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ABSTRACT

Machine learning (ML) is playing an increasing role in decision-
making tasks that directly affect individuals, e.g., loan approvals,
or job applicant screening. Significant concerns arise that, with-
out special provisions, individuals from under-privileged back-
grounds may not get equitable access to services and opportuni-
ties. Existing research studies fairness with respect to protected
attributes such as gender, race or income, but the impact of lo-
cation data on fairness has been largely overlooked. With the
widespread adoption of mobile apps, geospatial attributes are
increasingly used in ML, and their potential to introduce unfair
bias is significant, given their high correlation with protected
attributes. We propose techniques to mitigate location bias in
machine learning. Specifically, we consider the issue of miscal-
ibration when dealing with geospatial attributes. We focus on
spatial group fairness and we propose a spatial indexing algo-
rithm that accounts for fairness. Our KD-tree inspired approach
significantly improves fairness while maintaining high learning
accuracy, as shown by extensive experimental results on real
data.

1 INTRODUCTION

Recent advances in machine learning (ML) led to its adoption
in numerous decision-making tasks that directly affect individu-
als, such as loan evaluation or job application screening. Several
studies [4, 25, 27] pointed out that ML techniques may introduce
bias with respect to protected attributes such as race, gender,
age or income. The last years witnessed the introduction of fair-
ness models and techniques that aim to ensure all individuals
are treated equitably, focusing especially on conventional pro-
tected attributes (like race or gender). However, the impact of
geospatial attributes on fairness has not been extensively stud-
ied, even though location information is being increasingly used
in decision-making for novel tasks, such as recommendations,
advertising or ride-sharing. Conventional applications may also
often rely on location data, e.g., allocation of local government
resources, or crime prediction by law enforcement using geo-
graphical features. For example, the Chicago Police Department
releases monthly crime datasets [2] and classifies neighborhoods
based on their crime risk level. Subsequently, the risk level is used
to determine vehicle and house insurance premiums, which are
increased to reflect the risk level, and in turn, result in additional
financial hardship for individuals from under-privileged groups.

Fairness for geospatial data is a challenging problem, due to
two main factors: (i) data are more complex than conventional
protected attributes such as gender or race, which are categorical
and have only a few possible values; and (ii) the correlation
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between locations and protected attributes may be difficult to
capture accurately, thus leading to hard-to-detect biases.

We consider the case of group fairness [8], which ensures no
significant difference in outcomes occurs across distinct popu-
lation groups. In our setting, groups are defined with respect to
geospatial regions. The data domain is partitioned into disjoint
regions, and each of them represents a group. All individuals
whose locations belong to a certain region are assigned to the
corresponding group. In practice, a spatial group can correspond
to a zip code, a neighborhood, or a set of city blocks. Our objec-
tive is to devise fair geospatial partitioning algorithms, which
can handle the needs of applications that require different lev-
els of granularity in terms of location reporting. Spatial index-
ing [9, 37, 40] is a common approach used for partitioning, and
numerous techniques have been proposed that partition the data
domain according to varying criteria, such as area, perimeter,
data point count, etc. We build upon existing spatial indexing
techniques, and adapt the partition criteria to account for the
specific goals of fairness. By carefully combining geospatial and
fairness criteria in the partitioning strategies, one can obtain
spatial fairness while still preserving the useful spatial properties
of indexing structures (e.g., fine-level clustering of the data).

Specifically, we consider a set of partitioning criteria that
combines physical proximity and calibration error. Calibration is
an essential concept in classification tasks which quantifies the
quality of a classifier. Consider a binary classification task, such
as a loan approval process. Calibration measures the difference
between the observed and predicted probabilities of any given
point being labeled in the positive class. If one partitions the
data according to some protected attribute, then the expectation
would be that the probability should be the same across both
groups (e.g., people from different neighborhoods should have
an equal chance, on aggregate, to be approved for a loan). If the
expected and actual probabilities are different, that represents a
good indication of unfair treatment.

Our proposed approach builds a hierarchical spatial index
structure by using a composite split metric, consisting of both
geospatial criteria (e.g., compact area) and miscalibration error.
In doing so, it allows ML applications to benefit from granular
geospatial information, while at the same time ensuring that no
significant bias is present in the learning process.

Our specific contributions include:

e We identify and formulate the problem of spatial group
fairness, an important concept which ensures that geospa-
tial information can be used reliably in a classification task,
without introducing, intentionally or not, biases against
individuals from underprivileged groups;

We propose a new metric to quantify unfairness with
respect to geospatial boundaries, called Expected Neigh-
borhood Calibration Error (ENCE);

We propose a technique for fair spatial indexing that builds
on KD-trees and considers both geospatial and fairness
criteria, by lowering miscalibration and reducing ENCE;
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Figure 1: An example of the miscalibration problem with respect to neighborhoods.

e We perform an extensive experimental evaluation on real
datasets, showing that the proposed approach is effective
in enforcing spatial group fairness while maintaining data
utility for classification tasks.

