StealthyIMU: Stealing Permission-protected Private
Information From Smartphone Voice Assistant
Using Zero-Permission Sensors

Ke Sun, Chunyu Xia, Songlin Xu, Xinyu Zhang
University of California San Diego
kesun@eng.ucsd.edu, cxia@ucsd.edu, soxu@ucsd.edu, xyzhang@ucsd.edu

Abstract—Voice User Interfaces (VUIs) are becoming an
indispensable module that enables hands-free interaction between
human users and smartphones. Unfortunately, recent research
revealed a side channel that allows zero-permission motion
sensors to eavesdrop on the VUI voices from the co-located
smartphone loudspeaker. Nonetheless, these threats are limited
to leaking a small set of digits and hot words. In this paper,
we propose StealthyIMU, a new threat that uses motion sensors
to steal permission-protected private information from the VUIs.
We develop a set of efficient models to detect and extract private
information, taking advantage of the deterministic structures in
the VUI responses. Qur experiments show that StealthyIMU can
steal private information from 23 types of frequently-used voice
commands to acquire contacts, search history, calendar, home
address, and even GPS trace with high accuracy. We further
propose effective mechanisms to defend against StealthyIMU
without noticeably impacting the user experience.

I. INTRODUCTION

Voice User Interfaces (VUIs) allow a user to interact with
a smartphone through voice/speech commands, which signi-
ficantly improves the smartphone’s usability and accessibility.
Voice Assistants (VAs), e.g., Google Assistant and Apple Siri,
and voice-guided navigation apps, e.g., Google Maps and
Apple Maps, represent the most popular apps that employ
the VUIs. To function properly, these apps have to access
many strong permissions related to user privacy, e.g., calendar,
contacts, locations, microphone, SMS, and storage. Then they
can vocally respond to user queries through the built-in loud-
speaker. Such VUI responses often contain sensitive private
information (see examples in Table I).

On the other hand, motion sensors, e.g., accelerometer
and gyroscope, are co-located with the loudspeaker, and can
potentially create a side channel to eavesdrop on the loud-
speaker through vibration sensing [1]-[5]. These sensors pose
an alarming threat especially since they are accessible by any
app on mainstream mobile OS (e.g., Android and iOS) without
user permission. However, existing threats mainly target on
classifying a small set of digits and hot words [1], [2], rather
than natural speech, from the side channel. The potential risk
remains unclear in real-world scenarios.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24077
www.ndss-symposium.org

Malicious APP
stealing
Permission: Calendar

Todo: Buy flowers
Time: Tomorrow at 8 A.M.

Short-term
context

Permission: GPS Trace

~

monitoring
Permission: Home address
Home: 40.66°N 73.93°W

Zero-permission Lightweight
motion sensor StealthylIMU
signals DNN

Vibration caused by speech

-~ Voice command reply speech

N A i
= transmitted by Loudspeaker

Figure 1. StealthyIMU threat model. StealthyIMU is a malware that can be
built in as an ordinary app to continuously capture the motion sensor signals,
from which it extracts permission-protected private information.

In this paper, we propose StealthyIMU, a novel and prac-
tical threat that uses the zero-permission motion sensors to
extract permission-protected private information from the VUI
responses. These permissions are explicitly granted to the VUI
by the user and are strongly associated with user privacy.
StealthyIMU is a malware that can be built in or disguise as an
ordinary app, to indirectly acquire such permissions through
the motion sensor side channel. Fig. 1 illustrates our basic
threat model. StealthyIMU continuously captures the motion
sensor signals (MSS) and identifies the segments associated
with the VUI response, from which it recognizes the type and
content of the private information. Over time, StealthyIMU can
accumulate more context to further improve the accuracy and
richness of the information.

To realize StealthyIMU, we need to resolve 4 key chal-
lenges. (i) How to single out the MSS segments of interest
with negligible overhead? First of all, since StealthyIMU
does not know when the VUI responses occur, we need to
identify the MSS segments associated with VUI responses,
out of all the motion signals, without being noticed by the
user. Processing the MSS in the cloud is not always feasible
since the StealthyIMU app may not have “network in the
background” permission to continuously upload the sensor
data. We thus design an on-device two-stage (temporal and
frequency domain) detection algorithm, which can identify and
segment the sound-induced MSS in the background, and then
save them in the app memory with negligible overhead. We
further design a lightweight DNN model to single out the
subsets of segments that contain an actual VUI response.

(ii) How to recognize the private content from a segment of
MSS containing a VUI response? Due to the limited sampling
rate of smartphone motion sensors (< 500 Hz), recognizing
general speech from the motion sensor is a highly underde-
termined problem [1], [2]. Unlike existing work, our unique
observations are: 1) VUI responses usually come from a small
set of machine-rendered voices, resulting in a constrained user
dependent speech recognition problem; 2) the acoustic charac-
teristics and format of VUI responses are more deterministic
than natural human speech, making it easier to be recognized.
Since the attacker cares more about the meanings rather than
wordings, we formulate the StealthyIMU attack as an end-to-
end Spoken Language Understanding (SLU) problem, which
further evades the need for word level recognition. Specifically,
we extract the contents associated with private permissions
from the VUI responses and label them in the form of private
entity list (see Tab. I). Then we design a DNN model to
recognize the private entity lists from MSS. To enhance the
SLU, we propose a cross-modality teacher-student training
strategy to distill knowledge from data-rich speech models to
guide the training of the MSS model.

(iii) How to extract the private information by combining
the contextual information across multiple VUI responses?
The one-shot SLU from a single VUI response is inevitably
error-prone. However, by processing multiple VUI responses
targeting the same permission, we can infer the user privacy
(e.g., city name and home address) with high accuracy. In
addition, by inferring the user’s city and combining the city
map along with the contextual information from a series of
navigation voices, we can even recover the user’s GPS trace.

(iv) How to defend against the StealthyIMU attack? The
limited sampling rate of motion sensors brings opportunities
to counteract the StealthyIMU attack by modifying the VUI
response speech alone. We propose to pre-distort the low-
frequency components of speech signals to prevent the motion
sensor from capturing the voice-related information, without
noticeably affecting the speech quality of the VUI response.
Specifically, we design a speech signal processing pipeline to
reduce the SNR of the MSS and distort the spectrogram by
adding artificial low-frequency components.

To evaluate StealthyIMU, we develop an Android app
to collect more than 45,000 VUI responses from Google
Assistant and Google Map, along with the MSS in the real
world. The VUI responses include 23 types of frequently-
used voice commands (see Tab. II). Our evaluation shows that,
for the one-shot attack, StealthyIMU can extract the private
entities including contacts, location, reminder/ alarm TODO
list and time, and search history with an average 85.55%
success rate. For long-term monitoring, StealthyIMU achieves
99.8% success rate in recognizing a user’s city name via 5
weather-related queries and locates the user’s home address
with 11 m average error simply through 10 navigations to
home. For short-term contextual inference, StealthyIMU can
combine the city road map and a series of navigation voices
to recover users’ GPS trace within 30 m distance error in 80%
of cases. Whereas StealthyIMU can be directly deployed on
smartphones, we also take the first step to exploit alternative
deployment models of StealthyIMU (e.g., in the cloud), and
show the trade-off between the required permissions and on-
device system resources. On the other hand, our defense

approach is able to prevent the StealthyIMU attack, reducing
its SNR down to 2.7 dB and success rate to less than 4.94%.
For the purpose of reproducing our approach, we release our
labeled VUI response, MSS dataset, and the source code L

We make the following contributions in this work:

e We introduce a new threat model that uses zero-
permission motion sensors to extract permission-protected
private information from VUI responses on smartphones.

o We formulate the StealthyIMU attack as an SLU problem
and design a sequence-to-sequence DNN model with a cross-
modality knowledge distillation strategy to directly extract the
private entities from the MSS. Our model is optimized for
on-device execution with minimal overhead.

e We design algorithms to realize the short-term and
long-term StealthyIMU attack, and demonstrate how it steals
user calendar, GPS trace, home address, efc. with extensive
experiments in real-world scenarios.

e We propose a speech pre-distortion mechanism to defend
against StealthyIMU without noticeably affecting the VUI
speech quality.

We note that, even if future smartphone OS restricts the
motion sensor permission, the StealthyIMU attack can still
work—it can pretend to be an innocuous app that needs the
motion sensor permission alone, while using it to extract other
permission-protected sensitive information.

II. RELATED WORKS
A. Motion Leakage via Sensors on Smartphone

To facilitate common user interaction functions (e.g.,
screen auto-rotation and app layout rendering), motion sensors
are designed to be accessible by arbitrary smartphone apps
without explicit permissions. Prior work has investigated
various security/privacy threats associated with such zero-
permission sensors. ACCessory [6] and Adam et al. [7] use
the accelerometer as a side channel to extract text input, PIN,
and unlock pattern on a smartphone touchscreen keyboard.
AccelPrint [3] and TapPrints [8] show that accelerometers and
users’ tapping both possess unique fingerprints and can be
used to identify the users. Mole [9], Liu et al. [10], Wang
et al. [11] and Snoopy [12] investigate the motion leakage
via smartwatch motion sensors. Further, motion sensors can
be used to infer the user’s moving trajectories [13]-[16].
ACComplice [13] records the motion sensor signals for more
than 15 mins to recover a relatively long trajectory, and then
fits the trajectory to a map based on the shape of the trajectory.
Narain ef al. [14] further designed a graph theoretic model to
infer the users’ trajectory via accelerometers with 30% top-10
route accuracy. Hua et al. [15] demonstrate that accelerometer
data can indicate train location. PinMe [16] combines sensory
and non-sensory data to infer user location. PowerSpy [17]
proposes to use the power consumption change caused by the
phone cellular modems to track the user location. Although
these attacks are related to the location permission attack
in StealthyIMU, they assume either the attacker knows the
user’s initial location, or the victim is traveling along a small
set of known routes. In comparison, StealthyIMU can extract

Thttps://github.com/Samsonsjarkal/StealthyIMU

the location by using a single navigation voice, recover the
user’s GPS route by combining multiple navigation voices, and
even reveal sensitive locations such as home addresses without
knowing the user’s initial location. Further, it can be combined
with relative motion tracking [14]-[16] to infer more precise
user locations. Besides, StealthyIMU can steal a much wider
range of private information than motion leakage attacks.

