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ABSTRACT: Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular
background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies
have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this
study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data
to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184
HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN,
and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of
HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor
tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The
classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across
diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features
of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis
of human cancers.
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Introduction
Hepatocellular carcinoma (HCC) is the third most common
cause of cancer death globally.-* Hepatitis B virus (HBV) is a
major cause of HCC in East Asians, while alcoholic/nonalco-
holic fatty liver disease and chronic hepatitis C are the most
common etiologies in the U.S. and European populations.** In
the U.S,, the incidence of HCC has more than doubled over
the past 2 decades and is anticipated to continue increasing due
to a growing number of patients with alcoholic/non-alcoholic
steatohepatitis (ASH/NASH) and advanced hepatitis C virus
(HCV) infection.'® The development of HCC is a multistep
process that involves the accumulation of genetic and epige-
netic alterations.6-10

Transcriptome profiling analysis is instrumental in under-
standing disease initiation and progression in HCC.1! Over
the past decade, microarray-based gene expression profiling
studies have been performed to elucidate hepatocarcinogenesis
and disclose molecular mechanisms underlying complex clini-
cal features of HCC, %1912 including comparative analysis of

cancer versus non-cancerous samples,'® early-stage versus late-
stage, good prognosis versus poor prognosis,'3 and HBV ver-
sus HCV infection.’> With the advance of next-generation
sequencing technologies, RNA sequencing (RNA-seq) has
become a powerful tool in defining the transcriptomic changes
related to HCC. Several RNA-seq studies have been per-
formed on human HCC samples, predominantly in Asian
populations.’®? Qur recently RNA-seq study in a U.S.
Caucasian cohort suggest oxidative phosphorylation and the
associated DNA damage as a major driving pathophysiological
feature in HCC.?® Based on gene-expression profiles that are
predictive of tumor metastasis, vascular invasion, and prognos-
tic outcomes, several molecular classification schemes have
been proposed,’!? although they have not been applied in the
clinical management of HCC patients yet.

To date, the majority of transcriptomic studies have relied
on conventional analytical methods, which involve examining
fold changes of individual genes between tumor and control
tissues or conducting pathway enrichment analysis based on

@ @ @ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without
further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).



Cancer Informatics

the existing knowledge of genes and biological processes. These
methods have limitations in estimation accuracy and predic-
tion power. As a result, a substantial number of genes/tran-
scripts have been reported to be significant for HCC. However,
their sensitivity and specificity in cancer identification/classifi-
cation are not optimal, and the reproducibility of the findings
across different studies is only moderate. Moreover, the con-
ventional analytical models have not adequately addressed
gene-gene interactions. Thus, there is a pressing need to
develop novel methodologies that can identify critical differen-
tially expressed genes (DEGs) with high sensitivity and speci-
ficity for disease identification/classification. Recent advances
in the machine learning community have shown a great prom-
ise in addressing these challenges.?!-23

To this end, we sought to develop a new machine learning
framework for analyzing transcriptome profiling data, aiming
to identify a sparse selection of critical DEGs for HCC. Our
approach builds upon the max-linear competing structure
introduced in recently developed models, namely the max-lin-
ear competing factor models,?! max-linear regression models,?
and max-linear logistic models.?® The key distinction between
max-linear competing models and traditional regression mod-
els lies in the replacement of the original linear combination of
predictors with the maximum value derived from multiple
competing factors or competing-risk factors, also known as sig-
natures. By considering interactions and competing relation-
ships among the covariates in predicting the outcome variable,
the max-linear competing factor models address a crucial
aspect neglected by traditional regression models. The compet-
ing factor models have been proven to outperform the existing
deep learning methods (such as random forest, support vector
machine, and group LASSO-based method) in estimation
accuracy and prediction power under broad data structures.?!-?2
In our early efforts, critical DEGs were successfully identified
for lung cancer,? breast cancer?> and COVID-19% using the
max-linear competing factor models.

In this work, we applied the max-linear competing risk fac-
tor models to analyze 10 gene expression profiling datasets,
including our own dataset from a U.S. Caucasian cohort.
Through this analysis, we identified 5 critical DEGs
(CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) that
exhibit remarkable sensitivity and specificity for HCC identifi-
cation. Importantly, these results are both interpretable and
robust, demonstrating reproducibility across diverse cohorts
and populations.