The rest of the paper is organized as follows: Section 2 pro-
vides background and fundamental definitions. Section 3 reviews
related work. We introduce the proposed fair index construc-
tion technique in Section 4. Section 5 presents the results of our
empirical evaluation, followed by conclusions in Section 6.

2 BACKGROUND
2.1 System Architecture

We consider a binary classification task T over a dataset D of
individuals uq, ..., up|- The feature set recorded for u; is denoted
by x; € R!, and its corresponding label by y; € {0, 1}. Each record
consists of [ features, including an attribute called neighborhood,
which captures an individual’s location, and is the main focus of
our approach. The sets of all input data and labels are denoted by
X and Y, respectively. A classifier h(.) is trained over the input
data resulting in A(X) = (Y,3) where ¥ = {015 Q‘D|} is the
set of predicted labels (§; € {0,1}) and S = {s1,..,sp|} is the
set of confidence scores (s; € [0, 1]) for each label.

The dataset’s neighborhood feature indicates the individual’s
spatial group. We assume the spatial data domain is split into a set
of partitions of arbitrary granularity. Without loss of generality,
we consider a U X V grid overlaid on the map. The grid is se-
lected such that its resolution captures adequate spatial accuracy
as required by application needs. A set of neighborhoods is a
non-overlapping partitioning of the map that covers the entire
space, with the i*? neighborhood denoted by N;, and the set of
neighborhoods denoted by N.

Figure 1 illustrates the system overview. Figure 1a shows the

map divided into 4 non-overlapping partitions N' = { N1, No, N3, N4 }.

The neighborhood is recorded for each individual uy, ..., u1; to-
gether with other features, and a classifier is trained over the
data. The classifier’s output is the confidence score for each entry
which turns into a class label by setting a threshold.

2.2 Fairness Metric

Our primary focus is to achieve spatial group fairness using as
metric the concept of calibration [26, 29], described in the follow-
ing.

In classification tasks, it is desirable to have scores indicating
the probability that a test data record belongs to a certain class.
Probability scores are especially important in ranking problems,
where top candidates are selected based on relative quantitative

performance. Unfortunately, it is not granted that confidence
scores generated by a classifier can be interpreted as probabilities.
Consider a binary classifier that indicates an individual’s chance
of committing a crime after their release from jail (recidivism). If
two individuals u; and u get confidence scores 0.4 and 0.8, this
cannot be directly interpreted as the likelihood of committing a
crime by uy being twice as high as for u;. The model calibration
aims to alleviate precisely this shortcoming.

Definition 1. (Calibration). An ML model is said to be calibrated
if it produces calibrated confidence scores. Formally, outcome
score R is calibrated if for all scores r in support of R it holds that

P(y=1R=r)=r (1)

This condition means that the set of all instances assigned a
score value r contains an r fraction of positive instances. The
metric is a group-level metric. Suppose there exist 10 people
who have been assigned a confidence score of 0.7. In a well-
calibrated model, we expect to have 7 individuals with positive
labels among them. Thus, the probability of the whole group is
0.7 to be positive, but it does not indicate that every individual
in the group has this exact chance of receiving a positive label.

To measure the amount of miscalibration for the whole model
or for an output interval, the ratio of two key factors needs to be
calculated: expected confidence scores and the expected value of
true labels. Abiding by the convention in [26], we use functions
o(.) and e(.) to return the true fraction of positive instances
and the expected value of confidence scores, respectively. For
example, the calibration of the model in Figure 1b is computed

as:
eh) _ (Sueps/IDI 5210
o(h)  (Zuepyu)/IDI  7/11
Perfect calibration is achieved when a specific ratio is equal to
one. Ratios that are above or below one are considered miscali-
bration cases. Another way to measure the calibration error is by
using the absolute value of the difference between two values,
denoted by |e(h) — o(h)|, with the ideal value being zero. In this
work, the second method is utilized, as it eliminates the division
by zero problem that may arise from neighborhoods with low
populations.

2.3 Problem Formulation

Even when a model is overall well-calibrated, it can still lead
to unfair treatment of individuals from different neighborhoods.
In order to achieve spatial group fairness, we must have a well-
calibrated model with respect to all neighborhoods. The existence
of calibration error in a neighborhood can result in classifier bias
and lead to systematic unfairness against individuals from that
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Figure 2: Overview of the proposed mitigation techniques.

neighborhood (in Section 5, we support this claim with real data
measurements).

Definition 2. (Calibration for Neighborhoods). Given neighbor-
hood set N = {Ny, ..., N; }, we say that the score R is calibrated
in neighborhood N; if for all the scores r in support of R it holds
that

P(y=1R=r,N=N;) =r, Vi e [1,t] 3)

The following equations can be used to measure the amount
of miscalibration with respect to neighborhood Nj,

e(h|N = Ni)

o(h|N = Nj)

Going back to the example in Figure 1d, the calibration amount
for neighborhoods N to Ny is visualized on a plot. Neighborhood

Ny is well-calibrated, whereas the others suffer from miscalibra-
tion.

le(hIN = Ni) —o(hIN = Ni)| (4

PROBLEM 1. Given m binary classification tasks T, Tz, ..., T,
we seek to partition the space into continuous non-overlapping
neighborhoods such that for each decision-making task, the trained
model is well-calibrated for all neighborhoods.