B. Speech Recognition via Motion Sensors

Typically, the voiced speech of an adult male and female
has a fundamental frequency 85 ~ 180 Hz and 165 ~ 255 Hz,
respectively. A small portion of the low-frequency speech sig-
nals can be captured by the smartphone motion sensor (typical
sampling rate 200 ~ 500 Hz). Prior research exploited this side
channel to recognize speech from the loudspeaker vibration.
Gyrophone [18] achieves about 50% success rate in identifying
10 speakers, and 65% and 26% for speaker-dependent and
speaker-independent 10-digit speech classification. Accelword
[4] achieves a hot word detection accuracy of 85% in static
scenarios and 80% in mobile scenarios among 10 users. Their
threat model assumes that the loudspeaker and the attacking
sensor are separated but share a common surface (e.g., desktop)
which is not always feasible. Speechless [19] analyzes the MSS
side channel and shows that through-air human speech does
not noticeably affect the motion sensors. Recently, Spearphone
[2], [20] and AccelEve [1] further examined the feasibility
of using smartphone motion sensors to recognize the speech
reverberations from a co-located loudspeaker. StealthyIMU dif-
fers from existing work in two aspects. First, the threat model
and end goal are different. Previous work only demonstrates
the possibility of using MSS to recognize a predefined set
of numbers or words. In contrast, StealthyIMU can extract
complete semantic information. It reveals a real-world privacy
threat where MSS can steal crucial smartphone permission-
protected private information, e.g., GPS trace, location permis-
sion, calendar, contacts, efc. Second, the attacking vector and
methods are different. Previous work cast the eavesdropping
of numbers/words into a simplified classification problem. In
comparison, we formulate the StealthyIMU attack as an end-to-
end private speech understanding problem, and design speech
and natural language processing algorithms to efficiently ex-
tract the private information from the MSS side channel. We
also investigate the one-time stealing, short-term contextual
inference, and long-term monitoring threat models.

C. Spoken Language Understanding

SLU systems infer the intents and meanings of a spoken
utterance [21]. This is critical for VUIs, which convert the
speaker’s utterance into action or query. SLU typically consists
of two tasks: Intent detection, a classification problem where
utterances are labeled with predefined intents; Slot filling, a
sequence labeling task that identifies the semantic concepts.
The basic problem behind StealthyIMU is close to SLU. It
tries to first classify the leaky permission (corresponding to
intent detection) and then recognize the private information
(corresponding to slot filling) from the MSS. Existing SLU
systems can be categorized into two classes: a cascaded
pipeline approach and an end-to-end approach [22]. The former
contains an automatic speech recognition (ASR) system to
decode the speech into text, followed by a natural language

understanding (NLU) system that interprets the meaning of the
text [23]. The performance highly depends on the accuracy of
the ASR stage, whose error may be propagated and amplified
in the NLU [24]. The latter approach uses a single DNN
model to map the speech signals directly to the speaker’s intent
without an explicit text transcription [22]. In this paper, we
systematically analyze the unique challenges of StealthyIMU,
and choose to design an end-to-end model to extract the private
permission from the MSS (Sec. V-A).

III. THREAT ANALYSIS

To function properly, VUI apps have to access many strong
permissions related to user privacy. For example, Google
Assistant requires 7 permissions, including calendar, contacts,
locations, microphone, phone, SMS, and storage. StealthyIMU
targets the scenario where a malware uses zero-permission
motion sensors to record the vibrations caused by the voice
assistant and voice-guided navigation apps, and then steals
the permission-protected private information from these apps.
To establish the threat model, we assume the adversary can
mislead the victim to install an ordinary app that contains the
StealthyIMU malware, which then continuously collects MSS
in the background. Once the app receives the MSS, it will de-
tect whether there exist any VUI responses, recognize the types
of responses, infer the private entities from the responses, and
recover the explicit results of the stolen permission-protected
private information. Finally, these information will be saved in
the app locally or uploaded to a cloud server (if permitted), to
monitor the user’s real-time location and trajectory, understand
the user’s daily schedule (e.g., medication input), personal
habits and preferences, efc. Notably, popular mobile browsers
such as Firefox allow motion sensor access by default. So,
besides hiding itself in a normal app, StealthyIMU can also
be launched through an executable (e.g., Javascript) on a
seemingly innocuous website.

Attacking requirements: The StealthyIMU attacker needs
no explicit permission to capture the MSS. However, it needs
to ensure neither the smartphone OS nor the user will notice
the attack. To this end, it needs to carefully make several trade-
offs related to system resource requirements.

o Voice detection on device v.s. continuous network stream-
ing: Since StealthyIMU does not assume to know when the
motions come from the VUI, the first step of StealthyIMU is
to single out the VUI-induced motion signals from all the MSS.
Although such computation overhead of StealthyIMU can be
completely outsourced to the adversaries’ cloud server, it is
not reasonable to assume that the malicious app always has
the “network in the background” permission to continuously
upload the MSS stream. Consequently, the malicious app
should be able to perform on-device identification of the MSS
associated with VUI responses, with minimal overhead. Note
that StealthyIMU still needs “network™ permission to upload
private information to adversaries. However, the on-device
processing helps StealthyIMU to avoid continuous network
streaming. Uploading private information to adversaries can
be accomplished when the malicious app is active, and the
uploading data size is significantly reduced compared to up-
loading the MSS stream.

o Memory v.s. storage: After identifying the MSS of in-
terest, StealthyIMU can choose to save the segment of signals

Voice Command

Permission

Examples

Private Entity List

Q: Set a reminder to check bank account.
Al: Got it. ”[Check bank account]”.

Q: Call me back.

Set/Check) Read calendar When do you want to be reminded? Alf Calendars [Tf)do:' Check my bank account]
calendar/reminder . A2: Calendars [Time: 8 PM]
Q: Tomorrow 8§ PM
A2: Sure. I will remind you [tomorrow at 8 PM].
Q: Send a message to my father.
. s, 9 .
Make calls Read contacts A3: Sure. What’s the message? A3:

A4: Message [Contacts: Bob,

A6: OK. [Los Angeles]. Let’s go.

and send messages Read SMS A4: Sending a message to [Bob] saying Content: Call me back]
”[Call me back]”.
Q: What's today’s temperatures?
Weather Access AS: Temperature in [New York] tonight is AS: Weather [City: New York]
Ask coarse location | predicted to be 54 °F.
Question Navigation Q: Navigate me to Los Angeles. A6: Navigation [City: Los Angeles]

Stock, Sports, Music

Access
search history

Q: What is the stock price?
A7: [Amazon.com] at XXX dolloars.

A7: Search [Company: Amazon]

A8: In 600 feet use the right lane to [turn right]

A8: Navigation [Intent: Turn right,

Access

Navigation APP fine location

[Western Avenue].

onto [Hollywood Boulevard].
A9: Use the left two lanes to [turn left] onto

Road: Hollywood Boulevard]
A9: Navigation [Intent: Turn left,
Road: Western Avenue]

Table 1.

StealthyIMU potential attacking permissions and VUI response examples. StealthyIMU proposes to use the MSS caused by the responses of the

VA (In the “Examples” column, utterances start with “A”) to infer the permission-protected private information from the VUL

in the app memory or local storage, depending on whether
it has the “storage” permission. Note that if the app saves the
segment in memory, only a small amount of memory is needed
(16 KB per VUI response on average. see Sec. IX-F), so it is
indistinguishable from an innocuous app.

This paper takes the first step to exploit these choices and
navigate the trade-off between required permissions and on-
device resources. We design StealthyIMU such that it can
steal private information even without continuous network
streaming and “storage” permissions, by only using on-device
computation. On the other hand, if StealthyIMU has access to
the continuous network streaming and “storage” permissions,
it can execute the majority of the attack vector on the cloud.

Target permissions: We investigate frequently used voice
commands related to reading the VAs’ permissions [25] and
summarize a list of vulnerable permissions and example at-
tacks in Table I. We put these privacy-related voice commands
into 3 categories, i.e., set/check calendars and alarms, make
calls and send messages, and ask questions. In addition, we
put voice-guided navigation in a separate category, as it only
utters the navigation voices without a conversation with the
user. StealthyIMU can steal 5 reading permissions, i.e., reading
the calendar, contacts, SMS; accessing the location (coarse and
fine), and search history. The “Examples” column shows the
conversational examples between the user (Utterances starting
“Q”) and the VA (starting with “A”). The last column, “Private
Entity List”, shows the information that StealthyIMU aims
to extract from the MSS. With the inferred private entities,
StealthyIMU indirectly steals the permission-protected private
information from the VA and the voice-guided navigation app.

IV. MOTION SENSOR SIGNAL (MSS) PREPROCESSING

In this section, we introduce the lightweight on-device pre-
processing mechanisms to prepare StealthyIMU for an attack.
Basically, we first select the motion sensor channels based on
the SNR. Then we design a near-zero overhead algorithm to
continuously detect and segment the sound-induced samples
in the MSS. Finally, we use a voice identification model to
identify whether a detected segment is associated with a VUI
response from the co-located loudspeaker.

Acc X
0.25 % i
0 _ e
-0.25 e !
095 AccY = ‘i’
: Z 10 E] 1 : |
0 PP ORI PAPT TR VU WA ST W T o : I T
frppoih b e =) =] ! {
-0.25 Acc Z s ‘ = =
cc =5
10 T ¥ HEE Y
0 4+
9.5 AccX AccY AccZ GyroX GyroY GyroZ
(a) Acc waveform (b) Channel SNR
Figure 2. Motion sensor channels SNR

A. Choosing the Sensor Type and Channel

Figure 2 shows the accelerometer signal waveform when
a smartphone (i.e. Samsung S8) loudspeaker is playing the
VUI response at 80% volume. We quantify the motion sensor’s
response to sound by SNR;p = 10log;, P((N where P(-) is
the sum of squared magnitude values; S and }\7 are two series
of MSS recorded with and without the loudspeaker voice. Prior
work [1] showed that the speech-induced vibration may cause
different SNR on different sensors and sampling channels. The
accelerometer’s Z axis signals always have the strongest SNR,
regardless of the smartphone placement and sound volume,
because the vibration generated by the loudspeaker is always
perpendicular to the smartphone’s motherboard (along Z axis)
[1]. Although using all the IMU sensors for StealthyIMU may
improve its performance, it will also increase the attacking
overhead significantly. We thus choose the accelerometer’s Z
axis signals alone as the input in StealthyIMU.

Existing IMU-based sensing systems [1], [20] save an
entire stream of signals locally and preprocess it offline.
However, as discussed in Sec. III, StealthyIMU may not
always have permission to do so. Instead, we propose a real-
time signal processing workflow to detect and segment voice-
induced accelerometer signals with minimal computation and
memory overhead. Meanwhile, our detection algorithm needs
to achieve a high true positive rate, while maintaining a
reasonable false positive rate in order to limit memory usage.