Material and Methods

Data acquisition and processing

A total of 10 whole-transcriptome datasets were analyzed,
including 9 publicly available datasets and one RNA-seq data-
set that we collected at the University of Wisconsin-Madison.
The public datasets were obtained by searching the Cancer
Genome Atlas (TCGA) Liver Cancer (LIHC) database and

the Gene Expression Omnibus (GEO) database using the key-
words of “hepatocellular carcinoma”and “Homo sapiens.” Since
the primary purpose of our study was to identify critical DEGs
tor HCC in general, we deliberately included datasets repre-
senting diverse populations/ethnicities (eg, North American
and European Caucasians, blacks, Chinese, Japanese, and
Korean) with varying disease etiologies (eg, alcohol abuse, met-
abolic syndrome, HBV, and HCV)). Moreover, these datasets
were generated using different techniques and platforms, such
as microarrays and RNA-seq. Relevant clinical and pathologi-
cal information, such as age, sex, and TNM tumor stages, was
also collected whenever it was available (Table 1).

The first public dataset was obtained from a RNA-seq study
performed in the TCGA LIHC cohort (https://xenabrowser.
net/datapages/?dataset=TCGA-LIHC .htseq_fpkm.
tsv&host=https://gdc.xenahubs.net&remove Hub=https://
xena.trechouse.gi.ucsc.edu:443) using the Illumina HiSeq
platform. This dataset contained 60484 identifiers (genes/
transcripts) and 424 samples (374 HCC and 50 normal con-
trols). Data from the same sample but different vials/portions/
analytes/aliquotes was averaged. Data from different samples
were combined into genomicMatrix. The gene expression data
were log2(fpkm+1) transformed.

The second dataset (GSE54236) was obtained from a tran-
scriptome profiling study performed in an Italian cohort using
the Agilent-014850 Whole Human Genome Microarray
4x44K G4112F platform.?® The dataset included 161 samples
(81 HCC samples and 80 paired nontumor samples). The gene
expression data were applied a transformation of (-20)/
(Quantile normalized log2 signal intensity).

The third dataset (GSE6764) was obtained from a tran-
scriptome profiling study of HCV-induced HCC using the
Affymetrix human U133 plus 2.0 Array platform.?” The data-
set contained 75 samples from 48 patients, including 13 sam-
ples from cirrhotic tissue, 17 dysplastic nodules, 35 HCC
samples, and 10 normal controls. The samples were collected in
3 hospitals, one in the United States (Mount Sinai Hospital,
New York, NY) and 2 in Europe (Hospital Clinic, Barcelona,
Spain, and National Cancer Institute, Milan, Italy). The gene
expression data was applied a transformation of -50/(MAS
probe set signal intensity).

The fourth dataset (GSE41804) was obtained from a tran-
scriptome profiling study of HCV-related HCC performed in
a Japanese cohort using the Affymetrix Human Genome U133
Plus 2.0 Array platform.? The dataset included 20 HCC sam-
ples and 20 nontumor controls with chronic hepatitis C. The
gene expression data were log2 normalized signal intensity.

The fifth dataset (GSE25097) was obtained from a tran-
scriptome profiling study of HBV-related HCC performed in
a Chinese cohort using the Affymetrix 1.0 microarray plat-
form.? The dataset included 268 HCC samples and 289 non-
tumor controls (243 adjacent non-tumor, 40 cirrhotic and 6
healthy liver samples). The gene expression data were normal-
ized intensity.
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Table 1. Distribution of basic clinical and pathological characteristics in the TCGA dataset.

SUBGROUP AGE (YEARS) SEX
MEDIAN RANGE MALE FEMALE

1 66 64-69 1 1
2 57 46-74 3 4
3 66 20-80 16 5
4 62 16-85 98 56
5 61 17-85 79 25
6 58 20-90 56 30

Abbreviations: BMI, body mass index (kg/m?).

The sixth dataset (GSE63898) was obtained from a tran-
scriptome and methylome profiling study of HCC.3 RNA
profiling was conducted on 228 HCC and 168 nontumor adja-
cent cirrhotic liver tissues using the Affymetrix Human
Genome U219 Array. The samples were collected from 2 insti-
tutions: IRCCS Istituto Nazionale Tumori (Milan, Italy) and
Hospital Clinic (Barcelona, Spain). The gene expression data
were normalized and logged-2 transformed using the RMA
algorithm.

The seventh dataset (GSE101685) was obtained from a
transcriptome profiling study of HCC in Taiwan using the
Affymetrix Human Genome U133 Plus 2.0 Array. The dataset
included 24 HCC samples and 8 normal controls.

The eighth dataset was obtained from a RNA-seq study of
HCC in liver transplant livers in South Korea using Illumina
HiSeq 2000.3! RNA profiling analysis was conducted on 54
HCC samples and 15 nontumor samples.

The ninth dataset was obtained from a transcriptomic study
of NASH-related HCC using the Affymetrix Human Genome
U219 Array.3? RNA profiling analysis was conducted on 53
NASH-HCC samples and 6 healthy liver samples.

