent years have seen the emergence of a new class of
ultrahigh-Q mechanical resonators fashioned from strained
thin films [1]. The mechanism behind their performance
is dissipation dilution, an effect whereby an elastic body is
subjected to a conservative stress field, increasing its
stiffness without adding loss [2,3]. Access to extreme
dimensions and stresses at the nanoscale has enabled
dilution factors (the ratio of final to initial Q) in excess
of 10%, yielding Q factors in excess of 10° for devices made
of amorphous glass and Q-frequency products exceeding
10" Hz using “soft clamping” [4,5]. Attractive features of
these devices include attonewton force sensitivities [6],
thermal coherence times of milliseconds [4], and zero-point
displacement amplitudes in excess of picometers [5],
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spurring proposals from room-temperature quantum
experiments [7] to ultrafast force microscopy [8].
Despite rapid innovation, a key limitation of dissipation
dilution is its restriction to transverse flexural modes,
a consequence of its reliance on nonlinear stress-strain
coupling. It has been formally shown [3] that breathing
modes, such as the longitudinal modes of a cylinder,
cannot be diluted by a uniform strain field, ruling out
the application of dissipation dilution to a large class of
metrologically important mechanical devices, such as the
mirrors used in precision optical cavities and gravitational
wave interferometers. It is also commonly held that torsion
modes of nanostructures are not diluted by strain [3,9,10],
despite the prevalence of tensioned microsuspensions in
macroscopic torsion pendula [11] and the historic use of
torsion microresonators to study mechanical loss [12].
Here, we show that torsion modes of a simple nanobeam
can experience massive dissipation dilution due to thin film
stress and draw a connection to a century-old theory from
the torsion balance community [13] that implies that torsion
modes of a beam are naturally soft-clamped [4]. The key
insight is that, when tensioned, the torsional stiffness of a
beam increases as its width-to-thickness-ratio w/h squared;
thus, for ribbonlike nanobeams (not commonly studied in
nanomechanics [14]), torsional Q factors should scale as

Published by the American Physical Society
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(w/h)?, provided that curvature at the clamps is negligible.
We confirm this theory by studying high-stress SizNy
nanoribbons with w/h as high as 10%, realizing Q factors
as high as 10® and Q-frequency products as high as 103 Hz
at room temperature.

By resolving a common misperception in the nano-
mechanics community (that torsion modes do not
experience dissipation dilution [3]), our findings invite a
rethinking of strategies for quantum experiments and
precision measurement with nanomechanical resonators.
We explore two examples: First, owing to their large
angular zero-point motion, strained nanoribbons are prom-
ising for imaging-based quantum optomechanics [15-17].
We show this by resolving the rotation of a Si3N, nano-
ribbon with an imprecision 100 times smaller than its peak
zero-point spectral density using an optical lever, setting the
stage for observation of radiation pressure shot noise in
torque [18]. Second, with precision inertial sensing in mind,
we show that strained nanoribbons can be mass loaded
without reducing their torsional Q (contrary to what is
typically observed for flexural modes [19,20]). We use this
strategy to engineer chip-scale torsion pendula with damping
rates as low as 7 pHz and describe how such a device can be
used to sense micro-g fluctuations of local gravity.

The remainder of the paper provides an essential over-
view of these findings, followed by the Appendix with key
derivations. Comprehensive theoretical and experimental
discussion is provided in Supplemental Materials [21].

II. BIFILAR SUSPENSIONS AND TORSIONAL
DISSIPATION DILUTION

The history of torsional dissipation dilution can be traced
back to the theory of bifilar suspensions by Buckley in
1914 [13]. In brief, loading a torsion strip with a massive
plumb bob increases its stiffness without adding loss [11].
This is because, as the strip twists, it lifts the bob and does
work against a conservative gravitational field. Vibrating
in its fundamental mode, the Q of the loaded strip scales as
the ratio of its torsional stiffness due to tensile (k,) and
internal stress (k) [21]:

o ks o (w\?
ao—”zﬁ@ ’ M

where w and & are the strip width and thickness, respec-
tively, 0 = mg/wh is the tensile stress due to gravity
(Fig. 1), and E is the elastic modulus of the strip material.