2.4 Evaluation Metrics

A commonly used metric to evaluate the calibration of a model
is Expected Calibration Error (ECE) [13]. The goal of ECE (de-
tailed in Appendix A.1) is to understand the validity of output
confidence scores. However, our focus is on identifying the cali-
bration error imposed on different neighborhoods. Therefore, we
extend ECE and propose the Expected Neighborhood Calibration
Error (ENCE) that captures the calibration performance over all
neighborhoods.

Definition 3. (Expected Neighborhood Calibration Error). Given
t non-overlapping geospatial regions N' = {Nj,..,N;} and a
classifier h trained over data located in these neighborhoods, the
ENCE metric is calculated as:

o N
ENCE = Z o |o(N;) — e(N})] (5)
i=1

Table 1: Summary of Notations.

Symbol Description

k Number of features

D ={uy,..., u|D|} Dataset of individuals

(xis yi) (Set of features, true label) for u;
D= [X,Y] Dataset with user features and labels
y:{gl, - Upp} Set of predicted labels

S = {s1,00s S|D|} Set of confidence scores

N ={Ny, ..., N¢} Set of neighborhoods

UxV Base grid resolution

T Binary classification task

m Number of binary classification tasks
t Number of neighborhoods

ty Tree height

where o(Nj) and e(N;) return the true fraction of positive in-
stances and the expected value of confidence scores for instances
in N;'.

3 RELATED WORK

Fairness in ML. There exist two broad categories of fairness
notions [5, 24]: individual fairness and group fairness. In group
fairness, individuals are divided into groups according to a pro-
tected attribute, and a decision is said to be fair if it leads to a
desired statistical measure across groups. Some prominent group
fairness metrics are calibration [29], statistical parity [21][7],
equalized odds [14], treatment equality [4], and test fairness [6].
Individual fairness notions focus on treating similar individu-
als the same way. Similarity may be defined with respect to a
particular task [7, 17].

Unfairness mitigation techniques can be categorized into three
broad groups: pre-processing, in-processing, and post-processing.
Pre-processing algorithms achieve fairness by focusing on the
classifier’s input data. Some well-known techniques include sup-
pression of sensitive attributes, change of labels, reweighting,
representation learning, and sampling [18]. In-processing tech-
niques achieve fairness during training by adding new terms
to the loss function [19] or including more constraints in the
optimization. Post-processing techniques sacrifice the utility of
output confidence scores and align them with the fairness objec-
tive [28].

Fairness in Spatial Domain. The fairness and justice concepts
in geographical social studies have been a subject of research as
early as the 1990’s [15]. With the rise of ML and its influence
on decision-making with geospatial data, this issue has gained
increased importance. Neighborhoods or individual locations
frequently serve as decision-making factors in entities such as
government agencies and banks. This context can lead to un-
fairness in a variety of tasks, such as mortgage lending [22], job
recruitment [10], school admissions [3], and crime risk predic-
tion [36].

A case study on American Census datasets by Ghodsi et al. [12]
underlines the context’s importance for fairness, illustrating how
spatial distribution can impact a model’s fairness-related per-
formance. According to [36], recidivism prediction models built
with data from one location often underperform when applied

1Symbol |.| denotes absolute value.
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Figure 3: Overview of Fair KD-tree algorithm.

to another location. The study in [33] explores individual spatial
fairness within two contexts: (i) distance-based fairness, moti-
vated by nearest neighbor semantics, such as selecting drivers
in ride-sharing apps, and (ii) zone-based fairness, where abrupt
changes in neighborhood boundaries can bias the classifier’s out-
come. The work in [34] formulates the issue of fairness-aware
range queries, defining a fair query as one most similar to the
user’s own query. Studies in [16, 39] consider crop monitoring in
palm oil plantations, aiming to incorporate a fairness criterion
primarily based on the F1 score during training. Additionally,
the authors propose SPAD (space as a distribution) - a method
to formulate the spatial fairness of learning models in continu-
ous domains. The authors in [32] define spatial fairness as the
statistical independence of outcomes from locations and propose
an approach to audit spatial fairness. The auditing is conducted
by exploring the distribution of outcomes inside and outside of a
given region and how similar they are. Weydemann et al. [38]
measure fairness in next-location recommendation systems in
which the historical movement pattern of users is utilized to make
future location recommendations. The proposed framework by
the authors first captures the probability that the location recom-
mender suggests locations based on race groups and then aims
to adjust the distribution for fairer outcomes.

