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ABSTRACT 

We construct a reduced, data-driven, parameter dependent effective Stochastic Differential Equa- 
tion (eSDE) for electric-field mediated colloidal crystallization using data obtained from Brownian 
Dynamics Simulations. We use Diffusion Maps (a manifold learning algorithm) to identify a set of 
useful latent observables. In this latent space we identify an eSDE using a deep learning architec- 
ture inspired by numerical stochastic integrators and compare it with the traditional Kramers-Moyal 
expansion estimation. We show that the obtained variables and the learned dynamics accurately en- 
code the physics of the Brownian Dynamic Simulations. We further illustrate that our reduced model 
captures the dynamics of corresponding experimental data. Our dimension reduction/reduced model 
identification approach can be easily ported to a broad class of particle systems dynamics experi- 
ments/models. 

 
1 Introduction 

The identification of nonlinear dynamical systems from experimental time series and image series data became an 
important research theme in the early 1990s [25, 37, 36]. After lapsing for almost two decades, it is now experienc- 
ing a spectacular rebirth. A key element of the older work was the use of neural architectures [14, 37] (recurrent, 
convolutional, ResNet) motivated by traditional numerical analysis algorithms. Importantly, such architectures allow 
researchers to identify effective, coarse-grained, mean-field type evolution models from fine-scale (atomistic, molecu- 
lar, agent-based) data [29, 5]. 

In this paper, we identify coarse-grained, effective stochastic differential equations (eSDE) for colloidal particle self- 
assembly based onfine-grained, Brownian dynamics simulations under the influence of electric fields [51, 11]. We 
demonstrate that the identified eSDE encodes accurately the physics of the Brownian Dynamic simulations and cap- 
tures the dynamics of corresponding experimental data. Those experiments have previously been shown to quantita- 
tively match to BD simulations at equilibrium in terms of time-averaged distribution functions [11, 18, 20]. Figure 1 
shows a sample path of a latent space trajectory t, φ(t) t 0 computed through our learned eSDE. The corresponding 

instantaneous particle conformations are indicated at representative points along the trajectory. A key feature of our 
work is the selection of the coarse-grained observables (the variables of our eSDE) in a data-driven manner, using 
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manifold learning techniques like Diffusion Maps [7]. The dependence of the dynamics on physical control parame- 
ters (here a driving voltage) is included in the neural architecture and learned during training. A second key feature is 
that the neural network architecture for eSDE identification is not based on established Kramers-Moyal estimation 
techniques e.g. [15, 38], but rather (in the spirit of the early work mentioned above) on numerical stochastic integration 
algorithms [9]. 

 
 

Figure 1: A trajectory of an effective, reduced eSDE in the data driven collective coordinate φ for electric-field 
mediated colloidal crystallization. 

 

 
The motivation of the effective SDE is to better understand the ability to assemble nano- and micro- colloidal particles 
into ordered materials and controllable devices. This could provide the basis for emerging technologies (e.g. photonic 
crystals, meta-materials, cloaking devices, solar cells, etc.), [1] but also impact traditional applications (e.g. ceram- 
ics, coatings, minerals, foods, drugs [40],[53]). Despite the range of applications employing microscopic colloidal 
particles, current state-of-the-art [17] capabilities for manipulating microstructures in such systems are limited in two 
ways: (a) the degree of order that can be obtained, and (b) the time required to generate ordered structures. Both of 
these limitations are due to fundamental problems with designing, controlling, and optimizing (i.e. engineering) the 
thermodynamics and kinetics of colloidal assembly processes. By learning effective collective models, our approach in 
this work paves the way towards data-driven model-based control of the kinetics of colloidal assembly processes using 
parametric driving (e.g. via an electric field) [19]. Crucially, we also tackle the issue of interpretability of the learned 
effective dynamic model by exploring relations between data-driven and candidate physically meaningful observables. 
Those coarse physical observables are order parameters that provide intuition for the colloidal self-assembly process 
[46, 45, 52]. We combine the data-driven detection of effective latent spaces with the neural network based, numeri- 
cal analysis inspired, identification of parameter-dependent stochastic eSDEs with state-dependent diffusion. This is 
based on fine scale data from both Brownian dynamics simulations and from experimental colloidal crystallization 
movies, and the results are compared. 

Developing low-dimensional surrogate models for physical systems has been explored by a number of authors. We 
report some approaches that utilize machine learning and/or dimensionality reduction here that could be beneficial to 
the reader. The authors in [23] identified an effective, coarse grained Fokker-Planck using Kramers-Moyal with an 
application to micelle-formation of surfactant molecules.  The identified equation in [23] was constructed in terms  of 
the physical coarse variable, size of the cluster of the surfactant molecules. The authors in [3] constructed an 1D 
Smoluchowski equation in terms of coarse physical variables (radius of gyration or the average crystallinity) for small 
colloidal systems of 32-particles. The authors in [8] used simulation and experimental colloidal ensembles with smaller 
than 14 particles to fit two dimensional Fokker-Planck and Langevin equations. The two coarse variables in which the 
dynamics are being identified capture the condensation and anisotropy of those small ensembles. A detailed review 
that summarizes applications of machine learning to discover collective variables and for sampling enhancement was 
conducted by the authors [42]. A framework to advance the simulation time by learning the effective dynamics (LED) 
of molecular systems was proposed by the authors in [48]. LED uses mixture density network (MDN) autoencoders to 
learn a mapping between the molecular systems and latent variables and evolves the dynamics using long short-term 
memory MDNs. In the context of accelerating molecular simulations, the authors in [13] proposed a framework tested 
on polymeric systems that utilize graph clustering to obtain coarse observable and allows to model system’s evolution 
for long-time dynamics. 