Our dataset was collected at the University of Wisconsin-
Madison from a U.S. Caucasian cohort.2? The dataset con-
tained 17 HCC samples and 17 paired nontumor samples. The
patients provided “written” informed consent before sample
collection. The majority of the patients had at least one risk
factor for metabolic syndrome and some had a history of alco-
hol abuse. Few patients had a history of treated chronic hepati-
tis C. Through RNA-seq analysis, we identified oxidative
phosphorylation and its associated DNA damage as the pri-
mary driving carcinogenic feature in HCC.20 The gene expres-
sion data were subjected to log2(fpkm+1) transformation.

Analytical methodology

We implemented the max-linear logistic regression model to
build a competing risk factor classifier. The competing factor
classifier has an advantage over existing models in nonlinear

BMI (KG/M?2) TNM TUMOR STAGE

MEDIAN RANGE

21.28 18.61-23.94 2 0 0 0
27.00 16.98-37.88 2 2 2 0
29.94 18.20-35.92 8 5 5 0
23.70 14.53-56.14 55 35 49 1
25.28 16.30-131.84 63 22 13 1
23.88 15.81-41.10 43 23 16 2

predictions and classifications. In brief, the task is to discover
the parsimonious number of critical genes for disease predic-
tion. The theoretical foundation of competing risk factor mod-
els was recently described elsewhere.??233 To identify the
critical DEGs across the 9 public datasets and our own RNA-
seq dataset, the heterogencous extension of the max-linear
logistic regression was applied. We started with 3 competing
risk factors in the max-linear logistic regression models, with
each factor having only 3 genes randomly drawn from the
genes/transcripts in each dataset. A Monte Carlo method with
extensive computation was applied to finalize model with the
best performance of sensitivity and specificity and the smallest
number of genes. The basic ideas of competing risk classifiers
for heterogeneous populations are described below.

Suppose thereare K primary outcome variables Y(l) - .,Y( X)
where

Y(k):(Ylk’sz’”"Ynk,k)Tﬂé:1""’K‘ (1)

Each of the Yﬂa,(l’:1,,,,’@’&:1,.”,[{) may be related to G
groups of genes

o, :(Xl.,jl’k,Xi’jz’,e,...,Xi’jgjy,e),j:1,...,G,gj20 @

y

where 7 is the 7 th individual in the sample, §; is the number
of genes in j th group. The competing (risk) factor classifier
for the % th outcome variable is defined as

. Boix + Piyi B> B
log P — max 01% 12F12> F022 (3)
1-p, D, B> Bor + Lo Bes

where f3, j}’s are intercepts, Cl)l.j.,z is a Ixg. observed vector,
B, isa g;x1 coefficient vector which characterizes the con-
tribution of each predictor to the outcome variable Y, in the
J th group to the risk, and S, + ®;; B, is called the j th
competing risk factor, that is, j th signature. In Figure 2, G=3
corresponds to 3 competing factors, that is, as long as a patient
falls in the yellow color range in any of the 3 subfigures, the
patient is classified as an HCC patient.
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Remark 1: With B, =-0,j=2,...,G, (3) is reduced
to the classical logistic regression classifier. It is clear that
Boju+ @B yirJ =
win out to take the ﬁnal effect. As such, they are called com-
peting (risk) factors.

..,G compete against each other to

The unknown parameters are estimated from

(E(&),&)—argmmﬁ ,c8 1 Z[I 1(Y, =1)@
+1(py >0.5)1(Y, = 0)]

where 0.5 is a probability threshold value that is commonly
used in machine learning classifiers, I () is an indicator func-
tion, p; is defined in equation (3), § = {1,2,...,54675} is the
index set of all genes, S, = 11,12,...,1g1 } 8, = 21,...,23,2 -
Sq ={G1,...,ch are index sets corresponding to (2), and
S:{11,12,...,1&;21,...,2g2;...;Gl,...,ng

set selected in the final classifiers.

is the final gene

To introduce sparsity for both the number of variables
(genes) and the number of groups (competing factors, signa-
tures) into the model, the following optimization problem with
penalties is considered:

(ﬂ,S,G) = argmin/},sjcs,jzl,Z,m,G
{(1+;Ll +|S |)Zf:12?:1[1(1’,/¢SO'S)I(YVE:1)+1(1’,&>0‘5)I(Yz1~:0)] (5)
u

+4,

(I, +1)xc-1

(14_11 +|S |)Z£(:|zy:l[l(?ikSO‘S)I(YM:1)+1(Piﬁ>0‘5)1(yzk:0)]

Problem (5) is equivalent to

. _(|Su|u+1)xc—1}

(ﬂ,S,G) = argminﬂ,sjcs,/:l,z,A.A,G/lz [ §

Since |S,[21, 0< “ <1, problem (5) is
( 3 ) xG -1
equivalent to first minimizing §, and then G, which leads to
the smallest possible |S,| and G.

