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Abstract—Data in many practical problems are acquired
according to decisions or actions made by users or experts
to achieve specific goals. For instance, policies in the mind
of biologists during the intervention process in genomics and
metagenomics are often reflected in available data in these
domains, or data in cyber-physical systems are often acquired
according to actions/decisions made by experts/engineers for
purposes such as control or stabilization. Quantification of
experts’ policies through available data, which is also known
as reward function learning, has been discussed extensively
in literature in the context of inverse reinforcement learning
(IRL). However, most of the available techniques come short
to deal with practical problems due to the following main
reasons: 1) Lack of scalability: arising from incapability or poor
performance of existing techniques in dealing with large systems;
2) Lack of reliability: coming from the incapability of the existing
techniques to properly learn the optimal reward function during
the learning process. Toward this, in this paper, we propose
a multi-fidelity Bayesian optimization (MFBO) framework that
significantly scales the learning process of a wide range of
existing inverse reinforcement learning techniques. The proposed
framework enables the incorporation of multiple approximators
and efficiently takes their uncertainty and computational costs
into account to balance exploration and exploitation during the
learning process. The proposed framework’s high performance
is demonstrated through genomics, metagenomics, and sets of
random simulated problems.

Index Terms—Reinforcement Learning, Bayesian Optimiza-
tion, Multi-Fidelity Models.

I. INTRODUCTION

Quantifying the policies in mind of experts or users through
some realizations of their behavior is becoming more and more
critical in contemporary applications. In fact, the complexity,
scale, and uncertainty involved in real problems necessitate
maximum extraction of information through available data. For
instance, medical data are often acquired according to treat-
ments/remedies prescribed by doctors for disease diagnosis or
therapy.

Several techniques have been developed in the context of
inverse reinforcement learning (IRL) for learning the policies
through realizations of experts/demonstrators [1–5]. These
techniques can be categorized as follows:
• Maximum Margin IRL: This class of techniques at-

tempts to choose the reward function that separates the
optimal policy and the second-best policy the most [1, 2].
Other variations of this class have been focused on
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learning from suboptimal demonstrations [6], learning
for cases with nonlinear reward functions [7], and game-
theoretic learning [8].

• Bayesian IRL: The Bayesian term in the title of this class
reflects their ability to incorporate the prior knowledge
during the learning process. The prior is often used
to bias the search over reward functions [9–11]. Some
variations of this class allow dealing with suboptimal
demonstrations [12].

• Gradient-based IRL: This class of techniques attempts
to optimize a loss function, which often penalizes devi-
ations from the expert’s policy [13], in the learning of
reward function.

• Maximum entropy IRL: This class of techniques looks
at the learning problem from the information-theoretic
prospective [5, 14–17]. The main idea of these techniques
is to find the most likely reward function given the
demonstrations and attempt to produce a policy that
matches the user’s expected performance without making
further assumptions on the preference over trajectories.

Notice that there are many other IRL techniques that might
not belong to the above categorizations (e.g., IRL with specific
(e.g., linear/quadratic) reward functions [18, 19], and modeling
the user’s reward function via classification [20]). For more
information, see [4, 21].

Despite the development of several IRL techniques, the
following two limitations often prevent the applications of the
existing techniques to a wide range of practical problems:

1) Lack of Scalability: The existing IRL techniques often
rely on excessive sampling of the parameter space during
the learning process to avoid local optimum traps. This
reliance on excessive sampling often results in intractabil-
ity or poor performance of the existing techniques due to:
1) Huge computational cost of a single evaluation: Eval-
uation/approximation of the desirability of any single
parameter sample point requires performing a dynamic
programming based technique. This is due to the fact that
each parameter sample corresponds to a known reward
function, in which dynamic programming based tech-
niques can be employed to compute/approximate the op-
timal policy. However, the computational cost of dynamic
programming for any given parameter sample increases
exponentially with the size of systems, rendering the
computation of the existing techniques intractable.
2) Large Parameter Space: Complexity of the practical
problems necessitates considering complex models for the
reward function with a large number of parameters. It can



be shown that the amount of required search over the
parameter space for a proper learning process increases
exponentially with its size, resulting in intractability or
poor performance of the existing techniques.

2) Lack of Reliability: Deterministic estimation/learning of
parameters of the model assumed for the reward function
is the basis for most of the existing IRL techniques.
These techniques often come short to properly estimate
the optimal or near-optimal parameters of the reward
functions, leading to the learning process’s unreliability.