The main machine learning tools of our work involve (a) utilizing a dimensionality reduction scheme that discovers a 
lower dimensional structure of a given data set and (b) a deep neural network architecture that learns an eSDE. 
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Regarding the first aspect of dimensionality reduction a wide range of techniques have been proposed for discovering a 
set of reduced observables. Among others, Principal Component Analysis [34], Isomap [47], Local Linear Embedding 
[39], Laplacian Eigenmaps [2], Autoencoders [24] and our method of choice: Diffusion Maps [7]. The Diffusion Maps 
algorithms enables the discovery of reduced coordinates when data are sampled from signal processing [44], from 
networks [35], from (stochastic) differential equations [31, 6] but also from Molecular [5] and Brownian simulations 
[51]. 

A traditional approach for learning eSDEs has been the Kramers-Moyal expansion [15, 38, 29] and a detailed descrip- 
tion of this approach is given in Section 2.4.1. For non-Gaussian stochastic differential equations, modifications of the 
tradiational Kramers-Moyal expansion have also been proposed [30, 28]. In [33] the authors proposed a stochastic 
physics-informed neural network framework (SPINN) that minimizes the distance between the predicted moments of 
the network (drift and diffusivity) from moments computed with Kramers-Moyal. The authors in [4] proposed an ex- 
tension of the framework called Sparse Identification of Nonlinear Dynamics (SINDy) that can be used for stochastic 
dynamical systems. The authors in [50] proposed a physics informed generative model termed generative ensemble- 
regression that learns to generate fake sample paths from given densities at several points in time, without point-wise 
paths correspondence. The authors in [27] extracted an eSDE from long time series data in a memory-efficient way, 
including learning the eSDE in latent variables. This approach is valuable if the data is available as a few, long time 
series. In our approach we handle pairs of successive snapshots instead. The most similar approach to learning eSDEs 
to the one selected for our work is [16]. The authors introduce a Variational Autencoder (VAE) framework for recov- 
ering latent dynamics governed by an eSDE. In their method, the latent space and the stochastic differential equation 
are identified together within the VAE scheme. Their loss function is also based on the Euler-Maruyama scheme. 

Our work deviates from the approaches mentioned above in three key aspects: (a) we explicitly separate the latent 
space construction from learning the eSDE; (b) we extend the loss function informed by numerical integration schemes 
from [9] to allow for additional parameter dependence. Our latent space is defined through Laplace-Beltrami operator 
eigenfunctions, so, different from [16], (c) our latent space coordinates are invariant to isometry and sampling density 
in the original space by construction. 

 
2 Methodology 

2.1 Brownian Dynamics 

We model electric field-mediated quasi-2D colloidal assembly in the presence of a quadrupole electrode. An illus- 
tration of the set up is shown in Figure 2 In our simulations, each configuration consists of N = 210 particles. The 

interactions between the colloidal particles are electrostatic double layer repulsion upp , dipole-field potentials upf 

and dipole-dipole interaction potential upp . The electrostatic repulsion, upp , between two particles i and j is 

computed by.  

 

 
pp 
e,i,j 

 
(ri,j) = Bpp exp{[−κ(rij − 2α)]}. (1) 

In Equation (1) rij denotes the center-to-center distance between the patricles, α is the radius of each particle and 

BP P is the electrostatic repulsion pre-factor between colloidal particles. 

The dipole field potential upf in the spatially varying electric field for each particle i is computed by 
 

pf 
de,i (ri) = −2kTλf −1[E(ri)/E0]2, (2) 

 

where ri is the position of the ith particle, k is the Boltzmann’s constant, T is the temperature, fcm is the Clausius- 

Mossotti factor,  λ is a non-dimensional amplitude given by the relation λ  =  πEmα3 (fcmE0 )
2 

, E is the medium 

dielectric constant, the local electric field magnitude is given by E(ri). The constant E0 is given by the expression 

1 
E0 = √

8 
(Vpp/dg) (3) 

where Vpp denotes the peak-to-peak voltage and dg the electrode gap. The dipole-dipole interaction potential upp 

between two particles i and j is estimated by 

u 

u 
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P2(cosθij) is the second Legendre polynomial, θij denotes the angle between the particle centers and the electric field 
direction. 

The electric field at the center of the quadrupole can be approximated by the expression 

E(r ) 4r 
= 

 
(5) 

E0 dg 
 

where r is the distance from the quadrupole center. 

The motion of the Brownian particles is governed by the equation 

DP 
r(t + ∆t) = r(t) + (FP 

kT 
+ FB )∆t + ∇ · D ∆t (6) 

where FB = 0, FB(t1)(FB(t2)T = 2(kT )2(DP )−1δ(t1  t2), r(t) denotes the position vector for all the N  particles 
at time t, FB denotes the Brownian force vector and FP the total conservative force vector. The conservative force 
acting on each particle i is given by 

FP = ∇r

 
upf +

 
(upp 

 

  

+ upp 
)
 
. (7) 

DP denotes the diffusivity tensor estimated by the Stoke-Einstein relation 

DP = kT (RP )−1 (8) 

where RP is the grand resistance tensor RP given by 

RP = (M∞)−1 + R2B − R∞
2B (9) 

where R2B are the pairwise lubrication interactions and (M∞)−1 R∞
2B  the many-bodied far-field interaction above 

a no-slip plane. All the parameters used for the BD simulations are included in Table 1 of the SI. 
 

Figure 2: [Left] Top view of simulated experiments of quasi 2D configurations of N = 210 colloidal particles com- 
pressed with a quadrupole electrode. [Right] Electric field magnitude contour plot in the vicinity of the quadrupole 
electrode center. The arrows indicate the relative magnitude and direction of force due to dipole-field interactions. 
Taken from J.Chem. Phys 144, 204904 (2016) with permission. 