Generalized dissipation dilution theory [3] holds that any
form of static tensile stress, such as residual stress in thin
films, can give rise to dissipation dilution. Buckley’s theory
can therefore be generalized to the idea that placing a
ribbon under tensile stress increases its stiffness without
adding loss. Equation (1) should, thus, hold for a nano-
ribbon released from a thin film with biaxial stress o.
Remarkably, Eq. (1) is also known to be the ideal “soft-
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FIG. 1. Dissipation dilution of a torsion resonator. Left: a
torsion pendulum formed by suspending a mass m from a
ribbonlike fiber of width w and thickness /. Gravity loads the
fiber into tension mg, producing a tensile stress ¢ = mg/wh.
The color gradient represents the transverse displacement u of the
fundamental torsion mode. Center: a doubly clamped ribbon
under tensile prestress o. Right: bifilar model of the ribbon’s
torsion mode [21]. In both cases, the ribbon length L is preserved
to first order, leading to dissipation dilution.

clamped” dissipation dilution factor for a thin beam
vibrating in its fundamental flexural mode (with width
replaced by half length) [5]. In the Appendix, we provide a
continuum mechanics model that supports this claim,
which we now proceed to investigate experimentally.

III. TORSIONAL DISSIPATION DILUTION
OF SizN,; NANORIBBONS

To investigate Eq. (1), we fabricated a set of high-stress
Si;N, nanoribbons with aspect ratios w/h varying from 10?
to 10* [21] [Fig. 2(a)]. Devices were housed in a room-
temperature high-vacuum chamber (<1077 mbar), and
ringdowns [Fig. 2(c)] were performed using optical lever
measurements in conjunction with radiation pressure driv-
ing [21]. Ringdown-inferred Q factors were then compiled
for flexural and torsional modes up to third order, as shown
in Fig. 2(d) and Supplemental Material [21].

Considering first the hypothesis that Q « (w/h)?, in
Fig. 2(d) we compare Q factors of ribbons with widths
from 10 to 400 pm to the lumped mass model [Eq. (1)]
and a finite element model accounting for bending
loss at the clamps [21]. For both models, we assume
o = 0.85 GPa [21], E =250 GPa, h =75 nm, and Q, =
6000 x h/(100 nm) (an established surface loss model for
SizNy thin film resonators [22]). We observe quantitative
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FIG. 2. Ultralow-loss nanomechanical torsion resonators. (a) Simulated torsion modes of a nanoribbon with (green) and without (red)

mass loading. (b) Photos of representative devices: (top) a 400-

pm-wide, 7-mm-long, 75-nm-thick ribbon; (middle) a 25-pm-wide,

7-mm-long, 75-nm-thick ribbon loaded with a 100-pm-thick Si paddle; and (bottom) a micrograph of the paddle. (c) Ringdowns of the
fundamental mode of a 400-pm-wide ribbon (red) and a mass-loaded, 25-pm-wide ribbon (green). (d) Compilation of Q versus ribbon
width (left) and frequency (right). Red and blue points correspond to thicknesses of 75 and 180 nm, respectively. Dark and light green
points correspond to inverted (—g) and noninverted (+g) chip orientations, respectively. Solid, dashed, and dotted curves correspond to
the lumped mass model, finite element model, and a gas damping model with Qg = 1.1 X 10° [21], respectively. Left inset: Q versus
thickness for 200- and 50-pm-wide beams, compared to the lumped model (solid and dashed lines). Right inset: Q versus frequency for
mass-loaded ribbons of different orientation, compared to Eq. (4) (solid line).

agreement up to a width of 100 pm, beyond which Q
begins to drop, consistent with simulated bending loss [21]
and gas damping (we estimate Q. ~ 10° [21]). For widths
smaller than 100 pm, we observe a slightly higher Q than
predicted by both models. Though a more careful inves-
tigation is required, we speculate this may be due to an
overestimate of surface loss, since the model in Ref. [22] is
inferred from a study of flexural rather than torsional modes.

Further support for Eq. (1) was obtained by inspecting
higher-order modes [solid diamonds and triangles in
Figs. 2(d) and 2(e)]. The continuum model derived in
the Appendix predicts that Q,,/Q, is independent of mode
order n for acoustic wavelengths L/n > w, consistent with
our observation that {Q, } is bound above by Eq. (1). We
also observed that the fundamental torsional mode had
consistently high Q. This is contrary to the typical behavior
of flexural modes of Si;N, beams and membranes [22] and
suggests that torsional modes may be more resistant to
acoustic radiation (“mounting”) loss [23].

