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High-order sideband generation (HSG), as an analog of the interband processes in high-harmonic generation
(HHG) in solids, is a nonperturbative nonlinear optical phenomenon in semiconductors that are simultaneously
driven by a relatively weak near-infrared (NIR) laser and a sufficiently strong terahertz (THz) field. We derive
an explicit formula for sideband polarization vectors in a prototypical two-band model based on the saddle-point
method. Our formula connects the sideband amplitudes with the laser-field parameters, electronic structures, and
nonequilibrium dephasing rates in a highly nontrivial manner. Our results indicate the possibility of extracting
information on band structures and dephasing rates from high-order sideband generation experiments with
simple algebraic calculations. We also expect our approach to be useful on the quantitative understanding of
the interband HHG.
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I. INTRODUCTION

The recent development of strong laser fields has enabled
extensive study of nonperturbative optical responses of crys-
talline solids in highly nonlinear and nonequilibrium regimes.
One celebrated example is high-harmonic generation (HHG),
which has been observed in conventional metals [1] and semi-
conductors [2–5] and serves as an important way to obtain
ultraviolet light sources [6,7]. The realization of HHG in solid
crystals has led to a method to probe electronic properties
including band structures [8–11], Berry curvatures [12], topo-
logical phases [13–20], and nonequilibrium dephasing rates
of electron-hole coherences [21,22]. Investigation of HHG in
correlated electron systems has also been initiated [23–25]. In
semiconductors, HHG contains contributions from intraband
and interband processes, which are in general coupled with
each other [26–28]. The interband process can be understood
in a three-step model similar to HHG in atoms [29]. In the first
step, an electron-hole pair is created by a strong laser field.
In the second step, the electron and hole are accelerated in
their respective bands by the same laser field. In the third step,
recombination of the electron and hole results in radiation
with integer multiples of the fundamental frequencies. The
intraband contribution comes from the intraband accelerations
of the electron and hole through a nonlinear current [2]. We
will only discuss the interband processes.

As an analog of the interband HHG, high-order side-
band generation (HSG) [30,31] has also received considerable
interest since the last decade [32–40]. HSG occurs in semicon-
ductors when an electron-hole pair is created by a relatively
weak near-infrared (NIR) laser with a photon energy h̄� close
to the bandgap Eg and then accelerated by a strong terahertz
(THz) field with a photon energy h̄ω � Eg. Upon recollisions
and recombinations of the electron-hole pair, sideband pho-
tons of energy h̄� + nh̄ω are emitted, where the sideband

index n is an integer [30,31]. In contrast to HHG in semi-
conductors, intraband and interband processes in HSG are
disentangled and separately controlled by two different laser
fields. Such simplification has led to a reconstruction of low-
energy Bloch wave functions of holes in bulk GaAs through
a simple algebraic equation [39]. Frequency combs of side-
bands with orders n > 100 (66 sidebands) have been produced
from HSG [36]. HSG has also played a role in probing Berry
curvatures [35], band structures [38], and electron correlations
[40].

Theoretical approaches based on or equivalent to the
semiconductor Bloch equations (SBEs) [41] have been
widely used in the numerical analyses of both the intra-
band and interband HHG [3,4,10,11,15,19,21,26–28,42–59].
The scattering terms in the SBEs are mostly approximated
through a dephasing constant for the interband polariza-
tion [3,4,10,11,15,19,21,26–28,42–59]. More details on the
scattering effects have also been investigated through the
coupling between the density matrix elements and four-
point correlations [37,38,40]. In the simplest case, the
SBEs are solved in the single-electron limit, where the
Coulomb interaction between the charge carriers are neglected
[3,4,11,15,19,21,26,27,43–59]. Another important aspect is
the global gauge symmetry, which has long been ignored
in the study of HHG and is paid attention to only recently
[15,19,28,53–59]. In fact, to explore the effects of Berry
curvatures in HSG, dynamical equations equivalent to the
SBEs in the limit of negligible carrier densities and Coulomb
interaction have already been used in the forms obeying
the global gauge symmetry [35,60–62]. A gauge-invariant
density-matrix formalism has also been applied in a discus-
sion on the detection of the macroscopic Berry curvature [63].
Theoretical frameworks other than the SBEs in the study of
interband HHG include the time-dependent density-functional
theory [49,50,64–75] and the single-particle time-dependent
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Schrödinger equation [11,76–83]. To gain intuitive pictures
of the interband HHG, discussions have been focused on
the single-electron limit with the carrier occupations ignored
such that the interband polarization can be written in a com-
pact form of Feynman path integrals, which can then be
analyzed through the well-established saddle-point method
[10,21,43,44,47,52,54,80,83–85]. The three-step model in in-
terband HHG has been extended to include the effects from
nonzero Berry curvatures [52,54] and imperfect recollisions
[52,54,80,83,85]. A four-step model was also proposed [82].
While qualitative understandings of interband HHG have
been reached in various aspects, quantitative understand-
ings based on the saddle-point method were initiated just
recently [85].

The theoretical analyses of HSG were mostly based on
either a time-dependent Schrödinger equation [30,33,60–
62,86,87], or a dynamical equation of the interband density
matrix elements in the single-electron limit [35,88,89]. Both
of these equations are equivalent to the SBEs with negligible
carrier occupations and phenomenological dephasing rates.
While numerical solutions of SBEs have provided insights
on effects from Coulomb interactions in HSG from systems
involving strongly bound excitons [34,37,38,40], analyses in
the single-electron limit serve as an important middle stage
for investigating more complicated systems and have already
led to predictions of many nontrivial emergent phenomena
such as dynamical birefringence [35]. Similar to the inter-
band HHG, the sideband amplitudes in the single-electron
limit were represented by Feynman path integrals, which were
analyzed with the saddle-point method [30,35,60–62,86,87].
Remarkably, agreement between the saddle-point approxima-
tion and the full evaluation of the Feynman path integrals
can be achieved not only qualitatively but also quantitatively
[60–62,86,87]. However, from the numerical saddle-point so-
lutions, it is still not fully clear how the laser-field parameters,
electronic structures, and nonequilibrium dephasing rates are
coded in the sideband amplitudes.

In this paper, we derive an explicit formula for sideband
polarization vectors in a prototypical two-band model based
on the saddle-point method. To tailor the Feynman path inte-
grals into an explicit algebraic function of the laser-field and
material parameters, we notice that, in classical electron-hole
recollisions under a linearly polarized THz field, when the
kinetic energy gain of an electron-hole pair is much smaller
than their ponderomotive energy in the THz field, the time
intervals for the shortest recollision paths lie around the nodes
of the THz field, where the THz field is almost linear in
time. Our derivation is based on the idea that, for sufficiently
large ponderomotive energy in the presence of sufficiently
strong dephasing, the shortest recollision paths will dominate
such that the THz field can be approximated as near-linear in
time in the saddle-point analysis. We call this linear-in-time
(LIT) approximation. Our formula connects the sideband am-
plitudes with the laser-field parameters, electronic structures,
and nonequilibrium dephasing rates in a highly nontrivial
manner. Our results also indicate the possibility of extracting
information about band structures and dephasing rates from
HSG experiments with simple algebraic calculations. Owing
to the similarity between the interband HHG and HSG, we
expect our approach will shed new light on the quantitative

understanding of HSG in more complicated systems, as well
as interband HHG.

II. SADDLE-POINT ANALYSIS

We start with a saddle-point analysis taking account of
only the shortest recollision pathways associated with each
sideband in the presence of sufficiently strong dephasing. For
simplicity, we convey the idea of the linear-in-time approx-
imation in a prototypical two-band model with zero Berry
curvatures and a parabolic energy difference between the con-
duction and valence bands, Ecv(k) = Eg + h̄2k2/(2μ), where
Eg is the bandgap, h̄ is the reduced Planck constant, and μ is
the reduced mass of the electron-hole pairs. Under the approx-
imation of free electrons and holes [30,60–62], the nth-order
sideband polarization vector produced by continuous-wave
NIR and THz laser fields can be written as [35]

Pn = i

h̄

1

TTHz

∫ TTHz

0
dtei(�+nω)t

∫
dDP
(2π )D

∫ t

−∞
dt ′d∗

× exp

(
− i

h̄

∫ t

t ′
dt ′′{Ecv[k(t ′′)] − i�}

)
d · ENIR(t

′),

(1)

which describes a three-step process in HSG as follows. In
the first step, an electron-hole pair is created at time t ′ through
the coupling between the interband dipole vector d and the
electric field of the NIR laser ENIR(t ′) = FNIRe−i�t ′ with fre-
quency �, where the rotating wave approximation is used. In
the second step, from time t ′ to t , the electron-hole pair is
accelerated by the THz field and accumulates a dynamic phase
(−1/h̄)

∫ t
t ′ dt

′′Ecv[k(t ′′)], where h̄k(t ) = h̄P + eA(t ) is the ki-
netic momentum with h̄P being the canonical momentum, e
the elementary charge, and A(t ) the vector potential of the
THz field. We take the THz field as linearly polarized along
x axis in the form FTHz(t ) = −Ȧ(t ) = x̂Fmax cos(ωt ) with
frequency ω, and A(t ) = −x̂(Fmax/ω) sin(ωt ). The constant
� quantifies the dephasing in this step phenomenologically.
In the third step, the electron and hole recombine at time
t and a sideband with frequency � + nω is emitted. Here,
TTHz = 2π/ω is the period of the THz field and D is the
dimension of the momentum space. The sideband amplitudes
are zero for odd sideband index n because of the inversion
symmetry in this two-band model. The sideband polarization
vector can be written in the form of Feynman path integrals,

Pn = d∗d · FNIR
iω

π h̄

∫ TTHz/2

0
dt
∫

dDP
(2π )D

×
∫ +∞

0
dτ exp

[
i

h̄
Sn(P, t, τ )

]
, (2)

where we have introduced a time-duration variable τ = t − t ′,
and an action

Sn(P, t, τ ) = nh̄ωt −
∫ t

t−τ

dt ′′
h̄2

2μ

[
P + e

h̄
A(t ′′)

]2
+ i(� − i�)τ, (3)

with � = h̄� − Eg being the detuning of the NIR laser. The
integral with respect to the recombination time t has been
folded to be over half a period of the THz field.
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To tailor the Feynman path integrals, we apply the saddle-
point method [30,62,86,87] by having a Taylor expansion
of the action Sn(P, t, τ ) around the saddle points up to the
second-order terms and extending the limits of the integrals
to infinities to form Gaussian integrals. In the presence of
sufficiently strong dephasing, the amplitude of each sideband
is dominantly determined by one shortest recollision pathway
within half a period of the THz field. Including only the saddle
point (Pn, tn, τn) for the nth-order sideband that corresponds
to the shortest recollision pathway, we obtain the approximate
expression (see Appendix A for the derivation),

Pn ≈ 2C exp

[
i

h̄
S(t,τ )sc (tn, τn)

]

× e−(i/2)[D arg(τn )+arg(∂2
tn S

(t,τ )
sc )+arg(∂2

τn S
(τ )
sc )]√∣∣(ωτn)D

[
∂2
(ωtn )

