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ABSTRACT
This article introduces a new type of linear regression model with regularization. Each predictor is con-
ditionally truncated through the presence of unknown thresholds. The new model, called the two-way
truncated linear regression model (TWT-LR), is not only viewed as a nonlinear generalization of a linear
model but is also a much more flexible model with greatly enhanced interpretability and applicability.
The TWT-LR model performs classifications through thresholds similar to the tree-based methods and
conducts inferences that are the same as the classical linear model on different segments. In addition, the
innovative penalization, called the extremely thresholding penalty (ETP), is applied to thresholds. The ETP is
independent of the values of regression coefficients and does not require any normalizations of regressors.
The TWT-LR-ETP model detects thresholds at a wide range, including the two extreme ends where data
are sparse. Under suitable conditions, both the estimators for coefficients and thresholds are consistent,
with the convergence rate for threshold estimators being faster than

√
n. Furthermore, the estimators for

coefficients are asymptotically normal for fixed dimension p. It is demonstrated in simulations and real data
analyses that the TWT-LR-ETP model illustrates various threshold features and provides better estimation
and prediction results than existing models. Supplementary materials for this article are available online.
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1. Introduction

Linear regression is a widely applied and dominant statistical
inference method for studying variable relationships due to its
easy computability, interpretability, predictability, and stability
(CIPS). In the meantime, many other new developments in the
literature extend linear regression models to nonlinear regres-
sion models, nonparametric regressions, and semi-parametric
regressions, such as generalized additive models. Still, in many
applications, linear regressions are preferred.

Due to the desirable properties of the linear regression mod-
els, various regularization models have been proposed to deal
with high-dimensional datasets and are widely used across dif-
ferent disciplines such asmedicine, biology, public health, etc. A
vast amount of literature has introduced different penalty func-
tions to improve the estimation of the regression coefficients.
Some models which are capable of handling high-dimensional
data, but are not limited to, include the least absolute shrinkage
and selection operator (Lasso) (Tibshirani 1996) with which
Knight and Fu (2000) showed the estimation consistency of
the Lasso-type estimators for fixed dimension and asymptotic
normality of the estimators, the smoothly clipped absolute devi-
ation (SCAD) (Fan and Li 2001), the elastic net (Zou and Hastie
2005), the adaptive Lasso (Zou 2006), theDantzig selector (Can-
dès and Tao 2007), theminimax concave penalty (MCP) (Zhang
2010), etc. The regularized linear regression model was later
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developed to select significant variables from a large number of
predictors. These models have gained high popularity, and they
have been discussed in many papers and explored in detail; see
(Fan et al. 2020) and references therein for more details. It is
important to note that these methods assume that the response
variable is linearly related to the predictorswith different penalty
terms.

Change-point and threshold models have broad economic
and time-series data applications, primarily close to the linear
regressionmodels by sharing the same framework, that is, linear
in regression coefficients while introducing additional (nui-
sance) parameters in the nonlinear framework. There are many
different models, such as the regression kink model, the thresh-
old model, the two-phase regression, the segmented regres-
sion, and the broken line regression. There is a wide range
of literature on the regressions and significant contributions
can be found in Hinkley (1969), Feder (1975), Hansen (2000,
2017), Knowles, Siegmund, and Zhang (1991), and Siegmund
and Zhang (1993, 1994). Thesemodels investigate the nonlinear
relationships between the predictors and a response variable and
study how the behavior changes at some points. These mod-
els have numerous real applications in time series as change-
points are more observable for time series data. A key question
that arises is about change-points detection and estimation. In
some circumstances, the threshold or the change-point can be
observed. However, in most cases, thresholds or change-points
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are unknown to us. In the literature, many papers have devel-
oped estimation and inference theory with a single unknown
threshold (Porter and Yu 2015; Hansen 2017). Porter and Yu
(2015) developed the estimation and inference procedures for
regression discontinuity with a finite and unknown number
of thresholds. The threshold models provide some flexibility
in modeling the relationships between the response variable
and a set of predictors with thresholds, while another group of
predictors has linear relationships with the response variable.
Furthermore, most of these models can be reduced to a linear
model when all predictors do not contain any threshold.

More attention is given to change-point and threshold detec-
tion using penalized regression models, especially in recent
literature. Harchaoui and Lévy-Leduc (2012) proposed using a
penalized least-square criterion with a �1 penalty to estimate the
location of change-point in one-dimensional piecewise constant
signals observed in white noise. Ciuperca (2014) and Zhang,
Geng, and Lai (2015) considered a model with multiple change-
points under a fixed covariate dimension setting. Lee, Seo, and
Shin (2016) presented a model that selects between a linear
model and a threshold regressionmodel with a possible change-
point in a high-dimensional setting based on a data-dependent
�1 penalty. Leonardi and Bühlmann (2016) proposed a joint
estimator for the change-points and coefficients with �1 reg-
ularization on the parameters in different segments for the
case ofmultiple change-points. Kaul, Jandhyala, and Fotopoulos
(2019a) considered a threshold model similar to Lee, Seo, and
Shin (2016) and developed a two-step estimation procedure
for a single change-point and coefficients by including the case
of no change-point scenario. Kaul, Jandhyala, and Fotopoulos
(2019b) further extended the two-step estimation procedure
for multiple change-point detections in a high-dimensional set-
ting. There are other methods in the literature for change-point
detection in a high-dimensional setting. Wang and Samworth
(2018) andWang et al. (2021), among others, study the change-
point detection in a high-dimensional setting via a projection-
based method.

With ultra-high dimensional data becoming more readily
available nowadays, there are dimension reduction techniques
to handle ultra-high dimensional datasets in the literature. For
instance, Fan and Lv (2008) introduced a ranking procedure
based on the Pearson correlation to rank and select significant
predictors. Subsequently, the Pearson correlation was extended
for polynomial transformations of predictors, and the ranking
procedure is based on a bootstrap procedure (Hall and Miller
2009). In addition, Li, Zhong, and Zhu (2012) proposed the sure
independence screening procedure based on the distance corre-
lation (DC-SIS). Chen et al. (2017) proposed the sure explained
variability and independence screening (SEVIS) that incorpo-
rates the asymmetric and nonlinear generalized measures of
correlation (Zheng, Shi, and Zhang 2012) in the screening pro-
cess to perform dimension reduction. Other existing methods
in the literature can be applied to the ultra-high dimensional
datasets but were not mentioned here.

Furthermore, the idea of clustering and segmentation of the
regression coefficients to achieve sparsity has been discussed
in the literature. Ke, Fan, and Wu (2015) proposed a penalized
least squares based method to detect homogeneity by ordering
and clustering the regression coefficients through a clustering

algorithm in regression via data-driven segmentation (CARDS).
Ke, Li, and Zhang (2016) took a different approach to pursue
homogeneity from a change-point perspective and considered a
latent variable in their work. In addition, Tang and Song (2016)
incorporated the idea of homogeneity to identify inter-study
homogeneous parameter clusters using the fused lasso. There
are several other extensions of the work by Ke, Fan, and Wu
(2015) in other model setup and panel data structure. These
work include, but are not limited to, panel data using linear
model (Wang, Phillips, and Su 2018), nonlinear models (Wang
and Su 2021), single-indexmodel (Lian, Qiao, and Zhang 2021).

In this article, we focus on developing a more general thresh-
old model. Our article’s contributions to the literature can be
concluded in 5-fold. (a) The two-way truncated linear regres-
sion (TWT-LR) model contains both linear and nonlinear rela-
tionships betweendifferent predictors and the response variable.
The types of associations (i.e., linear or nonlinear) are modeled
through the unknown threshold parameters without the need
for prior information on whether the variables contain thresh-
olds or change-points. (b) We introduce a penalty to the two-
way truncated linear regressionmodel by penalizing the number
of thresholds for each variable with a tuning parameter λn to
avoid an overfitting problem. The penalization, called extremely
thresholding penalty (ETP), introduced in this article is different
from the penalty functions in the literature, which penalize the
regression coefficients. As a result, the theoretical derivations of
the proposed estimators are challenging and nontrivial. Never-
theless, such a new penalty framework can shed new light on a
broad area of new theoretical research and applications. (c) The
TWT-LR-ETPmodel is developed to detect thresholds at a wide
range of data, including the two extreme ends where data are
sparse. (d) The convergence rate of the proposed estimators for
the unknown thresholds is faster than the standard parametric
rate

√
n and the estimators for the regression coefficients are

shown to be asymptotically normal. (e) Extensive simulation
studies show that the TWT-LR-ETP model outperforms the
existingmodels inmodeling different types of associations. Fur-
thermore, due to the flexibility in modeling and interpretability,
the TWT-LR-ETP model illustrates various threshold features
and provides better interpretable results for the four real datasets
considered in this article than existing models. The final model,
TWT-LR-ETP, can be a practical benchmark formodeling linear
and nonlinear associations.

This article is organized as follows. We first introduce the
TWT-LRmodel in Section 2.1 and discuss the flexibilities of the
new regression model. Then, in Section 3.1, we will discuss the
estimation procedures of the threshold and coefficient param-
eters of the TWT-LR-ETP model. The asymptotic properties,
such as the consistency and asymptotic normality, are discussed
in Section 3.2. Next, numerical studies are presented in Sec-
tion 4. We will first discuss the computational procedures in
Section 4.1 and show simulated examples in Section 4.2. Then,
in Section 4.3, we will present the analyses and interpretations
using a real dataset (with the other three real datasets in a
supplementary materials). Finally, the concluding remarks are
presented in Section 5. Technical arguments for two main theo-
rems and lemmas are presented in Appendix A, supplementary
materials. Additional details of the computational procedure,
the results for the numerical experiments, and three additional
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datasets are presented in Appendices B and C. Finally, some toy
examples are presented inAppendixC, supplementarymaterials
to illustrate the TWT-LR model. Appendices A–C are given in
the supplementary materials.

2. Model Specification

In this section, we will begin by introducing some general
notations used throughout the article and present the TWT-
LR model that is flexible in modeling both linear and nonlinear
relationships between a response variable and predictors in the
presence of thresholds. We will subsequently present the new
regression model that can be expressed in different forms under
certain threshold specifications.