2. Suppose the underlying best classifier is not a perfect
classifier, with the minimal misclassification number

Z“Z_l[l £ SO5)I(Y, =1)+1(p, > 0.5) (Y, =0)

=m 21, then there exists 4, 20 and A, 20 such that

s )Zlez;’:,[I(p,&SO.S)I(Y,&:1)+I(plk>0.5)I(Yd:0)]
u

>4,

3 )xG—l .

K

where §, is the union set of {S }

| is the cardinality.

S |

Tuning parameters A, and A, are both non-negative.
|s,|+G-1 o

— - is monotone decreasing in both |Su| and G.

(|s,[+1)xG -1

Additional properties of this bivariate function was described
elsewhere.?2

Remark 2: In (2), X, i and X can be measured

under different scales for 4 # 4, even if they correspond

i,7;,%

to the same genes (varlables), that is, from heterogeneous
populations or cohort studies.

Remark 3: (5) is a completely new machine learning clas-
sifier with completely different penalization from existing

ones, such as LASSO, SCAD, and MCP.

Next, we show a unique theoretical and computational prop-
erty of the new competing risk factor classifier. The optimiza-
tion problem (5) is designed to guarantee that, with suitable
choices of 2, 20 and A, >0, the solution of problem (5) will
lead to the smallest number of subsets of variables

the smaller number of signatures (54) (G) while achieving the
best possible minimal misclassification rate.
The rationale is as follows:

1. Suppose the underlying best classifier is a “perfect

with Z;Z;[I(Pik < O.S)I(Y% = 1)

+I(p, > O,S)I(Yﬂz = 0) =0 then with this classifier

classifier,”

=(1+24,+]S,)° =1.

Therefore,  problem  (5)  will first
Zk IZ [I(p, <0.5)1 ( _1)+ I(pk >0.5)1 (Y, =0)]>

minimize,

and G.

possiblc N

u

Remark 4. The S4 property of (5) and its capability to simul-
taneously classify multiple heterogeneous populations with
common variables (genes) make the new competing risk
factor classifier different from existing ones.

Remark 5. When K =1 and 2, =0, (5) is equivalent to the
classifier introduced by Zhang.?? The details of computa-
and demo Matlab ?R?P

codes are publicly available online.

tional steps were described early?3

Note that equation (5) is integration of integer programing,
combinatorial optimization, and continuous optimization. Its
computational complexity level is extremely high. In this study,
we adopted the following Monte Carlo approach:
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1. Randomly selecting a cohort (population), say %=1
without loss of generality.

(a) Randomly draw G sets of genes with each set hav-

ing |§,

(b) Use any optimization procedures (eg, Nelder-Mead

method, genetic algorit}%m, simulated annealing)

Do (g <05)I(Y;=1)+

genes;

to solve minimizing

I(p, >0.5)I(Y, =0))

(c) Repeat the above 2 steps for G=1,2,3 and

|Su| =1,2,3,4,5 until an acceptable best solution is
reached.

2. Using the genes selected from the 2=1 cohort, for

k=2,...,K, repeat the above 2 steps (b) and (c) for

G =1,2,3 until an acceptable best solution is reached.

Remark 6. For the data used in this study, a nearly per-
fect classifier was achieved using the above Monte Carlo
approach.

We adopted the following criteria to define critical
DEGs:

(1) The number of genes should be as small as possible
(smaller than 15).

(2) This set of genes should lead to overall accuracy of
>95% in at least 3 different study cohorts with a total
number of patients/subjects being at least 1000.

(3) This set of genes should lead to an overall 100% accu-
racy for at least one study cohort with at least 10
subjects.

(4) At least one gene functions and shows the same sign
(+ or -) in each study cohort.

(5) This set of genes should lead to at least 80% accuracy
for any cohort with either sensitivity or specificity of
>75%.

(6) In each competing classifier, the number of genes
should be as small as possible, and it must be less than
six.

(7) The number of competing classifiers should be as
small as possible and without redundancy, that is, every
classifier cannot be replaced.

Results
Identification of critical DEGs

Using a probability higher than 50% as the threshold, we iden-
tify 5 critical DEGs: namely CCDC107 (Protein Coding:
Coiled-Coil Domain Containing 107), CXCL12 (Protein
Coding: C-X-C Motif Chemokine Ligand 12), GIGYF1
(Protein Coding: GRB10 Interacting GYF Protein 1), GMNN
(Protein Coding: Geminin DNA Replication Inhibitor), and
IFFO1 (Protein Coding: Intermediate Filament Family
Orphan 1).