 
2.2 Diffusion Maps 

Introduced by [7], Diffusion Maps offer a parametrization of a data set of points X = xi N sampled from a manifold 
, where xi Rm by uncovering its intrinsic geometry. This parametrization can then be used to achieve dimen- 

sionality reduction of the data set. This is obtained by initially constructing an affinity matrix A RN ×N through a 
kernel function, for example the Gaussian Kernel 

x x 2 
Aij = exp 

2ε 
, (10) 

where      denotes a norm of choice.  In this work we choose the l2 norm; E is a hyperparameter regulating the rate of 
decay of the kernel. To achieve a parametrization of X regardless of the sampling density, a normalization of A is 
performed as follows 

j i 

P 
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Ã  = P−αAP−α (12) 

where α = 1 is set to factor out the effect of sampling density. The kernel Ã  is further normalized 

Ã(xi, xj) W (x , x ) = (13) 
 

 

i j N 
Ã(x , x  ) 

so that the matrix W becomes a row stochastic matrix. The eigendecomposition of W results in a set of eigenvectors 

φ and eigenvalues λ 

Wφi = λiφi. (14) 

To check if dimensionality reduction of X is possible, selection of the eigenvectors φ that parameterize independent 
directions (non-harmonic eignvectors) is needed. In our work this selection was made by implementing the algorithm 
presented in [10]. If the number of the non-harmonic eigenvectors is smaller than the original dimensions of X then 
Diffusion Maps achieves dimensionality reduction. 

Our data “points”, xi, consist of planar configurations of 210 particle locations obtained either from evolving compu- 
tations or from experimental movies; our data set is X = {xi}N where xi ∈ R210×2. A number of preprocessing 
steps are performed before Diffusion Maps can be computed. All configurations are centered and aligned to a reference 
configuration by using Procrustes analysis, in particular the Kabsch algorithm [21, 22]. The reference configuration 
was selected as the configuration that has the smallest value of the order parameter Rg (see Section 2.5). Centering the 
data and applying the Kabsch algorithm removes the translational and rotational degrees of freedom. We then compute 
the density function, fi, for each configuration at the nodes of a grid and we normalize its integral to one. The density 
was estimated by a kernel density estimation using Gaussian Kernels in Python. More precisely, the gaussian kde 
module from scipy was used for this computation. The bandwidth for the kernel estimation was selected based on 
Scott’s Rule [41]. The Diffusion Maps algorithm then is applied to the data set F = fi N of the collected normalized 
density function discretizations. The density formulation fi eliminates the problem of permutational invariance of the 
particles in defining pairwise distances. As we mentioned also earlier the selection of the leading non-harmonic 
Diffusion Maps coordinates was made by the local linear algorithm proposed by the authors in [10]. For our Diffusion 
Maps computations the datafold package was used [26]. 

 
2.3 Nyström Extension 

Given a new out-of-sample data point, xnew / X (and subsequently fnew / F), in order to embed it in the Diffusion 
Maps coordinates one might add it to the data set and recompute Diffusion Maps. However, this is computationally 
inefficient and will lead to a new Diffusion Maps coordinate system for every new point added in the data set. To avoid 
these issues the Nyström Extension formula [32, 49] can be used 

 

 
φ (f ) =  

 1    
W̃ (f 

 

 

 
, f )φ (f ), (15) 

where φi(fnew) is the estimated value of the ith eigenvector for the new point fnew, λi is the corresponding eigenvalue, 

and φi(fj) is the jth component of the ith eigenvector. 

This formula is extremely useful in mapping trajectories either from the Brownian Dynamics simulations or from ex- 
perimental snapshots to the Diffusion Maps coordinates (an operation called “restriction”). Restricted long trajectories 
are used as a test set to validate our estimated eSDEs. 

 
2.4 Learning SDEs from data 

In this section we describe two approaches to estimate SDEs from data. Let x(t) be a stochastic vector-valued variable 
whose evolution is governed by the SDE 

dx(t) = ν(x(t))dt + σ(x(t))dBt, (16) 

where ν : Rm Rm is the drift, σ : Rm  Rm×m is the diffusivity matrix, and B a collection of m one-dimensional Wiener 
processes. The dynamics of such process can be approximated by estimating the two functions ν and σ. We show how 
this estimation can be performed, either from the statistical definition of the terms, based on the Kramers- Moyal 
expansion [38, 15], or via a deep learning architecture inspired by stochastic numerical integrators [9]. 

j=1 

j=1 

new 

new 
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2.4.1 Kramers-Moyal expansion 

For a stochastic process x(t), the differential change in time of its probability density P (x, t) is given by 

∂P (x, t) 

∂t 
= − 

n=1 

 ∂ n 

∂x 

 

D(n)(x, t)P (x, t), (17) 

which is known as the Kramers-Moyal expansion [38]. The moments of a transition probability, jumping from a 
position x(tk) to a nearby position x(tk+h) in the next time step, are given by 

 
D(n) 

1 
(x, t) = 

 
lim  [x(tk+h) − x(tk)]n  

 

 
. (18) 

n! h→0 h 

where denotes the average. When x(t) is a Gauss-Markov process; only the first two moments of Equation 17 
are non-zero, and the Kramers-Moyal expansion reduces to the forward Fokker-Planck equation. The Fokker-Planck 
equation provides an alternative description of the dynamics expressed by Equation 16. For N variables, the Fokker- 
Planck equation is given by 

 

∂P 

∂t 
= − 

 

  

i=1 

  ∂ 

∂xi 

(

D(1)(x)P 

 

 

+ 

i,j=1 

∂2 
 

 

∂xi∂xj 

(

D(2)(x)P 

 
, (19) 

where D(1) and D(2) are also the drift and diffusion coefficients and the connection with the coefficients of Equation 

(16) is given by the expressions ν(x) = D(1), σ2 = 2D(2). The estimation of the drift and the diffusivity at a point 
xi can be performed by multiple local parallel simulations (“bursts”). 

 

1 
νi(x(tk)) ≈ 

h
 xi(tk+h) − xi(tk) , 

σ2 (x(t )) 
1 

(x (t ) − x (t ))(x (t 

 

) − x (t )) . 