This paper addresses the aforementioned challenges in the
existing inverse reinforcement learning techniques by devel-
oping a multi-fidelity Bayesian optimization framework. For
any arbitrary model of the reward function (e.g., parametric
or non-parametric) with a relatively small number of param-
eters, the log-likelihood or log-posterior computed by IRL
over the parameters of the reward function is represented by
a Bayesian surrogate model. This surrogate model enables
incorporating multiple reinforcement learning techniques with
different episode or epoch numbers as multiple approximators
for evaluation of the IRL objective function. Large episode
numbers refer to more accurate (high-fidelity) approximators
at a higher computational time/cost, whereas small episode
numbers correspond to fast but less accurate (low-fidelity)
approximators. The surrogate model optimally takes the ap-
proximators’ uncertainty and computational cost into account
and enables simultaneous sequential selection of parameters
and approximators. More specifically, the proposed framework
selects sequential samples so that the largest single-period
expected increase in the maximum of the objective function
per unit cost is achieved. The proposed framework’s accuracy
and speed are demonstrated empirically by applying it to
genomics, metagenomics, and simulated problems.

II. BACKGROUND

The reinforcement learning (RL) framework can be for-
mulated as a Markov decision process (MDP). An MDP is
formally defined by a 5-tuple 〈S,A, T, R, γ〉, where S is the
state space, A is the action space, T : S × A × S is the
state transition probability function such that T (s,a, s′) =
p(s′ | s,a) represents the probability of moving to state s′

after taking action a in state s, R : S× A→ R is a bounded
reward function such that R(s,a) encodes the reward earned
when action a is taken in state s, and 0 < γ < 1 is a discount
factor. The schematic diagram of the RL is shown in Fig. 1.
There is an agent that interacts with the system/environment:
the agent starts at initial state s0 ∈ S in the environment.
At each time step t, the agent takes an action at ∈ A and
observes an immediate reward rt ∈ R and moves to the new
state st+1 ∈ S.

The RL aims to find the best action-strategy that maxi-
mizes the expected accumulated rewards. More formally, a
deterministic stationary policy π for an MDP is a mapping
π : S → A from states to actions. The expected discounted
reward function at state s ∈ S after taking action a ∈ A and

following policy π afterward is defined as:

Qπ(s,a)=E

[ ∞∑
t=0

γtR(st,at) | s0 = s,a0 = a,a1:∞ ∼ π

]
.

(1)
According to (1), the expected return under the optimal policy
π∗ can be defined as:

Qπ
∗
(s,a)=E

[ ∞∑
t=0

γtR(st,at) | s0 = s,a0 = a,a1:∞ ∼ π∗
]
.

where Qπ
∗
(s,a) indicates the expected discounted reward

after executing action a in state s and following optimal
policy π∗ afterward. An optimal stationary policy π∗ attains
the maximum expected return for all states as: π∗(s) =
maxa∈AQ

π∗(s,a).
An MDP is said to be known if the 5-tuple 〈S,A, T, R, γ〉

is fully specified. For an MDP with known dynamics and
finite state and action spaces, planning algorithms such as
value iteration or policy iteration [22] can be used to com-
pute the optimal policy offline. For large state and action
spaces, approximate dynamic programming (ADP) [23], and
reinforcement learning (RL) [24, 25] techniques are often used
for approximation of an infinite horizon policy. The ADP
techniques rely on simulated or existing batch data for their
learning process. An inverse reinforcement learning deals with
cases that everything is specified in the MDP except the reward
function. As indicated in the term "inverse", some realizations
of policy are available, and the goal is to learn reward function
through available data. This has been explained in the next
section.

III. THE PROPOSED FRAMEWORK

A. Problem Formulation

Let DT contain all available realizations of a demonstrator,
denoted by:

DT = {(s̃1, ã1), (s̃2, ã2), ..., (s̃T , ãT )} , (2)

where ãr is the taken action by demonstrator at the state s̃r at
time step r. Let also θ be a vector in the space Θ which de-
notes the unknown part of reward function (i.e., Rθ). It should
be noted that we do not make any restrictive assumption on the
choice of the reward function, and depending on the problem,
the reward function can be a simple parametric model such
as linear or polynomial functions, or a non-parametric model
such as Gaussian processes [26]. It should be mentioned that
despite the appearance of the “non-parametric" term in non-
parametric models, these models contain a set of parameters or
hyper-parameters similar to parametric models. For instance,
the non-parametric Gaussian process model can be expressed
by mean and kernel functions, where both functions contain a
set of hyper-parameters that need to be learned according to
the available data.