Finally, we fabricated several ribbons with a different
thickness, 180 nm, and observed that the Q of torsion

modes scaled inversely with thickness [Fig. 2(d) inset]. By
contrast, as shown in Supplemental Material [21], we
observed that the Q of flexural modes were roughly
independent of width and thickness. These different scalings
are telltale signatures of soft clamping (Q/Q, o w?/h?) and
“hard clamping” (Q/Q, «x w/h) [14], respectively, in the
presence of surface loss (Qg « h) [22].

IV. QUANTUM-LIMITED DEFLECTOMETRY
OF A NANORIBBON

Nanomechanical resonators have been probed at the
quantum limit using cavity-enhanced interferometry
[24,25]. In principle, however, neither a cavity nor inter-
ferometry is necessary, provided that the measurement is
optimally efficient [26]. Owing to their high torsional Q,
strained nanoribbons present a unique opportunity to study
the quantum limits of deflectometry, a measurement tech-
nique of long-standing inquiry in the field of quantum
imaging [27,28] which has received relatively little atten-
tion from the quantum optomechanics community [29].
Pursuing an established benchmark [30,31], in our study
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of Si3N, nanoribbons, we found that the imprecision of

optical lever measurements S, [here, expressed as a
power spectral density evaluated at mechanical resonance
So(wy) = Sg] could be reduced far below the zero-point
angular displacement of the ribbon’s fundamental torsion
mode S5P, satisfying a basic requirement for displacement
measurement at the standard quantum limit (at the “SQL,”
ST = Sgh = 85P/2, where S§* is the displacement pro-
duced by backaction torque SBA > 7#2/S,™) [16,18,30]. To
our knowledge, this represents the first deflectometric
displacement measurement with an imprecision below that
at the SQL (S, < S%7/2) [30]. Combined with the high
QO-f products of our devices (exceeding the threshold for
quantum coherence at room temperature, Qf = kzT/h >
6 x 10'2 Hz [32]), access to sub-SQL deflection measure-
ments signals the potential for a new generation of imaging-
based quantum optomechanics experiments [15-17], in
which thermal motion is overwhelmed by radiation pres-
sure shot noise in torque.

To explore the potential for torsional quantum optome-
chanics, we revisit the optical lever technique with an eye to

maximizing the ratio S5°/S,™ for a torsion ribbon. As
shown in Fig. 3(a), the “lever” is formed by reflecting a
laser beam off the ribbon and monitoring its deflection on a
split photodiode. In the far field, angular displacement
of the ribbon 0 can be resolved with a shot-noise-limited
imprecision of [21,28,33]

imp 5, 1 hcd

O ~wisPy’ @)

where w, and P are the waist size and reflected power of the
laser beam, respectively, and n € [0, 1] is an efficiency
parameter accounting for optical loss and imperfect trans-
duction. Comparing to the zero-point displacement spectral
density of the ribbon’s fundamental torsion mode [21]

1 80,

w2 mla)% (3)

ZP _
St =

(quality factor Q; o« w?/h?, effective mass m; = phwL /6,

and frequency w; « \/6/L? [21]), we find that maximum
“leverage” is achieved by matching the widths of the
laser beam and the ribbon (wy =~ w/2), giving access to
a favorable scaling S5°/S,™ o Qow/h*® due to dissipation
dilution.

An optical lever measurement with an imprecision
below that at the SQL [30,31] is shown in Fig. 3. The
measurement was made by reflecting a wy = 200-pm-wide
laser beam from a 400-pum-wide, 75-nm-thick nanoribbon
and detecting the 4 mW reflected field at a distance of
0.4 m. The lateral position of the split photodetector was
trimmed to balance out classical intensity noise, and the
ribbon position was trimmed to optimize coupling to the
fundamental torsion mode [21]. Near the fundamental
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FIG. 3. Optical lever measurement with an imprecision below

that at the standard quantum limit. (a) Schematic of the optical lever
technique: A Gaussian beam with waist wy, is reflected off a torsion
ribbon of width w (the beam waist is at the ribbon [21]). Ribbon
deflection @ is monitored using a split photodiode. (b) Displacement
of aw =400 pm ribbon measured using a wy~200 pm, P = 4 mW
optical lever. Solid curves correspond to data (red), a thermal noise
model (blue), and the inferred zero-point spectral density [21]
(green). Dotted lines are guides to the eye for the peak thermal
(blue), zero-point (green), and imprecision (black) noise. The ideal
imprecision [Eq. (2) with # = 1] is shown as a solid black line.