 

(20) 

 

2.4.2 Deep Learning - Numerical Integrators 

The deep learning approach that we have followed for the identification of eSDEs is based on the work of [9]. In  this 
approach, the drift and diffusivity are estimated through two networks νθ and σθ, where θ are the weights of the 
networks.  In our work we also introduce a small but meaningful modification of their method by also including a 

“parameter neuron” along with the snapshot of inputs D- = {xi(tk+h), xi(tk), hi, pi}N   .  This modification allowed 

us to learn parameter dependent eSDEs. The parameter p in our case is the applied voltage to the particles (V ∗). 
The collected data required for this approach do not necessarily need to be sampled from long trajectories. Snapshots 

D are sufficient as long as the region of interest is sampled densely enough.  Here we introduce the scheme for 
i 

the  two-dimensional  case  since  our  identified  eSDE  is  also  two-dimensional.   Each  snapshot  D-   in  this  network 
 

parameter dependent eSDE. Between different sampled snapshots the time step h does not need to be uniform; in our 
case this property will prove to be quite useful as discussed in the results. 

The loss function used in our case (based on [9]) is derived from the Euler-Maruyama scheme, a numerical integration 
method for SDEs. The scheme for the two-dimensional case, 

 
xi (tk+h)

 
 

 

 
xi (tk)

 
 

 

i

 

νθ(xi (tk), pi)
 

 

 

 
σθ(xi (tk), xi (tk), pi) σθ(xi (tk), xi (tk), pi)

 
dBt 

 
 

  

 

where dBt1 , dBt2 are normally distributed around zero with variance h . This scheme has a similar form for higher 
i 

dimensions. This scheme implies that each xi(tk+h) is normally distributed, 

xi(tk+h) ∼ N xi(tk) + hiνθ(xi(tk), pi), hiσθ(xi(tk), pi)2 (22) 

N N 

xi (tk+h) xi (tk) νθ(xi (tk), pi) σθ(xi (tk), xi (tk), pi) σθ(xi (tk), xi (tk), pi) dBt 2 

xi(tk+h) = (xi (tk+h), xi (tk+h)); (c) the time interval between the two points, hi; and (d) a parameter pi for the 

k+h 

= + h + (21) 
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where the mean µi = xi(tk) + hiνθ(xi(tk), pi) and the covariance matrix Σi = hiσθ(xi(tk), pi)2. 
θ θ 

Under this assumption, we formalize a loss function that will lead to a maximization of the probability of Equation 
(22). This is achieved by combining the logarithm of the probability density of the multivariate normal distribution 
with the assumed mean and variance from Equation (22): 
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T i −1 i i 

L(θ|x (t ), x (t ), h , p ) := log  det(Σ )   + (x (t )   −  µi ) (Σ ) (x (t )   −  µ  )  (23) 

where the constant term is dropped since it does not affect the minimization. The training of the network is performed 

by minimizing the loss function L over the training set D. 

2.5 Order Parameters - Free Energy Landscapes 

Order parameters are coarse, collective variables that summarize the physics involved in the colloidal self-assembly 
process [43]. These quantities often encapsulate features of interest, for example the compactness, or the local or 
global degree of order of a particle assembly [43, 45]. Such variables can then be used to formulate (ideally analytical, 
but practically, here, data-driven) models to study the collective dynamics of complex systems. Domain scientists often 
have prior knowledge of good candidate order parameters based on experience, intuition, or mathematical derivations, 
and validate a good variable choice among such candidates [45]. Order parameters that are typically used to study 

colloidal self-assembly are Rg, ψ6 and C6 [12]. Rg is the radius of gyration, which quantifies whether the particle 

ensemble is expanded in a fluid state or condensed in a crystalline state; ψ6 is the degree of global six-fold bond 

orientation order (near 0 for ideal gas, 1 for perfect single domain crystal); C6 is the ensemble average of a local order 
parameter based on the number of neighbors each particle has with 6-fold order (0 for no neighbors with 6 fold- order, 
1 for 6 neighbors with 6-fold order). Expressions for each of these are included in our prior publications. [12]. In our 
case, we do not use these theoretical “usual candidate” colloidal order parameters in our model construction. We 
allowed the data to determine which and how many collective variables are needed by using the Diffusion Maps 
scheme.  We  then attempt to establish explainability of our data-driven variables in terms of the theoretical ones  Rg, 
ψ6, C6, see Section 3.1. 

The effective potential G(x) quantifies the free energy landscape. It is obtained from the equilibrium probability 
distribution, the steady-state solution of the Fokker Planck equation [38]. The integral equation for this effective 
potential (alternatively, potential of mean force or effective free energy), is given (up to a constant) by the equation 
[38] 

G(xi) = −kT 

   xi    

 
 

σ2 

2(σ2)−1(ν − ∇ · ) · dr. (24) 

where ν is drift and σ is the diffusivity. For our computations we chose the origin as the reference state. 

 
3 Results 

3.1 Latent Observables 

We start by coarse-graining Brownian Dynamics simulation (details about the simulations and the sampling are in the 

Appendix). Diffusion Maps discovers two latent non-harmonic coordinates denoted as φ1,φ2 [10]. This suggests that 
two Diffusion Maps coordinates are enough to provide a more parsimonious representation of the original data set. 
The selection of those two Diffusion Maps coordinates was made by applying the local linear regression algorithm 
suggested by the authors in [10]. We first check the interpretabilty of these data-driven observables by coloring the 

Diffusion Maps coordinates as functions of the three order parameters Rg, ψ6 and,  C6. Those order parameters  are 
physically meaningful coarse variables that measure the degree of condensation of the material (Section 2.5). It is 
worth highlighting that no pair of the three order parameters is exactly one-to-one with the Diffusion Maps coordinates; 
however a clear trend appears: condensed configurations arise at the center of our manifold embedding, while further 
out from the center disordered/fluid like structures are observed. This implies that our latent coordinates encode the 
physics of the Brownian Dynamic Simulations. 