80 AccZ Sample
Points

Time Domain
Std Threshold
Y Not
N detected
+

ArAAr A |
\

Acc Z (m/s)
s

AR \r
| y"‘“\, Vv

20 40 60 80
Sample Index

Raw AccZ Waveform

Normalization

80 120 160
Time (ms)

Waveform after Resample + Normalization

Freq
Domain Amp

N\

[N NN
0 50 100 150 200 250
Freq (Hz)

Freq Amplitude after FFT

Figure 3. Ultra Lightweight Voice Detection Pipeline

B. Real-time Detection and Segmentation of Voice in MSS

One major challenge for preprocessing lies in the un-
stable sampling frequency of the motion sensors, which varies
over time and across different smartphones. Prior work [1]
resamples the accelerometer signals and normalizes to the
same sampling frequency frame by frame by using linear
interpolation, which incurs too much computational overhead
(1 multiplication and 2 additions per sample). In contrast, our
voice detection is an ultra lightweight two-stage algorithm. The
first stage detects the vibration of interest based on an empirical
std. threshold, to rule out the cases where the smartphone is
either static or moving abruptly. The second stage resamples
the signals to 500 Hz, and then normalizes the magnitude
values. Resampling here incurs an acceptable computational
overhead since only a small fraction of MSS passes the first
stage. Then, we apply a Discrete Fourier transform (DFT), and
remove those segments that do not contain significant high-
frequency components.

Finally, we need to segment the signal buffer associated
with an entire voice sequence. Based on a real-world large
scale data set that we collected (Sec. VIII-A), we found most
VUI responses last 2 s to 8 s. Thus, we choose to keep a
signal buffer of 4000 points (8 s duration at 500 Hz) in the
app memory. Within this buffer, we count the number of 80-
point segments that are detected as voice-associated. If the
detection is positive in the first 80-point segment of the buffer
and there exist more than & such segments (k = 2 as default),
the buffer will be considered as potentially containing the VUI
response and stored in memory. Note that a single buffer of
float type samples only consumes 16 KB (4000 x 4 Bytes),
which means we can save 500 potential segmented buffers
with a small 8 MB memory.

C. Feature Extraction

The feature extraction module first resamples the signal
segments to 500 Hz, and then performs an STFT to obtain the
spectrogram. The STFT uses a window length of 80 ms and a
hop length of 20 ms to guarantee 50 frames per second. This
is larger than typical speech recognition window size (25 ms)
and hop length (10 ms) because the sampling rate of MSS is
much lower. Finally, to mitigate the accelerometer signal noise

—
—— Utterance
Feature T
Extraction STFT
Pooling
o
£ [HHMMb e thins,
= WM Lz rame Level
LeakyRelLU (TDNN
(Resample | [LeakyRelU]
Resample Blocks xN)
o
E !
< Sample

—_

Figure 4. Feature Extraction and Speaker Identification

due to motion artifacts, we remove the frequencies lower than
62.5 Hz following [26], [27], and create 30 frequency bins
within the frequency range of (62.5,250] Hz. The resulting
features are 50 x 30 scalars per second, which serve as input
to the DNN model in Sec. IV-D and Sec. V-B.

D. VUI Response Identification

A segment of sound-induced MSS does not always contain
a VUI response. It could originate from other sources such as
phone calls. To single out the segments of interest, we observe
that there are only a limited set of voice profiles available for
VUIs, e.g., 5 male and 5 female voices on Google Assistant.
Thus, we can simply identify if the MSS contain a VUI
response from a specific voice ID. We design a lightweight
DNN model (Fig. 4), inspired by XVector [28], to address this
problem.

Specifically, the model takes the aforementioned spectro-
grm feature as input. The output contains 11 classes, including
10 different voices from Google Assistant and a class for
other sound sources. We first embed the frame level feature by
using TDNN blocks [29], and then apply an attentive statistics
pooling layer [30] to convert the variable length frame-level
features into a fixed-dimensional vector, referred to as deep
speaker embedding in text-independent and variable-duration
scenarios [31]. Finally, the deep speaker embedding is fed
into an utterance-level feature extractor comprised of fully-
connected hidden layers.

To train the VUI response identification model, we use an
accelerometer data set collected on COTS smartphones, which
consists of 10 hours of VUI responses for each voice profile,
and 35 hours of accelerometer signals when playing Youtube
Videos. Our benchmark experiments (Sec. IX-A) show that
StealthyIMU achieves 3.41% EER for identifying the targeted
VUI voice by using a lightweight model of less than 2 MB.
Our experiments show that StealthyIMU achieves 3.41% EER
for identifying the targeted VUI voice by using a lightweight
model of less than 2 MB.

V. INFERRING PRIVACY FROM A SINGLE VUI RESPONSE

In this section, we discuss the problem formulation, DNN
model design and training strategy to infer the private entity
list from a singe VUI response.

Use the right lane to take exit 1b toward B drive then turn left onto C street

{type: navigation|
entities: [{type: intent | filler: take} | {type: name | filler: exit 1b} | {type: road | filler: B drive} | {type: intent | filler: turn left} | {type: name | filler: C street}]}

Figure 5. Example to convert the navigation voice text to private intents

A. Problem Statement

Recognizing general speech from the MSS is a highly
underdetermined problem, as the sensor only samples the
vibration artifacts and at much lower sampling rate than micro-
phones. However, two key observations enable StealthyIMU
to circumvent the barrier. First, there are only a limited set of
machine-rendered voice profiles and the user rarely switches
between them. So the VUI responses almost always come
from the same voice, making the speech recognition problem
user-dependent. Second, the acoustic characteristics of VUI
are more deterministic than natural human speech.

Inspired by recent research in speech and natural language
processing, we propose to formulate the StealthyIMU attack
as a Spoken Language Understanding (SLU) problem. SLU
systems are widely used in VUIs which recognize the intents
and meanings of speech directly, rather than word-by-word
transcription. In comparison, StealthyIMU takes the MSS as
input, and extracts a private entity list within the VUI response,
as exemplified in Table I. Since word-level recognition using
MSS is error prone [19], StealthyIMU designs an end-to-end
SLU DNN model to directly interpret the VUI responses.

DNN input, output, and ground-truth generation: The
input into our SLU model is the feature map that has been
obtained after the voice response identification and feature
extraction (Sec. IV-C and Sec. IV-D). The output is the text
of private entity list, which comprises i) voice response type
and ii) private entities. The machine-rendered VUI responses
tend to follow a fixed format. The same type of responses
often contain the same number and pattern of private entities,
as shown in Table I. Navigation voice is the most complicated
type, where the sentence structure is consistent but the entity
number varies. We thus take the navigation voice from Google
Map as an example to explain the general steps of how we
generate the ground-truth private intent lists.

First, by empirically analyzing the grammar of the real-
world navigation voices in our data set, we summarize the
private entities of interest as follows:

i) Intents, i.e., the next driving intent. There are mainly 16
intents, i.e., “turn left”, “turn right”, “take the next left”, “take
the next right”, “slight left”, “slight right”, “keep left”, “keep
right”, “continue”, “stay”, “take” (highway and exit), “make a

u-turn”, “merge”, “follow sign”, and “arrive at destination”.

ii) Name, i.e., road, highway and exit names.

Second, we take the grammar into consideration. Fig. 5
shows an example of converting the navigation text to private
intent. We first add the voice response type, i.e., navigation.
Then, we identify the private entities including both intent and
name. All of the entities except voice response type are in the
text and are added into the private intents in natural spoken
order. This workflow of generating the ground-truth also gives
the model prior knowledge about the sentence structure and
potential entities’ locations within the sentence.

Detokenizer
t + t t f
(Linear + Logsoftmax

. i
RNN Att BlocksxN g, [Concat

1 I G
(Key-valuem¢]¢d}©¢@;

(GRU

Encoded Feature [;] ’? @ ? [F q] $

Token-to-vector
Embedding

{thpe: iy | lr 'nee”vft;i?:k}]}_[PyYeEQ @i
ti1

LeakyReLU

DNN BlocksxN,, [

A
31
RNN BlocksxN,. v
(TokeTnizer]

{type: navigation | entities:
[{type: city | filler: new york}]}

MaxPool1D
LeakyReLU

CNN Blocks x N,

Encoder:
LeakyRelLU Decoder:
Tokenizer:

Teacher-forcing: ---->

Figure 6. Model Architecture

B. Model Design

Our end-to-end SLU DNN model is a sequence-to-
sequence model, which comprises 3 components, i.e., Token-
izer, Encoder, and Decoder. As shown in Fig. 6, the input
of the model is represented as a sequence of the frequency
spectrum, X = {1, T, .., 2}, where t is the temporal length
of the spectrogram of the voice-associated MSS. The output is
a sequence of tokens corresponding to the private entity list,
y ={v1,¥2,..,Ys}, where s determines the length of the list.

Tokenizer: To optimize our model towards the ground
truth, we need to quantitatively encode the text of the private
entity list. We use a tokenizer to break the raw private
entity list into tokens, which can be word-level, subword-
level, or character-level. Since the lexicon of the private
entity is large (> 4000), using word-level token will increase
model complexity. Further, the relationship between the time-
frequency (T-F) spectrogram and the word-level tokens is
hard to learn for a DNN model. In comparison, subword-
level and character-level tokens are closer to the phoneme, the
basic unit of human voice, which has proven to be suitable
for speech processing [32]. To reduce the model size and
improve the recognition rate, we choose to create character-
level tokens using the Google SentencePiece Tokenizer [33].
The corresponding detokenizer will be used in the inference
stage to recover the private entity list from the token sequence.

Student) a [Total | f(Distillation
Loss Loss Loss
[Hard Soft Labels

J [Hard] Soft

Predicti icti
Labtels rediction J | Prediction SLU Decoder
SLU Encoder

(Tokenizer | ('SLU Decoder |

{type: navigation |
entities: [{type: city
| filler: new york}]}

Accelerometer Spectrum
Audio Filter Bank

Ground Truth Student Model Teacher Model

Figure 7. Knowledge Distillation Training Strategy. StealthyIMU proposes
to distills the knowledge from the speech model to guide the training of the
motion sensor model. The “Student Model” corresponds to the model trained
by MSS as shown in Fig. 5. The “Teacher Model” has the similar architecture
with “Student Model”, but is trained by speech signals.