torsional resonance frequency, @w; = 2z x 52.5 kHz, the
photocurrent spectrum is dominated by thermal noise
with a peak magnitude of ST = 2n,;,5%7, well in excess
of zero-point motion due to the large thermal mode
occupation, ng, = kgT/hw, ~ 1.4 x 10® (accounting for
a small amount of photothermal heating, T ~ 350 K [21]).
Fitting the noise peak to a Lorentzian Sylw] =
Sy’ + ST/[1 4403w — w,)?/w?], with Q) = 8.5 x 107
determined by ringdown, we infer that the measurement
imprecision S,™ is a factor of 120 below the zero-point
spectral density S5 and a factor of 17 above the ideal
value implied by Eq. (2). While this inference is inde-
pendent of modal mass (m; ~ 0.1 pg), we speculate that
the hierarchy S° > S, is aided by the large magnitude

of the zero-point motion %P ~ (0.5 nrad/v/Hz)? and the
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immunity of deflectometry to various forms of techni-
cal noise.

V. A CHIP-SCALE TORSION
PENDULUM GRAVIMETER

Mass loading a micromechanical resonator is the basis
for chip-scale inertial sensing; however, it typically entails
increasing mechanical loss, leading to complicated size-
sensitivity trade-offs [19,20]. In our study of Si3N4 nano-
ribbons, we found that mass loading them with a central
Si pad (originally a fabrication artifact) had little effect on
their torsional Q, enabling us to realize chip-scale torsion
pendula with Q-m products as high as kilograms and
damping rates as low as microhertz. Owing to their
significant gravitational stiffness, these devices can, in
fact, possess higher QO than unloaded ribbons, due to
gravitational dissipation dilution. They also show promise
as chip-scale pendulum gravimeters, achieving spectral
resolutions of several micro-g for first-generation devices.

In Fig. 2, we present a study of three mass-loaded
nanoribbons (green) alongside unloaded ribbons (red).
Each ribbon is 75 nm thick with a width of w = 25, 50,
or 100 pm. To load the ribbon, as shown in Fig. 2(b),
a central defect is intentionally underetched [21], producing
a 100-pm-thick, 600 x 600-pm?-wide Si pad with mass
Mpaq 2 0.1 mg. As shown in Fig. 2(d) (right), optical lever
measurements of these devices revealed an approximately
thousandfold drop in the fundamental torsion mode fre-
quency from 50 kHz to 34 (w = 25 pm), 70 (50 pm), and
150 Hz (100 pm), respectively, corresponding to a million-
fold increase in moment of inertia. Despite this substantial
mass loading, ringdown measurements of the 25 and 50 pm
devices revealed an increased Q (2.5 x 10° and 1.0 x 107)
relative to unloaded ribbons (1.5 x 10° and 4 x 10°),
corresponding to damping rates of Aw/(27) = 14 and
7 pHz and Q-m products of 0.25 and 1.0 kg, respectively.

The reduced frequency and increased Q of the “torsion
micropendula” in Fig. 2 suggest that their dynamics are
strongly influenced by the local acceleration of gravity g.
To confirm this, as shown in Fig. 4, the pendula were
inverted and their frequency and Q were compared to the
lumped mass model:

a%:wh+@i@ﬂ, (4a)

k, + k 2
0.-o(1+528) — 0, (22) )

(OF3

where k, = m,gh,/2 and I are the gravitational stiffness
and moment of inertia of the pad (mass m,, and thickness
h,), respectively, and —(+) indicates the inverted (non-
inverted) orientation. As shown in Figs. 4(c) and 4(d),
for the softest, @, /(27) = 35 Hz (w = 25 pm) pendulum,
inversion resulted in a 10 Hz drop in resonance frequency
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FIG. 4. Torsion micropendulum gravimeter. (a) Device geom-
etry: a SizN4 nanoribbon (blue) loaded with a Si pad (gray).
(b) Photographs, (c) displacement spectra, and (d) ringdowns of
the device in inverted and noninverted configuration. (e) Free-
running (green), driven (red), and temperature-corrected (blue)
Allan deviation measurements. Inset: frequency (red) and temper-
ature (blue) of driven device. Dashed lines: thermal noise (green)
and drift (red) model.
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(w_/w, =0.71) and a threefold drop in Q factor
(0_/0, =0.35), in good agreement with Eq. (4) for
k, =~ k, ~200kg. Similar agreement was observed for
wider, stiffer ribbons, as highlighted by the inset in
Fig. 2(e).