S(t,τ )sc /h̄
][

∂2
(ωτn )

S(τ )sc /h̄
]∣∣ , (4)

which contains a constant vector

C = −1

h̄ω
e−iπD/4

( μω

2π h̄

)D/2
d∗d · FNIR, (5)

a semiclassical action,

S(t,τ )sc (tn, τn) = nh̄ωtn + [i� + � +Up(γ
2(ωτn) − 1)]τn

+Upτnα(ωτn)γ (ωτn) cos[ω(τn − 2tn)], (6)

and two second-order derivatives,

1

h̄

∂2S(t,τ )sc

∂ (ωtn)2
= 2n cot[ω(τn − 2tn)], (7)

1

h̄

∂2S(τ )sc

∂ (ωτn)2
= n

2

[
α2(ωτn) + β2(ωτn)

ωτnα(ωτn)β(ωτn)
+ 1

]
cot[ω(τn − 2tn)]

+n

2

[
α2(ωτn) − β2(ωτn)

2α(ωτn)β(ωτn)

]2
tan[ω(2tn − τn)]

+Up

h̄ω

α2(ωτn) − β2(ωτn)

ωτn
. (8)

The semiclassical action S(t,τ )sc (tn, τn) is given by evaluating
the action Sn(P, t, τ ) at the saddle point (Pn, tn, τn), while the
second line in Eq. (4) arises from the Gaussian quantum fluc-
tuations around the saddle point. Here, Up ≡ e2F 2

max/(4μω2)
is the ponderomotive energy, and we have introduced the func-
tions α(x) = cos(x/2) − γ (x) and γ (x) = β(x)/(x/2) with
β(x) = sin(x/2). Different from the approximate expressions
for sideband amplitudes in Refs. [62,86,87], Eq. (4) does
not contain square roots of complex numbers, which are not
single-valued. The values of Pn, tn, and τn satisfy the saddle-
point equations, ∫ tn

tn−τn

dt ′′
h̄kn(t ′′)

μ
= 0, (9)

Eeh[kn(tn)] − Eeh[kn(tn − τn)] = nh̄ω, (10)

Eeh[kn(tn − τn)] = i� + �, (11)

where Eeh(k) = h̄2k2/(2μ) is the kinetic energy from the rel-
ative motion of the electron-hole pairs, and h̄kn(t ′′) = h̄Pn +
eA(t ′′) is the time-dependent kinetic momentum associated

with the saddle point. The first saddle-point equation corre-
sponds to the condition that an electron and a hole recombine
at the site where they are created. The second and third saddle-
point equations are related to energy conservation for the
cases with zero dephasing (� = 0) and nonnegative detunings
(� � 0) upon creation and recombination of the electron-hole
pairs, respectively. For the cases with zero dephasing (� = 0)
and negative detunings (� < 0), Eq. (11) describes creation
of electron-hole pairs through quantum tunneling with a pure
imaginary energy [87]. Nonzero dephasing (� �= 0) makes
the kinetic energy Eeh[kn(t ′′)] complex in general during the
recollision events. As we will see later in this section, nonzero
detunings do not introduce extra obstacles in tailoring the
Feynman path integrals, since the sideband polarization vector
Pn depends on the detuning � through an analytic function of
the complex variable i� + �. Thus we set � = 0 in the nu-
merical calculations from here on and postpone the discussion
of the effects from nonzero detunings until Sec. IV.

Using the approximate expression, Eq. (4), one can write
the sideband polarization vector Pn as an explicit function of
the laser-field and material parameters on the premise that the
explicit forms of tn and τn are known. However, the saddle-
point equations are transcendental in general. To find clues
for further approximation, we investigate the semiclassical
recollision pictures provided by the saddle-point equations in
the special cases where the sideband photon energies are
much smaller than the ponderomotive energy (nh̄ω � Up).
Figure 1 shows the time paths of recollisions, electron-hole
separation xeh(t ′′) = ∫ t ′′

tn−τn
dt ′′h̄kn(t ′′)/μ and kinetic energy

Eeh[kn(t ′′)] for the 10th-order sideband. The ponderomotive
energy Up is chosen as 2 × 103h̄ω, which is a typical value
in existing HSG experiments [39]. Figures 1(a), 1(d) and 1(g)
show three time paths corresponding to the shortest recollision
pathways within half a period of the THz field (green curves)
for the cases with zero detuning and dephasing constants
� = 0, h̄ω, 5h̄ω, respectively. We denote t ′n = tn − τn for the
creation time of the electron-hole pairs. Since the kinetic en-
ergy Eeh[kn(t ′′)] and the relative velocity veh(t ′′) = h̄kn(t ′′)/μ
are both analytic functions of time, any time path in the
complex time plane connecting two fixed time points gives
the same dynamic phase and electron-hole separation. For the
zero-dephasing case (� = 0), the time path can always be
chosen as lying on the real-time axis [black line segment in
Fig. 1(a)]. This choice corresponds to a classical recollision
picture with a real electron-hole separation xeh [Fig. 1(b)]
and a real kinetic energy Eeh [Fig. 1(c)]. Remarkably, along
such a time path, the THz field is almost linear in time. This
approximate linearity remains in the presence of relatively
weak dephasing. As shown in Figs. 1(d) and 1(g), although
the creation time t ′n and recollision time tn become complex,
the time path can still be chosen as lying around the origin
of the complex time plane. We also see that the creation time
t ′n and recollision time tn are further away from the real-time
axis for stronger dephasing. For the weaker-dephasing case
(� = h̄ω), an imaginary part of the electron-hole separation
arises, while the real part resembles the zero-dephasing case
[Fig. 1(e)]. As the dephasing gets stronger, the electron-
hole separation contains a more significant imaginary part
and a real part more distorted from the classical counterpart
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FIG. 1. Semiclassical pictures of electron-hole recollisions for
the 10th-order sideband. (a) The creation time t ′n and recollision
time tn (both real, red dots) in half a period of the THz field FTHz
(dark green curve) for zero dephasing case (� = 0). The THz field
is almost linear in time from t ′n to tn (black arrows). (b) The separa-
tion xeh and (c) the kinetic energy Eeh (in units of the THz photon
energy h̄ω) of an electron-hole pair along the real time-path from
t ′n to tn [black straight line segment in panel (a)]. (d) The creation
time t ′n and recollision time tn (both complex, red dots) for the case
with dephasing constant � = h̄ω. (e) The separation xeh and (f) the
kinetic energy Eeh of an electron-hole pair along the time path in the
complex-time plane, t ′n → Re(t ′n) → Re(tn) → tn [two red straight
line segments parallel to the imaginary-time axis and a black straight
line segment in panel (d)]. Both xeh and Ek are complex (magenta
and blue curves, respectively, for the real and imaginary parts). The
shaded areas indicate the region where the time is complex. Panels
(g)–(i) show results corresponding to panels (d)–(f), respectively,
for the case with a dephasing constant � = 5h̄ω. In the calculation,
we use ponderomotive energy Up = 2 × 103 h̄ω and Up/(eFTHz) =
800 nm. The detuning is set as zero except for the dashed lines in
panels (h) and (i) showing xeh and Eeh in the case with dephasing
constant � = 5h̄ω and detuning � = −2h̄ω, where the creation time
t ′n and recollision time tn are slightly different from those in panel (g).

[Fig. 1(h)]. A similar trend in the kinetic energy is shown
in Figs. 1(f) and 1(i). As energy conservation is imposed by
the saddle-point equations, Eqs. (10) and (11), in each of the
cases, the real part of the kinetic energy goes from zero to the
sideband offset energy 10h̄ω, while the imaginary part starts
and ends at the value of the dephasing constant �.

From the above analysis of the semiclassical recollision
pictures, we see that the linear-in-time approximation might
be appropriate in solving the saddle-point equations for rela-
tively small sideband index and not too strong dephasing. A
more precise statement can be inferred from the saddle-point
equations with the canonical momentum h̄Pn eliminated (see
Appendix A),

sin[ω(τn − 2tn)] = nh̄ω

4Upα(ωτn)β(ωτn)
, (12)

cos[ω(τn − 2tn)] = α2(ωτn) + β2(ωτn) − ξ

α2(ωτn) − β2(ωτn)
, (13)
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FIG. 2. The saddle-point approximation for the dimensionless
sideband amplitudes Qn at relatively low orders of sidebands. Panels
(a) and (b) compare, respectively, the absolute values and phases of
Qn calculated by numerical integration (blue curves) with the results
from the saddle-point approximation (red triangles). The magenta
dots represent the results solely from the semiclassical propagator
exp[(i/h̄)S(t,τ )

sc (tn, τn)]. The black curves in panels (c) and (d) show,
respectively, the relative errors in |Qn| and the absolute errors in the
phases of Qn in the saddle-point approximation. In the calculation,
we use detuning � = 0, dephasing constant � = 5h̄ω, and pondero-
motive energyUp = 2 × 103 h̄ω.

where ξ = [i� + � + (n/2)h̄ω]/Up. If the creation time t ′n =
tn − τn and recollision time tn are located around the node
of the THz field such that |ω(2tn − τn) − π |, |ωτn| � 1, then
there must be nh̄ω/Up ≈ |(ωτn)4[ω(2tn − τn) − π ]/12| � 1
and |ξ | ≈ |(ωτn)2[ω(2tn − τn) − π ]2/8| � 1. In other words,
a sufficient condition for the linear-in-time approximation to
be valid is that the dephasing constant �, the detuning �, and
the sideband offset energy nh̄ω are all small with respect to
the ponderomotive energy Up. We will focus on the accuracy
of the linear-in-time approximation under this condition.

Before exploring the linear-in-time approximation, it is
important to know first the accuracy of the saddle-point
approximation. To this end, we compare the dimensionless
sideband amplitudes Qn ≡ Pn · C/|C|2 calculated through the
saddle-point approximation with the results from numerical
integration of the exact expression (see Appendix B),

Qn = in/2−1
∫ +∞

0

d (ωτ )

(ωτ )D/2
Jn/2

[
Up

h̄ω
ωτγ (ωτ )α(ωτ )

]

× exp{i[S(τ )(ωτ ) + n/2]ωτ }, (14)

where S(τ )(ωτ ) = (i� + �)/(h̄ω) + [Up/(h̄ω)][γ 2(ωτ ) − 1]
and Jn is the nth-order Bessel function of the first kind. We
will present numerical results in the main text only for the
one-dimensional case (D = 1). The results are similar for the
two- and three-dimensional cases (D = 2, 3) with a linearly
polarized THz field (see Figs. 14–17 in Appendix E, for
example, results regarding the accuracy of the linear-in-time
approximation). Figure 2 shows a comparison for sideband
indices from 10 to 40. The ponderomotive energy is chosen as
Up = 2 × 103h̄ω, the same typical value in HSG experiments
[39] as in Fig. 1, and the dephasing constant is set as � = 5h̄ω.
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As shown in Figs. 2(a) and 2(b), the saddle-point approxima-
tion agrees well with the numerical integration for both the
absolute values and phases of the sideband amplitudes. We
also see that the variations of the dimensionless sideband am-
plitudesQn with respect to the sideband index n closely follow
those of the semiclassical propagator, exp[(i/h̄)S(t,τ )sc (tn, τn)].
However, the absolute values of the semiclassical propagator
are off by about two orders of magnitude from the numer-
ical integration results [Fig. 2(a)], while the phases are off
by around 100 degrees [Fig. 2(b)]. Therefore, the Gaussian
quantum fluctuations are important in determining the side-
band amplitudes. To quantify the accuracy of the saddle-point
approximation, we compute the relative errors in the abso-
lute values of Qn and absolute errors in the phases of Qn

with respect to the numerical integration results. As shown in
Figs. 2(c) and 2(d), within the considered sideband window,
the relative errors in the absolute values ofQn stay around 5%,
and the absolute phase errors go from about 3.5 to 5 degrees.