IRL techniques attempt to estimate the parameters of the
reward function using the observed demonstrations. This can
also be interpreted as finding the best estimate for parameters
of the reward function Rθ(s,a), whose corresponding policy



Fig. 1: Illustration of an MDP (left) and a schematic diagram of RL framework.

(i.e., π∗θ) matches the demonstration D. Despite some differ-
ences in the existing IRL techniques [2, 5, 9, 13] (e.g., the
space or size of the state and action spaces or the choice of
model for the reward function), the majority of them aims to
solve the optimization of the following form:

θ∗=argmax
θ∈Θ

f(θ). (3)

where f(.) is called “objective function”, which depending
on the main goal, can be likelihood, posterior, entropy or any
objective function. Two popular instances of them that have led
to maximum likelihood (ML) [13] and maximum a posteriori
(MAP) [27] IRL techniques are as follows:

f(θ) = logP (DT | θ), (ML)

f(θ)= logP (θ | DT )

∝ log p(θ) + logP (DT | θ), (MAP)

(4)

where p(θ) is the prior probability and the second expression
in MAP estimator is written according to the Bayes’ rule.
Evaluation of the objective function at any given sample θ
for both ML and MAP requires computation of the following
log-likelihood function:

logP (DT | θ)

=
T∑
t=2

log p(s̃t | s̃t−1, ãt−1,θ)︸ ︷︷ ︸
State-Action Transition Term

+

T∑
t=1

log p(ãt | s̃t,θ)︸ ︷︷ ︸
Demonstrator Policy Term

. (5)

where p(.) is a probability density or probability mass func-
tion. While computation of the first term in (5) can be done
relatively fast for any arbitrary MDP, computation of the
second term can be both computationally and analytically very
challenging.

Let π∗θ be the optimal policy under reward function param-
terized by θ (i.e., Rθ). This policy can be computed exactly
for small and finite state and action spaces by running a dy-
namic programming technique; whereas for large and arbitrary
spaces, the policy π∗θ can be approximated by performing
a reinforcement learning technique associated to the reward
function parametrized by θ. Assuming that the “imperfect"
demonstrator’s decisions can be modeled by the well-known
Boltzmann softmax policy [24], one can write:

p(a | s,θ) ∝ exp
(
−η Qπ

∗
θ (s,a)

)
, (6)

for s ∈ S and a ∈ A; where η > 0 represents our confidence
on the expert’s decision. The smaller the value of η, the more

imperfect the demonstrator is expected to be. Using (6) in
(5), the log-likelihood function and as a result the objective
function in (4) can be evaluated.

Since most of the realistic problems can be modeled by
MDPs with large state and action spaces, one can understand
that a good approximation of the objective function for any
given sample point θ ∈ Θ is computationally expensive, as
it requires approximating π∗θ by running an RL technique in
very large spaces. In fact, it can be shown that the number
of episodes/epochs required by any RL technique for proper
learning of the expected returns increases exponentially with
the size of the state and action spaces. This makes the
computation of most of the conventional inverse reinforcement
learning techniques intractable or very slow, as they rely
on excessive evaluations of the objective function over the
samples of the parameter space. In the next paragraph, we will
introduce a multi-fidelity Bayesian optimization framework for
scalable, efficient, and fast inverse reinforcement learning.

B. Modeling the Objective Function by Gaussian Process
Regression

In this paper, we assume the reward function is an arbitrary
parametric/non-parametric model with a relatively small num-
ber of parameters, encoded in a finite-dimensional vector θ.
Let also N be the number of episodes or epochs used by a
reinforcement learning technique to approximate the objective
function at a given sample point θ ∈ Θ, which denotes a
realization of the reward function. The approximation made
in the objective function evaluation, indicated by f̂(θ) for any
θ ∈ Θ, and correlation over the parameter space are accounted
for by employing the Gaussian process (GP) regression [26]
as:

f̂(θ) ≈ F(θ) + ∆f̂N , (7)

where F(θ) indicates the GP over the parameter space Θ,
and ∆f̂N is a zero-mean Gaussian residual with variance σ2

N ,
which models, for all parameters, the uncertainty arising from
the use of an RL with episode number N . The noise value, σ2

N ,
indicates the variance of the objective function approximated
by an RL with N episode number (more information is
provided in Section III-C).