2.1. RegressionModels with Two-Way Truncated

Predictors

Suppose Yi, i = 1, 2, . . . , n, are the univariate responses; (Xi1,
Xi2, . . . ,Xip), i = 1, 2, . . . , n, are p-dimensional predictors. As
discussed in the introduction, a predictor Xij may have different
linear associations with the response variable depending on its
values. As a result, Xij can have different forms in the regression
models, or it can be presented as different types of working
variables, including itself and its threshold truncated variables.
Suppose cj = (cj,1, cj,2), j = 1, 2, . . . , p, are p bivariate truncation
thresholds associated to Xij. Let c̃ = (c1,1, c1,2, . . . , cp,1, cp,2)′ be
a 2p × 1 vector. Denote

Z̃i(c̃) = (1,Xi1I(Xi1 < c1,1),Xi1I(Xi1 > c1,2),
Xi1, . . . ,XipI(Xip < cp,1),XipI(Xip > cp,2),Xip)

′
(2.1)

as anm∗ × 1 vector wherem∗ = 3p+ 1, and I(·) is an indicator
function. The parameters cj,1 and cj,2 in the vector Z̃i(c̃) detect
thresholds for a particular jth variable. For instance, when two
thresholds are detected for the jth variable, both the parameters
cj,1 and cj,2 take values between−∞ and∞. To unify all working
variables in (2.1) in a two-way truncated forms, we introduce
an additional parameter cj,3. The parameter cj,3 is an additional
extreme parameter that only takes values at the two extremes
(i.e., −∞ and ∞) for all j. The meanings and functions of each
cj,k, k = 1, 2, 3 will be explained throughout this section using
examples. Let c = (c1,1, c1,2, c1,3, . . . , cp,1, cp,2, cp,3)′ be a 3p × 1
vector. Denote

Zi(c) = (1,Xi1I(Xi1 < c1,1),Xi1I(Xi1 > c1,2),
Xi1I(Xi1 < c1,3), . . . ,XipI(Xip < cp,1),
XipI(Xip > cp,2),XipI(Xip < cp,3))′ (2.2)

as an m × 1 vector where m = 3p + 1. Let Z(c) denote the
(n × m) matrix whose ith row is Z′

i(c), and β0 = (β0,0,β1,1,0,
β1,2,0,β1,3,0, . . . ,βj,1,0,βj,2,0,βj,3,0, . . . ,βp,1,0,βp,2,0,βp,3,0)′ be an
m× 1 vector, where β0,0 is the intercept, and (βj,1,0,βj,2,0,βj,3,0)
are unknown regression coefficients associated to Xij and
(cj,1,0, cj,2,0, cj,3,0) in the new linear model. Let c0 = (c1,1,0, c1,2,0,
c1,3,0, . . . , cp,1,0, cp,2,0, cp,3,0)′ be the unknown threshold param-
eters. For any n-dimensional vector V = (V1, . . . ,Vn)′, define
the L2 norm as ||V||2 = (

∑n
i=1 V2

i )
1/2. For any n × n matrix

U, ||U||2 denotes spectral norm and ||U||F denotes Frobenius
norm.

It can be seen in Zi(c), a predictor Xij is truncated in two
ways: from below and above (i.e., I(Xi1 < c1,1) and I(Xi1 >

c1,2)) to form two “new” predictors. With the consideration of
the extreme parameter in Zi(c), an additional “new” predictor
is included. Since the extreme parameter only takes values
at the two extremes, the indicator function for the extreme
parameter does not truncate the data. As such, the proposed
model can be called a two-way truncated linear regression
model (TWT-LR). Let c1,0 = (c1,1,0, c2,1,0, . . . , cp,1,0)′, c2,0 =
(c1,2,0, c2,2,0, . . . , cp,2,0)′, c3,0 = (c1,3,0, c2,3,0, . . . , cp,3,0)′ be three
p × 1 true threshold and extreme parameter vectors. Denote
K̄1 = K

p
1, K̄2 = K

p
2 and K̄3 = K

p
3 as the parameter spaces

for the true parameters c1,0, c2,0, and c3,0, respectively, where
C ⊂ R,K1 = {−∞} ∪ C,K2 = C ∪ {∞},K3 = {−∞} ∪ {∞}.
Let B ⊂ Rm be the parameter space for the true parameters β0.

Using the notations defined above, the TWT-LR model is
expressed as

Yi = Z′
i(c)β + εi, i = 1, . . . , n, (2.3)

where c and β are defined the same as c0 and β0.
We now present the forms and sparsity of the model (2.3)

under different threshold specifications in univariate case. If
c1 = −∞, c2 = ∞ and c3 = ∞, Xi is linearly associated to
Yi which is the same as the regular linear regression model and
takes the following form

Yi = β0 + β3Xi + εi, i = 1, . . . , n. (2.4)

If c1 = −∞, c2 = ∞ and c3 = −∞, the predictor Xi is
insignificant. If c1 = −∞, −∞ < c2 < ∞ and c3 = −∞, the
predictorXi is a one-way truncated below variable in themodel.
If −∞ < c1 < ∞, c2 = ∞ and c3 = −∞, the predictor Xi is
a one-way truncated above variable in the model. Accordingly,
the TWT-LR model can be expressed as

Yi = β0 + β2XiI(Xi > c2) + εi, i = 1, . . . , n, (2.5)

and

Yi = β0 + β1XiI(Xi < c1) + εi, i = 1, . . . , n. (2.6)

Furthermore, the TWT-LRmodel with a threshold at c∗ takes
the following form

Yi = β0+β1XiI(Xi < c∗)+β2XiI(Xi > c∗)+εi, i = 1, . . . , n,
(2.7)

where c1 = c2 = c∗, −∞ < c∗ < ∞ and c3 = −∞.
Themodel (2.7) can be expressed in three other ways: (i) c1 ∈

C, c2 ∈ C and c3 = ∞ where c1 = c2 = c∗, (ii) c1 = −∞,
c2 ∈ C and c3 = ∞ or (iii) c1 ∈ C, c2 = ∞ and c3 = ∞. As a
result, these cases cause an identifiability issue in the parameter
estimation procedure. To resolve the issue, we restrict our case
for one threshold parameter estimation to the form specified in
model (2.7).

If a predictor has two thresholds at different points c1 and c2,
the TWT-LR model is expressed as

Yi = β0+β1XiI(Xi < c1)+β2XiI(Xi > c2)+εi, i = 1, . . . , n,
(2.8)
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with c3 = −∞, c1 < c2, and

Yi = β0 + β1XiI(Xi < c1) + β2XiI(Xi > c2) + β3Xi + εi,
= β0 + (β1 + β3)XiI(Xi < c1) + β3XiI(c1 ≤ Xi ≤ c2)

+ (β2 + β3)XiI(Xi > c2) + εi, (2.9)

where c3 = ∞ for i = 1, . . . , n. When the extreme parameter
c3 = −∞ with two thresholds c1 and c2, the data in the
middle segment has no linear association between the response
variable and the predictor which is shown in model (2.8). On
the other hand, when the extreme parameter c3 = ∞ with two
thresholds, there is a linear association between the response
variable and the predictor in the middle segment of the data
shown in model (2.9). Therefore, the extreme parameter c3
provides more flexibility in modeling the middle segment of the
data. For p numbers of predictors, the parameter cj,3 controls
the significance of a particular segment or variableXij, that is, to
model the middle segment while selecting significant variables.
In other words, the parameter cj,3 can be viewed as a significance
parameter to Xij. In Section 3.1, we will further present and
discuss the important roles of the parameter. For this article,
we refer the parameter cj,3 to as an extreme parameter when
only the parameter cj,3 is mentioned whereas the parameters
cj,1, cj,2, and cj,3 are referred jointly to as threshold parameters
to avoid confusion. We note that cj,1 and/or cj,2 can take values
close to the two extreme ends of the data range of Xij, which is
particularly meaningful in some applications. Such thresholds
cj,1 and cj,2 can also be called extreme value thresholds.

The above model equations present how the association
between a predictor and a response variable changes and
sparsity in our setup when the thresholds are specified
differently. It is easy to see the truncation in model (2.3) greatly
enhances the applicability of linear regression models, boosts
the prediction power, and produces better interpretable and
meaningful results. In addition, it is important to emphasize that
the extreme parameter in model (2.3) increases the flexibilities
in modeling linear, insignificant associations and varying linear
associations in three segments. Model (2.3) leads to not only a
better applicable new-type regression model but also a new way
of variable selection in the literature. Some toy examples are
presented in Appendix C, supplementary materials to illustrate
the models (2.4)–(2.9). The new theory and methodology of
using thresholds in the penalty will be presented in Section 3.

Clearly, differentiating thresholds in different categories in
our model is significantly different from the literature. In our
model, first, when the thresholds cj,1 and cj,2 fall in the center
of the data distribution, the estimation can be performed to
obtain highly accurate parameter estimates with lower uncer-
tainties using readily available models and approaches due to
the bulk of data around the thresholds. Second, when thresholds
exist in the both extreme ends (i.e., not −∞ and ∞), the
behaviors of the predictor can provide important insights into
studying the changing associations between the extreme values
and the response variable. For example, the extreme events
above a certain threshold that exists in the extreme tend to
have a higher impact on the response variable. For instance, if
the extreme weather conditions surpass an extreme threshold
level, the insurance company has to deal with dire impacts
brought by the more extreme weather on the damage costs.

The extreme weather may have more devastating damage to
houses, cars, etc., resulting in a stronger linear association in
the extreme end between the extreme weather conditions and
damage costs than the weather conditions below the threshold.
For such data, the data points are usually sparse in the extreme
ends, thereby increasing uncertainties in statistical inferences.
We aim to develop the TWT-LR model to detect thresholds
that exist in the extreme ends while offering more flexibility in
modeling different linear associations and reducing the need to
identify the threshold variable in advance. Moreover, the struc-
ture of the TWT-LR model can be expressed as a tree structure
shown in Figures C10 and C11 in the Appendix, supplementary
materials. On the other hand, in our model settings, if there are
k covariates with each having two thresholds and an additional
extreme threshold, we will have at most 3k heterogeneous sub-
populations in contrast to only one population in a classical lin-
ear regression model, which shows great advantages of our new
model in modeling the changing trends of the sub-populations.
These observations shape the idea of introducing the thresholds
in the TWT-LR model and penalty term in our setup, which
offers a different approach to modeling from the literature on
regularized regression.