The authors in [31] propose a loss function designed for in-
dividual fairness in social media and location-based advertising.
Pujol et al. [30] expose the disparate impact of differential privacy
on various neighborhoods. There have been numerous attempts
to apply fairness notions to clustering data points in Cartesian
space. The notion described in[20] views clustering as fair if the
average distance to points in its own cluster is not larger than
the average distance to any other cluster’s points. The authors
in [23] concentrate on defining individual fairness for k-median
and k-means algorithms, suggesting clustering is individually
fair if each point expects to have a cluster center within a certain
radius.

4 SPATIAL FAIRNESS THROUGH INDEXING

We introduce several algorithms that achieve group spatial fair-
ness by constructing spatial index structures in a way that takes
into account fairness considerations when performing data do-
main splits. We choose KD-trees as a starting point for our so-
lutions, due to their ability to adapt to data density, and their
property of covering the entire data domain (as opposed to struc-
tures like R-trees that may leave gaps within the domain).

Figure 2 provides an overview of the proposed solution. Our
input consists of a base grid with an arbitrarily-fine granularity
overlaid on the map, the attributes/features of individuals in the
data, and their classification labels. The attribute set includes
individual location, represented as the grid cell enclosing the
individual. We propose a suite of three alternative algorithms
for fairness, which are applied in the pre-processing phase of
the ML pipeline and lead to the generation of new neighborhood
boundaries. Once spatial partitioning is completed, the location
attribute of each individual is updated, and classification is per-
formed again.

The proposed algorithms are:

o Fair KD-tree is our primary algorithm and it re-districts
spatial neighborhoods based on an initial classification
of data over a base grid. Fair KD-tree can be applied to a
single classification task.

Iterative Fair KD-tree improves upon Fair KD-tree by re-
fining the initial ML scores at every height of the index
structure. It incurs higher computational complexity but
provides improved fairness.

Multi-Objective Fair KD-tree enables Fair KD-trees for mul-
tiple classification tasks. It leads to the generation of neigh-
borhoods that fairly represent spatial groups for multiple
objectives.

Next, we prove an important result that applies to all proposed
algorithms, which states that any non-overlapping partitioning of
the location domain has a weighted average calibration greater or
equal to the overall model calibration. The proofs of all theorems
are provided in Appendix A.

THEOREM 1. For a given model h and a complete non-overlapping
partitioning of the space N = {N1, N2, ..., N;}, ENCE is lower-
bounded by the overall calibration of the model.

A broader statement can also be proven, showing that further
partitioning leads to poorer ENCE performance.

THEOREM 2. Consider a binary classifier h and two complete
non-overlapping partitioning of the space N1 and Na. If Ny is a
sub-partitioning of N1, then:

ENCE(N;) < ENCE(N5) (6)

Neighborhood set N3 is a sub-partitioning of N if for every N; €
N1, there exists a set of neighborhoods in Ny such that their union
is Nj.

4.1 Fair KD-tree

We build a KD-tree index that partitions the space into non-
overlapping regions according to a split metric that takes into
account the miscalibration metric within the regions resulting af-
ter each split. Figure 3 illustrates this approach, which consists of
three steps. Algorithm 1 presents the pseudocode of the approach.

Step 1. The base grid is used as input, where the location of
each individual is represented by the identifier of their enclosing



Algorithm 1 Fair KD-tree

Algorithm 3 Iterative Fair KD-tree

Input: Grid (U X V), Features (X), Labels (), Height (¢},).
Output: New neighborhoods and updated feature set
: function FAIRKDTREE(N, X, Y, S, t3,)
if ¢, = 0 then
N < N+N
return True
axis « t mod 2
Li+, Ry« « SplitNeighborhood(N, Y, S, axis)
Run FairKDtree(L+, X, Y, S, t, — 1)
Run FairKDtree(R+, X, M, S, t;, — 1)
9: N1 « Grid
10: Global N « {}
11: Set all neighborhoods in X to Ny
12: Scores (S) < Train ML model on X and Y
13: Neighborhoods (N) < Run FairKDtree(N1, X, Y, S, ty,)
14: Update neighborhoods in X
15: return N, X

Algorithm 2 Split Neighborhood

Input: Neighborhood (N), Confidence Scores (S), Labels
(Y), Axis.
Output: Non-overlapping split of N into two neighborhoods
1: function SPLITNEIGHBORHOOD(N, S, Y, axis)
2 if axis = 1 then

3 N « Transpose of N

4 U’ x V' « Dimensions of N

5: fork =1..U’ do

6: L. < Neighborhoods in 1...k

7: Ry « Neighborhoods in k +1..U

8: z; < Compute Equation (9) for Ly and Ry
9: k* « argming zj

10: return Ly, Ry+

grid cell. This location attribute, alongside other features, is used
as input to an ML classifier h for training. The classifier’s output
is a set of confidence scores S, as illustrated in Figure 3a. Once
confidence scores are generated, the true fraction of positive
instances and the expected value of predicted confidence scores
of the model with respect to neighborhoods can be calculated as
follows:

e(hIN = Ny) = ﬁ(zjjv W vielnd O
oIN=N) = (Y w) Vielt] @)
! ueN;

where t is the number of neighborhoods.