Encoder: The input sequence « is fed into the encoder to
embed the T-F spectrogram feature. Fig. 6 shows the structure
of our encoder, which contains /N, CNN blocks, N, RNN
blocks, and N.,, DNN blocks. We use the “TimePooling” layer
in each CNN block to reduce the length of the input sequence
by half. Except for the TimePooling layer, the encoder does
not change the length of the input sequence, resulting in hidden
state length ¢/(27V¢).

Decoder: Our decoder model contains N4- RNN attention
blocks (Fig. 6). The embedded feature of the last token is
first fed into a GRU layer. To leverage the entire encoded
hidden state from the encoder, we use a key-value self-attention
mechanism [34], which takes the encoder hidden state as the
keys and values and the decoder hidden state as the queries for
the self-attention layer. Finally, the hidden state with attention
is concatenated with the original decoder hidden state as the
output of the RNN attention block along with the linear and
softmax layer to recognize the output token sequence y.

C. Training Strategy

Teacher-forcing: We apply the teacher-forcing training
strategy to train the decoder, which uses the ground truth token
from a prior output token as input to the decoder, to prevent
error accumulation. We adopt the negative log likelihood loss
function [, = maxg), log P(y;|x,y%;;6), where yZ, is the
ground truth of the previous tokens.

In the inference process, we replace the teacher-forcing
by using the last predicted token as the input of the decoder.
We use beam search [35] with beamwidth 40 to generate the
sequences of tokens with the highest probability globally.

Knowledge Distillation from Speech: To enhance the
SLU, we design a teacher-student cross-modal knowledge
distillation DNN, which distills the knowledge from the speech
model to guide the training of the motion sensor model. The
rationale behind this design is two-fold. First, the speech model
is more feature rich and hence accurate than the motion sensor
model. Thus it can facilitate the motion sensor model to learn
reasonable attention across an entire segment of MSS. Second,
due to the massive amount of training data, the speech model

In 1000 feet turn leftto A
Intent: Turn left, Road: A
In 1000 feet turn right to B
Intent: Turn right, Road: B
Turnleftto A
Intent: Turn left, Road: A Turnright to B

Intent: Turn right, Road: B

Continue A for three miles
Intent: Continue, Road: A

Continue B for two miles

9 Voice command replies location
Intent: Continue, Road: B

[] Intersection between two roads

Figure 8. Trace and commands in navigation
is more general than the motion sensor model, which helps
overcome the lack of training data for the MSS.

As shown in Fig. 7, we simultaneously collect the speech
and accelerometer signals associated with the voice responses,
through the microphone and accelerometer, respectively. We
first train the teacher SLU model by using the speech signals as
input. Specifically, we use a pretrained ASR encoder, trained
by the LibriSpeech dataset [36], as a basic encoder. Then, an
SLU encoder and decoder, similar to the model in Sec. V-B,
are used to train this speech-based teacher model.

The student SLU model uses the corresponding accelero-
meter signals as input and has been introduced in (Sec. V-B).
During the training of the student model, we freeze the teacher
model layers and achieve cross-modal knowledge distillation
by narrowing the distance between the output distribution of
the two models. We choose to distill the knowledge from
the decoder output because the outputs of the corresponding
speech signals and accelerometer signals are expected to
be the same. We use the Kullback-Leibler (KL) divergence
loss [37] as our knowledge distillation loss function [; =
13 KL(P%, P}), where s is the output sequence length,
P¢ and Pr are the output distribution of the student model and
teacher model respectively. Finally, the combined loss function
is: b = als + (1 — a)ly. We set « = 1 in the first few
epochs, and then gradually reduce « to increase the weight of
knowledge distillation loss and help convergence.

We note that the teacher-student training strategy is only
used in the offline training process, and does not increase the
model size and computation overhead.

VI. EXTRACTING PERMISSION-PROTECTED PRIVACY

In this section, we explain how to extract permission-
protected private information by extracting and combining the
private intents from single or multiple VUI responses. Based
on the availability of contextual information, we categorize the
attack model into three different scenarios.

A. One-Time Stealing

One-time stealing means that StealthyIMU only takes a
single VUI response as the input to extract privacy information.
Voice commands (e.g., set/check calendars and alarms, make
calls and send messages, and search for stock, sports, and
music) are usually resolved in a single response, without any
contextual information. The private intents inferred from the

response directly correspond to the private permissions. Such
one-time stealing achieves a relatively lower success rate than
the other two scenarios since it fully depends on the SLU
from a single voice response. In Sec. IX-B, we demonstrate
that StealthyIMU achieves an average 85.28% success rate
across 12 types of voice commands and is also able to identify
other 11 types of voice commands without explicit private
information.

B. Short-Term Contextual Inference

Short-term contextual inference represents the scenario
where StealthyIMU can infer the private information by using
multiple consecutive (= 2) VUI responses. One of the most
frequently-used cases is the navigation app. To direct the user
towards the destination, the navigation app uses a sequence of
navigation voices during navigation. Typically, for each turning
point, there exists 1 or few navigation voices, which provide
contextual information continuously, allowing StealthyIMU to
track the user’s location and even recover the GPS trace. In
this section, we show how StealthyIMU extracts a sequence
of private intents from a navigation process, combined with
the city-scale road map from OpenStreetMap [38], to recover
the GPS trace. Note that 2 consecutive VUI responses are
sufficient to infer the GPS location of the victim. To recover
one GPS route trace, the duration of eavesdropping depends
on the navigation time of this route, which ranges from a few
minutes to a few hours with 2 ~> 50 VUI responses.

Fig. 8 shows an example. Each “black” mark represents
a navigation voice that happens along the route. StealthyIMU
can already extract both the “intent” and “road name” of each
navigation voice following the workflows in Sec. V. The key
problem here is to recover the “blue” trace. To this end, we
design a GPS trace recovery algorithm (see Algorithm 1). Our
basic idea is to first identify the intersection between two
roads (red dots in Fig. 8) by checking the ordered list of road
names that we extracted. Then, we can directly connect each
two consecutive intersection points by using the shortest path
algorithm on the road map.

To enable private information extraction, the GPS trace
recovery algorithm needs to address two challenges uniquely
related to StealthyIMU. First, the intent recognition is not
perfect while the navigation app itself may also produce
occasional incorrect navigation voices due to poor GPS signals.
Therefore, sometimes we cannot find the intersection between
two consecutive roads because of a missing or wrongly recog-
nized road. To improve robustness, we design a correction
mechanism to interpolate/skip a road name to prevent the
false recognition and enable the algorithm to find as many
intersections as possible (Line 3 ~ 10). Further, we observe
that for each “turning” intent, the navigation app repeats the
navigation voice twice, before the turn and right at the turn.
We leverage this redundancy to double-check the road name.

Second, our method can not recover the source or des-
tination points for the route due to a lack of corresponding
intersections. To overcome this problem, we utilize the intent
information to find the names of the first and last road
segments. Then, we use the time interval between the first/last
navigation voice and the first/last turn navigation voice to
estimate the starting point and destination (Line 14 ~ 21).
Besides, the intents of each navigation voice can also help

Algorithm 1: Trace Recovery Algorithm

Input: N commands stolen in whole navigation
Output: Complete trace
1 Extract (intent, road) pairs that appear at least twice in succession;
2 Preprocess the pairs by cleaning, integrating, and sorting;
3 foreach road in road list do
4 if two disjoint roads have shared road then

5 \ Interpolate the shared road to the road list;

6 end

7 if two roads intersect by skipping other roads in between then
8 \ Remove the skipped roads in the road list;

9 end

10 end

11 Find all intersection points for the roads in order;
12 Connect the point sequence to recover the trace with the shortest

path;
13 foreach (intent,road,point) in trace do
14 if first intersection point then
15 Infer the direction of the initial path with the intent;
16 Estimate the starting point based on the time interval.
17 end
18 if last intersection point then
19 Infer the direction of the final destination with the intent;
20 Estimate the destination based on the time interval.
21 end
22 Check the direction in the shortest path with the intent;
23 if direction in the shortest path is against the intent then
24 \ Take the opposite direction of the same road;
25 end
26 end

check whether the shortest path follows the correct intent. If
they are different, we will add another point after the turn
intent to the intersection list to correct the GPS route (Line
22 ~ 25).

C. Long-Term Monitoring

Long-term Monitoring represents the scenario where the
users repeat the same type of voice commands in a few
days, like check weather, air quality and reminder, etc., while
StealthyIMU runs the intent extraction workflow continuously
to steal privacy. Although Sec. VI-A has shown that Stealthy-
IMU can extract the private information with a single VUI
response, the long-term monitoring aims to accumulate its
knowledge over time and improve the accuracy of privacy
extraction. Specifically, we first use the SLU model to detect
the voice command type (Sec. V-B). Then, we calculate the
probabilities of the top-n private entity list output. Since each
voice response is a single individual event, the final success
rate of an attack is the probability of multiple independent
events in the long run.

For a more clear exposition, we take city name extraction
as an example. When asked about the weather, the VUI will
report the weather along with the city name. For a single
VUI response, StealthyIMU takes 120 US cities with more
than 200, 000 population each as the potential city list. Then,
for each potential city name, StealthyIMU takes the specific
MSS of a single VUI response yy as the input and uses the
DNN model in Sec. V to calculate the probability P(z|yg) of
the output token sequence of that city, where x is the token
sequence of that potential city. With multiple such queries
over a few days, StealthyIMU calculates the probability of
each potential city as P(z|ly) = 1 — Hf(l — P(zly:)),
where z is still the token sequence of that potential city, K

- 8 kHZ]
' High Pass N
FRange Filter N 1
- é—ieﬁar_*A 0 kH “:"f = -
0 kHZSpeech Signals ~ T™Me iSpeech SignalsTime

i After Defense

¥
i TR

l_ Chirp Signals 200 HAy 1T i
Duration of with variant ! ‘ i
Speech Signals | cycle, f, and £ AN APT

0Hz

Low Frequency Time
of Defense Signals

Figure 9. Pipeline of the speech predistortion defense.

is the number of VUI responses; y; and y denote the MSS
signals of i-th VUI response and the set of K MSS signals
respectively. StealthyIMU finally estimates the victim’s city
name by selecting the result with the highest probability to
further improve the attacking success rate of StealthyIMU.

Another example is the home address extraction. Google
Map always utters “Welcome home” when reaching the user’s
home as the destination. As discussed in Sec. V, StealthyIMU
first extract the “road name” and “intent” from each navigation
voice. Once StealthyIMU identifies that the “intent” for a
specific navigation voice is “Welcome home”, StealthyIMU
runs the GPS trace recovery (Sec. VI-B) for the previous
consecutive VUI responses to locate the destination of the GPS
trace. Then, with multiple navigation attempts that contain
such an intent to be back “home”, StealthyIMU can calcu-
late multiple potential home addresses. Finally, to improve
the accuracy of home address extraction, we combine these
potential home addresses by first removing the outliers and
then calculating the centroid of the remaining GPS points. In
Sec. IX-D, we evaluate these examples in the wild to show the
threat of long-term monitoring.