3. Estimation and Asymptotic Theory

3.1. Estimation

Let Y = (Y1, . . . ,Yn)′. Consider the mean of squared residuals

Sn(β , c) = n−1
n∑

i=1
(Yi − Z′

i(c)β)2. (3.1)

For j = 1, 2, . . . , p and i = 1, 2, . . . , n, let

Wij(cj) = [I(Xij < cj,1) + I(Xij > cj,2) + I(Xij < cj,3)],
where cj = (cj,1, cj,2, cj,3) for all j. The parameter spaces for the
true parameters c1,0, c2,0, c3,0, and β0 in model (2.3) defined
in Section 2.1 are K̄1, K̄2, K̄3, and B. In the previous sec-
tion, we discussed the identifiability issue for one threshold
resulted from the parameter spaces. Subsequently, we respecify
the parameter spaces for the threshold and extreme parameters.
Denote �1 = K1 × K2 × {−∞}, �2 = C12 × {∞}, where
C12 = {(c1, c2) : c1 < c2, c1 ∈ R, c2 ∈ R} and �3 =
{−∞} × {∞} × {∞} and we further let � = �1 ∪ �2 ∪ �3.
The parameter space for the true parameters c0 is �̃ = �p.
The parameter space for β0 is specified in Section 2. Define the
threshold and regression coefficient estimators by

(β̂ , ĉ) := argmin
β∈B,c∈�̃

{Sn(β , c) + λn
n

p∑
j=1

n∑
i=1

Wij(cj)}, (3.2)

where
∑n

i=1Wij(cj) is known as the extremely thresholding
penalty (ETP) function for the jth predictor.

The termWij(cj) in ETP takes a value of 0 (cj,1 = −∞, cj,2 =
∞, cj,3 = −∞, i.e., extremes), 1 (either two of cj,1 = −∞, cj,2 =
∞, cj,3 = −∞, hold) or 2 for every i and j. Since we introduce
two thresholds and one extreme parameter to every predictor,
to avoid over-fitting the data, we penalize the number of thresh-
olds through our data-dependent penalty function to detect
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the thresholds that change the linear associations in different
segments caused by Xij with a suitable choice of the tuning
parameter λn.

The TWT-LR regression model enables us to fit data with
linear or nonlinear relationships. A constraint is considered
in the form of a penalty when the number of change-points
is unknown. The penalty function is introduced to perform
clustering on the variables that have linear, nonlinear, or no rela-
tionships with the response variable. If a variable is insignificant
in predicting the response variable, the penalty function will be
zerowith suitable regularization.On the other hand, if a variable
has a linear association with the response variable, the penalty
function is equal to n since the data are not truncated in our set-
ting. Furthermore, if a variable has a nonlinear relationship with
the response variable (i.e., the variable is truncated), each of the
indicator functions in the penalty function will be less than n,
depending on the types of nonlinear relationships. With a small
tuning parameter λn in the penalty term, two change-points
may be detected for all variables, even for the variables that are
insignificant. On the other hand, over-penalization in a general
sense only detects the most significant changes in the regression
coefficients in the variables or none at all. In our model setup,
over-penalization forces cj,1 and cj,3 to the left extreme of the
observations, cj,2 to the right extreme of the observations, result-
ing in highly sparse coefficients.With the suitable tuning param-
eter λn that controls the magnitude of the penalty function, we
can achieve appropriate variable truncation or clustering and
avoid overfitting the data or obtaining highly sparse coefficients
which results in the misclassification of the variables.

The objective function given in (3.2) is convex in β but non-
convex in c. It is more computationally convenient to estimate
c first through a combination of concentration and grid search
similar to Lee, Seo, and Shin (2016) and Hansen (2017) which
is typically used in the threshold literature. The estimation of c
is given by

ĉ = argmin
c

{Sn(β̂(c), c) + λn
n

p∑
j=1

n∑
i=1

Wij(cj)}, (3.3)

where β̂(c) are the least-squares coefficients for fixed c. The
computational procedure will be discussed in details in Sec-
tion 4.1. Different from the conventional threshold literature, we
introduce a penalty as seen in (3.3) to help in the estimation
procedure. Minimizing equation (3.3) requires β̂(c) for any
fixed c which is given as

β̂(c) = [Z′(c)Z(c)]−1
Z

′(c)Y, (3.4)

whereZ(c) is a (n×m)matrix whose ith row is Z′
i(c). However,

(3.4) will not be well-defined when I(Xij < cj,1) = 0, I(Xij >

cj,2) = 0 or I(Xij < cj,3) = 0 for fixed cj,1, cj,2, and cj,3 for
some j and all i. As a result, minimizing (3.3) will run into some
theoretical and computational issues. In the literature, there
have been extensive work to overcome invertibility problems
for least-squares coefficients. Similar to the ridge regression, we
propose

β̂(c) = [Z′(c)Z(c) + δM]−1
Z

′(c)Y, (3.5)

whereM is anm-by-m identity matrix and δ is a tuning param-
eter. Alternatively, we propose using pseudoinverse by letting
δ → 0 for faster computational time in our estimation proce-
dure which wewill further discuss the advantages in Section 4.1.
LetZN(c) be a n×(r+1)matrixwith nonzero columns.Without
loss of generality, assume the first r numbers of columns in
matrix Z

N(c) are nonzero where r1 = #{j : cj,1 �= −∞},
r2 = #{j : cj,2 �= ∞}, s = #{j : cj,3 �= −∞} and r = r1 + r2 + s.
We obtain

lim
δ→0

[Z′(c)Z(c) + δM]−1

= lim
δ→0

[
Z
N′

(c)ZN(c) + δI(r+1)×(r+1) 0
0 δI(3p−r)×(3p−r)

]−1
.

Denote Z∗′
i (c) as the ith row of matrix Z

∗(c) with Z∗
i (c) =

[ZN′
i (c), 0∼

′]′ where ZN′
i (c) is the ith row of matrix Z

N(c) and
0∼ is a (3p − r) × 1 zero vector. For a better representation, we
can always rearrange significant variables in the following way.
Since we assume there are r numbers of nonzero columns in
matrix Z

N(c), the following form is the same as the equation
above.

lim
δ→0

[
Z
N′

(c)ZN(c) + δI(r+1)×(r+1) 0
0 δI(3p−r)×(3p−r)

]−1

=
[
limδ→0[ZN′

(c)ZN(c) + δI(r+1)×(r+1)]−1

0
0

limδ→0[δI(3p−r)×(3p−r)]−1

]

=
[[ZN′

(c)ZN(c)]−1 0
0 O+

]

= [Z∗′
(c)Z∗(c)]+

where [Z∗′
(c)Z∗(c)]+ and O+ are Moore-Penrose pseudoin-

verse of Z∗′
(c)Z∗(c) and zero matrix, respectively.

Sincewe rearranged the rows in [Z∗′
(c)Z∗(c)]+, we also need

to rearrange the coefficients. Let β̂
∗
and β∗

0 be the coefficient
estimators and true parameters. The model equation (3.4) is
now rewritten as

β̂
∗
(c) = [Z∗′

(c)Z∗(c)]+Z∗′
(c)Y (3.6)

and the model equation (3.3) has the following form

ĉ = argmin
c

{Sn(β̃(c), c) + λn
n

p∑
j=1

n∑
i=1

Wij(cj)}, (3.7)

where β̃(c) follows (3.5) withZ∗′
(c)Z∗(c)matrix or its limit case

when δ → 0 in (3.6). The use of (3.5) provides better precision
in estimation but with higher computational time. On the other
hand, Equation (3.6) achieves faster computational time with
slightly lower precision. The two equations can be viewed as a
tradeoff between computational time and precision.

Given the different features of the threshold parameters and
the coefficients, we implement a two-step estimation procedure.
The first step is to estimate the threshold parameters c using
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(3.7) and the second step is to estimate the regression coeffi-
cients β by β̂(ĉ) using (3.8) where ĉ is obtained from the first
step.

β̂(ĉ) = argmin
β

{
1
n
(Y − Z(ĉ)β)′(Y − Z(ĉ)β)

}

= [Z′(ĉ)Z(ĉ)]−1
Z

′(ĉ)Y. (3.8)

As emphasized earlier, the computation of the inverse in Equa-
tion (3.8) has an invertibility issue when I(Xij < ĉj,1) = 0
a.s., I(Xij > ĉj,2) = 0 a.s. or I(Xij < ĉj,3) = 0 a.s. (i.e.,
ĉj,1 = −∞, ĉj,2 = ∞, ĉj,3 = −∞) for i = 1, 2, . . . , n and some
j which are possible in our setup. When I(Xij < ĉj,1) = 0 a.s.,
I(Xij > ĉj,2) = 0 a.s. or I(Xij < ĉj,3) = 0 a.s. for all i and
some j, the corresponding columns of matrix Z(ĉ) consist of
zero vectors. Therefore, the termZ(ĉ)β in the objective function
of (3.8) can be reduced to ZR(τ̂ )βR in the objective function
of (3.9). We propose the coefficient estimators corresponding
to predictors in (2.2) as follows. If I(Xij < ĉj,1) = 0 a.s.,
I(Xij > ĉj,2) = 0 a.s. or I(Xij < ĉj,3) = 0 a.s. for all i and some j,
the corresponding coefficient estimators are set to β̂j,1(ĉj,1) = 0
a.s., β̂j,2(ĉj,2) = 0 a.s. or β̂j,3(ĉj,3) = 0 a.s.. Optimizing (3.8) is
equivalent to

β̂R(τ̂ ) = argmin
βR

{
1
n
(Y − ZR(τ̂ )βR)

′(Y − ZR(τ̂ )βR)

}

= [Z′
R(τ̂ )ZR(τ̂ )]−1

Z
′
R(τ̂ )Y (3.9)

where τ̂ ’s are the threshold estimators (−∞ < τ̂j,1, τ̂j,2 < ∞)

for all j and βR is a vector of regression coefficients of ZR(τ̂ ).
ThematrixZR(τ̂ ) can be partitioned into [X1(τ̂ ),X2]where the
matrixX1(τ̂ ) contains variables with thresholds and the matrix
X2 contains variables without thresholds (i.e., ĉj,1 = −∞ a.s.,
ĉj,2 = ∞ a.s., ĉj,3 = ∞ a.s. for some j). The dimension of τ̂ is
less than or equal to the dimension of ĉ. For this article, let r1
and r2 be the numbers of predictors truncated below and above
and s be the numbers of predictors without thresholds.