 
3.2 Learning Effective SDEs 

For Brownian Dynamics simulations at fixed normalized voltage V ∗ = V = 1.51V = 0.8 (see Section A2 in the 
Vxtal 1.89V 

Appendix), we estimate the drift and diffusivity in the Diffusion Maps coordinates with (a) a neural network architec- 
ture; and with (b) the Kramers-Moyal expansion. The drift estimated by the two approaches is plotted as a vector field 
on the two Diffusion Maps coordinates, Figure 4. The drift component gives us an estimate of what the trajectories 
will locally tend to do on average. As can be seen from Figure 4 (on average) the trajectories will evolve towards  the 
center of the manifold, and therefore towards more condensed structures as expected from the detailed Brownian 
Dynamics simulations. 

0 
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Figure 3: The two leading Diffusion Maps coordinates (φ1, φ2) 

colored by the physically meaningful order parameters Rg, ψ6 and, C6 respectively (Rg clearly correlates with C6). 
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Figure 4: The estimated drift from the neural network and the Kramers-Moyal respectively is plotted as the on average 
vector field in the two Diffusion Maps coordinates (φ1, φ2). The vector field is plotted in subsampled data sets to 
improve visualization. 

 

 
The estimated vector field from the neural network appears smoother compared to the one obtained with the Kramers-
Moyal. This could be partially attributed to the fact that the neural network during training for the drift  learns 
simultaneously from many points per iteration through the loss function. On the other hand, Kramers-Moyal uses 
bursts around each individual data point separately, without information about the nearby points. Figure 5 offers 
another comparison between the estimated drift from the neural network and the Kramers-Moyal Expansion. The 
estimated drifts of the two methods are comparable, with the drift estimated from the neural network often slightly 
larger in magnitude. The comparison for the estimated diffusivity with the two approaches leads to similar conclu- 
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Figure 5: The estimated drift, ν1, ν2, from the neural network (first row) and the Kramers-Moyal, ν*, ν*, (second row) 
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sions, Figure 6. The diffusivity estimated from the neural network appears smoother compared to the one estimated 
from the Kramers-Moyal. Note the neural network approach estimated the diffusivity matrix without assuming it to 
be diagonal (as opposed to its Kramers-Moyal estimation). Even though a trend appears in the diffusivity computed 
through the network the computed diffusivity is practically constant along the data and the trend is just an artifact of 
the fitted diffusivity through the network. 
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Given the estimated drift and diffusivity we wish to generate trajectories for the reduced eSDEs in Diffusion Maps 
coordinates. Evaluating the drift and diffusivity along the integration is trivial for the trained neural network. For  the 
Kramers-Moyal expansion, interpolating from the computed values becomes necessary. Since the functions of the 
estimated drift and diffusivity are not smooth enough for a global interpolation scheme, a local nearest neighbor 
interpolation was used during the integration. The numerical integrator used for both cases was the Euler-Maryama 
scheme. 

From the estimated coefficients (drift and diffusivity), and more precisely from the average vector field in Figure 4, it 
is expected that the trajectories will evolve toward the center of the embedding for both estimated eSDEs. 

To evaluate our models’ performance against ground-truth data, we sampled Brownian Dynamics trajectories and re- 
stricted those trajectories with Nyström Extension in the reduced Diffusion Maps coordinates (φ1, φ2). A comparison 
between the mean of 100 trajectories obtained from the two eSDEs is contrasted to the mean of 100 restricted trajecto- 
ries computed with Brownian Dynamics simulations in Figure 7. The dynamics from the network on average provide 
more accurate results compared to the ones obtained from the Kramers-Moyal. To successfully estimate both the drift 
and the diffusivity for the neural network, training was performed in two stages. First, we chose a time step h that gave 
a reasonable estimation of the drift; we then fixed the part of the network that estimates the drift, and used snapshots 

at smaller time steps h/ to estimate the diffusivity (see the discussion in [9]). 

We provide an uncertainty quantification (error analysis) comparison of the neural network model in Section A6 of the 
SI. This analysis provides some more quantitative measurements on of how certain the reported predictions are. The 
results suggest the the robustness of the neural-network model. In addition, in Section A7 of the SI we discuss a more 
quantitative comparison between the two surrogate identified eSDEs (with Kramers-Moyal and the neural-network). 
The results in this case suggest that the discrepancy between the two surrogate models is in the range of the expected 
error estimations of the neural-network model. 

 
3.3 Learning a Parameter-Dependent eSDE 

In this section we illustrate the ability to learn a parameter dependent eSDE. For this case only the neural network was 
used. We sampled data (snapshots) for four different voltages, V* = 0.5, 0.6, 0.7, 0.8 . The larger the voltage becomes, 
the larger the force that is acting on the particles, and thus the faster they condense. On the contrary,  as  the voltage 
becomes lower, the particles can move more freely and they condense slower. Those physical features are expected to 
be captured in terms of the drift and diffusivity of our eSDE . As the voltage increases the drift (force) is expected to 
increase and the diffusivity to decrease. In Figure 8 the obtained results from the neural network appear to conform to 
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Figure 7: The estimated dynamics from the neural network (first row) and the Kramers-Moyal (second row) is shown 
compared to restricted (with Nyström) trajectories of the Brownian Dynamics in the two Diffusion Maps coordinates 

(φ1, φ2). The mean of 100 trajectories (starting from the same initial condition) is used for all cases. To get a visual 
inspection of the variance in the estimated 100 trajectories, the area between the maximum and minimum values for 
those trajectories is being “filled” with solid color. The red paths correspond to the data-driven eSDEs (neural network 
or Kramers-Moyal) and the blue paths to the restricted Brownian Dynamics Paths. 
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Figure 8: In the Diffusion Maps coordinates (φ1, φ2) we illustrate trajectories computed through the neural network 
trained for different values of the voltage, V * = 0.5, 0.6, 0.7, 0.8 plotted from left to right. Trajectories of the estimated 
eSDE from the neural network (red paths) are contrasted to restricted (with Nyström Extension) trajectories computed 
with Brownian Dynamics (blue paths) for different values of the voltage. 