VII. DEFENSE AGAINST STEALTHYIMU

In this section, we propose two defense mechanisms that
can thwart the StealthyIMU attack.

A. Predistortion of Speech Signals

Our first defense protects existing smartphones, whose
highest MSS sampling rate is < 500 Hz [1]. Our key insight is
that modifying the low-frequency components of speech signals
will significantly impact the MSS, without noticeably affecting
the human perceivable speech quality.

Figure 9 shows the pipeline of this approach. First, we use a
high-pass filter to remove the low frequency components in the
speech signals with a cut-off frequency f. Hz. We empirically
choose f. = 350 Hz based on the measurement in Sec. IX-G,
to balance the protection of privacy and reduction of speech
quality. Second, we distort the T-F spectrogram of the MSS
by injecting a structured low-frequency interference signal
through the smartphone’s audio interface, more specifically a
chirp signal with varying cycle and starting/ending frequency.
The cycle range of the chirp is set to 100 ~ 200 ms because
we aim to distort the spectrogram of each phoneme which is
the basic unit of voice pronunciation and typically lasts less
than 200 ms [39]. The advantage of this approach is that it only
needs the VUI app vendors, e.g., Google, Amazon, Apple, to
add a pre-distortion stage in their voice responses, without any
hardware modification.

Type Example Voice Command Privacy #
Weather What’s the weather today? Location 12,527
Sun set&rise What’s the sunset in Chennai Location 1,505
AirCheck AQI for San Francisco Location 1,601
Clock What time is it in London Location 1,595
Reminders Set a reminder to check my accoupt Tf)do 2,950
Set a reminder for tomorrow morning Time 2,140
Media Alarms Set an alafm to go to fedex ngo 2,630
Set a music alarm at 8§ PM Time 2,350
Stock Updates Stock price for Apple Search 1,318
Calling Call Sam Contacts 1,120
Navigation Navigate to Los Angeles Location 1,570
Navigation App / GPS 7,885
Fun Tricks What movies are playing? Others 500
Sports Facts What’s the news about the NFL? Others 500
News ‘What’s the news about the covid? Others 500
Calculations What calculation can you do? Others 500
Google Search How tall is the Eiffel Tower? Others 500
Youtube Music Play music on Youtube Music Others 500
Voice Mail Call voicemail Others 500
Youtube Open Youtube Others 500
Chrome Open the Google Trends website Others 500
Youtube TV Play FS1 on Youtube TV Others 500
Broadcast Broadcast a message Others 500
Overall 44,691
Table II. Types of Voice Command and Dataset Scale.

B. Redesigning the Permissions

Although existing smartphone firmware and driver limit the
MSS sampling rate below 500 Hz, the achievable sampling
rate of the motion sensor hardware itself can be much higher.
For example, the InvenSense MPU 6500 motion sensor, used
in Samsung S6 and iPhone 6S, supports up to 4000 Hz. If
such high sampling capabilities are unleashed in the future, the
above defense approach may fail. We thus highly recommend
the smartphone OS to redefine the permissions of the motion
sensor. Since most of the apps do not need extremely high
sampling rates for motion sensors, the smartphone OS can
discriminate the permission levels for different sampling rate
limits, and report the potential threats to the users when an
app requests access to high-rate MSS.

VIII.
A. StealthyIMU Dataset

DATASET AND IMPLEMENTATION

To evaluate StealthyIMU, we collect a new benchmark
dataset that captures the smartphone MSS when the loud-
speaker plays voice responses. Meanwhile, we record the
corresponding voice commands in order to generate the ground
truth labels and facilitate our model training (Sec. V-C). The
trained model will be used later in our real-world attack
evaluation.

Voice response data collection: We adopt a natural lan-
guage voice command text dataset [40], and use Google Text-
to-Speech to synthesize the corresponding speech along with
the wake word preamble “Hey Google”. To collect the dataset
automatically, we use an additional device, i.e., a Macbook
Pro laptop, to playback the voice commands just like a human
user. Meanwhile, a victim’s smartphone hears and responds
to the voice commands through its loudspeaker while the
StealthyIMU app captures the accelerometer signals. We use
an open-source test automation framework, called Appium
[41], to control the laptop and smartphone and streamline the
process. During the data collection, the smartphone is set under
two different real-world scenarios, i.e., on a table and a car
phone mount, respectively.

As shown in Tab. II, we collected 23 types of VUI
responses by asking Google Assistant “What can you do?”.
Among these, 12 types have fixed structures and explicit
permission-protected private information while the other 11
types are unstructured with arbitrary contents. We place these
voice commands into 5 categories based on the targeted
permissions.

e “Access coarse location”: The “Weather”, “Sunset &
Sunrise”, “AirCheck” and “Clock” related responses are to
steal the private information from “Access coarse location”,
i.e. city name of the location. We collect a large dataset for
“Weather” with 12,527 VUI responses and relatively small
datasets for “Sunset & Sunrise”, “AirCheck” and “Clock”™ with
1,595 , 1,601, and 1,595 VUI responses respectively from
120 US cities with more than 200,000 population each [40].
To generate the training data, we first use the Fake GPS app
to change the smartphone GPS to the city, and then playback
the these types of voice commands.

e “Read calendar”: The set/check calendar/reminder/alarm
related responses are used to steal the private information
from “Read calendar” permission. We collect 5,031 and 4, 980
different reminder and alarm commands respectively with 300
frequently-used TODO entities and 300 TIME entities. Since
we know the corresponding voice command for each response,
we can directly extract the TODO entity and TIME entity and
generate the ground-truth entity list.

e “Stock Search”: The stock update check command re-
sponses are used to steal the private information from “Search
history” permission. We collect 1,318 different stock update
commands with top 150 companies with the largest capital in
NASDAQ.

e “Contacts”: The hands-free calling command responses
are used to steal the “Contacts” permission. We collect 1,120
different calling commands with 200 frequently-used name
entities.

e “Others”: There exists other 11 types voice commands
which has unstructured VUI responses with arbitrary contents.
StealthyIMU can not easily extract the explicit private inform-
ation from these VUI responses. Therefore, we label these VUI
responses with “Null” labels.

Finally, we label the ground truth entity list of these voice
responses by listening to the recordings. Note that the VUI
responses are highly diverse, totaling more than 150 hours
and containing more than 4000 frequently-used words. The
VUI responses are collected over more than one year.

Navigation app voice data collecting: To collect the
navigation app voice with ground truth GPS traces, we first use
OpenStreetMap to open a city map. We randomly select two
points on the map separated by > 6 km, and use Google Map
to generate the navigation route. We export the navigation route
to the smartphone, and start the Google Map navigation app to
follow this route. Then we use “MAPS TO GPX” to convert
the Google Map navigation route to a GPX file which contains
the GPS point list of this route. The GPX file is imported to a
“Mock Location” app to follow this route by using fake GPS.
Finally, Google Map is able to navigate the smartphone from
the start point to the destination by checking the fake GPS

10

positions. And again, we use Appium to automate this data
collecting process.

To annotate the ground truth of the navigation voice, we
design an app to listen to each navigation voice and annotate
it based on the potential road name and intent from map and
navigation trace. We collect this dataset from two cities.

o City A: a typical city with a population of > 1.5 million
and area approximately 800 km?. We collect 300 routes with
5,091 navigation voices which contain more than 1,800 km
mileage, 419 roads (95% coverage) and 7 highways (100%
coverage) and 55 highway (92% coverage) exits.

e City B: a metropolitan city with a population of > 5
million and area of 800 km?. We collect 150 routes with 2794
navigation voices which contain more than 900 km mileage,
559 roads (37% coverage) and 8 highways (100% coverage)
and 42 highway (84% coverage) exits.

B. Implementation

DNN Implementation: We implement the voice response
identification DNN model (Figure 4) and voice response SLU
model (Figure 6) in PyTorch. For training, we use the NewBob
learning rate strategy [42] at a 3e — 4 initial learning rate
followed by annealing. The default training batch size is 8,
and the number of epochs is 30. The pretrained models are
then converted into Just-In-Time (JIT) PyTorch model running
on smartphones.

Attack Implementation We implement two versions of
StealthyIMU, one running entirely on an Android phone and
the other facilitated by a cloud server. Our app can choose
to i) detect voice on the smartphone or stream the signals
continuously to the cloud; ii) save the signals in the memory
or local storage; iii) execute the attack either on device or in
cloud. We evaluate the system overhead and permission risks
of these different attack surfaces in Sec. IX-F.

IX. EVALUATION

The evaluation of StealthyIMU consists of four parts. First,
from Sec. IX-A to Sec. IX-D, we use the default large-scale
dataset discussed in Sec. VIII-A for training. And then, we
test StealthyIMU by collecting specific testing dataset for each
attacking mode. Second, in Sec. IX-E, we collect additional
testing datasets with different real-world scenarios and evaluate
StealthyIMU across different factors to see whether the model
can generalize to new scenarios. Finally, we evaluate the
system overhead and defense mechanisms of StealthyIMU in
Sec. IX-F and Sec. IX-G respectively.

A. DNN Model Ablation Study

We first conduct an ablation study to evaluate the accuracy
and efficiency of the StealthyIMU DNN models, i.e., VUI
response identification (Sec. IV) and VUI response private
entity recognition (Sec. V). In this study, we use the dataset
containing 23 types of VUI responses, as discussed in Sec.
VIII-A. We mixed all of the VUI responses and train a single
model to extract the private information from a VUI response
across different types of VUI responses. We split the dataset
into training, validation, and testing set with 8 : 1 : 1 ratio.

of Type # of Training TER SEER SER
1 1,000 0.00% 28.86% 48.53%
1 8,000 0.00% 8.71% 14.81%
3 15,000 0.00% 7.49% 12.73%
23 35,000 0.00% 8.46% 14.45%
Table III. Impacts of Training Datasets.
DNN model .
N T Channel Kernel FON | Si%° EER
5 [(512%4),1500] [5,3,3,1,1] 512 4.5MB 2.43%
5 [(512%4),1500] [5,3,3,1,1] 16 2.7MB 3.33%
3 | [(512%2),1500] | [5,3,1] 16 17MB | 3.41%
3 | [(512%2),1500] | [1,2,1] 16 1AMB | 3.81%
3 | [(128%2),256] [L21] 16 796KB | 4.95%
3 [(32%2),64] [1,2,1] 16 6.5KB 8.60%
Table IV. VUI response identification ablation study.