So far, it has been clear that the proposed model and its
estimation procedure are significantly different from themodels
in the literature. There are some main advantages of the TWT-
LR-ETP model with some interesting aspects to consider. We
need not predetermine the number of variables with thresholds
and the number of thresholds of any variable. Moreover, since
our penalty function does not involve the regression coeffi-
cients, standardizing the predictors, which is a standard step
in the regularized linear regression literature, is not necessary
for our setup. The intercept term is included in our model. In
addition, the regularized regression literature has often applied
penalization to regression coefficients. As a result, there is a
tradeoff between predictors with smaller regression coefficients
and predictors with larger regression coefficients in real data
applications with small or moderate sample sizes. We note that
the TWT-LR model does not involve such a tradeoff scenario.
Furthermore, it is easier to solve for the coefficient estimators
with the closed-form solution. Besides, if β̂j,1(ĉj,1) = 0 a.s.,
β̂j,2(ĉj,2) = 0 a.s. or β̂j,3(ĉj,3) = 0 a.s., for some j, we only need to
focus on developing the asymptotic properties of β̂R(τ̂ ) which
will be presented in the next section.

3.2. Asymptotic Theory

We first present the assumptions before stating and discussing
the asymptotic theory for our framework. Additional notations
are introduced. Let λmin(A) denote the smallest eigenvalue of
matrix A. Denote ZN

i (c) as a vector with nonzero entries for
variables with thresholds and Z′

Ri(τ ) as the ith row vector in
the matrix ZR(τ ) defined in the previous section. Let τ be a
(r1+r2)×1 vector containing thresholds (i.e., the points atwhich
the linear associations change) and denote τ 0 as the unknown
threshold parameters. We recall that the threshold parameters
in τ and τ 0 are also elements of c and c0, respectively. Let
c1 = (c1,1, c2,1, . . . , cp,1)′, c2 = (c1,2, c2,2, . . . , cp,2)′ and c3 =
(c1,3, c2,3, . . . , cp,3)′ be three p × 1 vectors.

Assumption 1. (a) c ∈ �̃ where C and C12 are compact.
(b) (X′

i, εi), i = 1, 2, . . . , n are iid with (i) E(εi|Xij) = 0
a.s., var(εi|Xij) = σ 2 < ∞ a.s., E(ε4i |Xij) < ∞ a.s. (ii)
E|Xij|r < ∞ for r = 1, 2, 3, 4. (c) For cj,k �= cj,k,0, (i) there
exists a η > 0 such that ||F̃(c) − F̃(c0)||2 > η where F̃ is
a vector of distribution functions of random variables X. (ii)
E(Z′

i(c)β − Z′
i(c0)β0)

2 > 0 for β �= β0. (d) For τj,k �= τj,k,0,
(i) λmin(E[(ZRi(τ ) − ZRi(τ 0))(ZRi(τ ) − ZRi(τ 0))′]) > 0. (ii)
0 < E|Zij(τj,k) − Zij(τj,k,0)|r < ∞ for r = 1, 2, 3, 4 where
Zij(τj,k) and Zij(τj,k,0) are elements of ZRi(τ ) and ZRi(τ 0). (iii)
λmin

(
E[ZRi(τ 0)Z′

Ri(τ 0)]
)

> 0.

In the literature on threshold models, the assumption that
the parameter space for thresholds is compact is a common
assumption since the models are built to model predictors with
thresholds. Similarly, we assume compactness for the threshold
parameter space when thresholds exist in our setting. Addition-
ally, our model is proposed to model a group of predictors that
has linear or no relationships with the response variable. We
also consider cases where the parameters can be −∞ and ∞,
as shown in Section 2. Since the extreme parameter cj,3 only
takes two values (i.e., −∞ and ∞) for all j, we need not assume
compactness for the parameter space of c3.

Assumption 1(b) is a common assumption in a regression
setup in the literature, with additional assumptions on the
higher moments being finite. In the regularized regression
literature with a random design setting, E(Xij) = 0 and
E(X2

ij) = 1 are common assumptions and E(Yi) = 0 forces the
model to exclude the intercept, leading to a wrong or restrictive
model when a nonzero intercept exist. Due to the constraint set
by some regularized regressions such as Lasso, penalizing the
coefficients will depend on the magnitude of the coefficients,
so standardization is necessary. Additionally, standardizing the
predictors can also be seen in other variable selection methods.
Some variable selection methods, such as SIS mentioned in
the introduction, depend on the relative magnitude of the
coefficients to rank the covariates by their importance. As such,
standardizing the predictors is necessary. In our setting, we
need not standardize the predictors as we do not penalize the
regression coefficients. As a result, the intercept is included in
our setup, as mentioned as one of the advantages in the previous
section. Moreover, we do not compare the coefficients based
on their magnitudes. Instead, the coefficients in our setup are
affected by the locations of the thresholds. For these reasons,
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standardizing the predictors is unnecessary in our setup, which
may be viewed as a big advantage. Assumptions (c) and (d)
are conditions for showing theoretical properties. Assumption
(d)(iii) is a full-rank condition needed for nondegenerate
asymptotic distribution.

Under no threshold setting, the TWT-LR model can be
rewritten as a linear model

Yi = X′
iβ + εi, i = 1, 2, . . . , n.

In this setting, the associations between the response variable
and the predictors do not change at any points. The parameter
estimators given below can be derived by OLS

β̂ = [X′
X]−1

X
′Y. (3.10)

The asymptotic properties, such as consistency and asymptotic
normality of the above parameter estimators, have been well
established in the literature. When pn 
 n, many dimension
reduction methods such as the SIS, DC-SIS, SEVIS, etc., can be
applied to obtain d (< n) significant predictors. Consistency and
asymptotic normality results will still hold.

Under the multiple thresholds setting when τ 0 is known
in advance, since the TWT-LR-ETP model does not penalize
on the regression coefficients, the parameter estimators in the
following form can also be derived by OLS

β̂(τ 0) = [Z′(τ 0)Z(τ 0)]−1
Z

′(τ 0)Y. (3.11)

In this setting, it can be viewed as a generalization of a linear
model where there are two linear curves when there exists one
threshold and three linear curves when there exist two thresh-
olds for a given predictor. Therefore, consistency and asymptotic
normality will still hold with somemodifications to the previous
case. Similarly, when pn 
 n, dimension reduction methods
can be applied to obtain d (< n) significant predictors, and the
asymptotic results will hold. If the data have multiple thresholds
with nonlinear structure, linear model-based dimension reduc-
tionmethods are not recommended for variable screening since
they only work well under a linear model setting.

For data with multiple thresholds structure, if thresholds are
easily observed or known for those variables, it is suitable to use
the known threshold setting. However, in many cases, thresh-
olds are not observed for data like gene expression. Despite
performing the dimension reduction procedure, they remain
difficult to detect. Consequently, our article focuses on multiple
unknown thresholds and consider a fixed dimension of p. If
pn = o(n) or pn 
 n, we apply the SEVIS for dimension
reduction. We assume that the dimension does not vary with
n after variable screening. Next, we establish the consistency
and asymptotic normality for the estimators. The proofs are
presented in Appendix A, supplementary materials. For the
following theorems and lemmas, the convergence in probability
and distribution are represented by

p−→ and d−→, respectively.

Theorem 1 (Consistency). For p < n and if λn → 0 and nλn →
∞, under Assumption 1, we have ĉ

p−→ c0 and β̂R(τ̂ )
p−→ βR.

Lemma 1. For p < n, if
√
nλn → λ0 where λ0 ≥ 0, then n||τ̂ −

τ 0||2 = Op(1).

Lemma 2. For p < n,
√
n||β̂R(τ̂ ) − β̂R(τ 0)||2 p−→ 0.

Lemma 1 shows that the convergence rate of τ̂ is n under
unknown threshold parameters τ 0. If τ 0 is known, Lemma 1
is not needed. Lemma 2 shows that the parameter estimators
under known and unknown thresholds converge at a rate of

√
n.

Theorem 2 (Asymptotic Normality). By Lemmas 1 and 2, for p <

n,
√
n(β̂R(τ̂ ) − βR)

d−→ N(0,�),

where � = σ 2E[ZR1(τ 0)Z′
R1(τ 0)]−1.

Remark. ByLemma2, the asymptotic distribution of
√
n(β̂R(τ̂ )−

βR) and
√
n(β̂R(τ 0) − βR) will be the same as the bias between

β̂R(τ̂ ) and β̂R(τ 0) goes to zero with the rate of
√
n. Lemmas 1

and 2 guarantee that the asymptotic distribution of parameter
estimators

√
n(β̂R(τ̂ ) − βR) will not be an issue.

4. Numerical Studies

4.1. Computational Procedure

In this section, we will present a computational and estimation
procedure for simulations and real data analyses. A flowchart
is used in the supplementary file Appendix B, supplementary
materials to illustrate the computational procedure. We will
discuss the initial groupings of the variables and present the
estimation procedure subsequently.

The computational procedure for the parameter estimation
of the TWT-LR-ETP model consists of two main parts. Part
1 involves group classifications of the predictors (group 1—
variables that are linearly related to the response variable, group
2—variables that have changing associations in different seg-
ments, group 3—insignificant variables), which determine the
initial values for the variables in different groups. Some condi-
tions are imposed on the regression coefficient and threshold
parameters to group the variables. After the groups are deter-
mined for the predictors, initial values are set based on the
groups. In this section, we will discuss the initial values for
groups 1–3 later. In Part 2, the threshold and regression coef-
ficient parameters are estimated using the two-step estimation
procedure described in Section 3.1. More details of the two-
step estimation procedure are also presented in this section. We
summarize our procedure in Algorithm 1 and then discuss each
part and step in detail.