 

For four different initial conditions, and for the same time length, trajectories were integrated with Euler-Maryama; the 
same integration step was used for all parameter values. As the parameter value increases, from left to right in Figure 
8, the trajectories appear to travel faster towards the center of the embedding (towards more condense configurations). 
This can be attributed to fact that the drift increases in magnitude. In addition, as the voltage decreases, the trajectories 
appear more noisy, since the diffusivity increases. 

In Figure 9 the estimated diffusivity is plotted against the Diffusion Maps coordinates and is colored with the voltage 
value. Figure 9 supports the observation that as the voltage increases the diffusivity decreases. 

For the estimation of the parameter dependent eSDE, the flexibility of having different step sizes hi proved quite 
useful. For smaller values of the voltage V *, for which the drift is also smaller, larger time steps could be accurately 
employed. 
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3.4 Free Energy Landscapes 

We illustrate the ability to estimate free energy landscapes (potential functions) from the coefficients of the reduced 
eSDE. In Figure 10 the Free Energy in kT units is plotted as a function of the Diffusion Maps coordinates φ1, φ2 
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Figure 9: The estimated diagonal diffusivity is plotted against φ1, φ2. Different colors correspond to different values 

of the parameter (V ∗). The trend in the estimated diffusivity is in agreement with the physics of the problem. The 
higher voltage forces the system to condense faster. On the contrary, the smaller the voltage becomes, the easier it is 
for the particles to move freely, and thus the effective diffusivity increases. 

 
for the four different voltages in an increasing order. From Figure 10 the larger the voltage, the larger the range of 
effective potential values becomes.  From our computations it appears that the term   σ2 is negligible compared to the 
other terms, and that the state dependence of the diffusivity can be practically ignored. 
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Figure 10:  The Free Energy Landscape, G(x)/kT , estimated by Equation (24) for different voltages V * = 

{0.5, 0.6, 0.7, 0.8} (from left to right) are plotted as functions in the Diffusion Maps coordinates (φ1, φ2) respectively. 

 

3.5 Experimental Data 

In this section we provide a qualitative comparison between our reduced model and experimental dynamic data. The 
experimental set up from which the data were collected is described in [11]. Note that each configuration used for the 
experimental data has 204 particles and not 210 as in our simulations. The radii of the particles is the same as the one 
used for the simulation and the voltage (V * = 0.74) for those experiments is in the range of the voltages used to train 
the parameter dependent eSDE. Given the experimental trajectories, we used the same preprocessing as for the 
computational data, and then Nyström Extension was used to restrict the experimental configurations in the Diffusion 
Maps coordinates. The experimental data were rescaled in the same range as the simulations based on the ratio of the 
radii of the two reference configurations used for the Kabsch algorithm. Please note that to restrict the configurations 
with 204 particles in the Diffusion Maps coordinates obtained from the simulations, a different reference configuration 
was used for the Kabsch algorithm. The reference configuration was selected also here as the configuration with the 
smallest value of Rg from the experimental trajectories. Then the same density estimation described in Section 2.2 is 
applied. These steps allow us to project the experimental particles to the Diffusion Maps coordinates despite their 
different number of particles. We then use our trained neural network to generate trajectories given the estimated initial 
conditions in the Diffusion Maps coordinates. The integration of the eSDE was performed for 125 seconds with time 
step h = 0.125. The time step used to integrate the eSDE corresponds to the same frame rate that the experimental 

φ  φ  

φ
2
 

σ  σ  

φ  φ  



Learning Effective SDEs 

from Brownian Dynamics Simulations 

of Colloidal Particles 

15 

 

 

measurements were sampled at (8 frames per second [11]). The behavior of the restricted experimental trajectories 
has the same qualitative behavior as the reduced model, and as the restricted trajectories of the Brownian Dynamics. 
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Figure  11:  Restricted  with  Nyström  Extension  experimental  trajectories  compared  with  paths  generated  from  the 
neural network eSDE trained on the computational data. The red trajectories correspond to the paths generated by the 
neural network and the blue trajectories to the trajectories of the experiments, restricted to the latent space using 
Nyström Extension. 

 

4 Discussion 

We demonstrated that the Diffusion Maps algorithm can discover a set of latent observables given a data set of sam- 
pled dynamic configurations of crystallizing colloidal particles. We explored the correspondence between our obtained 

latent observables and established theoretical order parameters (Rg, ψ6, C6). We learned an eSDE by using the tra- 
ditional Kramers-Moyal expansion and compared it with a modern deep learning architecture based on stochastic 
numerical integrators [9]. Both estimated reduced eSDEs qualitatively reproduce the dynamics of the full simulations. 
We showed that the neural network’s dynamics on average appear more accurate, by comparing the data-driven eSDEs 
with restricted trajectories of the full Brownian Dynamics. It’s worth mentioning that the computation cost and the 
number of data points needed to learn an effective eSDE with the neural network is much smaller than the correspond- 
ing Kramers-Moyal effort, we provide a more detailed comparison in the Appendix. We illustrated the ability to learn 
a parameter dependent eSDE through our neural network architecture. The coefficients (drift and diffusivity) of the 
parameter dependent eSDE again seem to capture the dynamics of the fine scale simulations. Lastly, we showed that 
our reduced models qualitatively agree with dynamics of restricted experimental data. 