The following prior distribution is assumed for the GP:

F(θ) = GP (µ(θ), k(θ,θ)) , (8)

where µ(θ) and k(., .) are the mean function and a real-
valued kernel function, which encodes our prior belief on
the correlation in the parameter space. A common kernel



choice for a continuous parameter space is the well-known
exponential kernel function [26? ].

Let fm = [f̂(θ(1)), . . . , f̂(θ(m))]T be the approximated
objective function obtained by performing m RLs with
episode numbers Nm = (N (1), ..., N (m)) at samples Θm =(
θ(1), . . . , θ(m)

)
. The posterior of the GP can be obtained

as [26, 28]:

F(Θ) | Θm,Nm, fm ∼ N
(
F̄m(Θ), covm (Θ,Θ)

)
, (9)

where

F̄m(Θ)=µ(Θ)+KΘ,Θm
(KΘm,Θm

+ ΣNm
)
−1

(fm − µ(Θm)),

covm(Θ,Θ) = K(Θ,Θ)

− KΘ,Θm(KΘm,Θm +ΣNm)
−1

KT
Θ,Θm

,
(10)

ΣNm is a diagonal matrix of size m with ith diagonal element
(ΣNm)ii = σ2

N(i) , and

KΘ,Θ′ =

k(θ1,θ
′
1) . . . k(θ1,θ

′
n)

...
. . .

...
k(θl,θ

′
1) . . . k(θl,θ

′
n)

 , (11)

for Θ = {θ1, ..., θl} and Θ′ = {θ′1, ..., θ
′
n}. Using the

above formulation, the objective function before observing
any data is modeled by a zero-mean Gaussian process with
covariance k(θ,θ), while at iteration m, the objective function
is predicted based on the sequence of queried samples Θm,
the approximate objective function values fm, and the episode
numbers Nm used for these approximations. The uncertainty
in the objective function, which is modeled by the covariance
function in equation (9), decreases as more points are sampled
from the parameter space and added to the GP.

The hyper-parameters of the Gaussian process, such as the
parameters of the kernel function or the mean function, can
be estimated at each time point using the marginal likelihood
function [26]:

fm | Θm,Nm∼N (µ(Θm),KΘm,Θm
+ ΣNm

) . (12)

Notice that, due to the difficulty of choosing a proper model
for the mean function and its impact on the learning accuracy,
a possible option is to use µ(θ) = mini=1,...,m fm(i). This
adaptive constant mean avoids the challenging task of picking
a proper parametric model for the mean function, and also
prevents over-estimation of the objective function over regions
that have not been explored well.

It should be noted that the Bayesian representation of the
objective function makes the proposed framework different
from the conventional Bayesian IRL [9–11, 29]. In fact,
the BIRL methods do not represent the objective function
by surrogate models and employ Bayesian techniques such
as Gibbs sampling and Markov chain Monte Carlo based
techniques to find the distribution of the parameters of the
reward function. By contrast, the proposed framework provides
the Bayesian representation of the objective function over
parameters of the reward function, which yields the following
benefits: 1) correlation consideration over the parameter space,

which provides predicted values of the objective function over
the whole parameter space given limited available information;
2) capability of uncertainty analysis through posterior of the
Gaussian process representing the objective function, which
provides the confidence regarding the predicted values at any
given sample in the parameter space.

C. Simultaneous Sequential Selection of Parameter and Ap-
proximator:

The uncertainty in the objective function evaluation is mod-
eled by parameter σ2

N in the GP surrogate model in (7). This
value, which indicates the variance of the objective function
approximated by an RL, mainly depends on the RL episode
number N and can be quantified in one of the following three
ways: 1) running multiple RL with a fixed episode number at
an arbitrary sample of the parameter space and computing the
sample variance of the approximated objective values; 2) using
available theoretical upper bounds on the approximation error
of RL techniques for any choice of episode number [30, 31]; 3)
treating the noise parameters as hyper-parameters and learning
them on the fly according to the marginal likelihood in (12).