In the first part of the estimation procedure, we perform an
initial grouping for the variables. The variables are grouped into
one of the three groups (linear, nonlinear, and no relationship).
Initial estimates of the threshold parameters cj,1, cj,2 are set to
the middle point of the ordered observations for each variable
and cj,3 is set to −∞. The preliminary coefficient estimates are
then computed based on the TWT-LRmodel. Subsequently, the
variables are classified into one of the three groups by using the
preliminary coefficient estimates with different conditions on
the regression coefficients. The variables are placed in the first
group as having a linear association with the response variable
if all three conditions are satisfied |β̂j,1| > t1, |β̂j,2| > t1, and
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|β̂j,1− β̂j,2| < t2, where t1 and t2 are predetermined parameters.
Furthermore, the variables are grouped into the second group
where the linear associations change for the variables with the
response variable if (i) |β̂j,1| > t1 or (ii) |β̂j,2| > t1 with
|β̂j,1−β̂j,2| > t2 are satisfied. If both conditionswhere |β̂j,1| < t1
and |β̂j,2| < t1 are satisfied, the variables are placed in the
third group. To ensure the same conditions can be applied to
all variables, we standardize the predictors for initial variable
groupings. We note that the standardization of the predictors
is only applied to perform the initial groupings, and the stan-
dardization step is not applied to themain estimation procedure.
We provide some discussions on the use of standardization
following the discussions of all predetermined parameters.

Algorithm 1 Procedure of the parameter estimation using the
TWT-LR-ETP model
Input:
1: Training data {(xi, yi)}ni=1, the number of variables p, the

number of grids for groups 1-3, the number of subgrids for
group 2 and the number of iterations I.

Part 1 (Group classifications of the variables):
2: Estimate the regression coefficients using the TWT-LR

model (see model (2.3)). Classify the variables based on the
preliminary conditions on the magnitudes of the regression
coefficients and pairwise differences of the regression coef-
ficients in different segments for each variable. Perform the
variable group classifications by imposing additional condi-
tions on the regression coefficient and threshold parameters
and then update the groups using the TWT-LR-ETP model
(see model (3.2)).

3: Set initial values for the threshold parameters denoted as
ĉ(0) based on the groups.

Part 2 (Step 1—Estimation of the threshold parameters):
4: for i = 1 : I do
5: for j = 1 : p do
6: Obtain the threshold parameter estimates ĉ(i)j for

variable j by optimizing the objective function (3.7)
using the threshold parameter estimates ĉ(i−1)

k , k ∈
{2, . . . , p} for j = 1, using ĉ(i)k , k ∈ {1, . . . , j− 1} and
ĉ(i−1)
k′ , k′ ∈ {j + 1, . . . , p} for 1 < j < p, and using
ĉ(i)k , k ∈ {1, . . . , p − 1} for j = p.

7: end for
8: end for

Step 2—Estimation of the regression coefficient parameters:

9: Obtain the regression coefficient estimates β̂R(τ̂ ) using
model (3.9).

After the preliminary variable groupings, we update the
groups with additional conditions. The initial values for the
third group are set to the left and right extremes of the
observations for the parameters cj,1 and cj,2, respectively, and
cj,3 is set to −∞. The threshold parameters are estimated for
groups 1 and 2 via a grid-search procedure and the regression
coefficients are estimated by OLS. The initial groupings of the
variables are updated using some conditions on the threshold
parameters. The variables are assigned to group 1 if (1)

ĉj,3 = −∞, |ĉj,1 − ĉj,2| < t3, |β̂j,1| > t1, |β̂j,2| > t1 and
|β̂j,1 − β̂j,2| < t2 or (2) ĉj,3 = ∞, |ĉj,1 − ĉj,2| < t3, |β̂j,3| > t1,
|β̂j,1 + β̂j,3| > t1, |β̂j,2 + β̂j,3| > t1, |β̂j,1| < t2, |β̂j,2| < t2
and |β̂j,1 − β̂j,2| < t2 or (3) ĉj,3 = ∞, ĉj,1 = −∞ and
ĉj,2 = ∞ are satisfied where t3 is a predetermined parameter.
Furthermore, the variables are placed into group 2 if one of the
three conditions is satisfied. (1) ĉj,3 = −∞, |ĉj,1 − ĉj,2| > t3
with (i) |β̂j,1| > t1 or (ii) |β̂j,2| > t1 or (iii) |β̂j,1 − β̂j,2| > t2.
(2) ĉj,3 = ∞, |ĉj,1 − ĉj,2| > t3 with (i) |β̂j,1 + β̂j,3| > t1 or
(ii) |β̂j,2 + β̂j,3| > t1 or (iii) |β̂j,3| > t1 or (iv) |β̂j,1| > t2 or
(v) |β̂j,2| > t2 or (vi) |β̂j,1 − β̂j,2| > t2. (3) ĉj,3 = −∞ with
(i) |β̂j,1| > t1 or (ii) |β̂j,2| > t1. The condition (3) imposed for
group 2 is to include cases where there is only one threshold.
The variables are grouped into the third group if (1) ĉj,3 = −∞,
|β̂j,1| < t1 and |β̂j,2| < t1 or (2) ĉj,3 = ∞, |β̂j,1 + β̂j,3| < t1,
|β̂j,2 + β̂j,3| < t1 and |β̂j,3| < t1 or (3) ĉj,1 = −∞, ĉj,2 = ∞ and
ĉj,3 = −∞ are satisfied. In addition, for variables that are not
assigned a group, we assign the variables to group 3. The idea
of using the initial groupings with the conditions is inspired
by Ke, Fan, and Wu (2015) and adapted to our model setup
with additional conditions specified above. Incorporating the
initial groupings in our case reduces the computational time
substantially. We have different grid arrangements for different
groups by extracting some useful prior information on the
variables using the preliminary estimates.Moreover, if the initial
values set based on the groups are close to the true unknown
threshold parameters for some variables, fewer iterations are
needed for convergence and we need not search thoroughly for
the tuning parameter λn. In contrast, if we do not incorporate
the idea of initial groupings, a more thorough search for the
tuning parameter λn is needed to obtain the estimates of the
regression coefficients with low variance and bias since λn has
multiple functions in our setup which has been discussed in
Section 3.1. Similar to Ke, Fan, and Wu (2015) and Ke, Li, and
Zhang (2016), we select the parameters t1 and t2 via Bayesian
information criteria (BIC). Ke, Li, and Zhang (2016) reports that
the estimation procedure depends heavily on the choice of the
predetermined parameter in their model setup. However, it is
not the case in our setup. If the parameters t1 and t2 are too small,
the computational time increases since denser grids are assigned
to more variables as compared to having larger values of t1 and
t2. Since the conditions on the magnitudes of the regression
coefficients in the three segments are to separate significant
variables from insignificant variables and the condition on
the pairwise differences of the regression coefficients of the
three segments is to distinguish variables with thresholds from
variables without thresholds, large values of t1 and t2 are not
required. In other words, the search of t1 and t2 can be restricted
to smaller values (e.g., from 0.2 to 0.7 with equally spaced grid
0.1 or 0.2). In addition, unlike the estimation procedures in the
literature, we need not perform BIC for the entire estimation
procedure to select t1 and t2 as our estimation procedure does
not depend heavily on the choices of t1 and t2.With the updated
initial groupings, the initial threshold parameter values are set
differently based on the respective groups.

Subsequently, we specify the initial values for different groups
of the variables after the initial groupings are updated. The initial
values for the threshold parameters cj,1 and cj,2 are set to the
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left and right extremes of the observations, respectively and the
initial value for cj,3 is set to ∞ for the variables in group 1. For
variables in group 2, the initial value for the threshold parameter
cj,1 is set to the middle point of the data and the initial values for
the parameters cj,2 and cj,3 are set to∞ and−∞, respectively. In
group 3, the initial values for the threshold parameters cj,1 and
cj,2 are set similar to the initial values specified for group 1 and
the initial value of cj,3 is set to −∞.

The change-points are estimated via a grid-search procedure.
The regression coefficients are estimated via OLS. Subsequently,
the parameters t1 and t2 in the intermediate step are selected
via BIC. Through our simulation experiments, the parameters
t1 and t2 selected provide reasonable groupings. The parameter
t3 is set to 1 in our case. Since the predictors are standardized
and thresholds are, in most cases, close to the middle of the
data, the predictors may be misclassified as group 1 with large
values of t3 or group 2 with small values of t3. For a standardized
predictor, the interval for one standard deviation away from the
mean contains most observations (e.g., more than 50% data and
about 68% for a Gaussian distribution). If the variable has two
change-points close to the center of the data distribution, it is
also unlikely that the change-points are close to each other. As
a result, the choice of t3 is reasonable where the proportions of
data points between the two thresholds are about 25% and 34%
in the case of a Gaussian distribution, assuming the variables
have change-points that are close to the middle of the data. If
two thresholds exist at two extreme ends, the choice of t3 is also
reasonable to classify the variables according to the conditions
discussed above. We note that the parameters t1, t2, and t3 are
only used in the initial step to obtain the initial groupings and
the parameters are not used in the final estimation procedure. It
is important to note that we need not standardize the predictors
for the estimation procedure discussed subsequently. Further-
more, the use of the predetermined parameters does not affect
our theoretical results.

In this step, the thresholds for each variable are then esti-
mated using the penalized regression with the same number of
grids. This step is viewed as an update to the initial groupings of
the variables to boost efficiency in the computational time. The
conditions of the variable groupings and initial values for the
respective groups are similar to the conditions specified above.
After updating the variables’ groups, the variables’ parameters in
group 2 are estimated first, followed by the variables in groups 1
and 3.