To have a more systematic view of how the accuracy of
the saddle-point approximation varies with the laser-field and
material parameters, we first notice that, apart from the side-
band index n, each dimensionless sideband amplitude Qn is
solely determined by two quantities, a combination of the
dephasing constant and detuning, (i� + �)/(h̄ω), and the
ponderomotive energy Up/(h̄ω), both in units of the THz
photon energy h̄ω. This statement is clear from the exact
expression, Eq. (14), and is also valid under the saddle-point
approximation [see Eqs. (4), (6), (7), (8), (12), and (13)].
Thus, we compute the errors in the dimensionless sideband
amplitudes Qn for sideband indices n = 10 and n = 40 over
a wide range of dephasing constants and ponderomotive en-
ergies around the experimentally accessible values in units
of the THz photon energy. Figures 3(a) and 3(b) show, re-
spectively, the relative errors in the absolute values of Qn

and the absolute errors in the phases of Qn as functions of
the dephasing constant � with the ponderomotive energy Up

fixed at 2 × 102h̄ω (blue curves), 2 × 103h̄ω (red curves), and
2 × 104h̄ω (black curves). As a general trend, the relative
errors in |Qn| and the phase errors decrease as the dephasing
gets stronger, except for some nonmonotonic behaviors in the
cases with relatively small ponderomotive energy [e.g., blue
curves in Figs. 3(a) and 3(b)]. Figures 3(c) and 3(d) show, re-
spectively, the relative errors in |Qn| and the absolute errors in
the phases of Qn as functions of the ponderomotive energyUp

with the dephasing constant � fixed at h̄ω (blue curves), 5h̄ω
(red curves), and 20h̄ω (black curves). For larger ponderomo-
tive energy, the errors are mostly larger in the three selected
dephasing cases with the exception of the phase errors in the
cases with � = h̄ω [blue curves in Fig. 3(d)]. Nonmonotonic
variations of the errors with increasing ponderomotive energy
are also seen for the relatively low-order sideband in the
strong-dephasing cases [e.g., solid curves in Figs. 3(a) and
3(b)]. As for the dependencies on the sideband indices, the
relative errors in |Qn| are smaller for higher-order sidebands
except for the weak-dephasing cases [blue curves in Fig. 3(c)],
while the phase errors are smaller for smaller sideband indices
in the three selected cases with weak to moderate dephasing
[Fig. 3(d)]. Over the whole parameter space investigated, the
relative errors in |Qn| are mostly below 10% and the phase
errors are mostly less than 10 degrees.
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FIG. 3. The accuracy of the saddle-point approximation for the
dimensionless sideband amplitudes Qn. Panels (a) and (b) show,
respectively, the relative errors in |Qn| and the absolute errors in the
phases of Qn as functions of the dephasing constant � with the pon-
deromotive energy Up fixed at 2 × 102 h̄ω (blue curves), 2 × 103 h̄ω
(red curves), and 2 × 104 h̄ω (black curves). Panels (c) and (d) show,
respectively, the relative errors in |Qn| and absolute errors in the
phases of Qn as functions of the ponderomotive energy Up with the
dephasing constant � fixed at h̄ω (blue curves), 5h̄ω (red curves),
and 20h̄ω (black curves). The results for sideband indices n = 10
and n = 40 are plotted as solid and dash-dotted curves, respectively.
Zero detunings are used for all cases.

The results of the accuracy analysis shown in Figs. 2
and 3 can be appreciated by considering the wave nature of
the electron-hole pairs in HSG. The electrons and holes are
generally not point particles but quantum mechanical objects
with wave functions of finite widths. As has been discussed in
Ref. [88], the centers of an electron and a hole wave packets
do not even need to coincide with each other to recombine
and generate sidebands. Intuitively, one expects that the recol-
lision processes in HSG can be described by the semiclassical
trajectories given by the saddle-point method if the maximum
separations of the electron-hole pairs are much larger than
the widths of their wave functions in real space. The maxi-
mum separations are larger for higher sideband indices in the
limit of classical recollisions, while a direct calculation of the
momentum distributions of the electron-hole wave functions
indicates that the electron-hole wave functions tend to be
broader in real space for weaker dephasing and lower-order
sidebands. This is consistent with the enhanced accuracy of
the saddle-point approximation in Fig. 2 by including the
Gaussian fluctuations, and the trends shown in Figs. 3(a) and
3(b) that the saddle-point approximation tends to be more
accurate for relatively higher-order sidebands and relatively
strong dephasing. The lower accuracy for larger ponderomo-
tive energy shown in most curves in Figs. 3(c) and 3(d) could
also be attributed to the broader electron-hole wave functions
in real space. See Appendix C for more details.
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III. LINEAR-IN-TIME APPROXIMATION

Based on the saddle-point analysis, we now continue tai-
loring the Feynman path integrals using the linear-in-time
approximation. The first task is to obtain explicit forms of
the creation time t ′n = tn − τn and the recollision time tn
from the saddle-point equations. Under the linear-in-time
approximation, the THz field strength is approximated by
the first-order Taylor polynomial at the node ωt = π/2,
FTHz(t ) = −Fmax(ωt − π/2). To make the mathematics sim-
pler, we define time variables with a tilde to indicate a
translation of half a period of the THz field, e.g., ωt̃ = ωt −
π/2. The kinetic momentum h̄kn(t ) satisfies the Newtonian
equation of motion

h̄k̇n(t ) = −eFTHz(t ) = eFmaxωt̃, (15)

whose solution can be written as

kn(t ) = kn(t
′
n) + eFmax

2h̄ω
[(ωt̃ )2 − (ωt̃ ′n)

2]. (16)

Putting this solution into the first saddle-point equation,
Eq. (9), yields

ω2(t̃n + 2t̃ ′n)(t̃n − t̃ ′n) = − 6h̄ω

eFmax
kn(t

′
n), (17)

which provides a relation connecting the time variables t ′n and
tn with the kinetic momenta h̄kn(t ) at t ′n and tn. The solution of
kn(t ) at tn provides another such relation,

ω2(t̃n + t̃ ′n)(t̃n − t̃ ′n) = 2h̄ω

eFmax
[kn(tn) − kn(t

′
n)]. (18)

The saddle-point equations concerning the energy conserva-
tion, Eqs. (10) and (11), are not affected by the linear-in-time
approximation, giving the kinetic momenta h̄kn(t ) at the cre-
ation time t ′n and recollision time tn through the following
equations,

h̄ω

eFmax
kn(t

′
n) = ±

√
i� + �

2Up
≡ ±ζ0

√
h̄ω

2Up
, (19)

h̄ω

eFmax
kn(tn) =

√
i� + � + nh̄ω

2Up
≡ ζn

√
h̄ω

2Up
, (20)

where ζn ≡ √
(i� + �)/(h̄ω) + n. We have fixed the sign of

h̄kn(tn) to make it continuously connect with the kinetic mo-
mentum in the limit of classical recollisions (� = � = 0) at
the recollision time. In this paper, a square root of a com-
plex number is defined to have a nonnegative real part. From
Eqs. (17)–(20), the creation time t ′n and the recollision time tn
can be easily solved as

ωt̃ ′n =
(
2h̄ω

9Up

)1/4 2ζ0 − ζn√
ζn − ζ0

, (21)

ωt̃n =
(
2h̄ω

9Up

)1/4 2ζn − ζ0√
ζn − ζ0

, (22)

which correspond to a time duration with a positive real part,

ωτn =
(
18h̄ω

Up

)1/4√
ζn − ζ0. (23)

To make the imaginary part of τn nonpositive regarding the
convergence of the Gaussian integrals in the saddle-point ap-
proximation (see Appendix A), we have chosen the kinetic
momentum h̄kn(t ′n) to have a nonpositive real part. These
solutions are consistent with the sufficient condition discussed
in the last section for the validity of the linear-in-time approx-
imation that the dephasing constant �, the detuning�, and the
sideband offset energy nh̄ω should all be small relative to the
ponderomotive energyUp. In the limit of classical recollisions
(� = � = 0), the creation time t ′n and the recollision time
tn satisfy t̃n = −2t̃ ′n, consistent with the numerical results in
Fig. 1(a).

One can arrive at explicit forms of the sideband amplitudes
as functions of the laser-field and material parameters by
putting the explicit solutions of tn and τn into the approxi-
mate expression from the saddle-point approximation, Eq. (4).
However, the dependencies of the sideband amplitudes on the
laser-field and material parameters are still far from transpar-
ent in such forms. To go further, we expand, respectively, the
semiclassical action S(tn,τn )(tn, τn) and the two second-order
derivatives in Eq. (4) into Taylor series up to the terms of the
lowest order in 1/Up,

1

h̄
S(t,τ )sc (tn, τn) = nωtn + i

�

h̄ω
ωτn − Up

24h̄ω
(ωτn)

3

×
[
(ωτn)2

15
+ (ωt̃ ′n + ωt̃n)

2

]
, (24)

1

h̄

∂2S(t,τ )sc

∂ (ωtn)2
= −1

3
(ωτn)

3Up

h̄ω
, (25)

1

h̄

∂2S(τ )sc

∂ (ωτn)2
= Up

2h̄ω
(ωτn)

[
(ωt̃ ′n + ωt̃n)

2 − 1

9
(ωτn)

2

]
, (26)

which lead to a compact algebraic form for the sideband
polarization vectors,

Pn ≈ 2inC exp

{
i

[
q1/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)1/4
]}

×
(
Up

h̄ω

) D−2
8 exp

{−i arg
[
q0
(
n, i�+�

h̄ω

)]
/2
}

√∣∣q0(n, i�+�
h̄ω

)∣∣ , (27)

where

q1/4

(
n,

i� + �

h̄ω

)
=
(
2

9

)1/4 4
√

ζn − ζ0

5

× (
2ζ 2

0 + ζ0ζn + 2ζ 2
n

)
, (28)

q0

(
n,

i� + �

h̄ω

)
= −

√
32(3

√
2)Dζ0ζn(ζn − ζ0)

D+2
2 . (29)

The factor in is related to the initial phase of the THz field.
As can be easily seen from Eq. (1), a phase shift of ϕ in the
THz field will result in a phase shift of nϕ in the nth-order
sideband. Figure 4 shows a comparison of the dimensionless
sideband amplitudes Qn = Pn · C/|C|2 calculated from the
algebraic form, Eq. (27), with the results from numerical inte-
gration of Eq. (14). We use the same parameters as in Fig. 2.
As shown in Figs. 4(a) and 4(b), the algebraic form agrees
well with the numerical integration for both the absolute val-
ues and phases of the sideband amplitudes. The relative errors
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FIG. 4. The linear-in-time approximation for the dimensionless
sideband amplitude Qn. Panels (a) and (b) compare, respectively, the
absolute values and phases of Qn calculated by numerical integration
(blue curves) to the results from the linear-in-time approximation.
The black curves in panels (c) and (d) show, respectively, relative er-
rors in |Qn| and absolute errors in the phases of Qn in the linear-field
approximation. In the calculation, we use detuning� = 0, dephasing
constant � = 5h̄ω, and ponderomotive energyUp = 2 × 103 h̄ω.

in the absolute values of Qn stay below 9% [Fig. 4(c)], and the
absolute errors in the phases are less than 4 degrees [Fig. 4(d)].
The dip in the phase errors at n = 30 arises from a sign change
in the phase differences.