Owing to their large Q-k, product, it is intriguing to
consider using mass-loaded Siz;N, nanoribbons as pendu-
lum “clock™ gravimeters. The potential of our first-gen-
eration devices can be seen by noting that their spectral
resolution to gravity (the gravity change producing a
frequency shift equal to the pendulum damping rate) is
at the micro-g level, viz.

d -1 4 2 2g0 k
Ag— <w+> po, w200 20ke o6l
dg Qi —w> Qo k,

(5)

where ¢, is standard gravity. This resolution can be
improved by driving the pendulum and averaging its
frequency, yielding an ideal thermal-noise-limited Allan
deviation [34,35] of

o = (%) o =29/ ©

where 7 is the averaging time, 6, = Aw,\/7,/(e7) and
7, = Aw3! are the frequency Allan deviation and energy
damping time of the pendulum, respectively, and € =
(6%)/(63) is the ratio of the driven to thermal energy.

To explore its potential as a gravimeter, the 34 Hz
pendulum shown in Fig. 4 was mounted on a 1 Hz vibration
isolation stage (atop a floated optical table), and its
resonance frequency was tracked using a digital algorithm
[21]. Allan deviations were then recorded with the device
free running (green) and in free decay (red, with an energy
ringdown time of 7, = 1.1 x 10* s) after an impulsive
radiation pressure drive. As shown in Fig. 4(e), the free-
running Allan deviation was within a factor of 2 of the
thermal noise limit off (7) = Aw, /7, /7 [36] (dashed
green), for averaging times 7 <1000 s, saturating at

0y, /27~70 pHz and a gravity resolution of o, =

Agy/7, /T~ 20ugy. The driven Allan deviation was 10
times lower, reaching ¢, /27~ 18 pHz (0,~4 pg) at
300 s; however, both cases are limited by a frequency drift
of dw, /dr =~ 2x x 0.3 mHz/h at late times (dashed red).
As shown in the inset, we find this drift to be well
correlated with the 0.3 K/h temperature drift of the device
holder, implying a frequency sensitivity of dw,/dT =
2z x 1 mHz/K. The blue curve in Fig. 4(e) is obtained
by subtracting a scaled temperature measurement [21],
yielding o, /27~ 12 pHz (o, ~ 2.5 pg) at 7~ 800 s.

VI. SUMMARY AND OUTLOOK

In summary, we studied high-stress Si3sN, nanoribbons
with width-to-thickness (w/h) ratios as large as 10* and
found that their torsion modes experienced dissipation
dilution scaling as (w/h)?, yielding Q factors as high as
10® and Q-f products as high as 10'3 Hz. Owing to their
large zero-point angular displacement S5 ~ (nrad/+/Hz)?,
these devices are promising for quantum-limited deflec-
tometry studies. We demonstrated this by showing that an
optical lever measurement could resolve the rotation of a
nanoribbon with an imprecision 20 dB smaller than its
zero-point motion, paving the way for the investigation of
radiation pressure shot noise in torque. We also found that
strained nanoribbons could be mass loaded without reduc-
ing their torsional Q, enabling us to fabricate chip-scale
torsion pendula with damping rates as low as 7 pHz and
Q-m factors as high as 1 kg. We explored how these devices
might be used as “clock” gravimeters, achieving a reso-
lution of several micro-g in 10 min, limited by thermal drift.

Looking forward, we highlight several routes to
improvement. Starting with the devices themselves, we
note that the Q ~ (w/h)? soft-clamping behavior of nano-
ribbons [Fig. 2(d)] is highly sensitive to clamp geometry.
Our use of diagonal fillets was inspired by optimized Si; Ny
nanotrampolines [6,37]; as discussed in Supplemental
Material [21], this choice turns out to be serendipitous,
as square fillets [38] and unfilleted ribbons would have
experienced increased bending loss and even buckling [39]
beyond w > 100 pm, according to simulations (Fig. S3).
Confirming this behavior and exploring routes to further
clamp optimization—a task which seems ripe for an
emerging set of optimization algorithms [40,41]—will be
important to realizing Q > 10® devices. The robustness of
torsion modes of nanoribbons to anchor loss [42], mass
loading [20], and surface loss [22] is also an open question,
with potential for substantial improvement over flexu-
ral modes.