Subsequently, we present the estimation procedure for the
TWT-LR-ETP model. A grid-search approach is commonly
used in the threshold literature to estimate the threshold param-
eters. However, the approach can be computationally heavy if
both p and n are large. Therefore, we propose some modi-
fications to the conventional grid-search method that is effi-
cient to obtain the tuning parameter and estimate the threshold
parameters in the two-step estimation procedure. The usual
grid-search procedure divides the parameter space into equally
spaced grids and finds the parameter(s) value that optimizes
the objective function. In our setting, the grid-search procedure
is based on data-driven information. Since the data points are
treated as grids, the grids in our setting are not equally spaced.
Once the value that optimizes the objective function is chosen,
the grid-search procedure in our setting will be performed in

the neighborhood of the value to search for the optimal value.
Due to increasing computational costs as the number of grids
increases, certain data points are used as grid points where a
grid contains 10%–20% of the data points. Besides, the initial
groupings are used to determine the number of grids for each
variable. For example, denser grids are specified for variables in
group 2 and sparser grids are adopted for variables in groups 1
and 3. For instance, the number of grids for group 2 is set to 10
to 15 while the numbers of grids for groups 1 and 3 are set to
5 to 10. Furthermore, for group 2, denser grids are specified in
the middle part of the data. For instance, if 10 grids are used, we
introduce denser subgrids from the third grid to the eighth grid.

A more detailed discussion on the grid-search procedure is
presented at a given level of the tuning parameter λn. First, all
predictors are imposed with three thresholds. Then, we apply a
two-step estimation procedure for the parameter estimation.We
first estimate the threshold parameters c using (3.7) via a grid-
search approach. Since the threshold parameter cj,3 only takes
two values, we only apply the grid-search approach to estimate
cj,1 and cj,2. Let x(i),j be the ith ordered sample for the truncated
above and below of predictor j and the data are divided into g
numbers of grids. Subsequently, the middle point of each grid
that minimizes the objective function (3.7) is used to determine
the grid or region of the global optimum. The estimate of
the threshold ĉj,1 is the observed sample point that minimizes
the objective function in the selected grid. The procedure is
repeated for the jth covariate truncated below and for the other
covariates. After nth iteration, the insignificant terms will be
dropped from the model correspondingly, that is, ĉj,1 = −∞,
ĉj,2 = ∞ or ĉj,3 = −∞. The coefficient estimates β̂R(τ̂ ) are
computed via (3.9).

The computational costs of estimating the threshold param-
eters in Step 1 of the two-step estimation procedure are at most
2p(G+1)IRidge(n, p) whereG is themaximumnumber of grids,
I is the number of iterations and Ridge(n, p) is the computa-
tional cost to obtain the closed form solution of the regression
coefficient parameters using ridge regression for each grid to
search for the threshold parameters with sample size n and
number of variables p. The computational costs of estimating
the regression coefficient parameters in Step 2 are q3+nq2 where
q = r1 + r2 + s, r1, r2, and s are defined in Section 3.1. We
denote the computational costs of estimating the threshold and
regression coefficient parameters for the two-step estimation
procedure using the TWT-LR-ETP model as TWT(n, p,G). We
apply theK-fold cross-validation to obtain the tuning parameter
λn. The computational costs are Kl1TWT(n∗, p,G) where K is
the number of folds, l1 is the number of grid points for λn and
n∗ is the sample size for each fold in the K-fold cross-validation
for λn. The computational cost for the tuning parameter δ is
l2TWT(n, p,G) where l2 is the number of grid points for δ.
Furthermore, the computational costs for choosing t1 and t2
are atmostUl3TWT(n, p,G) andUl4TWT(n, p,G), respectively,
where U is the number of initial grouping updates, l3 and l4 are
the numbers of grid points for t1 and t2.

In addition, the computational costs for the procedure
depend on the dimension p, number of grids g, number of
grids used for the tuning parameter λn and tuning an additional
parameter δ. For larger p or denser grids, we use the Moore-
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Penrose pseudoinverse to obtain the coefficient estimates using
(3.6) in the intermediate steps by leaving out the terms where
ĉj,1 = −∞, ĉj,2 = ∞ or ĉj,3 = −∞. Since the thresholds
are at the extremes (i.e., ĉj,1 = −∞, ĉj,2 = ∞ or ĉj,3 =
−∞), the computational costs can be reduced by estimating
the significant terms in the intermediate steps to obtain the
estimates of the threshold parameters. After the threshold
parameters are estimated, the regression estimates are computed
using (3.9).

For simulation studies in our setup, the SEVIS mentioned in
the introduction is adopted to perform dimension reduction for
high-dimensional cases. The SEVIS is applied to all p covariates
to select covariateswhich are highly correlatedwith the response
variable and reduce the dimension to d. The estimation proce-
dure for the final d-dimensional predictors will be similar to the
procedure mentioned above.

4.2. Simulated Examples

In this section, some simulation studies are conducted to assess
the performance of the TWT-LR-ETP model. For j = 1, . . . , p,
we let x̃i,j = xi,j{I(xi,j < cj,1), I(xi,j > cj,2), I(xi,j < cj,3)}
since these related variables form a group naturally (Li, Zhong,
and Zhu, 2012). Also, the variability in the response variable
explained by predictors is through x̃i,j.

Suppose first that (xi,1, . . . , xi,p)′ is a p-dimensional vector
generated from N(0, Ip×p) and the error term εi is generated
from N(0, 1). The number of active variables with thresholds is
set to 5 while the number of active variables without thresholds
is set to 4 and the total number of regressors is 12 with 3
inactive variables. Two thresholds for the first variable are set
as c1,1,0 = c1,2,0 = 0 and c1,3,0 is set to −∞. The thresholds
c2,1,0 and c2,2,0 are set to −0.8 and 0.8, respectively with c2,3,0 =
∞ for the second variable. The thresholds cj,1,0 and cj,2,0 are
set to -0.8 and 0.8 with cj,3,0 = −∞ for j = 3, 4, 5. The
coefficients for covariates with thresholds are set to β1,1,0 = 5,
β1,2,0 = −5, β1,3,0 = 0, β2,1,0 = 6, β2,2,0 = 6, β2,3,0 = −4,
β3,1,0 = 5, β3,2,0 = 0, β3,3,0 = 0, β4,1,0 = 0, β4,2,0 = −5,
β4,3,0 = 0, β5,1,0 = 5, β5,2,0 = −5, β5,3,0 = 0. The coefficients
for active variables without thresholds are set to (-5, 5, -5, 5).
The number of observations is set to n = 500, 600, 800, 1200.
The parameter estimation is performed based on the two-step
estimation procedure and the root mean squared error (RMSE)
are computed based on the sample size n = 300, 400, 600, 1000
which are used to estimate the parameters while the remaining
200 observations are used as testing datasets to compute the root
mean squared prediction error (RMSPE).

In addition, correlations between covariates are consid-
ered. The numbers of active variables with thresholds and
without thresholds, the parameter values of the thresholds
and regression coefficients are set the same as above. The p-
dimensional vector (xi,1, . . . , xi,p)′ is jointly generated from a
multivariate normal distribution N(0,�) with (i) �i,j = 0.3|i−j|
(ii) �i,j = 0.5|i−j| where �i,j denotes the correlation between
ith and jth covariates with the diagonal entries being equal to 1.
Other settings are the same as above. The simulation study with
the parameter settings specified above and different correlation
structures is referred to as numerical experiment 1. The results

are presented in Figures 1 and 2 where different colored lines are
used to represent different candidate models. We also produce
RMSE and RMSPE results for p = 110 and p = 1100 with the
parameter settings specified above.

For the tuning parameters, we set 10 grids for group 2 and
6 grids for groups 1 and 3. For group 2, we consider three
additional grids from the first to the eighth grid to estimate
the threshold parameter cj,1 and from the third to the tenth
grid for cj,2. Denser grids are considered at both ends to detect
the thresholds near the extreme ends. The tuning parameter
λn is searched from 70 equally spaced values from 0.1 to 1.5
by a 5-fold cross-validation procedure. For p < 50, the tun-
ing parameter δ is selected using Akaike information criteria
(AIC). Another algorithm’s computational challenge is select-
ing the optimal tuning parameter λn. The computational time
can be further improved using the parallel computing tool-
box available in many software. We use Matlab� software
to produce the numerical results. Multiple parallel computing
methods are readily available. We adopt a parallel computing
tool that is accessible and feasible to all users. Each task is
run in parallel using the user’s computer cores. The simula-
tions in this article are conducted using a computer with ten-
core processors. Besides the RMSE and RMSPE, we also report
the computational time of each simulation. The TWT-LR-ETP
model is compared to Lasso, SCAD, and MCP to show the
model performances when thresholds are unknown, or no prior
information on the thresholds is available in the data. With
more predictors considered, the detection of thresholds through
visual plots can be challenging (see Appendix C, supplementary
materials). Furthermore, different from the threshold models
with a threshold variable in the literature, the TWT-LR-ETP
model includes all variables without the need to predetermine
the threshold variable. In this article, the performance of the
TWT-LR-ETP model is compared to the threshold models in
Lee, Seo, and Shin (2016) and Kaul, Jandhyala, and Fotopoulos
(2019b). The results for the classical linear regression models
with the Lasso, SCAD, andMCPpenalties are obtained using the
existing packages in R. The estimation for the candidatemodels,
such as the threshold models, are run using R programming
software.

As we see from the results, the TWT-LR-ETP model out-
performs the Lasso, SCAD, MCP, and OLS shown in the plots.
RMSE and RMSPE of our model range from 0 to 3, while
most of the cases range from 0 to 1.5. For the Lasso, SCAD,
MCP, and OLS, RMSE and RMSPE are mostly above 5, while
most of them remain above 6. Based on our observations, the
Lasso, SCAD, andMCP cannot select most of the variables with
thresholds. Hence, the RMSE and RMSPE are larger due to
the large coefficients specified in the setup. However, additional
results with smaller coefficients set (in Appendix B, supplemen-
tary materials) show smaller differences in RMSE and RMSPE
between the Lasso, SCAD, or MCP and our model. We further
note that when we apply our model under known thresholds
setting with the Lasso, SCAD, or MCP penalty functions, these
models are able to select the active variables. These observa-
tions suggest that for a given dataset where some predictors
contain thresholds and are significantly similar to the settings
we specified, existing methods will not be able to select most
of the significant covariates or provide poor estimates for the
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Figure 1. The RMSE is produced for the TWT-LR-ETP, Lasso, SCAD, MCP, and OLS under the simulation setting in numerical experiment 1.

regression coefficients. As a result, the TWT-LR-ETP model
should be considered due to its applicability, interpretability, and
predictability.