Step 2. This step performs the actual partitioning, by customiz-
ing the KD-tree split algorithm with a novel objective function.
KD-trees are binary trees where a region is split into two parts,
typically according to the median value of the coordinate across
one of the dimensions (latitude or longitude). Instead, we select
the division index that reduces the fairness metric, i.e., ENCE
miscalibration. Confidence scores and labels resulted from the
previous training step are used as input for the split point deci-
sion. For a given tree node, assume the corresponding partition
covers U’ x V’ cells of the entire U x V grid. Without loss of
generality, we consider partitioning on the horizontal axis (i.e.,
row-wise). The aim is to find an index k which groups rows 1 to

Input: Grid (U x V), Features (X), Labels (), Height (t3,).
Output: New neighborhoods and updated feature set
: N1 — Grld
. Set all neighborhoods in X to Ny
: N {N1}
: while t;, > 0 do
Scores (S) < Train ML model on X and
Nnew < {}
for N; in N do
L, R « SplitNeighborhood(N;, S, Y, t;, %2)
Nnew < Nnew + L, R

R A O A

—_
<

N — Nnew
11 Update neighborhoods in X based on N
12: thp —tp—1
13: return N, X

k into one node and rows k + 1 to U’ into another, such that the
fairness objective is minimized (among all possible index split
positions). Let L and Ry denote the left and right regions gener-
ated by splitting on index k. The fairness objective for index k
is:

z = | Lkl x lo(Lg) = e(Li)| = |Re| X lo(Ry) — e(Re) 1| (9)
In the above equation, |Lg| and |Rg| return the number of data
entries in the left and right regions, respectively. The intuition
behind the objective function is to reduce the model miscalibra-
tion difference as we heuristically move forward. Two key points
about the above function are: (i) the formulation of calibration is
used in linear format due to the possibility of a zero denominator,
and (ii) the calibration values are weighted by their corresponding
regions’ cardinalities. The optimal index k* is selected as:

kK= argmkin Zk (10)

Step 3. On completion of the fair KD-tree algorithm, the index
leaf set provides a non-overlapping partitioning of the map. In
the algorithm’s final step, the neighborhood of each individual
in the dataset is updated according to the leaf set and used for
training.

The pseudocode for the Fair KD-tree method is illustrated
in Algorithms 1 and 2. The SplitNeighborhood function in the
latter identifies the split point based on the fairness goal, and it
is invoked multiple times within Algorithm 1. In Algorithm 1,
lines 9 to 12 outline the algorithm’s initial training stage, as
detailed previously in Step 1. The starting grid is determined as
Ni in line 9, and the model undergoes training in line 12. The
recursive split procedure is initiated in line 13. Upon reaching
a leaf node, the neighborhood is stored in line 3. If not, further
divisions are made, focusing on the fairness target.

THEOREM 3. For a given dataset D, the required number of
neighborhoods t and the model h, the computational complexity of
Fair KD-tree is O(|D| x [log(t)]) + O(h).

4.2 Iterative Fair KD-tree

One drawback of the Fair KD-tree algorithm is its sensitivity
to the initial execution of the model, which uses the baseline
grid to generate confidence scores. Even though the space is
recursively partitioned following the initial steps, the scores are
not re-computed until the index construction is finalized. The
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iterative fair KD-tree addresses this limitation by re-training the
model and computing updated confidence scores after each split
(i.e., at each level of the tree). A refined version of ML scores is
used at every height of the tree, leading to a more fair redistricting
of the map.

Similar to the Fair KD-tree algorithm, the baseline grid is
initially used, and all grid cells are considered to be in the same
neighborhood (i.e., a single spatial group covering the entire
domain). The algorithm is implemented in t;, iterations with the
root node corresponding to the initial point (entire domain). As
opposed to the Fair KD-tree algorithm that follows Depth First
Search (DFS) recursion, the Iterative Fair KD-tree algorithm is
based on Breadth First Search (BFS) traversal. Therefore, all nodes
in the given height i — 1 are completed before moving forward
to the height i. Suppose we are in the i‘" level of the tree, and all
nodes at that level are generated. Note that, the set of nodes at
the same height represents a non-overlapping partitioning of the
grid. The algorithm continues by updating the neighborhoods at
height i based on the i — 1 level partitioning. Then, the updated
dataset is used to train a new model, thus updating confidence
scores for each individual.

Algorithm 3 presents the Iterative Fair KD-tree algorithm. Let
N denote the set of all neighborhoods at level i of the tree. For
each neighborhood N; € N, Iterative Fair KD-tree splits the
region N; by calling the SplitNeighborhood function in Algo-
rithm 2. The split is done on the x-axis if i is even and on the
y-axis otherwise.

Partitioning on
Height i
7
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’ Ny

ee W
el N

A% Py
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The algorithm provides a more effective way of determining a
fair neighborhood partitioning by re-training the model at every
tree level, but incurs higher computation complexity.

THEOREM 4. For a given dataset D, the required number of
neighborhoods t and the model h, the computational complexity of
Iterative Fair KD-tree is O(|D| X [log(#)]) + [log(¢)] x O(h).