Identification of classifiers based on five critical
DEGsS

The final classifiers were the combination of the 3 competing
factors (CF,,i =1,2,3) as shown in Table 2. The risk proba-
bilities were calculated using the logistic function of
exp(Data_i _CF_. ) / (1 +exp (Data_i _CF_.. )) for the
combined  classifiers in  each  dataset, and  of
exp(Data_i_CFj)/(1+exp(Data_i_CFj )) for each indi-
vidual classifier i =1,2,3,j=1,2,3 .

As shown in Table 2, the classifier (CF,,,) had decent per-
formance in differentiating tumor from nontumor tissue, with
an overall sensitivity/specificity/accuracy of >97%. Applying
CF,, CF,, and CF; simultaneously could increase the power of
cancer detection. In general, the risk probability of HCC was
determined by the direction/sign and absolute value of the
coefficient of the classifier. A positive coefficient indicated a
higher gene expression value was associated with higher risk
probability of HCC. On the contrary, a negative coefficient
suggested a lower gene expression value was associated with
higher risk probability of HCC.

In the first dataset (TCGA), CF1 and CF2 had moderate
sensitivity and accuracy for identification of HCC, but simul-
taneous use of all 3 classifiers (CF1, CF2, and CF3) achieved
100% sensitivity/specificity/accuracy. In the datasets 2, 3, 4 and
5, CF1 and CF2, had overall high sensitivity (>85%), specific-
ity (>90%), and accuracy (>90%) of identifying HCC patients
and thus additional CFs were not required for cancer identifi-
cation. Given the availability of tumor staging information in
the datasets 1 and 6, analyses were performed for stage 1 HCC
as well. It can be seen stage 1 HCC could be identified by one
classifier CF1 defined by CXCL12 or GMNN alone with
decent sensitivity/specificity/accuracy, suggesting CXCL12
and GMNN could be powerful biomarkers for early-stage
HCC. However, CXCL12 appeared to be the winner if apply-
ing Hill’s criteria.

In the third dataset, since the 75 samples included 35 HCC,
13 cirrhotic tissue, 17 dysplastic nodules, and 10 normal con-
trols, separate analyses were performed for HCC versus normal
controls, HCC versus cirrhotic tissue, and dysplastic nodules
versus normal controls. It can be seen the CFmax achieved
100%
analysis.

sensitivity/specificity/accuracy for each subgroup

For illustration, Figure 1 shows the model-estimated risk
probabilities evaluated from the final classifiers in all the
datasets.

Figure 2 is a four-dimension plot illustrating the signa-
ture patterns defined by each classifier in the TCGA data.
The figure clearly shows how 5 critical DEGs interact with
each other to form different signature patterns (shapes). In
the figure, colors and their intensity indicates how patients
were classified to HCC (yellow color) or cancer free (green
and blue colors).



Cancer Informatics

(panunuo’)

18'86
6'86
0ot
6£'86
56

56

56
00t
00t
00t
00t
00t
00t
00t
00t
06
56
56
52'96
08
6
00t
00t
00t
00t

% ALIOIHIO3dS

67°96

88'86

¥5'26

SHoL

00t

SL

06

00}

65°0L

2'88

00t

12°98

6276

oot

6929

LE'26

6198

AL

€L'19

8'76

6926

00t

6526

19'¢S

(VA £}

YA

S9'86

€196

GL'€8

Sc'L6

S8

§'c6

00t

8Y'18

6526

00t

8568

£8°G6

oot

cL

26

90°06

92¢'8L

88'8L

87’16

98'96

00}

88,6

G289

18'89

% AOVHNIOVY

v9€'e
628'9— c6e0L
oge'el
680
8EY'LL
92'9¢
S0k 20S'¢
200'9-
¥S¥°0 8/8'le
€e'g
6eC vl
1196
v56°C
€26’
L0801
YoLL— cl0e

8598'¢—

clLe-

Y19'/-

¥.6°0—

98¢

S6€°0

G26'L

986°9—

266°9

LHADID

9¢y'8—

€08°G—

LES0-

LE6 7~

14624

826'81—

200°¢h—

ovy'S—

980°¢c—

9€0’L—

289°c—

a8LL

80€9

989°¢Cl

g8

200'¢e

(4184

9€€°g

860°G

6.8'v

820'¢

6cl9-

€8¢~

169}~

069°6v—

9€6°

¢c

060°04

£86°0

€8

eel

£68°GlL

vel'le

L0Ly

9€5°9—

Lee

98L°0k-

S8l -

140

Xew49

¢d40

140

Xew49

240

140

Xew49

240

140

Xew49

40

140

Xew49

[£10)