Based on Figures 1 and 2, RMSE and RMSPE are relatively
stable after 600 for the training set. We consider the sample size
to be 600 for the training set and 200 for the testing set for
additional simulations with a different setting on the regression
coefficients. We extend the number of active variables without
thresholds to 10 and the coefficients are set to

βj,0 =
{−5 for j = 2k − 1,
5 for j = 2k

for k=1,2,…,5 where βj,0 is the coefficient of the jth variable
without thresholds. Other parameter settings are specified sim-
ilarly to the setting in numerical experiment 1. The process is
repeated for p = 110 and p = 1100. The simulation setting is
referred to as Case A.

In addition, we consider smaller regression coefficients in
Case B. The coefficients of 5 active variables with thresholds
are set to β1,1,0 = 1, β1,2,0 = −1, β1,3,0 = 0, β2,1,0 = −3,
β2,2,0 = −3, β2,3,0 = 1, β3,1,0 = 1, β3,2,0 = 0, β3,3,0 = 0,
β4,1,0 = 0, β4,2,0 = −1, β4,3,0 = 0, β5,1,0 = 1, β5,2,0 = −1,
β5,3,0 = 0. The coefficients of four active variables without

thresholds are set to (−1, 1, −1, 1). The process is repeated for
p = 110 and p = 1100 with other parameter settings specified
in numerical experiment 1.

In Case C, we set the number of active variables without
thresholds to 10 with the regression coefficients

βj,0 =
{−1 for j = 2k − 1,
1 for j = 2k

for k=1,2,…,5 while other settings are specified similarly to
numerical experiment 1. We tabulate these additional results in
Tables B1–B3 in the Appendix, supplementary materials. Based
on the results, the TWT-LR-ETP model outperforms the Lasso,
SCAD and MCP from Case A through Case C.

We further consider data generated from a linear model (i.e.,
no thresholds) with 10 active variables using different sets of
parameter coefficients (−5, 5, . . . ,−5, 5) and (−1, 1, . . . ,−1, 1)
in Case D and Case E, respectively. The dimensions of the pre-
dictors and correlation structures are set similarly to numerical
experiment 1. The results in Tables B4 and B5 (in Appendix B,
supplementary materials) show that the TWT-LR-ETP model
produces results that are comparable to the Lasso, SCAD and
MCP.
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Figure 2. The RMSPE is produced for the TWT-LR-ETP, Lasso, SCAD, MCP, and OLS under the simulation setting in numerical experiment 1.

In Case F, the threshold parameters are set to cj,1,0 = −1,
cj,2,0 = 1 and cj,3,0 = −∞ for j = 1, 2, 3, 4, 5. The coefficients
for covariates with thresholds are set to β1,1,0 = β1,2,0 = 5,
β1,3,0 = 0, β2,1,0 = β2,2,0 = −5, β2,3,0 = 0, β3,1,0 = β3,2,0 = 5,
β3,3,0 = 0, β4,1,0 = 0, β4,2,0 = −5, β4,3,0 = 0, β5,1,0 = 5,
β5,2,0 = 0, β5,3,0 = 0. The parameter coefficients for 10 active
variables without thresholds are set to (−5, 5, . . . ,−5, 5). Other
settings are considered similarly as in numerical experiment 1.
In Case G, we consider similar settings in Case F with regression
coefficients β1,1,0 = β1,2,0 = 1, β1,3,0 = 0, β2,1,0 = β2,2,0 = −1,
β2,3,0 = 0, β3,1,0 = β3,2,0 = 1, β3,3,0 = 0, β4,1,0 = 0,
β4,2,0 = −1, β4,3,0 = 0, β5,1,0 = 1, β5,2,0 = 0, β5,3,0 = 0. Based
on the RMSE and RMSPE in Tables B6 and B7 (in Appendix
B, supplementary materials), the TWT-LR-ETP model outper-
forms the Lasso, SCAD and MCP.

Besides, we compare the performance of the TWT-LR-ETP
model with the threshold models for a single threshold in Lee,
Seo, and Shin (2016) andmultiple thresholds inKaul, Jandhyala,
and Fotopoulos (2019b).We consider a variable with a threshold
at c1,1,0 = c1,2,0 = 1 (c1,3,0 = −∞) with the parameter
coefficients β1,1,0 = 5, β1,2,0 = −5 and β1,3,0 = 0. The
parameter coefficients for 10 active variables without thresh-
olds are set to (−5, 5, . . . ,−5, 5) in Case H. For Case I, the

parameter coefficients for the variable with a threshold are set
to β1,1,0 = 1, β1,2,0 = −1 and β1,3,0 = 0 while the parameter
coefficients for 10 active variables without thresholds are set
to (−1, 1, . . . ,−1, 1). In addition, in Case J and Case K, we
consider a variable with two thresholds at c1,1,0 = −1 and
c1,2,0 = 1 (c1,3,0 = −∞) with other parameter settings similar
to Case H and Case I, respectively. The results in Tables B8–B11
(in Appendix B, supplementary materials) show that the TWT-
LR-ETP model outperforms the candidate models from Case H
to Case K.

Furthermore, we include a simulation where the thresholds
are at the two extreme ends for comparison purposes in Cases L
andM.We consider two variables with two thresholds at cj,1,0 =
−1.8, cj,2,0 = 1.8, cj,3,0 = ∞ for j = 1, 2 with the parameter
coefficients β1,1,0 = 3, β1,2,0 = 3, β1,3,0 = −2, β2,1,0 =
−3, β2,2,0 = −3 and β2,3,0 = 2 in Case L. The parameter
coefficients for 10 active variables without thresholds are set to
(−1, 1, . . . ,−1, 1). Other parameter settings follow from Case
H. In Case M, we consider one variable with two thresholds at
the two extreme ends, one variable with one threshold at the left
extreme end and another variable with one threshold at the right
extreme end. The threshold parameters are set to c1,1,0 = −1.8,
c1,2,0 = 1.8, c1,3,0 = ∞, c2,1,0 = −1.8, c2,2,0 = −1.8, c2,3,0 =
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−∞, c3,1,0 = 1.8, c3,2,0 = 1.8, c3,3,0 = −∞ with the parameter
coefficients β1,1,0 = 3, β1,2,0 = 3, β1,3,0 = −2, β2,1,0 = 1,
β2,2,0 = −2, β2,3,0 = 0, β3,1,0 = 2, β3,2,0 = −1, β3,3,0 = 0.
Other parameter settings are set similar to Case L. The results
in Tables B12–B13 (in Appendix B, supplementary materials)
show that the TWT-LR-ETP model outperforms the candidate
models for Cases L and M.

In addition, we produce the computational time for each sim-
ulation in the Appendix, supplementary materials. However, we
do not report the computational time for the Lasso, SCAD, and
MCP in Figures 1 and 2 as they are similar to the computational
time in other simulation settings. The TWT-LR-ETPmodel has
a longer computational time for all simulation settings. How-
ever, a higher computational cost is expected as we search for
possible thresholds or change-points for every variable without
any prior information on whether the variables contain thresh-
olds or change-points, which is the case in handling new real
datasets. The computational cost can be reduced if we acquire
prior knowledge of the variables with possible thresholds by
updating the initial groups of the variables in the computational
procedure or estimate the thresholds for the variables directly,
which is a commonpractice formost thresholds or change-point
modeling.

Furthermore, since the estimation results depend on the
choice of the tuning parameterλn as discussed in Section 3.1, the
choice of the tuning parameter λn, which is selected via aK-fold
cross-validation procedure, may not yield optimal estimation
results in the case of smaller regression coefficients. For the
variables with change-points, if most data points in the same
segments are placed in the same fold to train or validate the data
to select λn, the choice of λn may result in some change-points
being undetected in the case of smaller regression coefficients.
This is due to the fact that the samples in each segment are
not split evenly across the folds. As a result, the change-points
can go undetected for certain folds as there are insufficient data
points in some segments to detect the change-points especially
when the regression coefficients are small, leading to higher
cross-validation error and poor estimation. Dividing the data
points evenly into different folds can be challenging since the
values of the predictors may fall into different segments for
multiple predictors. Therefore, our best approach is to split the
data points randomly into different folds before performing the
K-fold cross-validation procedure. Similarly, it is also suggested
to permute and select the data points randomly as the same
issuemight arisewhen splitting the data into training and testing
datasets.

Moreover, under the classical linear regression models (i.e.,
without thresholds), we also illustrate simulation examples to
demonstrate the Lasso, SCAD, andMCP fittings outperform the
TWT-LR-ETP fitting. The simulation settings are taken from
examples in Breheny and Huang (2011) since the MCP and
SCAD used for comparison are based on the algorithms in
the article. Breheny and Huang (2011) showed through simula-
tion examples that the SCAD and MCP outperform the Lasso
for large regression coefficients but not necessarily for small
coefficients. The covariate values are generated independently
from the standard normal distribution. Two of the nonzero
coefficients are set to +z, and two other nonzero coefficients
are set to −z. Here, we set z = 0.3, 0.5, 0.8 for compari-

son purposes. The total numbers of predictors are set to 30
and 90 as in the simulation of the article. In setting 1 of the
article, comparisons based on the prediction error were not
reported. We set the sample size to 300, where we use a sample
size of 200 for estimation and 100 for prediction. The RMSE
and RMSPE are computed for each of the settings and the
ratios of the medians of the RMSEs are computed, for example,
Ratio = RMSE for the TWT-LR-ETP model

RMSE for the fitted model by competing approach . The results are
shown in the Figures B2 and B3 (in Appendix B, supplementary
materials). The plots show that the ratios for the MCP are the
highest, followed by the SCAD and the Lasso based on the
ratios of the RMSE and RMSPE for p = 30, 90. For smaller
regression coefficients without threshold, the Lasso, SCAD, and
MCP outperform the TWT-LR-ETP model as the ratios are
above 1. In addition, it is observed that the ratios of RMSE and
RMSPE decrease for larger regression coefficients, suggesting
the estimation and prediction outperform the TWT-LR-ETP
model as compared to the Lasso, SCAD, and MCP.

4.3. Real Data

In this section, we will present an analysis of a real dataset, show
the results where thresholds are detected at extreme ends, and
the interpretability aspects of our model as mentioned in the
introduction.