To see whether the accuracy of the linear-in-time approxi-
mation remains high for a wide range of dephasing constants
and ponderomotive energies, we compute the errors in the
dimensionless sideband amplitudes Qn within the same pa-
rameter space as in the accuracy analysis of the saddle-point
approximation shown in Fig. 3. Figures 5(a) and 5(b) show,
respectively, the relative errors in the absolute values of Qn

and the absolute errors in the phases of Qn as functions of
the dephasing constant � with the ponderomotive energy Up

fixed at 2 × 102h̄ω (blue curves), 2 × 103h̄ω (red curves), and
2 × 104h̄ω (black curves). For the cases with the smallest
ponderomotive energy,Up = 2 × 102 h̄ω, the relative errors in
|Qn| mostly stay above 10% [blue curves in Fig. 5(a)], and
the phase errors can go up to around 200 degrees [blue curves
in Fig. 5(b)]. For the cases withUp = 2 × 103h̄ω, the relative
errors in |Qn| are also mostly above 10% for the 40th-order
sideband [red dash-dotted curve in Fig. 5(a)], and the phase
errors can get to about 40 degrees for the 10th-order sideband
[red solid curve in Fig. 5(b)]. In contrast to the results in
Figs. 3(a) and 3(b), which concern the accuracy of the saddle-
point approximation, large ponderomotive energy is favored
to achieve high accuracy in the linear-in-time approximation.
Figures 5(c) and 5(d) show, respectively, the relative errors in
|Qn| and the absolute errors in the phases ofQn as functions of
the ponderomotive energy Up with the dephasing constant �

fixed at h̄ω (blue curves), 5h̄ω (red curves), and 20h̄ω (black
curves). In the limit of large ponderomotive energy, both the
relative errors in |Qn| and the phase errors match the results in
Figs. 3(c) and 3(d). As the ponderomotive energy gets smaller,
the accuracy of the linear-in-time approximation for the cases
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FIG. 5. The accuracy of the linear-in-time approximation for the
dimensionless sideband amplitude Qn. Panels (a) and (b) show, re-
spectively, the relative errors in |Qn| and absolute errors in the phases
as functions of the dephasing constant � with ponderomotive energy
Up fixed at 2 × 102 h̄ω (blue curves), 2 × 103 h̄ω (red curves), and
2 × 104 h̄ω (black curves). Panels (c) and (d) show, respectively, the
relative errors in |Qn| and absolute errors in the phases as functions
of the ponderomotive energyUp with the dephasing constant � fixed
at h̄ω (blue curves), 5h̄ω (red curves), and 20h̄ω (black curves). The
results for sideband indices n = 10 and n = 40 are plotted as solid
and dash-dotted curves, respectively. Zero detunings are used for all
cases.

with relatively high sideband indices and strong dephasing
gradually become lower than the limits set by the saddle-point
approximation. Several dips corresponding to sign changes in
the differences are also seen in Figs. 5(a), 5(b) and 5(d).

To obtain an algebraic form with higher accuracy, we intro-
duce corrections up to the order of (h̄ω/Up)3/4 to the creation
time t ′n, recombination time tn, and the time duration τn, which
read (see Appendix D for the derivation)

ωt̃ ′n =
(
2h̄ω

9Up

)1/4 2ζ0 − ζn√
ζn − ζ0

+
(
2h̄ω

9Up

)3/4

× 23ζ 2
0 (2ζ0 − 3ζn) + ζ 2

n (30ζ0 − 17ζn)

120(ζn − ζ0)3/2
, (30)

ωt̃n =
(
2h̄ω

9Up

)1/4 2ζn − ζ0√
ζn − ζ0

−
(
2h̄ω

9Up

)3/4

× ζ 2
0 (17ζ0 − 30ζn) + 23ζ 2

n (3ζ0 − 2ζn)

120(ζn − ζ0)3/2
, (31)

ωτn =
(
18h̄ω

Up

)1/4√
ζn − ζ0

+
(
18h̄ω

Up

)3/4 7(ζ 2
0 + ζ 2

n ) − 4ζ0ζn
360

√
ζn − ζ0

. (32)
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FIG. 6. The accuracy of the linear-in-time approximation with
a higher-order correction for the dimensionless sideband amplitude
Qn. Panels (a) and (b) show, respectively, the relative errors in |Qn|
and absolute errors in the phases as functions of the dephasing
constant � with ponderomotive energy Up fixed at 2 × 102 h̄ω (blue
curves), 2 × 103 h̄ω (red curves), and 2 × 104 h̄ω (black curves). Pan-
els (c) and (d) show, respectively, the relative errors in |Qn| and
absolute errors in the phases as functions of the ponderomotive
energy Up with the dephasing constant � fixed at h̄ω (blue curves),
5h̄ω (red curves), and 20h̄ω (black curves). The results for sideband
indices n = 10 and n = 40 are plotted as solid and dash-dotted
curves, respectively. Zero detunings are used for all cases.

Including a corresponding correction to the semiclassical ac-
tion in S(tn,τn )(tn, τn), we arrive at a new algebraic form,

Pn ≈ 2inC exp

{
i

[
q1/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)1/4

+ q3/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)3/4]}

×
(
Up

h̄ω

) D−2
8 exp

[−i arg
[
q0
(
n, i�+�

h̄ω

)]
/2
]

√∣∣q0(n, i�+�
h̄ω

)∣∣ , (33)

which contains a new function,

q3/4

(
n,

i� + �

h̄ω

)
=
(

1

18

)1/4 1

1260
√

ζn − ζ0

[
103

(
ζ 2
n − ζ 2

0

)2
+ 232ζ0ζn

(
ζ 2
0 + ζ 2

n

)− 184ζ 2
0 ζ 2

n

]
.

(34)

In parallel with the accuracy analysis shown in Figs. 3 and 5,
we compute the errors in the dimensionless sideband ampli-
tudes Qn using the new algebraic form, Eq. (33). As shown
in Fig. 6(a), the relative errors in the absolute values of Qn for
the cases with relatively small dephasing are close to the limits
set by the saddle-point approximation. For sufficiently strong
dephasing, the relative errors in |Qn| stay below 10% except
for the case with sideband index n = 10 and ponderomotive
energy Up = 2 × 102 h̄ω [solid blue curve in Fig. 6(a)]. The

absolute errors in the phases of Qn are mostly less than 5
degrees for the three selected values of ponderomotive energy
[Fig. 6(b)]. Even for the cases with Up = 2 × 102 h̄ω, the
phase errors stay below 20 degrees [blue curves in Fig. 6(b)].
As shown in Figs. 6(c) and 6(d), both the relative errors in
|Qn| and the phase errors approach the results in Figs. 3(c)
and 3(d) for a wide range of relatively large ponderomotive
energies. The relative errors in |Qn| are mostly below 10%
for the selected cases with moderate dephasing [red and black
curves in Fig. 3(c)], while the phase errors are less than 10
degrees for all three selected dephasing cases [Fig. 6(d)]. This
remarkable suppression of the errors by the correction term
ends our derivation of the algebraic forms for the sideband
polarization vectors.

IV. NONZERO DETUNINGS

To finalize our tailoring of the Feynman path integrals, we
discuss the effects from nonzero detunings in this section.
From the saddle-point equations, we see that the solution
of the saddle points depends on the detuning through the
kinetic energy Eeh[kn(t ′′)] at the creation time t ′n and recol-
lision time tn. An example of the semiclassical recollision
pictures associated with a dephasing constant � = 5h̄ω and
a negative detuning � = −2h̄ω is shown in Figs. 1(h) and
1(i) (dashed curves). The nonzero detuning further distorted
the curves representing the complex electron-hole separation.
As a new feature for the complex kinetic energy, the real
part starts from the value of the detuning � and ends at the
sideband offset energy subtracted by �. For the derivation
of the two algebraic forms, Eqs. (27) and (33), we have seen
from previous discussions that the role of the detuning � has
no essential difference from that of the dephasing constant �,
since the sideband amplitudes depend on � and � through
analytic functions of the complex variable i� + �. However,
the question remains how the accuracy of the linear-in-time
approximation depends on the detuning. To quantify the de-
pendence of the accuracy of the linear-in-time approximation
on the detuning, we compute the errors in the dimensionless
sideband amplitudesQn as functions of the dephasing constant
� ∈ [1, 40]h̄ω and the detuning � ∈ [−20, 20]h̄ω, with the
ponderomotive energyUp fixed at three representative values,
2 × 102h̄ω, 2 × 103h̄ω, and 2 × 104h̄ω. Figures 7 and 8 show,
respectively, the relative errors in the absolute values of Qn

and the absolute errors in the phases of Qn for sideband index
n = 40 (the results for n = 20, 30 are shown in Figs. 10–13
in Appendix E). In each of the two figures, the errors in
Qn calculated by using Eq. (27) [Eq. (33)] are presented in
the left (right) column. As shown in Fig. 7(a), for the cases
with Up = 2 × 102 h̄ω, the relative errors in |Qn| calculated
by using Eq. (27) are greater than 50% in more than half
of the parameter space investigated. As the ponderomotive
energy increases to 2 × 103h̄ω, the relative errors in |Qn|
are mostly less than 20% [Fig. 7(b)]. For the cases with
Up = 2 × 104h̄ω, the relative errors in |Qn| stay below 10%
and can go even below 5% in most of the parameter space
[Fig. 7(c)]. The correction term in Eq. (33) greatly suppresses
the relative errors in |Qn|, as shown in Figs. 7(d)–7(f). The
relative errors in |Qn| calculated by using Eq. (33) can already
go below 5% in a wide range of dephasing constants and
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FIG. 7. The accuracy of the linear-in-time approximation for the
absolute values of the dimensionless sideband amplitudes Q40 with
varying dephasing and detuning. Left (Right) column: the relative
errors in |Q40| without (with) a higher-order correction. The values
of the ponderomotive energyUp are chosen as 2 × 102 h̄ω (a, d), 2 ×
103 h̄ω (b, e), and 2 × 104 h̄ω (c, f).