The variance issue is linked to the computational complexity
of RL algorithms. The computational complexity, which will
be indicated by cN in this paper, increases linearly with the
number of episodes. This means that the large N refers to
an approximator with smaller variance (high- fidelity) and
high computational complexity, whereas small N leads to
an approximator with large uncertainty (low-fidelity) but low
computational complexity. This has been clearly shown in
Fig. 2, where the main objective function denoted by solid
black line over one-dimensional parameter space is modeled
by a surrogate model constructed according to 10 evaluations
using low-fidelity approximator in the left plot and a surrogate
model constructed according to 2 evaluations by high-fidelity
approximator in the right plot. While the computational cost
of 10 evaluations by low-fidelity approximator is the same as
2 evaluations by high-fidelity approximator, it can be seen that
exploration is well performed by the low-fidelity approximator.
Notice that Fig. 2 is for illustration purposes, and samples are
not computed by performing RL algorithms.

Fig. 2: The GP surrogate models constructed over function
evaluations obtained by low-fidelity (left) and high fidelity
(right) apprximators.

In order to achieve a solution that is scalable, accurate and
fast, this paper introduces a policy that takes all these fidelity
approximators into account and simultaneously selects good



sample points in the parameter space and good approximators
of the objective function to achieve both accurate and fast
learning process in inverse reinforcement learning domain.
Assuming that we are at iteration m during the learning
process (which means the set of objective functions fm are
approximated by performing m RLs with episode numbers
Nm at sample set Θm), if we want to stop the learning
process at the current iteration, the best estimate of parameters
of the reward function would be a sample in the parameter
space which has the highest expected mean in the posterior
distribution of the GP. This sample point can be selected
according to (10) as:

θ̂
∗
GP = argmax

θ∈Θ
F̄m(θ), (13)

where F̄m(θ) = E[F(θ) | Θm,Nm, fm]. If an additional
pair of parameter and approximator is to be selected from
the parameter space and set of approximators, we suggest
choosing the pair with the highest single-period expected
increase in the maximum of the surrogate model per unit cost.
This can be formulated as:

(θ(m+1), N (m+1)) = argmax
(θ,N)∈(Θ,N)

1

cN

Em
[
max
θ′∈Θ

E
[
F(θ′) | Θm,Nm, fm,θ

(m+1) = θ, N (m+1) = N
]

−max
θ′∈Θ

E
[
F(θ′) | Θm,Nm, fm

]]
,

(14)
where N denotes a finite set of episode numbers corresponding
to a finite number of approximators, and Em denotes expec-
tation over the unobserved objective function at point θ(m+1)

approximated by a RL (approximator) with N (m+1) episode
number, given all available information up to iteration m.

An exact closed-form solution for computation of (14) is
possible through the knowledge gradient algorithm [32], if the
parameter space, Θ, be replaced by a finite set of alternative in
(14). This finite alternative set should be selected based on the
goal of the learning process. In particular, for non-prior based
IRL techniques [1, 2, 6, 7, 13? ] hypercube sampling [33] can
be employed for generating this set, whereas for prior-based
IRL techniques [9, 12], the alternative set could be provided by
samples drawn from the prior distribution. The set of episode
numbers, which specifies the number of approximators, needs
to be chosen based on the system’s size. However, the al-
gorithm is fairly robust against this choice. In our numerical
experiments, we observed that "small", "medium," and "large"
episode numbers all lead to good learning accuracy and speed.

Let Θa be the alternative set containing n samples from
the parameter space (i.e., Θa ⊂ Θ), and µam and Σa

m be the
mean and covariance functions over the alternative samples
computed using the expressions in (10) using all available
information up to time step m. The posterior distribution of
F(.) at time m + 1 depends on the selected sample from
the alternative set θ(m+1), episode number N (m+1) and the
approximated objective function f(θ(m+1)). For a given ith
alternative sample (i.e., θ(m+1) = θi ∈ Θa), this posterior
distribution may be calculated using standard results for nor-
mal sampling with a multivariate normal prior distribution.