140

Xew-49

(£}

140

140

140

Xew4D

€40

(=10}

140

891

6v¢

02

ol

10 €k

ol

08

0s

0§

0§

822 868€93SH 9
892 26052389 S
[or4 ¥08+73SO ¥

Na Zt
se
ge 79,9359 €
18 9€2yS3ISH 4
€Ll | obels
gLl | abejs
vLE vOOL L

¢L10X0 £010ad90

143043 1NI H314ISSV10 HOWNL-NON HOWNL 304NOS viva 13sviva

‘Sieselep / 9y} Ul SIsyIsse|d sy} pue sH3a [edHO G 8YL "¢ 3|qeL



Liu et al

*s10j0€} Buleduwiod [ENPIAIPUI JO SIBISSE|O PAUIGUIOD BIB SISYISSEID [BUl BU 1 "SISOULID ‘| ‘BINpou oise|dsAp ‘N :SUoneInaIqay

12°86 Lv'L6 6,16 [74°) V8L el
ejep
194 00l 90°L6 98G'v1- 96°S ggc'c- 1899 ceV'9 140 L pAS bas-yNy N0 ol
00k YEv6 c6'v6 Xew4d
00k c0'es8 SL'v8 G69°c— 1686 L6LYv— 606'€— 240
00} ov'er SL6y Gi8e 90€'C 00ee— et A 140 9 €9 09/¥913SD 6
00k 00t [o]0] 8 G28's G98°0— 1GS°€ 140 S S SGE8Y13SH 8
00k 00t 00l G299 0€0°'G— YA 140 8 e G891013SH L
18'86 1gv8 €€°L6 6LL 1= 1851 140 891 6L | obeis
18'86 91'e9 6166 2c02’t S6C H— 140 891 6L | obeis

% ALIOIAI03dS % ALIAILISNIS % AOVHNOOV LdADID ZL10X0 2010020 1d3043LNI H314ISSV10 HOWNL-NON HOWNL 304NOS viva 13sviva

(penunuo)) "z alqeL



Cancer Informatics

TCGA data: 374 with tumors 50 without tumors

GSE54236: 81 with tumors 80 without tumors
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Figure 1. Model-estimated risk probabilities evaluated from the final classifiers in the 7 datasets.
The plot designates hepatocellular carcinoma (HCC) samples by asters and the nontumor controls (NC) by circles. A 0.5 (50%) horizontal line (probability threshold

value) is plotted in each panel.
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Figure 2. Four-dimension plot illustrating the signature patterns defined by each classifier in the TCGA dataset.

The Venn diagram (Figure 3) demonstrates patient sub-
groups classified by the classifiers in the TCGA data. In this
North American cohort, HCC patients could be classified into
6 subgroups based on the above classifiers. The subgroup I con-
tained the patients who were only detected by the CF1, the
subgroup II contained the patients who were only detected by
the CF2, the subgroup III contained the patients who were
only detected by CF3, the subgroup IV contained the patients
who were detected by CF1 and CF2 simultaneously but not
CF3, the subgroup V contained the patients who were detected
by CF2 and CF3 simultaneously but not CF1, and the sub-
group V contained the patients who were detected by all the 3
classifiers simultaneously. The patients in one subgroup may
possess different genetic features from other subgroups.

Table 3 shows gene expression values of the 5 critical DEGs
in a small portion of the samples from the TCGA dataset. The
tull data with original gene expression values and the computed
values are available online.

Analysis of the U.S. Caucasian cobort (dataset 7)

We assessed the performance of the 5 critical DEGs identified
in the 9 public datasets in our U.S. Caucasian cohort. Setting
K =1 and solving equation (5), the classifiers were obtained

(Table 2). It can be seen the classifier achieved an overall accu-
racy of 97.06%, sensitivity of 100%, and specificity of 94.12%.

Characterization of clinical and pathological
Jfeatures

To further characterize the differences between subgroups
defined by classifiers, we examined the general clinical and
pathological attributes, including age, sex, BMI (body mass
index, kg/m?), and AJCC tumor stages in the first dataset
(Table 1). Data are not shown for other datasets due to incom-
plete information. In the TCGA dataset, it appeared the
patients in subgroup 3 had higher BMI than other subgroups.

Discussion

In this study, we analyzed datasets encompassing HCC patients
from diverse populations/ethnicities with varying etiologies
and spanning different tumor stages. The identification of the

CF1 " e

12 Vi (86)

IV (154)

V(104)

1 (21)
CF3

Figure 3. Venn diagram demonstrating patient subgroups classified by
the classifiers in the TCGA dataset.