With regards to deflectometry-based quantum optome-
chanics, a key next step will be to search for motion due to
radiation pressure shot noise in torque, S5A ~ (S%P)2 /5™
[18]. Starting with the measurement in Fig. 3, for which
SBA /St ~ 1074, a hypothetical route to S5*/S™ ~ 1 would
be to precool the nanoribbon to 4 K, decrease its mass
by a factor of 10 (e.g., by thinning and shortening the
ribbon), and increase the reflected optical power by 10 dB,
leveraging reduced absorption at telecommunications
wavelengths [43], a photonic crystal mirror [44], and/or
cavity enhancement [45], to mitigate photothermal heating.
An alternative approach would be to look for signatures of
SBA in optomechanical quantum correlations [46], which in
principle could be discerned with SE4 < S®. Interestingly,
for an optical lever measurement, the correlations are
produced between the angular and lateral displacement
of the deflected beam (or, equivalently, the HG(, and HG
components of the deflected beam) [16] rather than phase
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and amplitude as in the case of an interferometric meas-
urement [47]. While such spatial mode squeezing has been
realized in multimode quantum optics experiments [15], it
has only recently been explored in the optomechanical
domain [48] and offers fertile analogies to ponderomotive
squeezing [47].

Finally, to improve the performance of mass-loaded
SizN, nanoribbons as gravimeters, it will be important
to study their frequency stability. A natural target is
o, < 107%g,, which for the device in Fig. 4 could, in
principle, be achieved with tenfold larger drive amplitude
Ve or tenfold smaller drift. The corresponding fractional
Allan deviation ¢, /@, < 1077 has been widely achieved
with megahertz flexural modes of Si;N, nanobeams
[34,36,49,50]; however, it is an open question whether
the lower frequency of our mass-loaded devices will
pose new challenges. One constraint, on ¢, is the intrinsic
spring-softening nonlinearity of the pendulum (k, o cos 6),
which, in principle, might be compensated by the Duffing
nonlinearity of the nanoribbon [21]. With regards to drift,
we note that the temperature sensitivity dw. /dT of our
devices agrees well with the predicted strain sensitivity
do/dT of the SizN, nanoribbon due to thermal expansion
mismatch with the Si substrate [21,49]. Thermally invariant
strain engineering has been used to reduce this source of
drift by 2 orders of magnitude [49] and could be directly
applied here. A compelling alternative would be to fab-
ricate the nanoribbon from single-crystal strained Si [51],
which could also enable higher Q,, especially at cryogenic
temperatures. Ultimately, a combination of these strategies
may be necessary to compete with state-of-the-art ¢, ~
10 ng MEMS gravimeters [52-54]; nevertheless, the large
dynamic range (42g,, enabled by the lossless tensile
stiffness k, > k,), submilligram mass, and exceptional
simplicity of the micropendulum approach invites further
investigation.
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APPENDIX

In this appendix, we provide condensed derivations of
Egs. (1)-(3). Extended derivations and comprehensive
experimental details are provided in Supplemental Material.

1. Torsional dissipation dilution
a. Lumped mass model

The Zener model of dissipation treats internal modes
of an elastic body as a mass suspended from a spring-
dashpot system modeled by a complex spring constant
k = ko(1+ iQgy'). The Q factor of the mode is then given
by Q¢ = Re[k]/Im[k]. In this lumped mass approach,
dissipation dilution is modeled as a lossless (real-valued)
spring k" added in parallel to the lossy (complex) spring,
yielding a renormalized Q factor

_ Relk+k] K
o=t =215

To derive Eq. (1), we use the ansatz that loading a ribbon
into tensile stress increases its torsional stiffness without
adding loss. The stiffness of an unstressed ribbon is
attributable to Saint-Venant [55] and is given by

(A1)

Eh’w
ky = ,
E™ 6l

(A2)

where 2/ is the ribbon length. The stiffness of a tensioned
ribbon can be traced to the bifilar theory of Buckley [13]:
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B chw?
120

(A3)
Equation (1) is given by setting ky = kg and k' = k,.

b. Continuum model

A continuum mechanics model for dissipation dilution
of an elastic body is provided in Ref. [3] and recounted in
Supplemental Material. In this model, the Q factor of a
vibrational mode is related to the time-varying strain field it
produces, viz.,