The knowledge gradient policy selects the best sample from
the alternative set before calculating the desirability function.
The mean and variance associated to the ith alternative sample
are E[µam+1] = µam and σ̃(Σa

m, i, N)σ̃(Σa
m, i, N)T , where

σ̃(Σa
m, i, N) =

Σa
m ei√

σ2
N + (Σa

m)ii
, (15)

and (Σa
m)ii refers to the element in the ith row and ith

column of matrix Σa
m. Thus, the conditional distribution of

µam+1 upon selecting parameter N and the ith sample from
the alternative set is µam+1 = µam + σ̃(Σa

m, i, N)Z, where Z
is any independent one-dimensional standard normal random
variable. This allows us to rewrite (14) as:

(θ(m+1), N (m+1))=

argmax
(θ,N)∈(Θa,N)

1

cN

[
Em
[

max
i∈{1,...,n}

(
µam(i) + σ̃ (Σa

m, i, N) Z

)
| Θm,Nm, fm,θ

(m+1) = θi, N
(m+1) = N

]
− max
i∈{1,...,n}

µam(i)

]
.

The steps toward the exact solution for the above optimization
problem are provided in two algorithms presented in [32].
The features of the knowledge gradient policy to account for
the correlation in the parameter space and eliminating the
assumptions regarding known-value and noise-free evaluations
are the reasons for choosing this acquisition function over
other Bayesian optimization techniques, such as expected
improvement and entropy search [34]. Also, the method has
been shown in [32] to perform very well when faced with
highly nonlinear and multimodal objective functions.

The schematic diagram and the detailed procedure of the
proposed framework are presented in Fig. 3 and Algorithm 1
respectively. Two possible stopping criteria for the proposed
framework could be: 1) changes in the maximum of the mean
of the constructed GP in consecutive iterations falls below a
pre-specified threshold; 2) algorithm is performed for a fixed
pre-specified amount of time.

Fig. 3: Schematic diagram of the proposed framework.

IV. NUMERICAL EXPERIMENTS

All experiments have been conducted on a PC with an Intel
Core i7-4790 CPU@3.60-GHz clock and 16 GB of RAM. The



Fig. 4: Results of Melanoma Boolean regulatory network.

Algorithm 1 MFBO-IRL Algorithm

1: Pick a desired reward function Rθ with θ ∈ Θ; set
the finite alternative set Θa; specify the set of episode
numbers N; set the cost cN and variance parameter σ2

N

for any N ∈ N.

2: Construct a GP over parameter space Θ.

3: m = −1, Θ0 = {}, N0 = {}, f0 = {}.

4: while stopping criterion is not met do

5: m = m+ 1.

6: Select (θ(m+1), N (m+1)) according to (14).

7: Run an RL tuned to θ(m+1) with episode number
N (m+1) to get f̂(θ(m+1)).

8: Θm+1 = {Θm,θ
(m+1)}, Nm+1 = {Nm, N

(m+1)},
fm+1 = {fm, f̂(θ(m+1))}.

9: Update GP according to (Θm+1, Nm+1, fm+1).

10: end while

11: θ̂
∗
GP = argmaxθ∈Θ F̄m(θ), where F̄m(θ) is the mean

of the final GP.

performance of the proposed framework in terms of accuracy
and speed is examined through three problems, described
below.

Melanoma Gene Regulatory Network: We consider a gene
regulatory network corresponding to the most dangerous form
of skin cancer, called Melanoma [35]. The dynamical behavior
of Melanoma is represented through the Boolean activities of 7
genes displayed in Fig. 4. Each gene expression can be 0 or 1,
corresponding to gene inactivation or activation, respectively.
The gene states are assumed to be updated at each discrete
time through the following nonlinear signal model:

xk = f (xk−1) ⊕ βk(ak−1) ⊕ nk , (16)

where xk = [WNT5Ak, pirink, S100Pk,RET1k,MART1k,
HADHBk, STC2k] is the state vector at time step k,
βk(ak−1) ∈ {0, 1}d is a Boolean noisy input vector, such that
P (βk(i) = 1) = ak−1(i), for i = 1, ..., d, and nk ∈ {0, 1}d is

a Boolean transition noise vector, such that P (nk(i) = 1) = p,
for i = 1, ..., d. The transition noise is assumed to be
p = 0.05. In practice, the gene states are observed through
gene expression technologies such as cDNA microarray or
image-based assay [36]. A Gaussian observation model is
appropriate for modeling the gene expression data produced
by these technologies:

yk(i) ∼ N (20 xk(i) + 30, 15) , (17)

for i = 1, . . . , 7; where 20 is called base-line expression,
30 is referred to as the differential expression and standard
deviation 15 models the uncertainty in the process. It can be
shown that the partially-observed MDP in (16) and (17) can
be transformed into an MDP in a continuous belief space [37–
39]:

sk = g(sk−1,ak−1,θ)

∝ p(yk | xk,θ)P (xk | xk−1,ak) sk−1 ,
(18)

The belief state is a vector of length 128 in a simplex of size
127.