4.3 Multi-Objective Fair KD-tree

So far, we focused on achieving a fair representation of space
given a single classification task. In practice, applications may
dictate multiple classification objectives. For example, a set of
neighborhoods that are fairly represented in a city budget alloca-
tion task may not necessarily result in a fair representation of a
map for deriving car insurance premia. Next, we show how Fair
KD-tree can be extended to incorporate multi-objective decision-
making tasks.

We devise an alternative method to compute initial scores in
Line 8 of Algorithm 2, which can then be called as part of Fair
KD-tree in Algorithm 1. A separate classifier is trained over each
task to incorporate all classification objectives. Let h; be the ith
classifier trained over D and label set Y; representing the task
T;. The output of the classifier is denoted by S; = {si, sliDl 1,

where in s, the superscript identifies the set S; and the subscript

indicates individual u;. Once confidence scores for all models are
generated, an auxiliary vector is constructed as follows:

517y
S5~y

Vi = . N

i i
1 1
1_ .1
2 2

Vi€ [1..t] (11)
i
*ip1 " Yip|
To facilitate task prioritization, hyper-parameters aj, ..., am
are introduced such that 221 aj =1and 0 < ¢; < 1. Coefficient
a; indicates the significance of classification T;. The complete
vector used for computing the partitioning is then calculated as,
St (sl - )
m 2t ailsy —yp)
Vtor = Z aiv; = : (12)
m . i. i
Zi:l al(lel le‘)
In the above formulation, each row corresponds to a unique
individual and captures its role in all classification tasks. Let

vtor|ui] denote the entry corresponding to u; in v4o;. Then the
classification objective function in Eq. 9 is replaced by:

ze =1Ll x| D vrorlwill = IRkl x| D ororluwil || (13)

u;=Ly u;i=Ry
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Figure 6: Evidence of Model Disparity on Geospatial Neighborhoods.
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Figure 7: Performance Evaluation with respect to ENCE.

and the optimal split point is selected as,

(14)

k* = arg mkin Zk
Vector aggregation is illustrated in Figure 5.

THEOREM 5. For a given dataset D, the required number of neigh-
borhoods t and m classification tasks modelled by hy, ..., hy, com-
putational complexity of Multi-Objective Fair KD-tree is O (|D| x

[og(t)T) + XiZ; O(hi).

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

We use two real-world datasets provided by EdGap [35] with 1153
and 966 data records respectively, containing socio-economic fea-
tures (e.g., household income and family structure) of US high
school students in Los Angeles, CA and Houston, Texas. Consis-
tent with [11], we use two features of average American College
Testing (ACT) and the percentage of family employment as indi-
cators to generate classification labels. The geospatial coordinates
of schools are derived by linking their identification number to
data provided by the National Center for Education Statistics [1].

We evaluate the performance of our proposed approaches (Fair
KD-tree, Iterative Fair KD-tree, and multi-objective Fair KD-tree)
in comparison with four benchmarks: (i) Median KD-tree, the

standard method for KD-tree partitioning; (ii) Reweighting over
grid — an adaptation of the re-weighting approach used in in [18]
and deployed in geospatial tools such as IBM Al Fairness 360; (iii)
Zipcode partitioning; and (iv) the SPAD (space as a distribution)
method proposed in [39], designed to improve spatial fairness
by minimizing statistical discrepancies tied to partitioning and
scaling in a continuous space. The core idea of SPAD is to in-
troduce fairness via a referee at the start of each training epoch.
This involves adjusting the learning rate for different data sam-
ple partitions. Intuitively, a partition that exceeds performance
expectations will receive a reduced learning rate, while those
underperforming will be allocated higher rates. All experiments
are implemented in Python and executed on a 3.40GHz core-i7
Intel processor with 16GB RAM.

5.2 Evidence for Disparity in Geospatial ML

First, we perform a set of experiments to measure the amount
of bias that occurs when performing ML on geospatial datasets
without any mitigating factors. Figure 6 captures the existing
disparity with respect to widely accepted metrics of calibration
error and ECE with 15 bins. We use the ratio representation
of calibration in which a closer value to 1 represents higher
calibration levels. Two logistic regression models are trained over
neighborhoods in Los Angeles and Houston areas. The labels
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Figure 8: Performance Evaluation with respect to other indicators.

are generated by setting a threshold of 22 on the average ACT
performance of students in schools. The overall performance of
models in terms of training and test calibration in Los Angeles
and Texas are (1.005, 1.033) and (0.999, 0.958), respectively. Both
training and test calibration are close to 1 overall, which in a
naive interpretation would indicate all schools are treated fairly.
However, this is not the case when computing the same metrics
on a per-neighborhood basis. Figure 6 shows miscaibration error
for the top 10 most populated zip codes. Despite the model’s
acceptable outcomes overall, many individual neighborhoods
suffer from severe calibration errors, leading to unfair outcomes
in the most populated regions, which are often home to the
under-privileged communities.