 
5 Conclusions 

The developed eSDEs provides a compressed data-driven model that we believe can help the study of self-assembly. 
Even though the application was focused on colloidal assembly, this framework can be applied to a range of differ- 
ent applications, from coarse-graining epidemiological models to models of cell motility. Such data-driven models 
could be useful tools for performing scientific computations (e.g. estimation of mean escape times, construction of 
bifurcation diagrams) even when analytical expressions are not available. 

Our reduced models, while capable of describing the coarse-grained, collective dynamics, do not provide information 
about the fine-scale conformations themselves. Our assumption that differences in density profiles suffice to determine 
a similarity measure in configuration space leads to configurations with the same density field being mapped to a single 
point in our coarse latent space. Therefore, mapping back to the ambient space, i.e. lifting, is a nontrivial task since 
there is a family of configurations for each Diffusion Maps point. To support this argument we show a comparison 
between a naive mapping of a generated trajectory from the Diffusion Maps coordinates to the configurations with 
nearest neighbors (what we call lifting, from coarse to fine) and a trajectory generated by the Brownian Dynamic 
simulation in Figure 12 and in the accompanying video (provided in the SI). Both trajectories start from the same 
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initial condition. In Figure 12 for a reduced trajectory of the eSDE estimated by the neural network we find the nearest 
point in the Diffusion Maps coordinate that belongs to our data set and lift based on that configuration. The lifted 
trajectory exhibits large abrupt changes and appears thus unrealistic. We believe that utilizing conditional Generative 
Adversarial Networks (cGANs) constitutes a promising direction for reconstructing realistic fine scale configurations 
conditioned on coarse-grained features. 

Learning eSDEs directly from experimental data is a possible extension of our work. The main limitation of learning an 
eSDE directly is that usually we do not have sufficient experimental data; this is why BD models are matched (as well 
as possible) to experiments, and then we analyze their simulations[11, 18, 20]. Perhaps a transfer learning approach, 
where the eSDE is initially trained in a large computational data set, and then refined/adapted to experimental data 
could be an interesting approach for the construction of data-driven models for studying self-assembly. 

Another possible extension of our current work deals with using the identified eSDE for control problems. Merg-  ing 
the parameter dependent eSDE with feedback control policies could guide the evolution of configurations from 
polycrystalline states to target single-domain crystals [52, 46]. 
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Figure  12:    The  first  row  illustrates  snapshots  of  the  colloidal  particles  at  different  time  instances  (t   =    0s, 
12.5s, 62.5s, 125s). Those snapshots generated by mapping a trajectory integrated by the eSDE to the original physical 
coordinates with the nearest neighbor algorithm (lifting). 

The second row illustrates snapshots of colloidal particles for the same timestamps computed with Brownian 
Dynamics. 
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A Appendix 

A.1 Sampling 

The data set in which Diffusion Maps was computed was sampled as follows. Brownian Dynamic simulations were 
performed given a fixed voltage V * = 0.8 for a system of 210 particles. For 1500 random initial configurations the 
system was integrated for 1000s. Particle configurations were stored every 1s. The order parameters Rg and ψ6 were 
computed based on these collected snapshots. The configurations with Rg > 1.39 were discarded. Since these dilute 
states arise from the random initialization of each simulation, the remaining data set contains configurations that cover 
the fluid, polycrystalline and crystalline space. We further subsampled in Rg, ψ6 space in order to get a more uniform 

data set. The subsampled data set in which Diffusion Maps was performed contains ∼11,000 configurations. 

For the Kramers-Moyal expansion (discussed in Section 2.3.1) further subsampling of the data set used for Diffusion 
Maps was performed. A data set of 2800 configurations (and subsequently Diffusion Maps coordinates) was used. For 
each point in this data set 300 short Brownian Dynamic simulations were performed. 

For the deep learning approach (discussed in Section 2.3.2) the same data set as for the Kramers-Moyal expansion 
was used. In this case for each data point only a short trajectory was needed in order to compute the snapshots. The 
same data points were also used to sample snapshots for different values of the parameter. Different time steps (h) 
were necessary in order to sample properly the snapshots for the different values of the parameters. The fact that the 
dimensionality of the manifold remained the same in this range of parameter values was checked before learning the 
parameter dependent eSDE. 

The computational time needed to sample data points for the Kramers-Moyal compared to the one for the neural 
network is  38 times and the number of data used to compute Kramers-Moyal was  100 times more than the one  used 
for the neural network. There is no significant difference between the training time needed for the neural network and 
Kramers-Moyal estimation. 

 
A.2 Parameters for simulations 

Table 1: Simulation Parameters of Colloidal Particles in the presence of a Quadrupole Electrode. 

 

Variable 

Number of particles, N 
Particle Size, α (nm), 

Temperature, T (◦C) 
Clausius-Mossotti factor for 1 MHz AC field, fcm 

Debye length, κ−1nm 

Electrostatic potential prefactor, BP P (kT) 
Lowest voltage to crystalize system, Vxtal (V) 
Applied voltage, V (V) 

Normalized voltage, V ∗ 

Value 

210 
1400 
20 
-0.4667 

10 

3216.5 
1.89 
0.95, 1.13, 1.32, 1.51 
0.5, 0.6, 0.7, 0.8 

 

A.3 Video 

In the attached video in the upper left a trajectory that evolves by integrating the eSDE is shown. In the lower left, a 
trajectory integrated with the Brownian Dynamic Simulations and restricted with Nyström Extension in the Diffusion 
Maps coordinates is shown. In the upper right the lifted with nearest neighbors estimation configurations are shown. 
In the down left the configuration integrated with the Brownian Dynamic Simulations are shown. 

 
A.4 Codes 

All the codes that used to produce the Figures and generate the models are provided in the public repository Gitlab 
repository here. 