In [35], the expression of WNT5A was found to be highly
discriminatory between cells with properties typically associ-
ated with high metastatic competence versus those with low
metastatic competence. Hence, an intervention that blocked
the WNT5A protein from activating its receptor could sub-
stantially reduce the ability of WNT5A to induce a metastatic
phenotype. These information, which are the biologist knowl-
edge, are reflected in the following unknown immediate reward
function:

Rθ(s,a) = θ1

128∑
i=1

s(i) δxi(1)=0 − θ2||a||1, (19)

where the parameter vector in this case is θ = [θ2 θ2]T ,
with the true values θ∗ = [5 1]T and parameter space
Θ = [0, 10]2. Action/intervention space used by the bi-
ologist during the intervention process is assumed to be
A = 0 × 0 × 0 × [0, 1] × 0 × [0, 1] × 0, which means that
the RET1 and the HADHB genes are used as the control
gene to reduce the activation of WNT5A. The decomposable
squared exponential, and delta Kronecker kernel functions are
used for Gaussian process regression over the belief state
and action spaces. Due to the large continuous state and
action spaces, the well-known GP-SARSA algorithm [40],
which is a well-known technique in the family of Gaussian
process temporal difference learning (GPTD), is used as an
RL for the approximation of the objective function. The



Fig. 5: Boolean regulatory network of gut microbiome.

TABLE I: The Average results obtained for random MDPs.
η = 10 η = 1

T = 100 T = 1,000 T = 10,000 T = 500 T = 1,000 T = 10,000

Prop. MFBO-IRL 6.07 1.72 0.88 9.66 2.92 2.02

BO-IRL [Frazier, et. al. 2009] 12.04 7.64 6.64 16.93 9.25 8.02

Entropy-IRL [Boularias, et. al. 2011] 15.31 10.09 8.90 19.83 12.72 10.84

BIRL [Ramachandran, et. al. 2007] 16.32 10.84 9.10 19.99 12.90 11.39

results of the proposed framework are compared with four
well-known techniques: Bayesian optimization-based inverse
reinforcement learning (BO-IRL) [32], relative entropy in-
verse reinforcement learning (Entropy-IRL) [41], maximum
aposteriori inverse reinforcement learning (MAP-IRL) [5], and
Bayesian inverse reinforcement learning (BIRL) [9]. For the
proposed MFBO-IRL, the set of episode numbers for training
the GP-SARSA algorithm is set to be N = {100, 500, 1,000},
whereas for the rest of the techniques, the episode number is
set to be 500.

The following stopping criteria are used for various meth-
ods: MFBO-IRL, BO-IRL, and MAP-IRL algorithms all stop
when changes in the estimated values of all parameters over a
window of length 20 fall below 5% of their range; BIRL with
Gaussian proposal distribution stops upon completion of 6,000
iterations, where this number of iterations is chosen through
trial and error to guarantee to achieve the best results by the
IBRL algorithm.

Two sets of demonstration data with the length of 500 are
generated according to the Boltzmann soft policy in (6). The
sequence of actions in the first demonstration data mostly
follow the optimal policy since a larger confidence rate (i.e.,
η = 10) is used for the action selection process; whereas
the second demonstration data has more randomness due to
the smaller confidence rate (i.e., η = 1) used for the action
selection process. Fig. 4 displays the average MSE of estima-
tion of the parameters overrunning time in minutes for both
cases. One can observe that accurate estimation is achieved
much faster by the proposed MFBO-IRL in comparison to
other techniques. A lower average MSE can also be seen
for demonstration data with a larger confidence rate (i.e.,
η = 10). The reliability aspect of the proposed framework can
be understood by looking at both plots in Fig. 4, where much
lower MSE in the estimation of the reward function parameters
is achieved by the proposed framework in comparison to other

competing techniques.