0 14 J&(Ae;;)dV

QO 2f A€le€,j>dV (A4)

where (using Cartesian coordinates and index notation)

1
U*E(au +6u —i-aukd Mk)—e +A€’/(t) (AS)
is the time-varying strain tensor and
Z(p 7)Aeio! (A6)

is the time-varying displacement field of the mode with
amplitude A, eigenfrequency w,, and mode shape ¢;.
To derive Eq. (1), we assume a mode shape of the form

kyLA(e™3/UL) — 1),

¢o(z) = sin(k,z) — (A7)

where 6 denotes the angle of rotation about the ribbon axis
z,ky = n/L,and AL = h+/E/120 characterizes the rapidly
varying mode curvature at the clamps [¢hg(z) is obtained by
solving the Euler-Bernoulli equation with boundary con-
ditions ¢y(z) = [py(z)]. = 0 [3]]. Following the torsion
theory of Saint-Venant [55] with ¢y <1 and “warping
function” W(x,y)~ —xy [appropriate for a thin beam
(h < w) with a constant twist rate (ug), = 0], the mode
shape can be expressed in Cartesian coordinates as [56—58]

be(x,y,2) = =yy(2), (A8a)
by(x,y,2) = xpg(2), (A8b)
$.(x,y,2) = W(x,y)[¢o(2)].  —xy[pg(2)],.  (AS8c)

Applying the approximate form of Eq. (A8) to Egs. (A4)
and (AS) yields, after some cumbersome algebra (see
Supplemental Material [21])

o c w? 2w 1 [o w?\ ™!
Ml —— (1 . (A9
Qo oEr T ur o 3ER (A9)
which reduces to Eq. (1) for a sufficiently long ribbon. In
Supplemental Material [21], we show Eq. (1) agrees with

numerical simulations for a rectangular ribbon and that the
right-hand term can be significantly reduced by filleting the
ribbon at clamps. We also extent Eq. (A9) to higher-order
torsional modes.

2. Shot noise imprecision of an optical lever

To derive Eq. (2), we consider the optical lever setup
shown in Fig. 3, in which a laser beam is reflected off the
ribbon and directed toward a split photodiode. The nominal
incidence angle is taken to be zero (for illustrative purposes,
Fig. 3 is sketched with a nonzero incidence angle), and the
laser beam waist (with 1/e® radius wg) is assumed to
coincide with the ribbon. Assuming the laser is in a TEMj
Gaussian mode, the optical power difference recorded
by the split photodiode is given by the familiar “knife
edge” formula

(A10)

AP = PEif [ﬁx} :

(2)

where x is the lateral displacement of the laser beam from
the photodiode midline (in the plane of the photodiode),
w(z) = woy/1 + 22/z5 is the beam width at the photo-
diode, z is the distance of the photodiode from the ribbon,
and zo = 7w} /2 is the Rayleigh length of the laser beam.

Equation (2) is obtained by referring laser intensity shot
noise

St — 471/1th

to an apparent fluctuation of the angular ribbon displacement
i dAP dx hcil 2

SlmP(ShOt) _ Sshot "1 <0 Al2
0 dx da P + Zz ( )

8wi P
using the small angle approximation x = 26z and the
small displacement approximation (dAP/dx)| ;)

\/8/x[P/w(z)]. Equation (2) assumes that the photodetector
is placed in the far field, z > z,.

(A1)

3. Zero-point displacement spectral density
of a torsion oscillator

The zero-point angular displacement spectral density
of a torsion oscillator (green curve in Fig. 3) can be
expressed as

4(67,)

S () =
6 (@) ”

(@), (A13)

where y (o) ~ [l + @} (@ — w,)?/Q?] is the relative sus-
ceptibility of the oscillator (well approximated by a
Lorentzian near resonance o = @), (9§p> =h/21w, is
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its zero-point displacement variance, and /; is its moment
of inertia.

To obtain Eq. (3), we define I, = m,r3, where m, is the
effective mass of the fundamental torsion mode of the
ribbon defined for a point at the position of maximum
transverse displacement, ¢, and r; = w/2 is the dis-
tance from the torsion axis to the point of maximum
displacement. Ignoring mode curvature at the clamps,
Egs. (A7) and (AS) yield

pfgbf(x,y,z)dV pl’lW/L .2 Mphys

— = k d =,

m P 3 ), Sin(kiz)dz=—¢
(A14)

where m,,, = phwL is the physical mass of the ribbon.
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