detunings for the cases with Up = 2 × 102 h̄ω [Fig. 7(d)]. For
the cases with the other two selected larger ponderomotive
energies, the relative errors in |Qn| stay below 5% in almost
the whole parameter space [Figs. 7(e) and 7(f)]. As shown
in Fig. 8, the suppression of the phase errors in |Qn| by the
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FIG. 8. The accuracy of the linear-in-time approximation for the
phases of the dimensionless sideband amplitudes Q40 with varying
dephasing and detuning. Left (Right) column: the absolute errors
in the phases of Q40 without (with) a higher-order correction. The
values of the ponderomotive energy Up are chosen as 2 × 102 h̄ω (a,
d), 2 × 103 h̄ω (b, e), and 2 × 104 h̄ω (c, f).

correction term in Eq. (33) is also remarkable. For the cases
with Up = 2 × 102h̄ω, the phase errors calculated by using
Eq. (27) range from below 20 degrees to as large as 140
degrees in the parameter space investigated [Fig. 8(a)]. For the
cases withUp = 2 × 103h̄ω, the phase errors are mostly below
10 degrees [Fig. 8(b)]. As the ponderomotive energy increases
to 2 × 104h̄ω, the phase errors are mostly less than 5 degrees
[Fig. 8(c)]. In contrast, the phase errors calculated by using
Eq. (33) stay below 15 degrees in almost the whole parameter
space shown in Fig. 8(d) for the cases with Up = 2 × 102h̄ω.
For the cases with the other two selected larger ponderomotive
energies, the phase errors are mostly less than 2.5 degrees, as
shown in Figs. 8(e) and 8(f). The results are similar for two-
and three-dimensional cases (D = 2, 3) (see Figs. 14–17 in
Appendix E). We thus see that the algebraic form, Eq. (33), is
suitable for describing relatively low orders of sidebands in a
wide range of parameters that are experimentally accessible.

V. FEYNMAN-PATH INTERFEROMETER

A straightforward application of our algebraic forms is
to guide the control of the sideband amplitudes. The pump
NIR laser does not need to be monochromatic. For instance,
one can build up an interferometer using a NIR laser field
with two central frequencies separated by an even num-
ber times of the THz frequency ω, ENIR(t ′) = FNIR[1 +
ρ21e−i(2Nωt ′−ϕ21 )]e−i�t ′ , where N is an integer, and the real pa-
rameters ρ21 and ϕ21 control, respectively, the relative strength
and phase delay between the two frequency components. Two
sets of sidebands produced, respectively, by the two frequency
components of the NIR laser are located at the same fre-
quencies, and thus interference occurs at each of the sideband
frequencies. On the condition that the linear-in-time approxi-
mation is valid, as discussed earlier, for a monochromatic NIR
laser, a shortest electron-hole recollision pathway dominantly
contributes to each sideband amplitude within half a period of
the THz field. Therefore, this interference can also be consid-
ered as the interference between two electron-hole recollision
pathways. By using the algebraic form, Eq. (33), the resulting
sideband polarization vector at frequency � + nω (n is an
even integer) can be written as

P (� + nω) ≈C
[
Qn

(
i� + �

h̄ω
,
Up

h̄ω

)

+ ρ21e
iϕ21Qn−2N

(
i� + �

h̄ω
+ 2N,

Up

h̄ω

)]
,

(35)

which contains the detuning � = h̄� − Eg, and the dimen-
sionless sideband amplitude in the form

Qn

(
i� + �

h̄ω
,
Up

h̄ω

)

= 2in exp

{
i

[
q1/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)1/4

+ q3/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)3/4]}
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×
(
Up

h̄ω

) D−2
8 exp

[−i arg
[
q0
(
n, i�+�

h̄ω

)]
/2
]

√∣∣q0(n, i�+�
h̄ω

)∣∣ . (36)

By varying the phase delay ϕ21, the intensity of the sideband
can be tuned between the values

In,± = In,0

⎡
⎢⎣1 ± ρ21

∣∣∣Qn−2N

(
i�+�
h̄ω + 2N,

Up

h̄ω

)∣∣∣∣∣∣Qn

(
i�+�
h̄ω ,

Up

h̄ω

)∣∣∣
⎤
⎥⎦

2

, (37)

where In,0 is the sideband intensity when the second frequency
component is switched off (ρ21 = 0). The maximal sideband
intensity is obtained when the two recollision pathways are in
phase such that

arg

[
Qn−2N

(
i� + �

h̄ω
+ 2N,

Up

h̄ω

)]
+ ϕ21

= arg

[
Qn

(
i� + �

h̄ω
,
Up

h̄ω

)]
( mod 2π ). (38)

Such an interferometer can be used to extract the dephasing
constant �, the bandgap Eg in the detuning �, and the reduced
mass μ in the ponderomotive energy Up. By measuring the
maximal and minimal relative sideband intensities In,±/In,0
and the corresponding phase delays ϕ21, two algebraic rela-
tions between the parameters i� + � andUp can be seen from
Eqs. (37) and (38). To determine the three real parameters, �,
�, and Up, it requires at least one additional equation, which
can be obtained by adding a third frequency component of the
NIR laser field. Although the absolute sideband intensity In,0
also contains information on the parameters i� + � and Up,
determination of In,0 involves additional complexities such as
modeling of the propagation of the NIR laser and sideband
fields through optical setups. The absolute sideband inten-
sity might also include a significant enhancement factor from
electron-hole Coulomb interaction [86], which is outside the
scope of this paper.

VI. EXTRACTING MATERIAL PARAMETERS
BY VARYING THE THz FIELD STRENGTH

The dependence of the sideband intensities on the THz
field strength [36] provides a simpler way of extracting
the dephasing constant � and the reduced mass μ with a
monochromatic NIR laser field. In cases where the algebraic
form, Eq. (33), is valid, measuring intensities IF1n and IF2n of the
nth-order sideband, respectively, for two THz field strengths
Fmax,1 and Fmax,2 = λFmax,1 yields an algebraic equation for
the parameters i� + � andUp,√

IF2n
IF1n

= |QF2
n |

|QF1
n | = λ

D−2
4 exp

[(
1 − λ− 1

2
)
x1/4

+ (
1 − λ− 3

2
)
x3/4

]
, (39)

where we denote QFs
n ≡ Qn((i� + �)/(h̄ω),UFs

p /(h̄ω))
(s=1,2) and xl ≡ Im[ql (n, (i� + �)/(h̄ω))](h̄ω/UF1

p )l

(l = 1/4, 3/4) with UFs
p ≡ e2F 2

max,s/(4μω2) being the
ponderomotive energy corresponding to the THz field
strength Fmax,s. Taking the logarithm on both sides of the

equation, we obtain an equation linear in the variables x1/4
and x3/4,

(
1 − λ− 1

2
)
x1/4 + (

1 − λ− 3
2
)
x3/4 = 1

2
ln

IF2n
IF1n

− D − 2

4
ln λ.

(40)

Measuring the sideband intensities for three different THz
field strengths produces two such equations, which can be
easily solved for x1/4 and x3/4. The reduced mass can then
be calculated as

μ = e2F 2
max,1

4h̄ω3

x41/4{
Im
[
q1/4

(
n, i�+�

h̄ω

)]}4 , (41)

where the parameter i� + � satisfies the algebraic equation

x31/4
x3/4

=
{
Im
[
q1/4

(
n, i�+�

h̄ω

)]}3
Im
[
q3/4

(
n, i�+�

h̄ω

)] . (42)

If the detuning � is known, then one can easily extract the
dephasing constant � from Eq. (42) and then calculate the
reduced mass μ using Eq. (41). The whole extraction pro-
cedure can still be applied even if the dephasing constant �

depends on the sideband index n. The applicability of the
procedure relies on the premise that the theory agrees with
experiments. Depending on the complexities in real experi-
ments, modifications of our theory might be necessary. For
example, in the presence of multiple dephasing mechanisms, a
theory with a dephasing constant might not be able to explain
the experimentally observed fall-offs of sideband intensities
[33]. A possible modification is to replace the dephasing
factor �τ in the action Sn(P, t, τ ) in Eq. (3) by an integral∫ t
t−τ

dt ′′�[k(t ′′)] with � becoming a function of the kinetic
momentum k. Whether the saddle-point analysis in this paper
still applies after such a modification is an interesting question
to be explored in future works.

For a multiband system with more than one species of
electron-hole pairs, interference of recollision pathways as-
sociated with different species of electron-hole pairs might
provide extra equations to extract the bandgap Eg. Such
interference can be investigated systematically through the
dynamical Jones matrices [35], each of which maps the elec-
tric field of the NIR laser into a sideband polarization vector.
In the basis of circular polarizations, σ± with helicity ±1
(σ± = ±(x̂ ± iŷ)/

√
2 for light fields propagating along the z

axis), we can reorganize Eq. (1) into the form,(
PHSG

+,n

PHSG
−,n

)
= Tn

(
FNIR

+
FNIR

−

)
, (43)

where PHSG
±,n and FNIR

± denote, respectively, the σ± components
of the sideband polarization vector Pn and the vector FNIR in
the electric field of the NIR laser, and the dynamical Jones
matrix Tn is a two-by-two matrix. For a general constant
dipole vector d = d+σ+ + d−σ−, The dynamical Jones matrix
Tn can be written as

Tn = C̄μD/2Qn

(
|d−|2 d∗

−d+
d−d∗

+ |d+|2
)

, (44)
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which includes the dimensionless sideband amplitude
Qn((i� + �)/(h̄ω),Up/(h̄ω)) and a constant

C̄ = −1

h̄ω
e−iπD/4

( ω

2π h̄

)D/2
. (45)

Due to time-reversal symmetry, each electron-hole pair is
usually accompanied by another pair with a complex conju-
gate dipole vector. As a result, the dynamical Jones matrix in
Eq. (44) is modified as

Tn = C̄μD/2Qn

(
|d|2 2d∗

−d+
2d−d∗

+ |d|2
)

. (46)

The dynamical Jones matrix for a simplest extension, where
two species of electron-hole pairs move independently in their
respective bands, can then be written as

Tn = C̄
∑
j=1,2

μ
D/2
j Q( j)

n

( |d j |2 2d∗
j,−d j,+

2d j,−d∗
j,+ |d j |2

)
, (47)

which explicitly show how the recollision pathways asso-
ciated with the two species of electron-hole pairs inter-
fere with each other. We have labeled the two species
of electron-hole pairs by j = 1, 2, and denoted Q( j)

n ≡
Qn((i� j,n + � j )/(h̄ω),Up, j/(h̄ω)). Each species of electron-
hole pair is assigned a reduced mass μ j , a dephasing constant
� j,n depending on the sideband index n, a detuning � j , a
ponderomotive energy Up, j ≡ e2F 2

max/(4μ jω
2), and a dipole

vector d j = d j,+σ+ + d j,−σ−. Recent development of side-
band polarimetry has enabled the determination of each
dynamical Jones matrix up to a constant factor [35,39]. The
first row of the dynamical Jones matrix Tn provides two linear
equations with respect to the quantities μ