Gut Microbial Community: In this part of numerical ex-
periment, the performance of the proposed framework is
examined over data acquired during the intervention pro-
cess in gut microbial community. The regulatory relation-
ship representing the relationship among microbes in the gut
microbial community is presented in Fig. 5. The network
contains information of 9 microbes, in which their value rep-
resented in a single state vector as: xk = [Lachnospiraceaek,
Otherk, Lachnospiraceae_Otherk, Barnesielak, C. Difficilek,
Mollicutesk, Enterok, Enterobacteriaceaek, Enterococcusk,
Blautiak]T . The external input to this network is “Clin-
damycin”, which is an antibiotics that fights bacteria in the
body and can treat various types of infections. The same model
as (16) is used for capturing the dynamical behavior of this
system. The network function in this case can be represented
as:

f(xk) = R xk + b (20)

where

R =



+1 +1 +1 0 0 0 0 0 0
+1 +1 0 +1 0 0 0 0 0
+1 +1 +1 0 0 0 0 0 0
+1 +1 0 0 0 0 0 0 0
0 0 0 −1 +1 0 0 0 0
0 0 0 0 0 +1 0 0 0
0 0 0 0 0 0 +1 0 0
0 0 0 0 +1 +1 +1 0 +1
0 0 0 0 0 0 0 +1 0


,

b =
[
0 0 0 0 0 +1 0 0 0

]T
.

The intervention is taken over Barnesiela and C. Difficile,
which can be denoted by the following action space:

A = 0× 0× 0× [0, 1]× [0, 1]× 0× 0× 0× 0. (21)



The goal is preventing C. Difficile to be upregulated. For more
information about the biological rationale for this, the reader
is referred to [42]. Thus, we assume the following reference
immediate reward function:

Rθ(s,a) = θ1

512∑
i=1

s(i) δxi(5)=0 − θ2||a||1 (22)

where the unknown parameters of the reward function are
encoded in a single parameter vector θ = [θ1 , θ2], with the
true value θ∗ = [7 , 2]. The space of parameters are assumed
to be Θ = [0, 10]2. The large size of state space, which is
in a simplex of size 512, necessitates performing scalable
reinforcement learning for approximation of the objective
function. We have used deep Q-learning introduced in [43]
with the set of episode/epoch numbers 200, 1000 and 5000.
The same stopping criteria used in the previous part are
used for this part of experiment. The average MSE of the
estimated parameters versus running time per hour for two
sets of demonstrations with the length of 1000 and confidence
parameter η = 10 and η = 1 is presented in Fig. 5. One
can see that the proposed framework has the highest rate of
reduction in MSE, one average, in running time.

Random MDPs: For the last part of numerical experiments,
a simple 6-states and 2-actions MDPs are generated accord-
ing to the symmetric Dirichlet distribution with parameter
φ = 10. The reward is simply assumed to be as Rθ(s) =
θ1s(1) + θ2s(2) + θ3s(3) + θ4s(4) + θ5s(5) + θ6s(6), where
θ = [θ1 θ2 θ4 θ5 θ6]T with the true value θ∗ = [1 2 1.5 −
1 − 2 − 0.5]T . This means that the system is desired to
spend the most amount of time in the first three states and
avoid the last three ones. The parameter space is assumed
to be Θ = [−3, 3]6. Since the state and action spaces
are small, the well-known Q-learning algorithm is used to
approximate the objective function. The set of episode number
100 and 1000 as low and medium fidelity models and the
exact dynamic programming (value iteration) technique as the
highest fidelity model are used by the proposed framework,
while other techniques used 1000 episode number. All methods
are stopped after 10 minutes of performing for any given MDP.
The average MSE obtained by different methods is shown
in Table I. It can be seen that for the same running time, a
much lower average MSE is obtained by the proposed MFBO-
IRL framework in comparison to other techniques for all data
lengths and confidence rates.

V. CONCLUSION

In this paper, we introduced a multi-fidelity Bayesian op-
timization framework for scalable, fast, and accurate inverse
reinforcement learning. For large systems with any arbitrary
reward function containing a relatively small number of pa-
rameters, the proposed framework enables incorporating mul-
tiple reinforcement learning algorithms with different episode
numbers as multiple fidelity approximators for the learning
process. The correlation, uncertainty, and computational cost
of these approximators are efficiently considered in the pro-
posed framework using the Gaussian process surrogate model
and efficiently selecting a sample of parameters and episode

number of reinforcement learning for an efficient learning
process. In numerical experiments, the proposed algorithm
performed significantly faster than competing algorithms. Fu-
ture work will focus on developing IRL techniques capable
of handling reward functions with relatively large parameters
(e.g., deep neural networks).
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