VUI Response Identification: We use EER, a well-known
speaker identification metric, at which both acceptance and
rejection errors are equal [43], to evaluate our VUI response
identification method. Here we aim to identify the 10 voices
(5 male and 5 female) on Google Assistant, along with a class
for other non-VUI sound sources. Table IV summarizes the
results. Since a small model degrades the performance signi-
ficantly while a large model consumes more system overhead
(Sec. IX-F), we empirically choose a medium size model of
1.7 MB model as our default model. As shown in Fig. 10, our
DNN model is able to accurately identify the different voice
sources, with a maximum EER of less than 6.73% (3.41% on
average).

VUI Response Private Entity Recognition: Unlike speech
recognition metrics, such as Word Error Rate (WER) and
Character Error Rate (CER), a more reasonable way to eval-
uate the private entity recognition within VUI response is to
check whether StealthyIMU can understand the whole entity
correctly. Therefore, we use the following 3 metrics: i) Type
Error Rate (TER) which indicates whether StealthyIMU can
recognize the type of the VUI response, i.e., weather, calendar
and navigation; ii) Single Entity Error Rate (SEER). There
may exist more than one entities in a single VUI response.
SEER mainly takes a single entity as a unit to report the error
rate; iii) Sentence Error Rate (SER) which counts an error-free
recognition only if all the entities in a single VUI response are
identified correctly.

We compare the performance of 3 different models to
resolve the VUI response private entity recognition task, 1)
“ASR+NLU”: a cascaded approach with an ASR model to
recognize the text from the MSS and an NLU model to extract
the entity list from the text (Sec. II); 2) “SLU”: StealthyIMU’s
SLU model without speech model knowledge distillation; 3)
“SLU+KD”: StealthyIMU’s SLU model with speech model
knowledge distillation. Table VI summarizes the results. The
key problem of “ASR + NLU” is that the ASR model can only
achieve 68.16% WER, which makes it hard for the follow-on
NLU to extract the correct private entities. In contrast, SLU
model directly optimizes the target of extracting the private
entities from MSS. With the help of knowledge distillation
from the teacher model, it becomes even more accurate. On
average, “SLU+KD” StealthyIMU achieves a 0.00% TER,
8.46% SEER, and 14.45% SER with a 3.9 MB model size.

Next, we conduct a ablation study on the StealthyIMU
SLU model by modifying the parameters of the Tokenizer,

11

3F

9 T
~ | M Female 6.73
=6/l Male _ 6.03 |
v || Others . :
w .

0.05
P1

P2

P3 P4 P5 P68 P7 P8
Google Assistant Voice Type

P9

Figure 10. Google Assistant Voice Identification

Encoder and Decoder, as shown in Fig. V. We find that:
(i) A subword-level tokenizer (IV; 50) does not improve
performance when the model size is small since it needs more
parameters to learn the subword level characteristics. (ii) RNN
is the most important block in our encoder. If we reduce the
layers of the RNN blocks, the model performance will degrade
significantly. (iii) The attention and hidden layer size impact
the performance of the decoder. Based on these observations,
we choose the model with 3.9 MB size as default model for
VUI response private entity recognition (highlight in Table V).

Finally, we conduct experiments to evaluate the impacts
of training and testing dataset. In Tab. III, we evaluate
StealthyIMU in three different settings, i.e., training and testing
StealthyIMU by using (i) single type of voice command; (ii)
3 types of voice command with large-scale dataset (Weather,
Reminders and Navigation App in Tab. II); (iii) all of 23
types of voice command. We find that (i) training and testing
StealthyIMU with 3 types of voice commands achieve similar
results as training/testing with 23 types of voice commands.
(ii) if we use a single type of voice command to train the
model, StealthyIMU requires a large-scale dataset to achieve
high performance. In comparison, if we train the model with
multiple types of voice commands, the scale of a specific type
of voice command can be small. We believe that this is because
a larger dataset with more diverse voice commands empowers
the model to better generalize, so it is able to recognize the
private entities from different formats of VUI responses.

B. One-time Stealing

In the one-time stealing experiments, we use the same
training and testing setting as in Sec. IX-A. A single model
is trained to extract the private entities from a single VUI
response across 23 types of voice commands. We select the
model and parameters with the highest performance in Sec.
IX-A. For the rest of the evaluation, we use this general
DNN model as our default model to extract the private entities
without training any new DNN models.

Tab. VII shows that a single DNN model can accomplish
one-time stealing with an average success rate of 85.28%
even without contextual information. Moreover, StealthyIMU
achieve higher performance for structured VUI responses, i.e.
“Weather”, “Sunset & Sunrise”, “AirCheck”, “Clock”, “Stock
Update” efc. Although voice commands like “Reminders”,
“Media Alarm”, “Hands Free Calling” and “Navigation App”
has complicated response formats resulting in relatively lower
success rate for one-time stealing, they can still achieve > 70%
success rate. We believe that with more training data, they will
achieve even higher success rate.

Token Encoder (CDRNN) Decoder (GRU + Model
CNN Blocks RNN Blocks DNN Blocks KeyValue Attention) Size TER SEER SER
Ny Ne | K. C. N, H, Nea | Oca | Na d da | Ea
50 2 3 | (128,256) | 4 | 1024 2 512 3 | 512 | 512 | 128 | 1064 MB | 0.00% | 13.22% | 21.31%
50 2 3 (64, 128) 4 256 2 256 3 | 256 | 256 | 64 9.1 MB 0.00% | 9.65% | 15.32%
B i i T - i - i -) 0.00% | 11.68% | 20.01%
0.00% | 10.85% | 18.99%
[] Recognized intersection @ Rec: () Recognized intersection
* Voice Command Reply * Voir * Voice Command Reply
b
(a) Case 1 (c) Case 3
Figure 11. GPS trace recovery examples
Model Size | TER | SEER SER 1
ASR+NLU | 265 MB 0% | 4645% | 7791% O_SK/’K/ g
STLU 3.8 MB 0% | 14.76% | 25.16% > 22
SLU+KD 3.8 MB 0% 8.46% 14.45% 506 Z
o ©
Table VI SLU model training approach. 04 S 32
- . o
Type Private Entity | TER | SEER SER ®#] [Wr correction mechanism 70
- /o correction mechanism
‘Weather Location 0.00% 3.05% 5.38% 00 500 1000 1500 2000 65 1) 3 4 5
SunseF & Sunrise Locat?on 0.00% 7.14% 13.97% GPS Distance Error (m) Num of Responses
AirCheck Location 0.00% 1.49% 3.33% . .
Clock Tocation 0.00% 1 2.13% 318% Figure 12. Short-term Figure 13. Long-term
Reminders Todo 0.00% | 736% | 13.21%
Time 0.00% | 15.25% | 29.94%
Media Alarms odo 8-88;‘7/0 ?f‘:‘ﬁ/ ég?g? our algorithm can only assign the last named road as the end
me A 0 . 0 . 0 .
Stock Updates Search 0.00% T 733% T1354% point. Case 3 shows a perfect example of GPS trace recovery,
Hands Free Calling Contacts 0.00% | 12.18% | 22.64% where all the intersection points are accurately identified.
Navigation Location | 000% | 2.19% | 3.89% These examples demonstrate that our recovery algorithm needs
Navigation App GPS 0.00% | 162% | 26.19% 1 . h q based hich i
Others 7 031% T 031% 031% to accurately recognize the road names, based on which i1t
Overall 0.00% | 8.06% | 1445% can generate the final route through the shortest path between
Table VII One-time stealing results consecutive intersections on the map.

C. Short-term Contextual Inference

We now proceed to verify the short-term continuous navig-
ation voice and the GPS trace recovery algorithm. We collect
a testing dataset in City A and make sure there is no overlap
with the training dataset in Sec. IX-B. Then, we use the DNN
model trained in Sec. IX-B to extract the private entities of
each VUI response from the testing dataset. Finally, we apply
the GPS trace recovery algorithm to the extracted private
entities from consecutive VUI responses and compare the
result with the ground truth GPS trace. To better illustrate our
approach, we first show three examples of GPS trace recovery
in Fig. 11. Then we evaluate the effectiveness of our route
correction mechanism, and present the results of the end point
localization.

In Case 1 of Fig. 11, our model only identifies 2 out of 3
intersections, and the shortest path between these two points
deviates from the true path. If we could accurately identify
the 3 intersections, then the path would be correct. Case 2
shows that if the final destination is on an unnamed road,

In order to quantify the actual performance of the al-
gorithm, we perform a real-world field test in City A during
daily driving and recover over 500-mile real routes. During
the navigation process, we simultaneously record the results
with and without the route correction mechanism. In terms of
route coverage, the average route coverage rate without route
correction is 52.46%, and increases to 62.87% after correction.
Moreover, as shown in Fig. 12, 80% of the GPS distance
errors are within 30 m after correction, in contrast to 63%
before correction. In addition, we count the distance devi-
ation between the recovered destination and the ground truth.
According to our statistics, the min/average/max deviation is
3 m/133 m/420 m. The average deviation is large, because
sometimes the destination is on an unnamed road, and we can
only use the end point of the last named road as a replacement,
as shown in Case 2 in Fig. 11.

D. Long-term Monitoring

Our long-term monitoring experiments focus on city name
and home address identification.

12

0.5 ° —
// P
o 9 Y { o .
\ /
S-05 N W
=
® 1
4 [
4 -1.5 Y
5 ‘ Predicted location
- A Pprediction location w/o outliner
-25 Final predicted location
Home address ground truth

-3 . . .
3-25-2-15-1-050 05 1 15 2
A Longitude

Figure 14. Long-term home address inference.

Routes Roads Seg SEER SER
City A 300 419/441 5091 9.31% 19.77%
City B 150 559/1511 2794 16.25% | 32.41%
Table VIIL Navigation voice for different cities.

For the city name extraction, we collect a testing dataset in-
cluding “Weather”, “Sunset & Sunrise”, “AirCheck”, “Clock”
and “Navigation” voice commands over one months. Then, we
perform private entity recognition on each VUI response in the
testing set by using the default DNN model in Sec. IX-B. Then,
we combine the results from multiple VUI responses by using
the methods discussed in Sec. VI-C to demonstrate the scenario
where StealthyIMU keeps monitoring the VUI responses over
a few days. As shown in Fig. 13, as the victim repeats the
inquiries over time, the probability that StealthyIMU correctly
identifies the city name increases from 70% (1 inquiry) to
above 98% (3+ inquiries).