4.3.1. Cancer Mortality
Numerous research studies have been conducted on studying
factors and genes related to cancers in past decades as can-
cer is a leading cause of death worldwide, according to the
World Health Organization. Some recent work on identifying
key genes related to different types of cancers, but are not limited
to, Zhou et al. (2020), Gao et al. (2020), Song et al. (2021), Zhang
(2021), and Zhang (2022).

This section presents the results and analyses of a cancer
mortality dataset. It is of interest to investigate factors related
to cancer mortality at the county level. The cancer mortality
measures death rate from cancer per capita (100,000) at county
level. The dataset can be obtained from theUnited States Census
Bureau and National Cancer Institute websites. After perform-
ing data cleaning, there are 742 data points with 13 variables
in the dataset. The training dataset consists of 602 data points,
and the remaining data points are used as the testing dataset.
First, the regularization parameter λn is chosen using a 5-fold
cross-validation procedure. Next, an initial tuning parameter λn
is obtained after searching through 70 values. Then, amore thor-
ough search in the neighborhood of the initial tuning parameter
is performed to obtain the optimal tuning parameter.

The relationships between two predictors and cancer mor-
tality are depicted in Figure 3. Based on Figure 3(a), there is
an overall increasing trend, and there are changes in the linear
association between cancer mortality and incidence rate at 350
and 520. Figure 3(b) shows a general decreasing trend with
potential change-points at around $38,000 and $60,000.

Figure 4 shows the RMSE and RMSPE from different
candidate models. From the plots, we can see that TWT-
LR-ETP performs the second (third) best in terms of RMSE
and RMSPE, respectively, among seven approaches, including
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Figure 3. Panel (a) shows the scatterplot between cancer mortality and incidence rate. Panel (b) shows the scatterplot between cancer mortality and median household
income (in US$).

Figure 4. Panels (a) and (b) show the RMSE and RMSPE based on different candidate models for the cancer mortality dataset.

six other widely applied approaches. In the second dataset
of COVID-19 in the supplementary materials, TWT-LR-ETP
performs the best and the result is 21.6% better than the second-
best performance by Random Forrest in terms of RMSE (Table
C16). Table 1 displays partial estimation results for the cancer
mortality data. A complete table of the results and a table
containing the descriptions of the variables can be found in
Appendix B, supplementary materials. In the table, we report
the coefficient estimates, standard errors, threshold estimates,
and percentages of the thresholds in the distribution of the
empirical distribution for each predictor. Based on the results,
the tuning parameter λ̂n is 2.18. The computational time for this
real dataset is 71.317 sec.

Subsequently, we will discuss and interpret the estimation
results of the TWT-LR-ETP model. For counties with a can-
cer incidence rate lower than 352.5, the estimated regression
coefficient is 0.107 (i.e., refer to the term β̂j,1 + β̂j,3 in model

Table 1. Partial estimation results for cancer mortality dataset.

Variables TWT-LR-ETP

β̂ ĉ
Incidence rate −0.044 (0.015) 352.5 (3.91%)

0.016 (0.006) 511.1 (90.8%)
0.151 (0.022) ∞ (100%)

Income 0.000197 (0.000083) 38221 (20.62%)
0.000182 (0.000078) 69430 (95.55%)
−0.0008 (0.0002) ∞ (100%)

Percent public health coverage −0.580 (0.216) 23.4 (5.53%)
0.365 (0.081) 34.8 (44.47%)

−0.924 (0.276) ∞ (100%)

(2.9)). The estimated regression coefficient is 0.151 for counties
with a cancer incidence rate between 352.5 and 511.1. When
the cancer incidence rate is higher than 511.1, the estimated
regression coefficient is 0.167 (i.e., refer to the term β̂j,2 + β̂j,3
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in model (2.9)). The estimated change-points at 352.5 and 511.1
are detected at the two extreme ends where the first change-
point is located at 3.91% from the left of the data distribution and
the second change-point is detected at 9.2% from the right of the
data distribution (with a cumulative percentage of 90.8% from
the left), respectively. In the extreme value theory context, the
thresholds detected within 10% from the two extreme ends can
be considered as thresholds at the two extreme endpoints. Fur-
thermore, cancermortality at county level decreases by 0.000603
for every unit increase in the median household income below
$38,221. The estimated regression coefficient is −0.0008 for the
median household earning between $38,221 and $69,430. The
cancer mortality decreases by 0.000618 for every unit increase
in the median household income above $69,430. The estimated
threshold at $69,430 is detected at the right extreme end which
is located at 4.45% from the right of the data distribution (with
a cumulative percentage of 95.55% from the left). In addition,
cancer mortality decreases by 1.504 when the percentage of
public health coverage is below 23.4. When the percentage of
public health coverage is between 23.4 and 34.8, cancer mor-
tality decreases by 0.924. As the percentage of public health
coverage increases beyond 34.8, cancer mortality decreases by
0.559. The estimated threshold at 23.4 is detected at the left
extreme endwhich is 5.53% from the left of the data distribution.
The variables discussed show the cases of thresholds detected at
the two extreme ends, right extreme ends and left extreme ends.
In addition, there are thresholds detected in the middle of the
data distribution shown in Table 1 and Table B15 (in Appendix
B, supplementary materials). These findings illustrate the flex-
ibility and capability of the TWT-LR-ETP model for detecting
thresholds at the extreme ends. The results for other variables in
Table B15 can be interpreted similarly. The results suggest the
cancer mortality is related to the overall economic and social
welfare of a county. The cancer mortality can be improved by
either providing better public healthcare coverage to families
that cannot afford healthcare or reducing poverty. Furthermore,
the economic welfare such as education, income, etc., that are
related to the cancer mortality should also be enhanced.

5. Conclusion

This article proposes a more general class of threshold model
with regularization, which allows us to capture significant lin-
ear and nonlinear relationships between variables due to the
flexibilities of the two-way truncated linear regression with
an extremely thresholding penalty (TWT-LR-ETP) model. The
TWT-LR-ETP model is capable of detecting thresholds at the
two extreme ends where data are sparse through simulation
studies and a real cancer mortality dataset. Our model main-
tains the CIPS properties mentioned in the introduction, and
it is highly flexible in modeling data with no threshold, one
threshold, and two thresholds while controlling the number
of thresholds through the penalty, which does not involve the
regression coefficients. Therefore, standardizing the predictors
is not necessary. It is substantiated in simulation studies that
our model is useful, especially in the presence of variables with
thresholds, as the relationships between the response variable
and predictors are not always linear. In addition, it is also shown
using a socio-economic dataset, medical research example, and

real-world business problem in Appendix C, supplementary
materials that our model provides highly interpretable results,
which are important in studying the underlying experience and
making better business decisions and medical treatments.

Moreover, it is also established that the model has desired
theoretical properties such as consistency and asymptotic nor-
mality under appropriate conditions. Therefore, throughout the
article, we focused on the estimation consistency of the TWT-
LR-ETP model, both theoretically and computationally, in both
simulations and real data analyses.

Furthermore, we note that the way the TWT-LR-ETP model
performs variable selection is not the same as the traditional
methods. Since our primary goal is not to propose a new vari-
able selection method as there are various existing dimension
reduction techniques, the results depend heavily on the perfor-
mance of the SEVIS dimension reduction method in a high-
dimensional setting. After this work, it provides us with some
directions for future research work. In this article, we focus on
proposing, developing the estimation properties of the TWT-
LR-ETP model, and exploring the estimation performance of
the model in the simulation section. The theoretical properties
of variable selection using the TWT-LR-ETP are yet to be devel-
oped, which can be a potential future work. Besides, the com-
putational procedure in this article can be further customized
and enhanced to explore variable selection performance. As we
have shown in this article that popular penalized regression-
based methods such as the Lasso, the SCAD, and the MCP,
which depend on a linear model assumption, are not able to
capture nonlinear relationships between the response variable
and the predictors, further developing this new model to per-
form a high-dimensional variable selection of active variables
while performing variable selection for variableswith thresholds
can be a future research work. In addition, the computational
procedure has a high computational cost as the dimension of
covariates increases. Therefore, a more efficient algorithm can
be developed for a higher p dimension.

In addition, since we only impose two thresholds on each
predictor, the model can be extended to handle multiple thresh-
olds (i.e., multi-way truncation), making the extended model
more complex. For instance, m numbers of thresholds are con-
sidered for each variable. Using the notation defined in Sec-
tion 2.1, each variable can be truncated using the thresholds, for
example, the variable Xij can be truncated to Tij = (XijI(cj,1 <

Xij ≤ cj,2),XijI(cj,2 < Xij ≤ cj,3), . . . ,XijI(cj,m−1 < Xij ≤
cj,m)) where Tij contains the truncations of the variable Xij.
The random covariate vector Zi(c) = (1,Ti1, . . . ,Tip)′ is a
(mp+ 1)× 1 vector. Here, an additional assumption is imposed
on the order of the change-points that is cj,1 ≤ cj,2 ≤ · · · ≤ cj,m
for all j. The types of associations between the response variable
and predictors are similar to the discussions in Section 2.1 with
slight modifications on the threshold parameters.

The TWT-LR model is reduced to a linear regression model
when there is no change-point. On the other hand, the TWT-
LR model can be expressed as a tree structure, as illustrated in
Figures C10 and C11 in Appendix, supplementary materials,
but the TWT-LR model cannot be generalized to every tree
structure. Furthermore, different from the popular tree-based
methods, we do not fit the intermediate steps. To further illus-
trate the idea of performing classification similar to the tree-
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based method, we consider two predictors with truncation at c∗1
for the first variable and c∗2 for the second variable, respectively,
as in Figure C10. The data can be truncated into four different
quadrants that can be represented using a tree structure shown
in Figure C11. The truncation performed using the TWT-LR
model can be explained using a tree structure.

The new regression model is continuous when the response
variable and predictor are linearly related or for one threshold
without intercept. The regression is discontinuous otherwise.
As it is not always easy to determine if a regression continuity
or discontinuity should be used, and it is not the main focus of
this article, the regression continuity can be considered as future
work. In addition, the estimation procedure will be different in
the regression continuity setting.

Supplementary Materials

The supplementary materials contain codes, 4 datasets used in the article, a
readme file and an online supplement containing theoretical justifications,
simulation results and real data results.
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