5.3 Mitigation Algorithms

5.3.1 Evaluation w.r.t. ENCE Metric. ENCE is our primary
evaluation metric that captures the amount of calibration error
over neighborhoods. Recall that Fair KD-tree and its extension
Iterative Fair KD-tree can work for any given classification ML
model. We apply algorithms for Logistic Regression, Decision
Tree, and Naive Bayes classifiers to ensure diversity in models.
We focus on student SAT performance following the prior work
in [11] by setting the threshold to 22 for label generation. Figure 7
provides the results in Los Angeles and Houston on the EdGap
dataset. The x-axis denotes the tree’s height used in the algorithm.
Having a higher height indicates a finer-grained partitioning. The
y-axis is log-scale.

Figure 7 demonstrates that both Fair KD-tree and Iterative Fair
KD-tree outperform benchmarks by a significant margin. The im-
provement percentage increases as the number of neighborhoods
increase, which is an advantage of our techniques, since finer
spatial granularity is beneficial for most analysis tasks. The intu-
ition behind this trend lies in the overall calibration of the model:
given that the trained model is well-calibrated overall, dividing
the space into a smaller number of neighborhoods is expected
to achieve a calibration error closer to the overall model. This

result supports Theorem 1, stating that ENCE is lower-bounded
by the number of neighborhoods. Iterative Fair KD-tree behaves
better, as confidence scores are updated on every tree level. The
improvement achieved compared to Fair KD-trees comes at the
expense of higher computational complexity. On average Fair
KD-tree achieves 45% better performance in terms of computa-
tional complexity. The time taken for Fair KD-tree with 10 levels
is 102 seconds, versus 189 seconds for the iterative version.

5.3.2  Evaluation w.r.t. other Indicators. In Figure 8 we eval-
uate fairness with respect to three other key indicators: model
accuracy, training miscalibration, and test miscalibration. We
focus on logistic regression to discuss the performance as one of
the most widely adopted classification units. The accuracy of all
algorithms follows a similar pattern and increases at higher tree
heights. This is expected, as more geospatial information can be
extracted at finer granularities.

Figure 8b shows training miscalibration calculated for the
overall model (a lower value of calibration error indicates better
performance). Our proposed algorithms have comparable cali-
bration errors to benchmarks, even though their fairness is far
superior. Out of all benchmarks, SPAD is observed to have com-
parable or slightly better performance than our approach, but
only at coarse granularities, when the space is partitioned accord-
ing to a low-height structure. However, at coarse granularity,
there is little information that is provided to the data recipient
(e.g., in practice, it is of interest to take decisions at a city block
granularity, whereas zipcode-scale granularity is too coarse). For
finer-grained partitioning (i.e., higher height values) Fair KD-tree
and iterative KD-tree outperform benchmarks.

To understand better the underlying performance trends, Fig-
ure 9 provides the heatmap for the tree-based algorithms over
10 different tree heights. The amount of contribution each fea-
ture has on decision-masking is captured using a different color
code. One observation is that the model shifts focus to different
features based on the height. Such sudden changes can impact
the generated confidence scores and, subsequently, the overall
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calibration of the model. As an example, consider the median KD-
tree algorithm at the height of 8 in Los Angeles (Figure 8b): there
is a sudden drop in training calibration, which can be explained
by looking at the corresponding heat map in Figure 9a. At the
height of 8, the influential features on decision-making consist
of different elements than the heights 4, 6, and 10, leading to the

Fig

(f) Height= 6, Houston

ure 10: Performance evaluation of multi-objective algorithm.

5.4 Performance of multi-objective approach.

When multi-objective criteria are used, we need a methodology
to unify the geospatial boundaries generated by each task. Our
proposed multi-objective fair partitioning predicated on Fair KD-
trees addresses exactly this problem. In our experiments, we use
the two criteria of ACT scores and employment percentage of
families as the two objectives used for partitioning. These features

fluctuation in the model calibration.
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are separated from the training dataset in the pre-processing
phase and are used to generate labels. The threshold for ACT
is selected as before (22), and the threshold for label generation
based on family employment is set to 10 percent.

Figure 10 presents the results of the Multi-Objective Fair KD-
tree (to simplify chart notation, we use the ‘Fair KD-tree’ label).
We choose a  value of 0.5 to give equal weight to both objectives.
We emphasize that, the output of the Multi-Objective Fair KD-tree
is a single non-overlapping partitioning of the space representing
neighborhoods. Once the neighborhoods are generated, we show
the performance with respect to each objective function, i.e.,
ACT and employment. The first row of the figure shows the
performance for varying tree heights in Los Angeles, and the
second row corresponds to Houston. The proposed algorithm
improves fairness for both objective functions. The margin of
improvement increases as the height of the tree increases.

5.5 Synthetic Data Results

We compare the studied algorithms using synthetic datasets, with
the primary focus of assessing their performance on larger data
cardinality. The results are illustrated in Figure 11. Synthetic data
were generated with sizes of 1k, 10k, 50k, 100k using Python’s
SKLearn library to create a classification task encompassing 5
features, and users were distributed across the Los Angeles map.
The findings validate the earlier performance assessment using
real-world data, highlighting the superior performance of both
the Iterative Fair KD-tree and Fair KD-tree algorithms.