D/2
j Q( j)

n ( j = 1, 2)
associated with the two species of electron-hole pairs. The two
linear equations have a unique solution if the dipole vectors d j

( j = 1, 2) satisfy the condition of linear independence,

d∗
1,−d1,+
|d1|2 �= d∗

2,−d2,+
|d2|2 . (48)

According to the discussion at the beginning of this section,
with the absolute value of the quantity μ

D/2
j Q( j)

n determined
up to a constant factor for three different THz field strengths,
the algebraic form, Eq. (33), can be used to determine the re-
duced mass μ j and dephasing constant � j,n as functions of the
detuning � j ( j = 1, 2). For a fixed THz field strength, taking
the ratio μ

D/2
1 Q(1)

n /(μD/2
2 Q(2)

n ) yields a complex equation for
the parameters i� j,n + � j andUp, j ( j = 1, 2),

μ
D/2
1 Q(1)

n

μ
D/2
2 Q(2)

n

=
(

μ1

μ2

) 3D+2
8

√√√√∣∣q(2)0

∣∣∣∣q(1)0

∣∣ exp
{
i
arg
[
q(2)0

]− arg
[
q(1)0

]
2

}

× exp

{
i

[
q(1)1/4

(
h̄ω

Up,1

)1/4

+ q(1)3/4

(
h̄ω

Up,1

)3/4

− q(2)1/4

(
h̄ω

Up,2

)1/4

− q(2)3/4

(
h̄ω

Up,2

)3/4]}
, (49)

where we denote q( j)l ≡ ql (n, (i� j,n + � j )/(h̄ω)) with j =
1, 2 and l = 0, 1/4, 3/4. By treating the reduced mass μ j and

dephasing constant � j,n as functions of the detuning � j de-
termined for each species of the electron-hole pairs, Eq. (49)
represents an algebraic relation between the two detunings
�1 and �2. With the ratio μ

D/2
1 Q(1)

n /(μD/2
2 Q(2)

n ) for another
THz field strength, we expect that the detunings and thus the
bandgap Eg might be fully determined. We leave the question
on the uniqueness of the solution from this procedure for
future discussion.

VII. DISCUSSION

A. Connection with existing HSG experiments

Experimental observation of high-order sideband genera-
tion (HSG) has been reported in two classes of materials. The
first class includes bulk gallium arsenide (GaAs) [32,39] and
GaAs-based quantum wells (QWs) [31,33,35,36]. The second
class includes bulk and monolayer tungsten diselenide (WSe2)
[34,37,38,40]. Our two-band model is appropriate for describ-
ing HSG in the direct-gap materials such as narrow GaAs
QWs [35] and monolayer WSe2 [38], which have isolated
parabolic bands near the bandgaps. The recent experiments
of sideband polarimetry have also indicated that HSG in bulk
GaAs can be approximated as resulting from the interfer-
ence of two electron-hole species that move independently in
the THz field when the NIR laser is near-resonant with the
bandgap [39]. This means that our results can also be applied
to describe HSG in bulk GaAs for the cases of near-resonant
excitation by the NIR laser.

For the validity of our formula, the required large pondero-
motive energyUp/h̄ω (in units of the THz photon energy h̄ω)
has already been achieved for both classes of materials. In a
recent HSG experiment in bulk GaAs [39], a THz field with
a frequency f = ω/(2π ) = 0.447 THz and a field strength
Fmax = 70 kV/cm is used, corresponding to values of Up/h̄ω
being around 2500 and 3900, respectively, for the two species
of electron-hole pairs associated with two species of holes.
The reduced masses for the two species of electron-hole pairs
are taken, respectively, to be in the ranges [0.057, 0.061]m0

and [0.037, 0.038]m0 in the kx−ky plane, where m0 is the
electron rest mass [90]. In a report of HSG in monolayer
WSe2 [38], a THz field with a frequency f as low as
27 THz and a field strength as high as 19 MV/cm is applied,
corresponding toUp/h̄ω = 291 if the reduced mass is chosen
as μ = 0.17m0 [91]. Therefore, according to the discussion
in Sec. VI, experiment conditions are ready for testing our
method of extracting the dephasing constant and reduced mass
in monolayer WSe2, and extracting the dephasing constants,
the bandgap and reduced masses in bulk GaAs.

We expect our method can be used to extract dephasing
constants and reduced masses in various direct-gap semicon-
ducting and insulating materials that have isolated parabolic
bands near the bandgaps. For direct-gap multiband systems
such as bulk GaAs, where two species of electron-hole
pairs can be created and move independently in their re-
spective bands, the bandgaps can also be extracted through
our approach if the dipole vectors associated with the two
electron-hole species satisfy Eq. (48).
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B. Hints for more complicated systems

In a general multiband system, different electron-hole
species can couple with each other while they are accelerated
by the linearly polarized THz field. In the limit of negli-
gible carrier occupations, the sideband polarization vectors
can still be expressed as Feynman path integrals under the
approximation of free electrons and holes [35]. However, the
coupling between different electron-hole species results in
the presence of non-Abelian Berry curvatures, which makes
the analysis of the Feynman path integrals with the saddle-
point method very complicated [35]. It is still not clear if
HSG for such systems can be described by the saddle-point
method quantitatively. If the saddle-point approximation still
applies, then for sufficiently strong dephasing and sufficiently
small kinetic energy gain, we expect that the semiclassical
trajectories dominantly contributing to the sideband emission
should still happen around the nodes of the THz field to get
effective overlap between the electron and hole wave packets,
at least along the direction of the THz field. If this is true, then
one might be able to use linear-in-time (LIT) approximation to
greatly simplify the analysis and reveal simple laws from the
intricate HSG in multiband systems with non-Abelian Berry
curvature.

C. Connection with HHG

Due to the similarity between HSG and the interband
processes in high-harmonic generation (HHG), our results
can also be useful in the analysis of HHG if the interband
processes dominate. For the readers who are familiar with
the semiconductor Bloch equations (SBEs) [41] but not the
integral form of sideband polarization vectors, Eq. (1), we
mention that Eq. (1) results from a summation of the micro-
scopic polarization pk(t ) in the SBEs followed by a Fourier
transform,

Pn = 1

TTHz

∫ TTHz

0
dtei(�+nω)t

∫
dDP
(2π )D

d∗pk(t ), (50)

The microscopic polarization pk(t ) has the form

pk(t ) = i

h̄

∫ t

−∞
dt ′d · ENIR(t

′)

× exp

{
− i

h̄

∫ t

t ′
dt ′′(Ecv[k(t ′′)] − i�)

}
, (51)

which satisfies one of the SBEs in the limit of negligible
carrier occupations,

ih̄
d

dt
pk(t ) = ih̄

∂

∂t
pk(t ) + ih̄k̇(t ) · ∂

∂k
pk(t )

= (Ecv[k(t )] − i�)pk(t ) − d · ENIR(t ), (52)

where the Coulomb interaction is ignored and the scattering
effects are described phenomenologically by the dephasing
constant �. In HSG, the kinetic momentum h̄k satisfies the
equation of motion, h̄k̇(t ) = −eFTHz(t ). By substituting the
THz and NIR laser fields with a single laser field, Eq. (52) can
also be used to describe the interband HHG in cases where the
limit of negligible carrier occupations and the approximation
of free electrons and holes still apply. For such cases, the

interband polarization vectors are of the form

PHHG
n = i

h̄

1

T0

∫ T0

0
dtei(n+1)ω0t

∫
dDP
(2π )D

∫ t

−∞
dt ′d∗

× exp

(
− i

h̄

∫ t

t ′
dt ′′{Ecv[k(t ′′)] − i�}

)
d · F0(t

′),

(53)

where n is an even integer, and T0 = 2π/ω0 is the period
of the driving laser field F0. For a driving field of the form
F0(t ) = x̂Fmax cos(ω0t ), the interband polarization PHHG

n con-
tains two terms corresponding to the sideband polarization
vector Pn in Eq. (1) with the substitutions, FNIR → x̂Fmax/2,
� → ±ω0, ω → ω0, n → (n + 1) ∓ 1 on the right-hand side
of the equation. Therefore, our algebraic formulas for the side-
band polarization vector Pn, Eqs. (27), (28), (29), (33), and
(34), can be directly applied in the analysis of the interband
HHG under the aforementioned assumptions.

VIII. CONCLUSION

In summary, we have introduced a linear-in-time approx-
imation and derived an explicit formula for electron-hole
recollisions in a prototypical two-band model by tailoring
Feynman path integrals. Our formula connects the sideband
amplitudes with the laser-field and material parameters in
a highly nontrivial manner. Over a wide range of dephas-
ing constant, detuning, and ponderomotive energy, we show
that both the absolute values and phases of the sideband
polarization vectors can be quantitatively described by our
algebraic formula with high accuracy. We demonstrate a
way to control the sideband amplitudes by building up a
Feynman-path interferometer that can be used to extract the
dephasing constant, the bandgap, and the reduced mass. We
also propose a method of extracting the dephasing constant
and the reduced mass by simple algebraic calculation with
sideband intensities measured for three THz field strengths.
For a multiband system such as bulk GaAs near-resonantly
excited by the NIR laser, we show the possibility of extracting
the dephasing constants, the bandgap, and the reduced masses
through algebraic calculations. We have also discussed how
our approach can be useful for analyses of HSG in more com-
plicated systems, as well as HHG when interband processes
dominate.
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APPENDIX A: SADDLE-POINT METHOD

In this Appendix, we illustrate the details of using saddle-
point method to calculate the sideband polarization vectors
from Eq. (2). We will discuss the case where there is only one
saddle point associated with each sideband.