5 critical DEGs (CCDC107, CXCL12, GIGYF1, GMNN,
and IFFO1) exhibiting consistent high performance across all
datasets suggests that they may represent intrinsic variables
that capture the overarching genomic characteristics of HCC.
Importantly, our model stands out by effectively addressing the
challenge posed by batch effect, as it enables simultaneous
modeling of heterogeneous populations (as demonstrated in
equation (4)) and disease subtypes (as shown in equation (3))
within our framework. Consequently, there is no need for batch
effect correction in our approach. In contrast, classical cross-
validation (CCV) commonly employed for model fitting and
inference is limited to homogeneous datasets and cannot han-
dle the complexities of our model.

It should be noted gene-gene interactions defined in our
model are different from interaction effects widely used in tra-
ditional experimental designs, such as row-column interaction
effects or laboratory-chemical formula interaction effects in
agriculture and industry. It is also different from the interaction
term in linear regression analysis, that is, using the multiplica-
tion of 2 covariates (predictors) to form an additional covariate
to study the interaction effects of these 2 covariates in existing
statistical models and machine learning. Using TCGA data in
Table 2 as an illustration, there are 3 combinations (3 compet-
ing classifiers, CF1, CF2, and CF3).In CF1, 3 genes GIGFY1,
GMNN, IFFO1 form a combination (signature) with the
coefficient signs of the first 2 being positive while the third one
being negative. In CF2, 3 genes CCDC10, GIGYF1, IFFO1
form a different combination (signature) with the coefficient
signs of the second gene being negative while the other 2 being



Cancer Informatics

10

"JOSE}Ep Ui 8y} woly parenieas sjdwes HDOH e jo (esodind

uone.sny|i o} syBIp [ewioap g o} pajeoun) Ayjiqeqold su 8y} pue gz =/ ‘7 ejeq 0} Spuodsaliod Xewld UwnjoD “DOH 10} SPUESS , |, NJBA 9[Iym ‘S|dWES [01}UOD [BUWLIOU IO} SPUEIS ,,0, ON[EA ,'SNJE]S JOWN],, UWN|OD B} U]
900 00S°0- 00S°0- c0L'G— 8lc'e- 0S0°L 6L} €89'L 0L0'v LI9'L 0 VI-S9¢V-d3-VOOL
cko 290'0— 290'0— 6.€°9— (740} 2 /G980 8cc’l Leg’t €9€°¢ veL'L 0 VI-9vEVY-ad-voOoL
100 9€G’I- 81— 8ELY— 9€G’1— vvet 6cv'c GE6'L YAZAS] €c0'c 0 VI-relv-d3-vOOoLl
70 1890~ y10°€- 1€9°0— S6v'v— Liee G/G°} g6/'¢ 119G et 0 VI-97ev-dg-voOoL
(40 681°0— €09'1- yve 8- 687°0— S0c’t €98’ cle’e €06V vyl 0 Vil-evev-aa-voOoLl
860 v.6°¢clt v.6°Cl 9ce’L 901 ¥— S6€'C 8¢8'¢ leee 6780 0c9'¢ 3 VI0-A0LY-04-VOOL

I 0ee0t 0ee0t 816'¢ le0'e- £08°L gvee 419K 8040 €ee'e 3 VI0-IHBY-AC-YOOL
L L9v'¢cl L9v'¢cl 160°€ 8GS°I c0v'e 6.8°€ veELE 289'L or0'e 3 VI0-YAVV-€9-VOOL
s cloel cloel 1E8'V— 68y 88l'¢ 9le’e /89°€ 280’t ovee 8 VI0-ON¥Y-ad-vOOL

LO44I

NNND

LHADID

¢10X0

£0L0ad0

SNIVLS
HOWNL

dl 19N3SN3

1eselep Yo 1 ay; ul sajdwes ay} jo uonod |jews e ul Ayjigeqoid ysu pue ‘siojoe) Bunedwod ‘sanjea uoissaidxe susy) °g a|gel



Liu et al

11

positive. In CF3, 3 genes CXCL12, GIGYF1, GMNN form
another combination (signature). Taking GIGYF1 as an exam-
ple, its coefficient signs depend on which combination this
gene falls into, that is, how this gene interacts with other genes.
The same is true with IFFO1. Using a basketball team as an
analog, these 5 genes correspond to 5 basketball players in a
team. The team has 3 main teammate combinations for scor-
ing. A positive coefficient associated with a player in a team-
mate scoring combination means that the longer the
ball-controlling time by the player, and the higher chance the
team to score. On the contrary, a negative coefficient associated
with a player means that the shorter the ball-controlling time
by the player, and the higher chance the team to score. A ques-
tion is which scoring combination is going to score. As dis-
played in Figure 2 (Venn Diagram), in some scenarios, only one
combination can score, whereas in some other scenarios, 2 of
the 3 combinations or any combination can score. Using
TCGA data as an example, there are interactions between
competing factors (CF1, CF2, CF3) mainly mediated by
GIGYF1.