For the home address identification, we collect a testing
dataset containing 10-day routes back to home. Then, we
follow the steps in Sec. IX-C to recover the GPS trace of these
10 routes, and mark the destination of the recovered GPS trace
as the home address. Fig. 14 visualizes the results of home ad-
dress inference. The @ represent the results of repeated attempts
on home address inference, and A represent the remaining GPS
points after removing outliers. Finally, we use the centroid of
these remaining GPS points as the address estimation. In this
example, the deviation between the StealthyIMU estimation
and the ground truth home destination is only 11 meters by
combining 10 attempts of address estimation.

E. Generalization

In this section, we evaluate StealthyIMU generalization
across different factors to see whether the model can work
on a new scenario. By default, we use the model trained in
Sec. IX-B as our baseline model, and collect additional testing
datasets with different real-world scenarios.

Generalization across different sound volumes, smart-
phone models and sampling rate settings: Loudspeaker
volume determines the vibration magnitude of the smartphone
during a VUI response, and hence affects the SNR of the MSS.
We evaluate 5 different volume levels as shown in Fig. 15(a).
When the volume exceeds the default level of our experiments
(80%), StealthyIMU achieves > 10 dB SNR, and the SER
(SEER) is smaller than 10% (15%). When the volume falls
below 40%, the SER (SEER) is > 80% (95%).

13

(6N Sampling
Phone Version Rate SER SEER
OnePlus Android 11 440 Hz 13.85% 8.99%
Samsung S8 Android 9 400 Hz 13.39% 8.65%
Samsung S8 Android 9 200 Hz 62.69% 38.30%
Samsung S8 Android 9 100 Hz 84.01% 52.50%
Huawei Mate 20 Android 9 500 Hz 17.20% 10.07%
Samsung S7 Android 8 420 Hz 15.57% 9.17%
Table IX. Generalization across different smartphones and sampling rate
21 30
+ Samsung S8 2510
18 - Samsung S7 25 Il SEER f
15 Huawei Mate20 -~
o - LG G4 5 20
12 + Handhold w
I Walking 015
z 9 > Driving o3
(7] o 10
6]
3 @5
0 100% 80% 60% 40% 20% 0 S8 S7 Mate20Hold Walk Drive
Volume Level Voice Command Type
(a) SNR (b) SER & SEER
Figure 15. Generalization across different smartphones, volume levels, and

motion artifacts. “Driving” achieves higher performance because it is evaluated
by navigation data set only while others are evaluated by general dataset.

We further run StealthyIMU on 5 different smartphones,
equipped with IMU sensors from different vendors and differ-
ent sampling rate (100 ~ 500 Hz). As shown in Fig. 15(a),
smartphones released within 5 years, i.e., OnePlus, Samsung
S7, S8, Huawei Mate20, all support > 400 Hz sampling
rate which suffices for the StealthyIMU attack. Although the
layout of the IMU sensor on the smartphone motherboard may
vary, the signal SNR is similar among these smartphones.
When the volume level is higher than 80%, StealthyIMU
DNN model achieves an 15.39% SEER and 9.30% SER on
average when trained with the mixed dataset collected from
these three smartphones. On the other hand, the StealthyIMU
attack becomes less effective when the MSS sampling rate falls
below 200 Hz.

Generalization under different motion artifacts: We
measure the impacts of interference from 3 motion artifacts:
holding the smartphone in hand, walking, and driving with
the smartphone on a car phone mount. Most of the noise
introduced by human motion, like holding and walking, is
low-frequency [27]. Thus, after applying a high-pass filter, the
signal SNR remains high, while the SEER and SER are 10.3%
and 16.8%—only slightly higher than the static case.

In the driving scenario, the main vibration interference
comes from the car’s body. The dominant noise frequency can
be estimated by f,(t) %é) * (N./2), where R(t) is the
rotational speed of engine in revolutions per minute (RPM)
and N, is the cylinder number of the engine. For example, a
car with a 4-cylinder engine generate the vibration noise of
less than 100 Hz even at 3000 RPM (the RPM for normal
driving is 1500 ~ 2500 [44]). Therefore, to isolate the driving
noise, we simply apply a high-pass filter with 100 Hz cut-
off frequency and use 24 frequency bins within the frequency
range of (100, 250] Hz as the input features to retrain the DNN
model. StealthyIMU maintains a high signal SNR of 12.56 dB,
and low SER (SEER) of 25.10% (11.93%), when the victim
smartphone is in a car with a 4-cylinder engine and speed
ranging from 30 to 110 km/h.

Mobile Segment Segment Peak Power
Data Storage Memory CPU
1 100 KB/min / / / /
2 16 KB/Seg 16 KB/Seg / 5% 36 mW
3 16 KB/Seg / 16 KB/Seg 5% 35 mW
4 / / 16 KB/Seg 5% 35 mW
Table X. Voice detection and segmentation overhead.
Model Peak APP Time Energy
Size CPU Memory (s/Seg) (mAh/Seg)
ID 79.6 KB 5% 4.1 MB 9.8¢ — 3 6.5e — 3
ID 1.7 MB 5% 7.4 MB 53.3e — 3 1.1le — 3
SLU 9.1 MB 13% 54.5 MB 4.60 0.65
SLU 3.9 MB 12% 34.5 MB 1.19 0.17
Table XI. On-device DNN overhead. ID: VUI response identification

model; SLU: VUI response private entity recognition model.

Generalization across different cities: We perform a fake
GPS test of StealthyIMU in two cities with different geograph-
ical layout (Sec. VIII-A). Note that StealthyIMU can only
extract the GPS location for a specific city with the training
dataset, and the DNN model needs to have the capability
to extract the road names in a specific city. Therefore, we
train the private entity recognition DNN models for city A
and B respectively and evaluate the performance by using the
corresponding model. This procedure is practical in real-world
because the attacker can easily extract the city name of the
victim’s location by using long-term monitoring (Sec. VI-C)
and select the corresponding model for further attack. As
shown in Table VIII, although our dataset only covers 37%
of the roads in City B, the SEER and SER of City B is still
reasonably low (16.25% and 32.41% respectively), because
even with such a small dataset, StealthyIMU can already
recognize the main roads in the city, which will be frequently
passed by users. By enriching our dataset, the accuracy can be
further improved. We leave such incremental refinement for
future work.

F. System Overhead Evaluation

We evaluate the system overhead and required permissions
when processing StealthyIMU in cloud or on device. Based
on our threat model (Sec. III), we summarize 4 deployment
models of StealthyIMU: /. The malicious app steams the MSS
to the cloud for processing; 2. The malicious app detects the
voice-associated signals on device and saves the segments in
local storage, and then the segments will be uploaded to the
adversaries’ cloud for further processing; 3. The process is
similar to 2 except that the segments will be saved in app
memory; 4. StealthyIMU attack is deployed fully on device.

To compare the 4 options, we deploy the StealthyIMU
attack on Samsung Galaxy S8 with Qualcomm Snapdragon
835 CPU, assuming that StealthyIMU is not able to access
the GPU resources. We use Android Profiler [45] and app
power monitor to measure the on-device overhead in terms of
energy, CPU, memory, storage, and mobile data usage. Table X
shows the results. Option 1 requires the “network” permission
when the StealthyIMU app is running in the background
and consumes 100 KB/min mobile data. In comparison, both
option 2 and 3 need to upload the data to the cloud only
when the voice is detected. The difference is that option 2
needs the “storage” permission whereas option 3 does not.
Option 4 executes the entire StealthyIMU on device with zero
permission. The peak CPU usage and power consumption of

14

~ SNR:50~75Hz 14 g
SNR: 75~100Hz -
S20[| - SNR: 100~125Hg] 12 5 $
— =1 T —10|[* sNR s0~75Hz
1] -] * SNR:75~100Hz 2
T Oz 18 T 81+ sNR:100-125Hz 4=
M (=2 o 6| Score:s0~75Hz S
Z &gl T = * Score: 75~100Hz 30
”n z T) 47+ Score: 100~125Hz - <
I |- score: Wio Defense] *~_ — 8
14 - 2 0
0 AN &
0 12 2 4
Raw200 250 300 350 400 0.1 0.2 0.3 04 01 02 03 04
Cut-off Frequency (Hz, Chirp Am, Chirp Amplitude
y P P
(a) fe v.s. SNR (b) PSNR (¢) SNR v.s. Speech Quality

Figure 16. Predistortion Speech Defense

Chirp freq (Hz) Amp Comfort | Intelligibility Noise Overall

/ 0 5.5 5.17 4.83 5.17
50~75 0.1 5.33 6.00 5.17 5.50
50~75 0.2 4.83 5.83 5.00 5.22
50~75 0.3 5.17 6.00 5.00 5.39
50~75 0.4 5.17 5.67 5.33 5.39
75~100 0.1 4.67 6.00 4.83 5.17
75~100 0.2 4.83 5.67 5.33 5.28
75~100 0.3 5.17 5.83 4.67 5.22
75~100 0.4 3.83 5.17 3.33 4.11
100~125 0.1 4.67 5.50 5.17 5.11
100~125 0.2 4.33 5.33 3.83 4.50
100~125 0.3 2.50 3.83 2.33 2.89
100~125 0.4 1.83 3.33 2.00 2.39
Table XII. Defense Speech Quality Subjective Assessment

voice detection and segmentation are less than 5% and 46 mW
respectively, which means that it only consumes 5.6% battery
for 24 hours on a typical smartphone (3000 mAh, 3.7 V).

Table XI shows the on-device DNN overhead. The input
of our DNN is the voice-associated MSS segments, so we use
seconds per segment and mAh per segment to measure the
time and energy consumption of our models. Medium sized
DNN models, i.e., identification model with 1.7 MB model
size and SLU with 3.9 MB model size, are more feasible for
the on-device attack because the performance is close to the
large models (Sec. IX-A) while the overhead is significantly
lower. The app memory consumption is less than 42 MB
in total and the peak CPU usage is less than 13%. These
DNN models can recognize 176 voice-associated segments
with less than 1% battery consumption. Overall, the behavior
of the zero-permission on-device StealthyIMU is unlikely to
be distinguishable from an innocuous app.