We first expand the action Sn(P, t, τ ) into a Taylor series
up to the second order in the variables, P, t , and τ , around
the saddle point (Pn, tn, τn) for the nth-order sideband, Sn ≈
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Ssc(Pn, tn, τn) + δ2Sn/2, with a semiclassical action

Ssc(Pn, tn, τn) = nh̄ωtn −
∫ tn

tn−τn

dt ′′
h̄2

2μ

[
Pn + e

h̄
A(t ′′)

]2
+ i(� − i�)τn, (A1)

and a second-order term,

δ2Sn = − h̄2τn
μ

(P − Pxx̂)
2

+ ∂2Ssc
∂P2

n

δP2 + 2δτ
∂2Ssc

∂τn∂Pn
δP + 2δt

∂2Ssc
∂tn∂Pn

δP

+ ∂2Ssc
∂t2n

δt2 + 2δτ
∂2Ssc
∂τn∂tn

δt + ∂2Ssc
∂τ 2

n

δτ 2, (A2)

where δP = Px − Pn, δt = t − tn, and δτ = τ − τn. Note that
the momentum h̄Pn is along the x axis, as is obvious from
the first saddle-point equation, Eq. (9). Extending the limits
of the integrals to infinities, we obtain the following Gaussian
integrals:

Pn ≈ d∗d · FNIR
iω

π h̄
exp

[
i

h̄
Ssc(Pn, tn, τn)

] ∫ +∞

−∞
dδτ

×
∫ +∞

−∞
dδt

∫ +∞

−∞

dDP
(2π )D

exp

[
i

2h̄
δ2Sn

]
. (A3)

To do the integrals, we first make the quadratic form δ2S
diagonal. Introducing the variable

P̄ = δP − ∂ fPn
∂tn

δt − ∂ fPn
∂τn

δτ, (A4)

where fPn (tn, τn) is the solution of Pn from the saddle-point
equation ∂PnSsc(Pn, tn, τn) = 0, we can write the second-order
term δ2S in the form

δ2Sn = − h̄2τn
μ

(P − Pxx̂)
2 + ∂2Ssc

∂P2
n

P̄2 + ∂2S(t,τ )sc

∂t2n
δt2

+ 2δτ
∂2S(t,τ )sc

∂τn∂tn
δt + ∂2S(t,τ )sc

∂τ 2
n

δτ 2. (A5)

where S(t,τ )sc (tn, τn) = Ssc( fPn (tn, τn), tn, τn). Through a second
change of variables, t̄ = δt − ∂τn ftnδτ , with ftn (τn) being the
solution of tn from ∂tnS

(t,τ )
sc (tn, τn) = 0, we obtain the diagonal

form

δ2Sn = − h̄2τn
μ

(P − Pxx̂)
2

+ ∂2Ssc
∂P2

n

P̄2 + ∂2S(t,τ )sc

∂t2n
t̄2 + ∂2S(τ )sc

∂τ 2
n

δτ 2, (A6)

where S(τ )sc (τn) = S(t,τ )sc ( ftn (τn), τn). The Gaussian integrals
converge if ∂2

PnSsc = −h̄2τn/μ, ∂2
tnS

(t,τ )
sc , and ∂2

τn
S(τ )sc are all

nonzero and their imaginary parts are all nonnegative. Under

these conditions, carrying out the Gaussian integrals yields

Pn ≈ 2C exp

[
i

h̄
S(t,τ )sc (tn, τn)

]

× e−(i/2)[D arg(τn )+arg(∂2
tn S

(t,τ )
sc )+arg(∂2

τn S
(τ )
sc )]√∣∣(ωτn)D

[
∂2
(ωtn )

S(t,τ )sc /h̄
][

∂2
(ωτn )

S(τ )sc /h̄
]∣∣ , (A7)

which includes a constant vector

C = −1

h̄ω
e−iπD/4

( μω

2π h̄

)D/2
d∗d · FNIR. (A8)

We have eliminated Pn in the action Ssc(Pn, tn, τn) using the
solution of the saddle-point equation ∂PnSsc(Pn, tn, τn) = 0,

Pn = fPn (tn, τn) = e

h̄τn

∫ tn

tn−τn

dt ′′A(t ′′). (A9)

The explicit form of S(t,τ )sc (tn, τn) reads

S(t,τ )sc (tn, τn) = nh̄ωtn + [i� + � +Up(γ
2(ωτn) − 1)]τn

+Upτnα(ωτn)γ (ωτn) cos[ω(τn − 2tn)],

(A10)

where we have introduced the functions α(x) = cos(x/2) −
γ (x) and γ (x) = β(x)/(x/2) with β(x) = sin(x/2).
The second saddle-point equation, ∂tnS

(t,τ )
sc (tn, τn) =

∂tnSsc(Pn, tn, τn) = 0, gives an implicit form of the function
ftn (τn),

sin[ω(τn − 2 ftn )] = nh̄ω

4Upα(ωτn)β(ωτn)
, (A11)

from which we can calculate the explicit forms of the deriva-
tives ∂2

(ωtn )S
(t,τ )
sc /h̄ and ∂2

(ωτn )S
(τ )
sc /h̄ as

1

h̄

∂2S(t,τ )sc

∂ (ωtn)2
= 2n cot[ω(τn − 2tn)], (A12)
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1

h̄

∂2S(τ )sc

∂ (ωτn)2
= n

2

[
α2(ωτn) + β2(ωτn)

ωτnα(ωτn)β(ωτn)
+ 1

]
cot[ω(τn − 2tn)]

+ n

2

[
α2(ωτn) − β2(ωτn)

2α(ωτn)β(ωτn)

]2
tan[ω(2tn − τn)]

+ Up

h̄ω

α2(ωτn) − β2(ωτn)

ωτn
. (A13)

To determine tn and τn, one can use Eq. (A11), to-
gether with the third saddle-point equation ∂τnS

(t,τ )
sc (tn, τn) =

∂τnSsc(Pn, tn, τn) = 0, which can be written as

cos[ω(τn − 2tn)] = α2(ωτn) + β2(ωτn) − ξ

α2(ωτn) − β2(ωτn)
, (A14)

where ξ = [i� + � + (n/2)h̄ω]/Up.

APPENDIX B: ANALYTIC CALCULATIONS

In this Appendix, we perform analytic calculations to
simplify the expression of the sideband polarization vectors,
Eq. (1), into an integral over a single variable.

We consider a general polarization state for the THz field
with a vector potential

A(t ) = −�
Fmax

ω
[cosφ sin(ωt )x̂ + sin φ sin(ωt + ϕ)ŷ],

(B1)

where � =
√
2/(1 + √

κ ) with κ = cos2 ϕ + cos2(2φ) sin2 ϕ

and φ ∈ [0, π/2]. Integrating out all canonical momentum
components except for the one along the x and y axis, we write
the sideband polarization vector in the form

Pn =C
2π h̄

μ

∫ TTHz

0

dt

TTHz
ei(�+nω)t

∫
dPxdPy
(2π )2

×
∫ +∞

0

dτ

(ωτ )(D−2)/2
exp

[
i

h̄
S(Px,Py, t, τ )

]
, (B2)

where the action S(Px,Py, t, τ ) is quadratic in both Px and Py,

S = − h̄�t −
[
h̄2
(
P2
x + P2

y

)
2μ

− i� − � + �2Up

]
τ

+ 2�h̄eFTHz
μω2

{
Px cosφ sin

ωτ

2
sin
[
ω
(τ

2
− t
)]

+ Py sin φ sin
ωτ

2
sin
[
ω
(τ

2
− t
)

− ϕ
]}

+ �2Up

ω
{cos2 φ sin(ωτ ) cos[ω(τ − 2t )]

+ sin2 φ sin(ωτ ) cos[ω(τ − 2t ) − 2ϕ]}. (B3)

Integrating out Px and Py gives

Pn =C
ω

i

∫ TTHz

0

dt

TTHz
ei(�+nω)t

×
∫ +∞

0

dτ

(ωτ )D/2
exp

[
i

h̄
S(t,τ )(t, τ )

]
, (B4)

where

S(t,τ )(t, τ ) = √
κ�2Upτγ (ωτ )α(ωτ ) cos[ω(τ − 2t )

− ϕ + η] − h̄�t + S(τ )(ωτ )h̄ωτ, (B5)

with the functions α and γ defined in Appendix A,
S(τ )(ωτ ) ≡ (i�+�)/(h̄ω)+�2[Up/(h̄ω)][γ 2(ωτ )−1], and a
constant η defined by cos η = cosϕ/

√
κ and sin η =

cos 2φ sin ϕ/
√

κ . Using the identity with the Bessel functions
of the first kind, Jm,

eiz cos θ =
+∞∑

m=−∞
Jm(z)i

meimθ , (B6)

we arrive at a Fourier series,

exp

[
i

h̄
S(t,τ )(t, τ )

]
=
∑
m

e−i(�+2mω)t im

× Jm

[√
κ�2Up

h̄
τγ (ωτ )α(ωτ )

]

× eim(η−ϕ) exp{i[S(τ )(ωτ ) + m]ωτ },
(B7)

from which we can immediately see that the sideband ampli-
tudes are identically zero for odd sideband indices, while for
even sideband indices, we obtain the following integral form:

Pn =Cin/2−1
∫ +∞

0

d (ωτ )

(ωτ )D/2
Jn/2

[√
κ�2Up

h̄ω
ωτγ (ωτ )α(ωτ )

]

× ei(n/2)(η−ϕ) exp{i[S(τ )(ωτ ) + n/2]ωτ }. (B8)

For circularly polarized THz fields, we have φ = π/4 and
ϕ = ±π/2 so that κ = 0, which implies that the sideband
amplitudes are identically zero since the Bessel functions of
nonzero integer orders satisfy Jn(0) = 0.

For a linearly polarized THz field with vector potential
A = −(Fmax/ω) cos(ωt )x̂, we have η = ϕ = 0 and κ = � =
1 thus Eq. (B8) can be simplified as

Pn =Cin/2−1
∫ +∞

0

d (ωτ )

(ωτ )D/2
Jn/2

[
Up

h̄ω
ωτγ (ωτ )α(ωτ )

]

× exp{i[S(τ )(ωτ ) + n/2]ωτ }, (B9)

with S(τ )(ωτ ) = (i� + �)/(h̄ω) + [Up/(h̄ω)][γ 2(ωτ ) − 1].

APPENDIX C: MAXIMUM ELECTRON-HOLE
SEPARATIONS AND ELECTRON-HOLEWAVE

FUNCTION WIDTHS

In this Appendix, we discuss the maximum electron-hole
separations and electron-hole wave function widths for one-
dimensional momentum space to gain some insights into
how the accuracy of the saddle-point approximation depends
on the dephasing constant �, the sideband index n, and
the ponderomotive energy Up. Intuitively, one expects that
the recollision processes in HSG can be described by the
semiclassical trajectories given by the saddle-point solutions
if the maximum separations of the electron-hole pairs are
much larger than the widths of their wave functions in real
space.
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We estimate the maximum electron-hole separations for
the shortest classical recollision pathways within the linear-
in-time approximation. Along a shortest classical recollision
pathway, an electron and a hole are created with zero relative
kinetic momentum (h̄kn(t ′n) = 0), and the maximum separa-
tion is reached at tmax when the kinetic momentum h̄kn(t ) goes
back to zero. Under the linear-in-time approximation, from
Eqs. (16) and (21) with � = � = 0, we see that

ωt̃ ′n = −ωt̃max = −
(
2nh̄ω

9Up

)1/4

. (C1)

Integrating the relative velocity veh(t ′′) = h̄kn(t ′′)/μ from t ′n
to tmax, we obtain the maximum electron-hole separation as

xmax =
∣∣∣∣∣
∫ tmax

t ′n
dt ′′

h̄k(t ′′)
μ

∣∣∣∣∣ = 2
√
3

9Pmax

(
8n3Up

h̄ω

)1/4

, (C2)

where h̄Pmax = eFmax/ω is the maximum relative momentum
obtainable from the THz field.