Functional relevance of the 5 critical genes to HCC has been
described in the literature. CXCL12 expression increases following
acute or chronic liver injury3* CXCL12-dependent signaling con-
tributes to modulating acute liver injury and subsequent tissue
regeneration.3>% The CXCL12 pathway is linked to development
of HCC by promoting tumor growth, invasion, and metastasis.3”3%
Down-regulation of CXCL12 was observed in HCC.3-# GMNN
plays a key role in cell cycle regulation.* Increased expression of
GMNN was reported in several malignancies such as HCC, colo-
rectal, pancreatic and breast cancer.¥” Amplification of GMNN
was associated with HCC and colorectal cancer, suggesting the role
of GMNN as a common tumor driver gene in human malignan-
cies,’® which is consistent with its role in cell cycle regulation.!
Suppression of geminin activity may selectively kill cancer cells.®
GIGYF1 binds growth factor receptor bound 10 (GRB10) which
is an adaptor protein that binds activated insulin-like growth factor
1 (IGF1) and insulin receptors and regulates receptor signaling.>?
Loss of GIGYF1 function is associated with clonal mosaicism and
adverse metabolic health, such as higher susceptibility to type 2
diabetes, higher fat mass and lower serum IGF1 levels.>® High
expression of GIGYF1 is unfavorable in HCC.* IFFOL1 is a
member of the intermediate filament family.>> Inactivating IFFO1
leads to increases in both the mobility of broken ends and the fre-
quency of chromosome translocation.”® The destruction of this
nucleoskeleton accounts for the elevated frequency of chromosome
translocation in many types of cancers including HCC.5
CCDC107 encodes a membrane protein which contains a coiled-
coil domain in the central region. CCDC107 expression was found
to be decreased in colorectal cancer,’” yet its significance in liver
metabolism has not be described. Although these 5 genes have
been described in molecular cellular levels studies of human malig-
nancies, none of them has been reported to be individually

significant in whole-transcriptome profiling studies of HCC. In
other words, these 5 genes, which were individually insignificant at
the level of whole-transcriptome profiling, stand out to be the key
players for HCC as a group.

Our study has several limitations. First, this is a retrospec-
tive study analyzing large transcriptome datasets. It is neces-
sary to perform additional analysis to assess their value in
predicting disease prognosis, which yet is impossible due to
lack of complete clinical follow-up data (such as disease
recurrence, metastasis, and survival outcomes) in the public
datasets. Therefore, further studies incorporating compre-
hensive clinical information are warranted to explore the
clinical significance of molecular classification based on the 5
critical DEGs. Second, since the diagnosis of HCC is largely
based on patients’ symptoms and clinical workups (eg, serol-
ogy, radiology, and tissue biopsies), the 5 genes do not have
immediate clinical significance in the diagnosis of HCC
diagnosis. However, investigating molecular subtypes based
on transcriptomic patterns is necessary for reveling the under-
lying molecular mechanisms of carcinogenesis. Incorporating
reliable genomic biomarkers such as the 5-gene based classi-
fiers in the HCC diagnosis algorithm may enhance the accu-
racy of disease identification and classification of patients and
eventually personalized medicine. Third, whether the 5-gene
based classifiers are applicable to the general population in
blood samples await further validation, which can be done in
a study cohort where the patients have both HCC tissues and
blood samples available for analyses. Finally, while DEGs
might be a chance finding due to a variety of reasons, such as
linkage, epigenetic processes, strong signals from certain
patients, and confounding factors, we consider the likelihood
of this possibility to be low in our study since we have imple-
mented highly stringent criteria to define critical DEGs.
Moreover, the genes identified by our method consistently
demonstrate efficacy across all cohorts, reinforcing our view
of them as intrinsic variables.

In summary, our work for the first time describes the inter-
action effects of the 5 critical DEGs in determining the status
of HCC. The findings could be a starting point for further
work such as gene network analysis, testing other related genes
and their functional interaction, and discovering causal effects.
Our study is not merely reanalysis of public data and identify-
ing genes with known functions to HCC, but it represents a
pioneering effort in applying conceptually new max-linear
competing risk factor models to identify transcriptomic signa-
tures of human malignancies.
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Data Availability

The links of the public datasets are provided in Section “Data
Description.” The dataset obtained from the independent U.S.
Caucasian cohort will be made available upon the request from

readers.
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