G. Defense Evaluation

We use three metrics to evaluate the defense capability of
the proposed speech predistortion defense: 1) SNR, 2) PSNR,
and 3) DNN model SEER and SER. As shown in Fig. 16(a),
the high pass filter mechanism can reduce the SNR of the MSS
by 12.7 dB. When the cut-off frequency f. exceeds 350 Hz,
the SNR will not decrease significantly anymore since this is
close to the highest sampling rate (500 Hz) and the harmonics
of higher frequencies start to emerge. Further augmented with
chirp distortion, our defense mechanism reduces the PSNR
down to 16 when the chirp frequency is set to 100 ~125 Hz
and amplitude 0.1. This implies the structural features within
the spectrogram are substantially corrupted, since intelligible
speech requires 25 ~ 30 PSNR [46].

Next, we investigate the trade-off between defense capabil-
ity and speech quality. We conducted a subjective assessment
to evaluate the speech quality after our speech predistortion

defense. We recruited 30 volunteers (23 males and 7 female
with ages in the range of 19 to 27) to assess the speech quality.
In each study, we first randomly select a speech signal with
a single VUI response with 12 different predistortion defense
parameters and a raw signal without predistortion defense. And
then the volunteers are asked to listen to the selected speech
signals transmitted by 15 different smartphones without any
prior knowledge of the signals. After listening to the speech
signals, three metrics are assessed through a questionnaire
with 1 ~ 7 rating [47] for each question: (i) Comfort: Do
you feel comfortable with that speech? (ii) Intelligibility: Can
you understand that speech? (iii) Quality: Can you hear noise
in that speech signals? Each volunteer will assess all of 13
different speech signals. Table XII shows the results of our
subjective assessment. Fig. 16(c) shows the mean values of the
subjective metrics. We observe that, with the high pass filter
and the default chirp frequency band 100 ~ 125 Hz and chirp
amplitude 0.1 in the predistortion, the speech quality score is
5.11—close to that without predistortion (5.17), whereas the
attacker’s SNR and PSNR drop sharply (2.78 dB and 15.81)
below the threshold for intelligible speech.

We further verify whether an attacker can circumvent the
predistortion defense by using the predistorted MSS to train its
SLU model. We first apply predistortion to our MSS dataset,
and then use the SLU model configurations with the best
performance to train and test the dataset. The result shows
95.06% SER and 89.17% SEER, which means that the pre-
distortion defense is sufficient to prevent the StealthyIMU from
recognizing the private intents. The attacker cannot reverse the
speech predistortion from the MSS, even if it knows how the
predistortion is applied.

X. CONCLUSION

We have demonstrated the feasibility and effectiveness of
StealthyIMU, a new threat that allows a zero-permission app to
steal private information from VUI responses on a smartphone.
The attack surface lies in a side channel, where in a motion
sensor “overhears” the low-frequency vibration from the co-
located loudspeaker. Although word-by-word transcription of
general speech is challenging [19], we leverage the determ-
inistic features of the machine-rendered VUI responses, and
design a speech detection and understanding model to extract
the private information. We further optimize the model and
limit its resource usage, so it is indistinguishable from an in-
nocuous app. Our case studies show that StealthyIMU can ac-
curately steal crucial permission-protected private information,
such as contacts, search history, calendar, home address, and
GPS routes, from popular VUIs such as Google Assistant and
Google Map. We further develop effective defense mechanisms
which can help VUI vendors remove the vulnerability.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments. This work is partially supported by the
NSF under Grants CNS-1901048, CNS-1925767, and CNS-
2128588.

15

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

Z. Ba, T. Zheng, X. Zhang, Z. Qin, B. Li, X. Liu, and K. Ren,
“Learning-based practical smartphone eavesdropping with built-in ac-
celerometer,” in Proceedings of NDSS, 2020.

S. A. Anand, C. Wang, J. Liu, N. Saxena, and Y. Chen, “Spearphone:
a lightweight speech privacy exploit via accelerometer-sensed reverber-
ations from smartphone loudspeakers,” in Proceedings of ACM WiSec,
2021.

S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accel-
print: Imperfections of accelerometers make smartphones trackable.,”
in NDSS, 2014.

L. Zhang, P. H. Pathak, M. Wu, Y. Zhao, and P. Mohapatra, “Accelword:
Energy efficient hotword detection through accelerometer,” in Proceed-
ings of ACM MobiSys, 2015.

C. Shi, X. Xu, T. Zhang, P. Walker, Y. Wu, J. Liu, N. Saxena,
Y. Chen, and J. Yu, “Face-mic: inferring live speech and speaker
identity via subtle facial dynamics captured by ar/vr motion sensors,”
in Proceedings of ACM MobiCom, 2021.

E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory: pass-
word inference using accelerometers on smartphones,” in Proceedings
of ACM Workshop on Mobile Computing Systems & Applications, 2012.

A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of ac-
celerometer side channels on smartphones,” in Proceedings of ACSAC,
2012.

E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: your finger taps have fingerprints,” in Proceedings of ACM
MobiSys, 2012.

H. Wang, T. T.-T. Lai, and R. Roy Choudhury, “Mole: Motion leaks
through smartwatch sensors,” in Proceedings of ACM MobiCom, 2015.

X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes
evil: Keystroke inference with smartwatch,” in Proceedings of ACM
CCS, 2015.

C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe? your
wearable devices reveal your personal pin,” in Proceedings of ACM
AsiaCCS, 2016.

C. X. Lu, B. Du, H. Wen, S. Wang, A. Markham, I. Martinovic, Y. Shen,
and N. Trigoni, “Snoopy: Sniffing your smartwatch passwords via deep
sequence learning,” Proceedings of ACM IMWUT (UbiComp), 2018.

J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accomplice:
Location inference using accelerometers on smartphones,” in Proceed-
ings of IEEE COMSNETS), 2012.

S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring user
routes and locations using zero-permission mobile sensors,” in 2016
IEEE S&P, pp. 397-413, IEEE, 2016.

J. Hua, Z. Shen, and S. Zhong, “We can track you if you take the
metro: Tracking metro riders using accelerometers on smartphones,”
IEEE Transactions on Information Forensics and Security, 2016.

A. Mosenia, X. Dai, P. Mittal, and N. K. Jha, “Pinme: Tracking a
smartphone user around the world,” IEEE Transactions on Multi-Scale
Computing Systems, 2017.

Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, and
G. Nakibly, “Powerspy: Location tracking using mobile device power
analysis,” in Proceedings of USENIX Security, 2015.

Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing

speech from gyroscope signals,” in Proceedings of USENIX Security
Symposium (USENIX Security), 2014.

S. A. Anand and N. Saxena, “Speechless: Analyzing the threat to

speech privacy from smartphone motion sensors,” in Proceedings of
IEEE Symposium on Security and Privacy (S&P), 2018.

S. A. Anand, C. Wang, J. Liu, N. Saxena, and Y. Chen, “Spearphone:
A speech privacy exploit via accelerometer-sensed reverberations from
smartphone loudspeakers,” arXiv preprint arXiv:1907.05972, 2019.

G. Tur and R. De Mori, Spoken language understanding: Systems for
extracting semantic information from speech. John Wiley & Sons, 2011.
D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu, and Y. Bengio,
“Towards end-to-end spoken language understanding,” in Proceedings
of IEEE ICASSP, 2018.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy,
C. Doumouro, T. Gisselbrecht, F. Caltagirone, T. Lavril, et al., “Snips
voice platform: an embedded spoken language understanding system
for private-by-design voice interfaces,” arXiv:1805.10190, 2018.

A. Caubriere, S. Ghannay, N. Tomashenko, R. De Mori, A. Laurent,
E. Morin, and Y. Esteve, “Error analysis applied to end-to-end spoken
language understanding,” in Proceedings of IEEE ICASSP, 2020.
Google, “Android permission API reference,” 2019. https://developer.
android.com/reference/android/Manifest.permission/.

Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, and G. Zhou,
“Accurate, fast fall detection using gyroscopes and accelerometer-
derived posture information,” in Proceedings of IEEE International
Workshop on Wearable and Implantable Body Sensor Networks, 2009.

R. Khusainov, D. Azzi, I. E. Achumba, and S. D. Bersch, ‘“Real-time
human ambulation, activity, and physiological monitoring: Taxonomy
of issues, techniques, applications, challenges and limitations,” Sensors,
2013.

D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
“X-vectors: Robust dnn embeddings for speaker recognition,” in Pro-
ceedings of IEEE ICASSP, 2018.

D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep
neural network embeddings for text-independent speaker verification.,”
in Proceedings of Interspeech, 2017.

K. Okabe, T. Koshinaka, and K. Shinoda, “Attentive statistics pooling
for deep speaker embedding,” in Proceedings of Interspeech, 2018.

A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale
speaker identification dataset,” Proceedings of Interspeech, 2017.

M. Zeineldeen, A. Zeyer, W. Zhou, T. Ng, R. Schliiter, and H. Ney,
“A systematic comparison of grapheme-based vs. phoneme-based label
units for encoder-decoder-attention models,” arXiv:2005.09336, 2020.

T. Kudo and J. Richardson in Sentencepiece: A simple and language in-
dependent subword tokenizer and detokenizer for neural text processing,
2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and L. Polosukhin, “Attention is all you need,” in Proceedings
of NeurIPS, 2017.

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of NeurIPS, 2014.

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” in Proceedings of
IEEE ICASSP, 2015.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in Proceedings of NeurIPS Deep Learning Workshop,
2014.

M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”’
IEEE Pervasive computing, 2008.

K. Sun, C. Chen, and X. Zhang, ““alexa, stop spying on me!” speech
privacy protection against voice assistants,” in Proceedings of ACM
SenSys, 2020.

S. Schuster, S. Gupta, R. Shah, and M. Lewis, “Cross-lingual transfer
learning for multilingual task oriented dialog,” Proceedings of NAACL,
2019.

N. Verma, Mobile Test Automation With Appium. Packt Publishing Ltd,
2017.

S. Wiesler, A. Richard, R. Schliiter, and H. Ney, “Mean-normalized
stochastic gradient for large-scale deep learning,” in Proceedings of
IEEE ICASSP, 2014.

J. Oglesby, “What’s in a number? moving beyond the equal error rate,”
Speech communication, 1995.

autoblog, “How to Monitor Your RPM Gauge to Get the Best Perform-
ance Out of Your Car,” 2016. https://www.autoblog.com/2016/04/14/
how-to-monitor-your-rpm- gauge- to- get- the-best- performance-out-of/.
“Android Profiler,” 2022. https://developer.android.com/studio/profile.
S. Zhu, C. Zhang, and X. Zhang, “Automating Visual Privacy Protection
Using a Smart LED,” in Proceedings of ACM MobiCom, 2017.

G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information.,” Psychological
review, 1956.

16