Next, we calculate the electron-hole wave-function widths
along the THz-field driving direction for one-dimensional
momentum space. The electron-hole wave functions are
equivalent to the microscopic polarization pk(t ) in Eq. (51)
[35]. For one-dimensional momentum space, the electron-
hole wave functions can be calculated as

pk(t ) = i

h̄
d · FNIR

∫ +∞

0
dτeiS(P,t,τ )−i�t , (C3)

with an action

S(P, t, τ ) = −
[(

2P2

P2
max

+ 1

)
Up − (i� + �)

]
τ

h̄

+ 8Up

h̄ω

P

Pmax
sin

ωτ

2
sin
[
ω
(τ

2
− t
)]

+ Up

h̄ω
sin(ωτ ) cos

[
2ω
(τ

2
− t
)]

. (C4)

Using the identity, Eq. (B6), we have the expansion,

eiS(P,t,τ ) = e−i[(2P2/P2
max+1)Up−(i�+�)](τ/h̄)

×
∑
n1

Jn1

[
Up

h̄ω
sin(ωτ )

]
in1ein1ω(τ−2t )

×
∑
n2

Jn2

[
8Up

h̄ω

P

Pmax
sin

ωτ

2

]
ein2ω(

τ
2 −t ). (C5)

Since the Bessel function Jn2 (x) is even (odd) for even (odd)
n2, the terms with odd n2 do not contribute to sideband gen-
eration because of inversion symmetry. Including only the
terms with even n2, we arrive at the following form of the
electron-hole wave functions,

pk(t ) = i

h̄ω
d · FNIR

∑
n even

�P(n)e
−i(�+nω)t , (C6)
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FIG. 9. Momentum distributions of electron-hole wave func-
tions. (a) The momentum distribution functions �P(n) for two
dephasing constants, � = h̄ω (black curve) and � = 5h̄ω (red curve).
(b) The momentum distribution functions �P(n) for n = 10 (red
curve) and n = 40 (dark green curve). (c) The momentum distribu-
tion functions �P(n) for two values of the ponderomotive energy,
Up = 2 × 102 h̄ω (blue curve) and Up = 2 × 103 h̄ω (red curve). The
red curves in panels (a)–(c) represent the same momentum distri-
bution function �P(n) calculated for the 10th-order sideband with
parameters Up = 2 × 103 h̄ω, � = 5h̄ω, and � = 0. The two curves
in each frame are calculated by using the same parameters except for
the one shown in the legend.

where each sideband frequency � + nω is associated with a
momentum distribution function,

�P(n) =
∫ +∞

0
d (ωτ )e−i[2P2/P2

max+1)Up−nh̄ω−(i�+�)](τ/h̄)

×
∑
n′

J2n′

[
8Up

h̄ω

P

Pmax
sin

ωτ

2

]

× Jn−n′

[
Up

h̄ω
sin(ωτ )

]
in−n′

. (C7)

Figures 9(a)–9(c) show, respectively, the dependencies of
the momentum distribution function �P(n) on the dephasing
constant �, the sideband index n, and the ponderomotive
energy Up. We observe that the momentum distribution func-
tion �P(n) tends to be more localized for weaker dephasing,
smaller sideband index, and larger ponderomotive energy. The
peaks at around ±Pmax correspond to the saddle-point solution
Pn in Eq. (A9) and its inverse.

Since the maximum separation xmax (in units of P−1
max)

is larger for higher-order sidebands and larger ponderomo-
tive energy, one expects that the saddle-point approximation
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should be of higher accuracy for relatively high-order side-
bands and relatively strong dephasing, while the dependence
of the accuracy on the ponderomotive energy relies on the
competition between the maximum electron-hole separations
and the electron-hole wave-function widths.

APPENDIX D: CORRECTIONS TO THE LINEAR-IN-TIME
APPROXIMATION

In this Appendix, we derive the correction term to the
linear-in-time approximation in the algebraic form, Eq. (33).

The THz field strength near the node at ωt = π/2 can in
general be expanded in a Taylor series,

FTHz(t ) = −Fmax

[
ωt̃ − (ωt̃ )3

6
+ · · ·

]
. (D1)

From the Newtonian equation of motion h̄k̇n(t ) = −eFTHz(t ),
the kinetic momentum h̄kn(t ) can also be written as a Taylor
series,

h̄kn(t ) = h̄kn(t
′
n) + eFmax

ω

{
1

2

[
(ωt̃ )2 − (ωt̃ ′n)

2
]

− 1

24
[(ωt̃ )4 − (ωt̃ ′n)

4 + · · · ]
}
. (D2)

Putting this solution into the first saddle-point equation,
Eq. (9), yields

ζ0

√
h̄ω

2Up
= 1

6
[(ωt̃n) − (ωt̃ ′n)]{[(ωt̃n) + 2(ωt̃ ′n)]

− 1

20
[(ωt̃n)

3 + 2(ωt̃n)
2(ωt̃ ′n) + 3(ωt̃n)(ωt̃

′
n)

2

+ 4(ωt̃ ′n)
3] + · · · }. (D3)

The solution of kn(t ) at tn provides another equation for the
time variables t̃ ′n and t̃n,

(ζn + ζ0)

√
h̄ω

2Up
= 1

2
[(ωt̃n)

2 − (ωt̃ ′n)
2]

− 1

24
[(ωt̃n)

4 − (ωt̃ ′n)
4 + · · · ]. (D4)

Here we have used Eqs. (19) and (20) to eliminate the ki-
netic momenta at t ′n and tn. To obtain the correction terms of
higher-order in h̄ω/Up to the solutions of t ′n and tn, we start a
perturbation theory from the ansatzes,

ωt̃ ′n = δ′
1/4 + δ′

3/4, (D5)

ωt̃n = δ1/4 + δ3/4, (D6)

where the factors δ′
1/4 and δ1/4 are the solutions of ωt̃ ′n and ωt̃n

of the order (h̄ω/Up)1/4 under the linear-in-time approxima-
tion, given by Eqs. (21) and (22), and the factors δ′

3/4 and δ3/4

are correction terms of the order (h̄ω/Up)3/4. Putting these
ansatzes into Eqs. (D3) and (D4) and keeping the lowest-
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FIG. 10. The accuracy of the linear-in-time approximation for
the absolute values of the dimensionless sideband amplitudes Q20

with varying dephasing and detuning. Left (Right) column: the rel-
ative errors in |Q20| without (with) a higher-order correction. The
values of the ponderomotive energy Up are chosen as 2 × 102 h̄ω (a,
d), 2 × 103 h̄ω (b, e), and 2 × 104 h̄ω (c, f). The dimension of the
momentum space is one (D = 1).

order terms in h̄ω/Up, we obtain the following two linear
equations with respect to the variables δ′

3/4 and δ3/4,

(2δ1/4 + δ′
1/4)δ3/4 + (δ1/4 − 4δ′

1/4)δ
′
3/4

= 1

20
(δ1/4 − δ′

1/4)
[
δ31/4 + 2δ21/4δ

′
1/4

+ 3δ1/4(δ
′
1/4)

2 + 4(δ′
1/4)

3
]
, (D7)

δ1/4δ3/4 − δ′
1/4δ

′
3/4 = 1

24

[
δ41/4 − (δ′

1/4)
4
]
. (D8)

Solving these linear equations yields

δ3/4 = 1

120
[5δ31/4 − 4δ21/4δ

′
1/4 − 7δ1/4(δ

′
1/4)

2 − 4(δ′
1/4)

3],

(D9)

δ′
3/4 = 1

120
[5(δ′

1/4)
3 − 4(δ′

1/4)
2δ1/4 − 7(δ′

1/4)δ
2
1/4 − 4(δ1/4)

3].

(D10)

Substituting δ′
1/4 and δ1/4 with the right-hand sides of

Eqs. (21) and (22), after some straightforward algebra, we
obtain

δ′
3/4 =

(
2h̄ω

9Up

)3/4 1

120(ζn − ζ0)3/2

× [
23ζ 2

0 (2ζ0 − 3ζn) + ζ 2
n (30ζ0 − 17ζn)

]
, (D11)

δ3/4 = −
(
2h̄ω

9Up

)3/4 1

120(ζn − ζ0)3/2

× [
ζ 2
0 (17ζ0 − 30ζn) + 23ζ 2

n (3ζ0 − 2ζn)
]
. (D12)
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FIG. 11. The accuracy of the linear-in-time approximation for
the phases of the dimensionless sideband amplitudes Q20 with vary-
ing dephasing and detuning. Left (Right) column: the absolute errors
in the phases of Q20 without (with) a higher-order correction. The
values of the ponderomotive energy Up are chosen as 2 × 102 h̄ω (a,
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momentum space is one (D = 1).
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d), 2 × 103 h̄ω (b, e), and 2 × 104 h̄ω (c, f). The dimension of the
momentum space is two (D = 2).

To derive the correction term to the semiclassical action
S(t,τ )sc (tn, τn) of the order (h̄ω/Up)3/4, we approximate the
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FIG. 16. The accuracy of the linear-in-time approximation for
the absolute values of the dimensionless sideband amplitudes Q40

with varying dephasing and detuning. Left (Right) column: the rel-
ative errors in |Q40| without (with) a higher-order correction. The
values of the ponderomotive energy Up are chosen as 2 × 102 h̄ω (a,
d), 2 × 103 h̄ω (b, e), and 2 × 104 h̄ω (c, f). The dimension of the
momentum space is three (D = 3).
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FIG. 17. The accuracy of the linear-in-time approximation for
the absolute values of the dimensionless sideband amplitudes Q40

with varying dephasing and detuning. Left (Right) column: the rel-
ative errors in |Q40| without (with) a higher-order correction. The
values of the ponderomotive energy Up are chosen as 2 × 102 h̄ω (a,
d), 2 × 103 h̄ω (b, e), and 2 × 104 h̄ω (c, f). The dimension of the
momentum space is three (D = 3).

semiclassical action as the following Taylor polynomial:

1

h̄
S(t,τ )sc (tn, τn) = nωtn + i� + �

h̄ω
ωτn − Up

24h̄ω
(ωτn)

3

×
[
(ωτn)2

15
+ (ωt̃ ′n + ωt̃n)

2 − (ωτn)2

15

× (ωt̃ ′n + ωt̃n)
2−12(ωt̃ ′n+ωt̃n)

4 + (ωτn)5

420

]
.

(D13)

Using the identities ζ 2
n − ζ 2

0 = n and ζ 2
0 = (i� + �)/(h̄ω)

and the solutions of t ′n and tn up to the order of (h̄ω/Up)3/4,
we arrive at a form of the semiclassical action up to the order
of (h̄ω/Up)3/4,

1

h̄
S(t,τ )sc (tn, τn) = q1/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)1/4

+ q3/4

(
n,

i� + �

h̄ω

)(
h̄ω

Up

)3/4

, (D14)

where

q3/4

(
n,

i� + �

h̄ω

)
=
(

1

18

)1/4 1

1260
√

ζn − ζ0

[
103

(
ζ 2
n − ζ 2

0

)2
+ 232ζ0ζn

(
ζ 2
0 + ζ 2

n

)− 184ζ 2
0 ζ 2

n

]
.
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APPENDIX E: SUPPLEMENTAL FIGURES FOR THE
ACCURACY ANALYSIS

In this Appendix, we show supplementary figures for the
accuracy analysis of the linear-in-time approximation corre-

sponding to Figs. 7 and 8. Figures 10–13 show the results
for sideband indices n = 20 and n = 30 in one-dimensional
momentum space (D = 1). Figures 14–17 show the results for
sideband index n = 40 in two- and three-dimensional momen-
tum space (D = 2, 3).
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