5.6 Multi-Objective Performance Evaluation

Figure 12 evaluates the Fair KD-tree’s effectiveness in a multi-
objective setting using synthetic data. We use three target fea-
tures labeled as ’Obj1’, ’Obj2’, and "Obj3’. The multi-objective fair
KD-tree is used to generate a single unified map for all three, and
the resulting performance is evaluated. The outcomes corrobo-
rate the performance analysis using real-world data, highlighting
the improved fairness outcomes achieved by the Fair KD-tree
algorithm.

6 CONCLUSION

We introduced an indexing method aimed at ensuring spatial
group fairness in machine learning. This method divides the data
domain, considering both geographical aspects and calibration
errors. Comprehensive assessments on real-world data confirm
our technique’s efficacy in minimizing unfairness when training
with location features, without compromising data utility. Look-
ing ahead, we aim to delve deeper into custom split metrics for
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Figure 12: Multi-objective Performance Evaluation.

fairness-aware spatial indexing that acknowledges data distribu-
tion nuances. We will also explore other indexing frameworks,
like R* trees, which fully encompass the data domain and offer
enhanced clustering traits. Furthermore, our present framework
is designed for binary classification. There’s a need to adapt this
model for multi-class classification.
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A APPENDIX
A.1 Expected Calibration Error

Expected Calibration Error (ECE) is one of the primary metrics
used to quantify calibration in ML. According to this metric,
the output confidence scores are sorted and partitioned into M
bins denoted by By, ...., Bp. The associated score for each data
instance lies within one of the bins. The ECE metric is then
calculated over bins as follows:

M
BCE= )" 2™ lo(Bp) ~ e(Bp)| (15)
m=1

A.2 Theorem Proofs

Proof of Theorem 1
The proof follows triangle inequality. The weighted calibration
of the model can be written as,

D7 INil x le(hIN = Ny) = o(hIN = Nj)| = (16)
N;eN
>, Nl (Z ) = TN (Z y)l = (17)
N;eN u€eN;
Z|Zsu—2yu|z|2su—2yu| (18)
N;eN ueN; u€eN; ueD ueD
= DI % (Je(h) = o(h)]) (19)

Proof of Theorem 2

Since N3 is a subgroup partitioning of NV it can be constructed
following step-by-step partitioning of neighborhoods in N into
finer granularity ones until reaching N2. Denote N neighbor-
hoods by {Ni, Ny, ..., N }. Without loss of generality, we show
that splitting an arbitrary neighborhood N; € N1 to Nj; and N
leads to a worse ENCE metric value:
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N;eN
D7 INil x[e(hIN = Np) = o(hIN = Ny)|+
N;eN,i#j
INj| % |e(h|N = Nj) —o(h|N = Nj)| (21)
Note that,
|Nj|X|€(h|N=Nj)—O(thzNj)| = (22)
1
INj I | D s - (Z yu)l = (23)
J uENj uEN

1) s = (D) wa)l = (24)

ueN; ueN;
1Y) s =D )+ (D) s)=( ) gl <
u€Nj; ueNj; u€eN;; u€Nj;

. . . o
10D s = () ml+1C D] s = (D) yull=
u€eN;; u€eNj; u€Nj, u€EN;,

(26)
N % i (Z (Z Y+
u€eNj;

INj2l |@<u§ﬂ Su) = (ZN] vl (27)

Therefore, since by further splitting of neighborhoods, ENCE
gets worse and as Ny can be reconstructed one division at a time
from Nj, one can conclude that

ENCE(N;) < ENCE(Ny) (28)

Proof of Theorem 3

As the tree is binary, there is a maximum of [log(t)] parti-
tioning levels. At every level of the tree, the fairness objective
function is calculated |D| times, with each computation taking a
constant time. Therefore, the required number of computations is
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O(|D|x [log(#)]). Moreover, the algorithm requires an initial run
of the model h, which depends on what ML model is employed,
represented by the computation complexity of O(h) in the total
complexity equation.

Proof of Theorem 4

Similar to Fair KD-tree, the total number of levels in Itera-
tive Fair KD-tree is [log(#)] requiring computational complexity
of O(|D| x [log(t)]) to obtain the values for fair partitioning.
However, in contrast to the Fair KD-tree algorithm, the itera-
tive version requires the execution of the ML model at every

height of the tree. The total computational complexity adds up
to O(|D| x [log(t)]) + [log(¢)] x O(h).

Proof of Theorem 5

Multi-objective Fair KD-tree requires a single execution of the
ML classifier at the beginning of the algorithm. Therefore, the
computational complexity is 372, O(h;). Once confidence scores
are generated, given that m is small, the total required objective
computations at every tree level remains O(|D| X [log(¢)]) as
the combined vector can be calculated in constant time.
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