 
A.5 Neural Network Models Architecture 

The architecture and the training protocols for our two neural-network models are reported in this Section. For the 
surrogate model with fixed voltage, 4 layers with 25 neurons were used. The activation function for the drift network 

https://gitlab.com/nicolasevangelou/colloidal-assembly-learning-sdes.git
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Figure 13: [First row] The average values (over the 200 models) of the drifts ν1,ν2 are shown as functions in the 
Diffusion Maps coordinates. [Second Row] The standard deviation of the estimated drifts std(ν1), std(ν2) is shown 
as functions in the Diffusion Maps coordinates. 

 

 

was selected as ReLU (activation function ELU was also tested and gave similar results). The activation function for 
the diffusivity network was softplus. The training of the model was made in two stages: first we use snapshots with h 
= 1.0 and train for 200 epochs with batch size equal to 32. This first stage approximates reasonably well the drift, but 
gives a much larger diffusivity. To decrease the diffusivity estimate we fix the weights for the drift network to non-
trainable. We then use snapshots of h = 0.125 and train for 1, 000 more epochs. 

For the parameter dependent eSDE a network with 5 layers and 26 with ELU was trained. This network was initially 
trained for 1, 000 epochs with batch size equal to 51. We then set the weights for the diffusivity part of the network to 
non-trainable and train for the drift for 5, 000 epochs. We then set the weights for the drift part of the network to non-
trainable and train for 1, 000 epochs to improve the diffusivity estimations. For each voltage snapshots at different step 
size h were used. 

For both networks outliers were removed (e.g. with z-score). This led to a better approximation of the diffusivity. To 
train each model, the data was split 90 10 (train/validation). As test set we used the individual trajectories reported in 
the main text. 

 

A.6 Uncertainty Quantification of our Neural-Network Model 

 
We performed the following computations to obtain an estimate of the accuracy and the sensitivity of the learned 
parameters of the neural network. We trained the neural network model 200 times, each time using different splits of 
our original data set to training/validation sets. For each of those models in tensorflow we used validation split=0.1. 
The data were shuffled before training. To ensure that each time the training/validation sets we get are unique, a 
different seed was used from the numpy random generator for each of the 200 models. To alleviate the computational 
time needed to train these 200 networks we used job-arrays. All the other hyperparameters involved in training the 
model were kept fixed during this procedure. To obtain a quantitative measurement of the sensitivity of our model in 
terms of the training set, we then evaluated the drift and diffusivity for the entire data set (training and validation) as 
well as on a grid of test points. 

In Figure 13 the first row illustrated the drift components (averaged over the 200 models) colored as a function of the 
diffusion maps coordinates. The second row depicts the pointwise standard deviation of the 200 models, colored as a 
function of the Diffusion Maps coordinates. It appears that the overall trend and the order of magnitude between the 
estimated average value of the drift here, and the one shown in Figure 4 in the main text are consistent. The estimated 
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standard deviation appears almost everywhere smaller than the estimated mean drift. 
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The same computation was performed for the diffusivity and is shown in Figure 14. The magnitude of the diagonal 
terms is comparable to the model described in the main text (Figure 5). The average off-diagonal term seems to be an 
order of magnitude smaller than the one presented in the main paper. The average off-diagonal terms are two orders 
of magnitudes smaller than the average diagonal terms. The standard deviations for the diffusivities for the diagonal 
elements are one order of magnitude smaller than the averages; yet for the off-diagonal elements, they are an order of 
magnitude larger than the average. This latter observation of the off-diagonal elements can be attributed to the fact that 
some models are having positive and some negative off-diagonal elements. Therefore their mean is closer to zero but 
their standard deviation is larger than zero. 

In Figure 15 we illustrate the same estimations for the 200 models on a 2D grid: we plot the observed values for the 
mean drift, mean diffusivity based on the 200 models and their standard deviation. The observations that we can draw 
based on those models are similar to the ones discussed above. 
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Figure 14: [First row] The average values (over the 200 models) of the estimated diffusivities σ1,σ2 are shown as 
functions in the Diffusion Maps coordinates. [Second Row] The standard deviation of the estimated diffusivities 
std(σ1), std(σ2) is colored as a function in the Diffusion Maps coordinates. 

 
 

A.7 Kramers-Moyal vs Neural Network Comparison 

At the nodes of a Cartesian grid (20x20) we evaluate the drift and diffusivity of the two surrogate models (the Kramers- 
Moyal and the Neural Network). We then compute the l2 norm between the estimated values of the coefficients with 
the two models. In Figure 16 we illustrate the grid points (in Diffusion Maps coordinates) colored with the l2 norm 
for each coefficient. In Table 1 we also provide the mean values of the l2 norms for the drift and the diffusivity. 

Table 2: Estimated mean l2 differences between the estimated drift and diffusivity by the neural network and the 
Kramers-Moyal surrogate models on a (20 x 20) grid. 

 

 

The mean values of the l2 norm for the drift and diffusivity reported in the table above are of the same order of mag- 
nitude as the standard deviation in Figures 13, 14. This suggests that the discrepancy between the two approaches 
Kramers-Moyal and neural network falls into the range of uncertainty estimations of the neural network model dis- 
cussed in Section A.6 of the SI. 

Mean ||ν1 − ν1
∗||2 Mean ||ν2 − ν2

∗||2 Mean ||σ11 − σ1
∗
1||2 Mean ||σ22 − σ2

∗
2||2 
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Figure 15: [First-Second Rows] illustrate the average drift and the standard deviation of the drift on a test grid (20x20) 
based on the trained 200 models. [Third-Fourth Rows] illustrate the average diffusivity and the standard deviation of 
the diffusivity on a test grid (20x20) based on the trained 200 models. 
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Figure 16: [First row] The l2 norm of the difference between the evaluated drift of the network, and by the Kramers- 
Moyal surrogate model, colored as a function at the nodes of the grid. [Second Row]The l2 norm of the difference 
between the evaluated diffusivity of the network and the one from the Kramers-Moyal surrogate model, colored as a 
function at the nodes of the grid. 
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